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ABSTRACT
Insynd is a cryptographic scheme for secure and privacy-
preserving one-way messaging. Insynd is ideally suited for
sending personalised breach notifications to end-users, en-
abling services to provide positive evidence to a third party
that they have complied with their obligations (and con-
versely, for end-users to prove that the notification was not
timely). Insynd provides i) secrecy of messages, ii) message
integrity and authenticity, iii) protection against recipient
profiling, and iv) publicly verifiable proofs of who sent what
message to which recipient at what particular time. Our
scheme is built on an authenticated data structure, named
Balloon, enabling the safe outsourcing of storage of messages
to an untrusted server (such as commodity cloud services).
The author of messages is in the forward-security model. In-
synd uses modern cryptographic primitives, making it also
a suitable secure logging system or evidence store, despite
the use of “slow” public-key cryptography. Our prototype
implementation shows improved performance over related
work and competitive performance for more data-intensive
settings like secure logging.

Keywords
Transparency-Enhancing Tool, Security and Privacy Protec-
tion; Authenticated data structure; Cryptographic controls;
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1. INTRODUCTION
Insynd1 is a cryptographic scheme for one-way messaging

that is designed to be secure and privacy-preserving. The
development of Insynd has been motivated by the need for
protecting one-way communication by service providers to
potentially offline users where technologies like e-mail, SMS,
and push notifications fall short due to lack of adequate pri-
vacy and security protections. For direct communication
with service providers, users already have access to, e.g.,
TLS, Tor [18], and Tor Hidden Services that provide differ-
ent security and privacy protection for both users and ser-
vices. These technologies assume two online communicating
parties, and therefore are not directly a fit for asynchronous
communication. Ongoing work, e.g., Pond by Langley2,
builds asynchronous communication on top of technologies

1Insynd is a word-play on the Swedish word“insyn”, roughly
translatable to “insight”, with a “d” suffix in the tradition of
a deamon. The result, “Insynd”, can be seen in Swenglish as
“in sin”, since “synd” means “sin” in Swedish.
2pond.imperialviolet.org, accessed 2015-01-29.

like Tor and Tor Hidden Services, with the goal of address-
ing several pressing security and privacy issues in two-way
asynchronous communication where both the sender and re-
ceiver may be unavailable, similar to email. While closely
related to our setting, we are addressing the need of one-way
asynchronous communication from a service provider with
high availability to potentially less reliable users.

If service providers are available and users are not, the
natural question is then why there is a need to communi-
cate asynchronously at all? The user can just contact the
service provider, using technologies like Tor and TLS for
privacy and security protection, at their convenience. How-
ever, the service provider might get compromised between
the time of generating messages and the time of recipients
retrieving those messages (forward security model). Insynd
covers this by modeling storage of the messages as being
on intermediate servers that are considered to be active ad-
versaries. Since these servers do not need to be trusted, a
service provider can both run the server on its own or safely
outsource it to, e.g., commodity cloud services. This means
that we look at how the service provider should store mes-
sages. Insynd uses an authenticated data structure, named
Balloon [27], to safely outsource data storage. Balloon is
similar to the underlying data structures at the center of,
e.g., Bitcoin [25] and Certificate Transparency [20].

The main applications that Insynd is designed for are as
a mechanism for delivering detailed breach notifications to
users and for continuously sharing data processing informa-
tion. Additionally, Insynd can also be used as a secure log.
In an ongoing EU FP7 research project, Insynd is currently
being used for these three purposes.

For breach notifications, Insynd enables the sharing of de-
tailed (and therefore highly personal) breach notifications
where the service provider (and user) can generate pub-
licly verifiable evidence to a third party of providing timely
notifications (or conversely, users can prove that notifica-
tion was not timely). Timely breach notification is required
for legal compliance with, e.g., the EU e-Privacy Directive
2002/58/EC, HIPAA, the proposed Personal Data Notifica-
tion and Protection Act in the US, and the ongoing EU Data
Protection Regulation.

For sharing data processing information, the service
provider continuously sends messages to users detailing how
their personal data is processed, e.g., by logging access made
in a privacy-policy engine for the PrimeLife Policy Language
(PPL) [30, 28]. This increases transparency to users, and
therefore Insynd can be seen as a privacy-preserving ex-post
transparency-enhancing tool. Insynd secures the data pro-
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cessing information, both from an adversary and from the
service provider tampering with sent messages (the service
provider is forward secure), and protects the privacy of users.
PPL also supports so-called downstream usage, where per-
sonal data may be shared by one service provider to another
without interacting with the user. For this reason, Insynd
also supports non-interactive registration of users, such that
one service provider can enable other service providers to
send messages to the user without interacting with the user.

Insynd can also be used as a secure log. Like the secure
logs by, e.g., Ma and Tsudik [21] and Holt [19], Insynd offers
publicly-verifiable forward integrity and deletion detection
and competitive performance.

We make the following contributions:

• We present the cryptographic scheme Insynd, consist-
ing of five protocols that are inspired by concepts from
authenticated data structures, secure logging, and on-
going work on secure messaging protocols (Section 4).

• In addition, we show how to achieve publicly verifiable
proofs of author, recipient, message, and time with
minor impact on other properties (Section 4.4).

• We show that Insynd provides secrecy, forward-
integrity and deletion detection, forward unlinkability
of events, and publicly verifiable consistency with a
forward-secure author (Section 5 and Appendix A).

• We show that our proof-of-concept implementation of-
fers comparable performance for event generation to
state-of-the-art secure logging systems (Section 7).

The rest of the paper is structured as follows. Section 2 pro-
vides an overview of our setting, adversary model, assump-
tions, and goals. Section 3 introduces the cryptographic
building blocks used in the Insynd. The Insynd scheme is
presented in Section 4. Section 5 evaluates the properties
of Insynd. Section 6 presents related work, and Section 7
a brief performance analysis. Section 8 concludes this pa-
per with some promising future work. Finally, Appendix A
contains a more thorough security evaluation.

2. OVERVIEW
We take an event-centric view, where an event is a con-

tainer for a message (the exact format of an event is spec-
ified in Section 4.2). An event is authored by an author
A, and intended for a recipient R. Events are sent by the
author A to an intermediate server S, and the recipient R
polls the server for new events. We consider a forward se-
cure [4] author, where our goal is to protect events sent prior
to compromise of the author. Furthermore, we distinguish
between two types of compromises: a compromise by an ac-
tive adversary and a time-limited compromise by a passive
adversary. If the compromise is by an active adversary, we
provide forward security. If the compromise is time-limited
by a passive adversary, we can recover once the author is no
longer compromised. The server is always considered com-
promised by an active adversary.

2.1 Threat Model and Assumptions
The ability to recover from the compromise of a passive

adversary protects against a large number of threats, such as
a memory dump of the author’s system, which could hap-
pen for forensic analysis, as a result of a system crash, a

privileged attacker looking for secrets in memory, lost or
compromised backups, and legal obligations to provide data
to law enforcement or other legal entities. Protocols like
Off-the-Record Messaging (OTR) [11] provides protections
against similar threats.

Commodity cloud services, while convenient, pose a large
threat to both security and privacy due to the inherent loss
of control over data and processing. As mentioned before,
treating the server as untrusted covers both the case when
the author wants to store its events itself and when the au-
thor wants to outsource storage.

For communication, we assume a secure channel between
the author and the server (such as TLS), and a secure and
anonymous channel for recipients (such as TLS over Tor) to
communicate with the author and server. We explicitly con-
sider availability out of scope, that is, the author and server
will always reply (however, their replies may be malicious).
For time-stamps, we assume there exists a trustworthy time-
stamping authority [13].

2.2 Goals
We note the following goals and properties for Insynd:

Secrecy Only the recipient of a message can read it.

Forward Integrity and Deletion Detection Nobody
can modify or delete messages sent prior to author
compromise without detection.

Forward Unlinkability of Events For each run by the
author of the protocol to send new messages, all the
events sent in that run are unlinkable. This also im-
plies that an adversary cannot tell which events belong
to which recipient. This prevents recipient profiling
due to event generation.

Publicly Verifiable Consistency Anyone should be able
to verify the consistency of all events stored at a server.

Publicly Verifiable Proofs Both the author and recipi-
ent receiving a message can create publicly verifiable
proofs. The proofs are“publicly verifiable” in the sense
that anyone can verify the proof given some crypto-
graphic material (like a verification key). Insynd can
generate the following publicly verifiable proofs:

Author Who was the author of an event.

Time When was the event sent.

Recipient Who was the recipient of an event.

Message What is the message in an event.

These proofs should not inadvertently require the dis-
closure of private keys. Each proof is an isolated disclo-
sure (and potential violation of a property of Insynd,
like message secrecy).

Non-Interactive Registration An author can enable an-
other author to send messages to recipients already
registered with the initiating author. This enables dis-
tributed settings with multiple authors, where authors
do not need to interact with recipients to start sending
messages. Furthermore, the identifiers for the recipient
at the two authors are unlinkable for sake of privacy.



Ease of implementation Primitives should be chosen
such to ease the implementation as much as possible,
not shifting the security of the implementation entirely
to the implementer.

3. BUILDING BLOCKS
The general idea behind Insynd is to store events at an un-

trusted server. Each event consists of a unique identifier that
is only reconstructible by the intended recipient, and an en-
crypted message for that recipient. To store events, Insynd
makes use of an authenticated data structure [23]. This en-
ables us to support a stronger adversary model than related
work, and it is crucial in providing our publicly verifiable
proofs. Next, we describe and motivate our use of a partic-
ular data structure (Balloon), forward secure state genera-
tion mechanism (used as a building block to generate unique
recipient-specific identifiers and to provide forward integrity
and deletion detection) and encryption scheme to be able to
reach the goals set in Section 2.2. Finally, we present and
motivate our selection of the cryptographic primitives.

3.1 Balloon
Balloon is a forward-secure append-only persistent au-

thenticated data structure by Pulls and Peeters [27]. Bal-
loon is designed for an initially trusted author that generates
events to be stored in a data structure (the Balloon) kept
by an untrusted server, and clients that query this server
for events intended for them based on keys and snapshots.
Snapshots are generated by the author as new events are in-
serted and fix all data stored in the Balloon that far. Pulls
and Peeters define the following algorithms for Balloon:

• B.Insert(E) → P . Given a set of events E with
unique keys and non-zero values, the system appends
it to the Balloon B, and then outputs proof P .

• P.VerifyInsert(E, sl) → {sl+|E|, false}. Verifies
that P proves that events E were correctly inserted
into the Balloon with the latest verified snapshot sl.
Outputs the next snapshot sl+|E| if the proof is cor-
rect, false otherwise.

• B.MembershipQuery(k, sj) → (P, sl, ei). Generates a
(non-)membership proof P for the event with key k
from snapshot sj for the Balloon B. The algorithm
outputs P , the latest snapshot sl, and, in the case of
membership, the event ei, where i ≤ j ≤ l.

• P.MembershipVerify(k, sj , sl, e
′
i)→ {true, false}.

Verifies that P proves the (non-)membership of the
event e′i with key k in sl and, if member, that e′i is the
i:th event in sj , where i ≤ j ≤ l.

Internally, Balloon is composed of two authenticated data
structures: a history tree and a hash treap. A history tree
is a data structure by Crosby and Wallach [16], virtually
identical to the data structure used in Certificate Trans-
parency [20]. Thanks to being composed with a hash treap,
Balloon can provide efficient non-membership proofs. This
is required for recipients to be convinced (by the untrusted
server) that there is no event with a given key, without re-
cipients downloading the entire Balloon. While any persis-
tent authenticated dictionary (PAD) [1] could provide ef-
ficient non-membership proofs and fit the setting, Balloon

was designed to be significantly more efficient thanks to be-
ing append-only, unlike a PAD, that supports deletion.

Balloon depends on a collision resistant hash function,
an unforgeable signature algorithm, and a gossiping mecha-
nism for snapshots. Pulls and Peeters show, in the forward-
security model, that snapshots cannot be undetectably in-
consistent (removing or modifying data already stored in
the Balloon) assuming the existence of monitors. A monitor
downloads all events at the server to recompute and compare
all generated snapshots. At compromise of the author, the
latest snapshot sl has (presumably) been gossiped to moni-
tors, and sl provably fixes all data stored up to that point.
Future snapshots generated by the adversary can only ap-
pend data to the Balloon under the assumption of a collision
resistant hash function.

3.2 Forward-Secure State Generation
For the recipient to find its events, and maintain unlink-

ability of events, identifiers for events need to be unlinkable
and deterministically generated for each recipient in a for-
ward secure manner. To provide forward-integrity and dele-
tion for individual recipients as well, there is also the need
to authenticate all events entirely up to a certain point in
time in a forward secure manner.

The author will keep state for each recipient, consisting
of a key k and a value v that is continuously evolved by
overwriting the past key and value as new events eji for re-
cipient j are generated. The initial key, k0, is agreed upon
at recipient registration. The key is used to generate the
recipient-specific event identifiers. It is constantly evolved,
with each recipient-specific event eji , using a simple forward-
secure sequential key generator (forward-secure SKG) in the
form of an evolving hash-chain [4, 29, 22]:

ki =

{
Hash(ki−1), if i > 0

k0, if i = 0
(1)

For forward integrity and deletion detection, we use a
Forward-Secure Sequential Aggregate (FssAgg) authentica-
tor by Ma and Tsudik [21] in the form of combining an
evolving hash-chain and a MAC. The forward-secure SKG,
ki, is used in the FssAgg as follows to compute the value vi:

vi =

{
Hash

(
vi−1||MACki−1(eji−1)

)
, if i > 0

k0, if i = 0
(2)

We set v0 = k0 to prevent a length distinguisher for one of
our protocols, as described in Section 4.3.

3.3 Public Key Encryption Scheme
Messages stored for recipients are encrypted under their

public keys. The encryption scheme must provide indistin-
guishably under adaptive chosen ciphertext attack (IND-
CCA2) [3], and key privacy under adaptive chosen cipher-
text attack (IK-CCA) [2]. IK-CCA is only needed for the
ciphertexts contained within the events, this to avoid that
the event’s recipient can be deduced from the ciphertext.
IND-CCA2 is needed since our publicly verifiable proofs of
message reveals the decryption of ciphertext. Hence the ad-
versary can be assumed to have access to a decryption oracle.

A publicly verifiable proof of message is in essence a proof
that a given ciphertext, encrypted for a given recipient (pub-
lic key), corresponds with the output plaintext (message).



These proofs can be generated by either the author or the re-
cipient, as described in Section 4.4. The encryption scheme
should be such that:

• these proofs do not require the recipient or the author
to reveal any long term private or secret keys;

• it provides forward security at the author side: only
at the time of encryption, the author can choose to
store additinal information that allows it to recover the
plaintext at a later point in time; however the author
cannot recover any other plaintext for which it did not
store this additional information, which was generated
during the encryption.

3.4 Cryptographic Primitives
The cryptographic primitives needed for a Balloon are a

hash function and a signature scheme. For the forward-
secure state generation, additionally a MAC scheme is
needed. Finally we need a public key encryption scheme.

To ease implementation, Insynd is designed around the
use of NaCl [9]. The NaCl library provides all of the core
operations needed to build higher-level cryptographic tools
and provides state of the art security (also taking into ac-
count side-channels by having no data dependent branches,
array indices or dynamic memory allocation) and high speed
implementations. We selected the following primitives:

• SHA-512: a collision and pre-image resistant Hash;

• Ed25519 [8]: an existentially unforgeable under
chosen-message attack signature algorithm Sign;

• Poly1305 [5]: a one-time existentially unforgeable MAC;

• crypto box: a public-key authenticated Encnpk using
Curve25519 [6], XSalsa20 [7] and Poly1305 [5].

We now go into the details of crypto box and how we in-
tend to use it. The encryption makes use of elliptic curve
Diffie Hellman (ECDH) and a nonce to derive a symmetric
key for the subsequent symmetric authenticated encryption
of the message. This key can both be computed by the recip-
ient and the receiver. Three functions make up crypto_box:

1. Public key pk and private key sk genera-
tion using crypto_box_keypair(pk,sk) such
that crypto_scalarmult_base(pk, sk), where
crypto_scalarmult_base multiplies the scalar sk

with the Curve25519 basepoint resulting in pk;

2. Authenticated encryption of a message m using a
unique nonce n, the recipients public key pk and the
sender’s private key sk: c = crypto_box(m,n,pk,sk);

3. Authenticated decryption of the ciphertext c using
nonce n, the sender’s public key pk and the recipients
private key sk: m = crypto_box_open(c,n,pk,sk);

For each message that the author wants to encrypt for a
given recipient, it will generate a new ephemeral key pair
crypto_box_keypair(pk’, sk’). By revealing sk’, anyone
can compute pk’ using crypto_scalarmult_base, which en-
ables us to prove to a third party that a ciphertext corre-
sponds to a plaintext for a given recipient (as described later
in Section 4.4.4). For the recipient to be able to do this, it
needs to know the ephemeral sk’. Therefore we append sk’

to the message before encryption. Moreover the encryption
scheme provides forward security at the author side (the
author needs to store sk’ to be able to recover the plain-
text afterwards). Note that even though crypto box only
requires the nonce n to be unique for a given pair of sender
sk and recipient pk, we use the nonce to associate the ci-
phertext to a given event (see Section 4.2). For encryptions
where no nonce is provided, n=0. Apart from the ciphertext
c, the ephemeral public key pk’ also needs to be stored to
decrypt c. We do not store the nonce, since it is either 0 or
linked to an event (as described in Section 4.2). We define
the following algorithms for encryption and decryption:

• Encnpk(m) = (c, pk’) for a random sk’, with
crypto_scalarmult_base(pk’, sk’) and c =

crypto_box(m||sk’,n,pk,sk’).

• Decnsk(c, pk’) = (m, sk’) with m||sk’ =
crypto_box_open(c,n,pk’,sk).

• Decnsk’,pk(c, pk’) = m if sk’
?
=sk∗ and pk’

?
=pk∗,

where m||sk∗ = crypto_box_open(c,n,pk,sk’) and
crypto_scalarmult_base(pk∗, sk’); otherwise ⊥.

4. THE INSYND SCHEME
Figure 1 shows the five protocols that make up Insynd

between an author A, a server S, and a recipient R. The
protocols are setup (pink box), register (blue box), insert
(yellow box), getEvent (red box), and getState (green box).
The following subsections describe each protocol in detail
and present relevant algorithms.

4.1 Setup and Registration
The author and server have signature key-pairs, (Ask,Avk)

and (Ssk,Svk), respectively. We assume that Avk and Svk

are publicly attributable to the respective entities, e.g., by
the use of some trustworthy public-key infrastructure. Note
that, since we assume that the author may issue new signing
keys as a consequence of becoming compromised, (Ask,Avk)
may change over time. We consider the exact mechanism
for revocation and re-issuance to be out of scope.

4.1.1 Author-Server Setup
The purpose of the setup protocol (pink box Figure 1) is

for the author and server to create a new Balloon, stored at
the server, with a given set of parameters. The protocol is
started by the author who sends (m, r,AURI) to the server.
The first parameter, m, is an integer specifying the max-
imum number of events to be stored in the Balloon. The
second parameter, r, is the retention time in Unix time that
specifies until which point in time the server must retain the
Balloon. These two parameters are merely a practicality and
does not influence any of our security or privacy properties
(although obviously these play a crucial role in availability
and may be impractical). The last parameter, AURI, specifies
the uniform resource identifier (URI) of the state associated
with the to-be created Balloon at the author. This param-
eter plays a crucial role, since it will later be used by the
recipient to query its state.

After receiving the parameters for the setup protocol,
the server verifies the parameters (m is a positive integer,
the retention time is in the future, and AURI identifies a
resource under control by the author) and, if acceptable,
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Figure 1: The Insynd scheme, consisting of five protocols (colored boxes), between an author A, a server S, and a recipient R.
A solid line indicates the start of protocol and a dashed line a response. Section 4 describes each protocol in detail.

signs the parameters together with the URI to the new Bal-
loon at the server, SURI. The server replies with SURI and
SignSsk(m||r||AURI||SURI). The signature commits the server
to the specified Balloon.

Upon receiving the reply, the author verifies the signature
and SURI from the server, and signs the parameters together
with the two URIs. The final signature is sent to the server
to acknowledge that the new Balloon is now setup. We refer
to the two parameters, two signatures, and two URIs gener-
ated as part of the setup protocol as the Balloon setup data
(BSD). BSD commits both the author and the server to the
newly created Balloon, acts as an identifier for the run of
the setup protocol, and is later used by the recipient for re-
construction. Once the server receives the final signature, it
constructs BSD on its own and now accepts both the insert

and getEvent protocols for the Balloon.

4.1.2 Recipient Registration
The purpose of the register protocol (blue box in Fig-

ure 1) is to enable the author to send messages to the re-
cipient, and in the process have the author commit to how
these messages will be delivered to the recipient. The com-
mitment is necessary, just like in the secure logging area
for FssAgg schemes as noted by Ma and Tsudik [21], to
prevent the author from fully refuting that there should ex-
ist any messages. The recipient generates a new key-pair,
(sk, pk)← KeyGen(), and sends the public key to the author
to initiate the protocol.

Upon receiving the public key, the author verifies that the
key is 32 bytes long (All 32-byte strings are valid Curve25519
public keys [6] for our use-case), generates an initial authen-
tication key k0 ← Rand(|Hash(·)|), and sets the authenticator
value v0 ← k0. We set v0 = k0 to ensure that the length of
v is constant, which prevents a length distinguisher for the
getState protocol (see Section 4.3). The initial authentica-
tion key and authenticator value is associated with the pub-
lic key pk of the recipient in the author’s state table for BSD.

The state table contains the current authentication key ki
and authenticator value vi for each recipient’s public key reg-
istered in the Balloon for BSD. This is used for our combined
SKG and FssAgg, as described in Section 3.2. As a reply to
the recipient, the author returns k0, the Balloon setup data
BSD, and a signature by the author: SignAsk

(k0||BSD||pk).
The signature also covers the public key of the recipient to
bind the registration to a particular public key. Lastly, be-
fore sending the reply, the author encrypts the reply with
the provided public key. This may appear superfluous, but
plays an important in preventing a compromised passive ad-
versary from learning k0 when extending the registration to
another author, as described in Section 4.2.4.

On receiving the reply, the recipient decrypts the reply,
verifies all three signatures (two in BSD), and stores the de-
crypted reply. It now has everything it needs to run the
getEvent protocol, but first, we need to generate events.

4.2 Generating Events
Before describing the insert protocol, we need to define

an event. An event e consists of an identifier and a payload.
The identifier, eID, identifies the event in a Balloon and is
used by a recipient to retrieve its events. The event payload,
eP , contains the encrypted message from the author.

Algorithm 1 describes how an event is generated by the
author. First, the author derives a nonce n and an event key
k′ from the recipient’s current authentication key k (step 1).
The current authentication key is stored in the author’s state
table. The first hash prefixes a 1 to distinguish the gener-
ation of the nonce with the update of the authentication
key in step 5. The structure of generating the nonce and
event key is used for publicly verifiable proofs of message,
see Section 4.4.4. Figure 2 visualises the key derivation. In
step 2, the event identifier is generated by computing a MAC

on the recipient’s public key using the event key. This links
the event to a particular recipient, which can be used for
publicly verifiable proofs of recipient, see Section 4.4.2. In



step 3, the message is encrypted using the recipient’s pub-
lic key and the generated nonce, linking the event identifier
and event payload together. In step 4, the authenticator
value v for the recipient aggregates the entire event, using
the construction from Section 3.2, and overwrites the cur-
rent authenticator in state for the recipient. Finally, in step
5, the current authentication key is evolved using a hash
function, overwriting the old value in the state table.

Algorithm 1 Generate an event for a recipient.

Require: A message m, a recipient’s public key pk and the as-
sociated authentication key k and value v.

Ensure: An event and the recipient’s state has been updated.

1: k′ ← Hash(n), n← Hash(1||k)
2: eID ← MACk′ (pk)
3: eP ← Encnpk(m)

4: v ← Hash
(
v||MACk(e)

)
5: k ← Hash(k)
6: return e

k0

n0

k′0

k1

n1

k′1

k2

n2

k′2

k3

n3

k′3

Figure 2: How we derive the nonce n and event key k′ from
the authentication key k for event generation.

4.2.1 Insert
The purpose of the insert protocol (yellow box in Fig-

ure 1) is to insert a set of events E, into a Balloon kept by
the server. The server generates one or more events using
Algorithm 1 and sends E to the server at SURI to initiate the
protocol. The server uses P ←B.Insert(E) on the Balloon,
described in Section 3.1, to generate a proof P of correct
insertion into the Balloon. The server replies with P .

The author in turn uses P.VerifyInsert(E, sl) to ver-
ify the proof of correct insert, where sl is the latest snap-
shot generated by the author. The latest snapshot for an
empty Balloon is null. If the verification fails, the au-
thor restarts the protocol. If the verification succeeds, then
P.VerifyInsert produces a new snapshot sl+|E|. The au-
thor stores the snapshot in its snapshot table for BSD, and
sends the snapshot to the server.

The server verifies the snapshot, in particular comparing
it to what it expects from P : both roots from the updated
hash treap and history tree match, and the snapshot follows
the format specified shortly. Finally, the server stores the
snapshot sl+|E| and events E in its Balloon table for BSD.
Given the data in a Balloon table, the Balloon data structure
can be deterministically reconstructed.

4.2.2 Snapshots and Gossiping
Inspired by CONIKS [24], we modify the snapshot con-

struction from the specification of Balloon. CONIKS works
in a closely related setting to ours and links snapshots3 to-
gether into a snapshot chain, as part of their work on specify-
ing their snapshot gossiping mechanism for an authenticated
data structure similar to Balloon. We define a snapshot as

3Snapshots are referred to as “commitments” in CONIKS.

follows:

si ←
(
i, ci, ri, ti, Signsk(i||ci||ri||BSD||sp||ti)

)
(3)

The i:th version snapshot si contains the latest commitment
ci on the history tree and root ri of the hash treap, both as
part of Balloon, to fix the entire Balloon. BSD is included
in the signature of the snapshot to link the snapshot to a
particular Balloon. The previous snapshot, sp, is included
to form a snapshot chain. Finally, an optional time-stamp
ti from a time-stamping authority is included both as part
of the snapshot and in the signature. The time-stamp must
be on (i||ci||ri||BSD||sp). How frequently a time-stamp is
included in snapshots directly influences how useful proofs
of time are, as described in Section 4.4.2.

Note that timestamps do not serve any other purpose than
to enable publicly verifiable proofs of time in Insynd. Time-
stamping of snapshots are irrelevant for our other properties
(which we show in Section 5 and Appendix A), and snap-
shots in general only play a minor role for our properties.
This means that our gossip mechanism for snapshots can be
relaxed. As will become apparent, we gossip the latest snap-
shot as part of the getState and getEvent protocols. Since
snapshots are both linked and occasionally timestamped,
this greatly restricts our adversary in the forward-security
model. While the getState protocol identifies the recipi-
ent, the getEvent protocol does not. The author and server
should make all snapshots available, e.g., on their websites.

4.2.3 The Last Event
If the author wishes to no longer be able to send messages

to the recipient, the author creates one last event with the
message set to a stop marker Ms and the authenticator v
from state. The stop marker should be globally known, and
have length |Ms| = 2|Hash(·)| to match the length of (k, v) in
state (see Section 4.3). The stop marker and authenticator
are necessary for enabling recipients to distinguish between
the correct stop of sending messages and modifications by an
attacker, as noted by Ma and Tsudik [21]. After the event
with the stop marker and authenticator message has been
inserted, the author can delete the entry in the BSD state
table for the recipient. For each registered recipient who
has not had a last event inserted, the author has to keep the
recipient entry in the state table at least until the retention
time of the Balloon (as set in BSD) has past.

4.2.4 Extend
The author has the ability to extend a registration made

by a recipient. Extending a registration for a recipient is
done in three steps:

1. Given pk, generate a blinded public key pk′ using the
blinding value b, where b is randomly generated.

2. Run the register protocol, as described in Sec-
tion 4.1.2, using pk′ to initiate the protocol.

3. Concatenate the result from step 2, together with
blinding value b from step 1 and the extend marker
Me, as a message and send it as an event to the recip-
ient.

An extension, as a consequence of step 2, is a protocol be-
tween two parties. The initiating author can either run the
protocol with itself, or with another author, where the initi-
ating author takes on the role of the recipient. Running the
protocol with itself serves two purposes:



• First, this introduces new randomness for the recipi-
ent, recovering future events from the limited compro-
mise of a passive adversary in the past.

• Secondly, this enables the author to register the re-
cipient in a new Balloon without interacting with the
recipient (due to, e.g., the current Balloon being close
to full or the retention time is too soon).

When the initiating author runs the protocol with another
author, then the initiating author is in effect registering the
recipient for receiving messages from another author. This
enables non-interactive registration in distributed settings,
once the recipient has registered with at least one author.

We blind the public key of the recipient for three reasons:
first, it hides information from an adversary that compro-
mises multiple authors, preventing trivial correlation of state
tables to determine if the same recipient has been registered
at both authors (ensuring forward unlinkability of recipient
identifiers). Secondly, Insynd uses the public key as an iden-
tifier for the registration of a recipient. For each registration,
we need a new identifier. Last, but not least, the blinding
approach (compared to, e.g., just having the author create
a new key-pair which would still fit our adversary model)
has the added benefit of if run correctly it is still only the
recipient that at any point in time has the ability to decrypt
events intended for it.

4.3 Reconstruction
A recipient uses two protocols to reconstruct its messages

sent by the author: getEvent and getState. We first ex-
plain how to get events using the getEvent protocol, then
how to verify the authenticity of the events with the help of
the getState protocol, and end by discussing some options
for minimising information leaks during reconstruction.

4.3.1 Getting Events
To download its i:th event from the server, the recipi-

ent calculates the event identifier eIDi using k0 and pk from
the registration (as described in Section 4.1.2) together with
equation (1) in Section 3.2 to calculate ki, as follows:

k′ = Hash
(
Hash(1||ki)

)
(4)

eIDi = MACk′(pk) (5)

The structure of event identifiers is determined by Algo-
rithm 1. The Balloon setup data, BSD, contains the URIs to
contact the server and author at. To get an event, the re-
cipient initiates the getEvent protocol (red box in Figure 1)
by sending the identifier eIDi to the server together with an
optional snapshot sj . The server generates a reply by run-
ning B.MembershipQuery using the provided identifier and
snapshot. If no snapshot is provided, the server uses the
latest snapshot sl. We want to retain the ability to query
for any snapshot sj for sake of proofs of event time (see Sec-
tion 4.4.2). The server replies with (P, sl, sp, ei), where P
is the proof from the membership query in the Balloon, sl
the latest snapshot, sp the previous snapshot, and ei the
queried for event (if found). We include the previous snap-
shot to enable the recipient to verify the signature on sl in
case it does not know all snapshots. This also acts as a
gossip mechanism, using the server to distribute snapshots.
The recipient can verify the correctness of the reply by us-
ing P.MembershipVerify together with the snapshot format

specified in Section 4.2.2. The recipient continues requesting
events until P provides a non-membership proof, then, the
recipient verifies the authenticity of all retrieved events.

4.3.2 Verifying Authenticity
The getState protocol (green box in Figure 1) plays a

central role in determining the authenticity of the events re-
trieved from the server. The recipient initiates the protocol
by sending its public key pk to the author.

Upon receiving the public key, the author validates the
public key and inspects its state table for the BSD in ques-
tion4 and checks if it contains an entry for pk. If there is
an entry, the author sets x ← (ki, vi), where ki is the cur-
rent authentication key and vi the current authenticator in
the state table for pk. If there is not, then the author sets
x←Ms. Note that Ms has the same length as (ki, vi). The
author sends as its reply Encpk

(
x||sl||sp||SignAsk

(x||sl||pk)
)
.

The reply is encrypted under the provided public key since
anyone can initiate the protocol. We want to prevent any
party with a recipient’s public key to determine if new events
are generated for the recipient based on observing the reply
(Enc is randomised so subsequent ciphertexts do not leak if
the underlying plaintext changes or not). The reply contains
x (previously set based upon the state table), the latest and
previous snapshots (sl, sp), and a signature. The signature
covers x, the latest snapshot, and the public key. This forces
the author to commit to a particular state x for a particular
public key pk at a particular state of the Balloon sl. The
two snapshots are included in the reply both to enable the
recipient to verify the signature from the author and to act
as a form of gossiping mechanism. Note that this gossip-
ing mechanism is weaker than the gossiping taking place as
part of the getEvent protocol, since the author knows which
recipient is performing getState.

The recipient decrypts the reply, verifies the signature
and latest snapshot. With the list of events downloaded
as described in Section 4.3.1, the recipient can now use Al-
gorithm 2 to decrypt all events and check the consistency
between events and the reply from getState. Steps 1–8
decrypt all events using the nonce, event key, and authenti-
cation key generation determined by Algorithm 1. If a stop
marker (Ms) is found (steps 6–7), the authenticator v′ in
the last event should match the calculated authenticator v
and getState should have returned Ms. If no stop marker
is found in an event, then the reply from getState should
match the calculated state in the form of (k, v) (step 11).
For the verification algorithm to correctly check consistency
between events and getState, the non-membership proof
that caused the recipient to stop downloading events must
be for the same snapshot as the reply from getState. If
the snapshots do not match, then events may have been in-
serted after in subsequent snapshots causing the verification
to incorrectly fail.

For each extension marker, Me, found in the message of
a decrypted event, the recipient simply reruns the recon-
struction steps outlined in this section after generating the
blinded private key.

4.3.3 Privacy-Preserving Download
By downloading its events, the recipient inadvertently

leaks information that could impact the recipient’s privacy.

4The author can determine which BSD based upon the URI
at the author, AURI, the request was sent to.



Algorithm 2 Verify authenticity of events for one recipient.

Require: (pk, sk), k0, the reply x from getState, an ordered list
l of events.

Ensure: true if all events are authentic and the state x is con-
sistent with the events in l, otherwise false.

1: k′ ← Hash(n), n← Hash(1||k), k ← k0, v ← k0 . k′ is the
event key, n the event nonce, k and v the calculated state

2: for all e ∈ l do . in the order events were inserted
3: p← Decnsk(e

P )

4: if p
?
= ⊥ then

5: return false . failed to decrypt event

6: if p contains (Ms, v′) then . check for Ms, v′ unknown

7: return x
?
= Ms ∧ v

?
= v′ . should have no state and

matching authenticator

8: k′ ← Hash(n), n ← Hash(1||k), k ← Hash(k), v ←
Hash

(
v||MACk(e)

)
. calculated from right to left

9: return x
?
= (k, v) . state should match calculated state

For instance, the naive approach of downloading events as
fast as possible risks linking the events together due to time,
despite our (assumption of) an anonymous channel of com-
munication. To minimise information leakage, we could:

• Have recipients wait between requests. The waiting
period should be randomly sampled from an exponen-
tial distribution, which is the maximum entropy prob-
ability distribution having mean 1/N with rate param-
eter N [26], assuming that some recipients may never
access their events ([0,∞]).

• Randomise the order in which events are requested.
The getState protocol returns ki, which enables the
calculation of how many events have been generated
so far using ko.

• Introduce request and response padding to minimise
the traffic profile, e.g., to 16 KiB as is done in Pond.

• Use private information retrieval (PIR) [14, 17]. This
is relatively costly but may be preferable over inducing
significant waiting time between requests.

• Since the server is untrusted, their contents could
safely be mirrored, enabling recipients to spread their
requests (presumably some mirrors do not collude).

For now, we opt for the first two options of adding delays
to requests and randomising the order. PIR-enabled servers
would provide added value to recipients. We note that the
mirroring approach goes well in hand with verifying the con-
sistency of snapshots, since mirrors could monitor snapshot
generation as well as serve events.

4.4 Publicly Verifiable Proofs
Insynd allows for four types of publicly verifiable proofs:

authorship, time of existence, recipient, and message. These
proofs can be combined to, at most, prove that the author
had sent a message to a recipient at a particular point in
time. While the author and time proofs can be generated
by anyone, the proofs of recipient and message can only be
generated by the recipient (always) and the author (if it has
stored additional information at the time of generating the
event).

4.4.1 Author
To prove who is the author of a particular event, we rely

on Balloon to generate a proof. The proof is the output from
B.MembershipQuery for the event. Verifying the proof uses
P.MembershipVerify with the provided output.

4.4.2 Time
To prove when an event existed. The granularity of this

proof depends on the frequency of time-stamped snapshots.
The proof is the output from B.MembershipQuery for the
event from a time-stamped snapshot sj that shows that the
event has position i in the history tree, where i ≤ j. Verify-
ing the proof involves using P.MembershipVerify and what-
ever mechanism is involved in verifying the time-stamp from
the time-stamping authority. The proof shows that the event
existed at the time of the time-stamp.

4.4.3 Recipient
To prove who the recipient of a particular event is, the

proof is (i) the output from B.MembershipQuery for the
event, and (ii) the event key k′ and public key pk used to gen-
erate the event identifier eID. Verifying the proof involves
using P.MembershipVerify, calculating ẽID = MACk′(pk)
and comparing it to the event identifier eID. The recipi-
ent can always generate this proof, while the author needs
to store the event key k′ and public key pk at the time of
event generation. If the author stores this material, then the
event is linkable to the recipient’s public key. If linking an
event to a recipient’s public key is not adequately attributing
an event to a recipient (e.g., due to the recipient normally
being identified by an account name), then the register

protocol should also include a signature linking the public
key to additional information, such as an account name.

4.4.4 Message
The publicly verifiable proof of message includes a publicly

verifiable proof of recipient, which establishes that cipher-
text contained in the event ciphertext was generated for an
outputted public key (recipient). The proof is (i) the output
from B.MembershipQuery for the event, (ii) the nonce n that
is needed for decryption and used to derive the event key k′

(see Figure 2), (iii) the public key pk used to generate eID,
and (iv) the ephemeral secret key sk’ that is needed for de-
cryption (see Section 3.4). Verifying the proof involves first
verifying the proofs of author and recipient. Next, the ver-
ifier can use Decnsk’,pk(c, pk’) from Section 3.4 to learn the
message m. The recipient can always generate this proof,
while the author needs to keep the nonce n, public key pk,
and the ephemeral private key sk’ at event generation.

5. EVALUATION
Here we summarise the results from our evaluation of In-

synd found in Appendix A. We evaluate all properties in the
forward security model. For recovery from a time-limited
passive adversary, as described in Section 2, we rely on our
extension messages (see Section 4.2.4). Once the author has
recovered from the time-limited compromise by the passive
adversary, the next extension message introduces new ran-
domness by rerunning the register protocol for a recipient.
We assume that the author, as part of recovering from a
time-limited compromise, revokes its old signature key and
generates a new one that is associated to the author. If the



author uses an Hardware Security Module (HSM) to gener-
ate its signatures, this is not necessary.

5.1 Secrecy
Secrecy of ciphertexts is provided by using emphermal key

pairs at encryption in order to seal crypto box, and hence
under the Decisional Diffie-Hellman (DDH) assumption on
Curve25519.

5.2 Forward Integrity and Deletion Detection
Insynd provides forward integrity and deletion detection

for each recipient’s events due to the use of the FssAgg au-
thenticator by Ma and Tsudik [21] and the signature in the
register protocol. Our evaluation shows that we require an
unforgeable signature algorithm, an unforgeable MAC, and
a collision and pre-image resistant hash function.

5.3 Forward Unlinkability of Events
Forward unlinkability of events is provided in Insynd in

the random oracle model. Both the nonce n used for en-
cryption of the message in the event’s payload as the event
key k′ used to generate the event identifier are derived us-
ing a hash function from the current authentication key k.
Because both state variables k and v are generated in a
forward-secure way (see Sect. 3.2), even an adversary that
learns the author’s entire state at some point in time will
not be able to link past events together. The public keys in
state leaks no information about event payloads under the
DDH assumption for Curve25519.

5.4 Publicly Verifiable Consistency
This follows directly from Theorem 2 by Pulls and Peeters

[27], assuming a collision resistant hash function, an unforge-
able signature algorithm, and correctly gossiped snapshots.
For Insynd, our gossiping mechanisms are imperfect. We
rely on the fact that (1) recipients can detect any modifi-
cations on their own events and (2) snapshots are chained
together and occasionally timestamped, to deter the author
from creating inconsistent snapshots.

5.5 Publicly Verifiable Proofs
The unforgeability of these proofs relies on:

Author an unforgeable signature algorithm and a collision
resistant hash function.

Time a proof of author and the security of the time-
stamping mechanism. The exact time-stamping mech-
anism is considered out of scope.

Recipient a proof of author and an unforgeable MAC.

Message a proof of recipient, the pre-image resistance of
the hash function.

5.6 Non-Interactive Registration
Our extension messages, as described in Section 4.2.4,

does not require the recipient to interact. Blinded recipient
identifiers are unlinkable assuming that the DDH assump-
tion is valid for Curve25519.

6. RELATED WORK
Ma and Tsudik also propose a publicly verifiable FssAgg

scheme by using an efficient aggregate signature scheme,
BLS [10, 21]. The main drawbacks are a linear number of
verification keys with the number of runs of the key update,
and relative expensive bilinear map operations. Similarly,
Logcrypt by Holt [19] also needs a linear number of verifica-
tion keys with key updates. The efficient public verifiability,
of both the entire Balloon and individual events, of Insynd
comes from taking the same approach as (and building upon)
the History Tree system by Crosby and Wallach [16] based
on authenticated data structures. The main drawback of
the work of Crosby and Wallach, and to a lesser degree of
ours on Insynd, is the reliance upon a gossiping mechanism.
Insynd takes the best of both worlds: the public verifiability
from authenticated data structures based on Merkle trees,
and the private all-or-nothing verifiability of the privately
verifiable FssAgg scheme from the secure logging area. Re-
cipients do not have to rely on perfect gossiping of snapshots,
while the existence of private verifiability for recipients de-
ters an adversary from abusing the lack of a perfect gossiping
mechanism to begin with.

PillarBox is a fast forward-secure logging system by Bow-
ers et al. [12]. Beyond integrity protection, PillarBox also
provides a property referred to as “stealth” that prevents
a forward-secure adversary from distinguishing if any mes-
sages are inside an encapsulated buffer or not. This indistin-
guishability property is similar to our forward unlinkability
of events property. PillarBox has also been designed to be
fast wrt. securing logged messages. The goal is to minimise
the probability that an adversary that compromises a sys-
tem will be able to shut down PillarBox before the events
that (presumably) were generated as a consequence of the
adversary compromising the system are secured.

The transparency logging scheme by Pulls et al. [28] has
a similar setting to ours with multiple recipients. The pur-
pose of their scheme is to enable a one-way communication
channel to make data processing more transparent to users
of data processors. The scheme is based on hash- and MAC-
chains, influenced by the secure log design of Schneier and
Kelsey [29]. We make use of and modify their general frame-
work for some security and privacy properties of Insynd, as
presented in Section 5 and Appendix A, to account for our
stronger adversary model of an untrusted server, compared
to their forward secure counterpart.

Pond5 and WhisperSystem’s TextSecure6 are prime ex-
amples of related secure asynchronous messaging systems.
While these systems are for two-way communication, there
are several similarities. Pond, like Insynd, relies on an
anonymity network to function. Both Pond and TextSecure
introduce dedicated servers for storing encrypted messages.
In Pond, clients pull their server for new messages with ex-
ponentially distributed connections. The Axolotl ratchet7

is used by both Pond and TextSecure. Axolotl is inspired
by the Off-the-Record Messaging protocol [11] and provides
among other things forward secrecy and recovery from com-
promise of keys by a passive adversary. Our extension mes-
sages, Section 4.2.4, mimics the behavior in Axolotl, in the
sense that new ephemeral keying material is sent with mes-

5pond.imperialviolet.org, accessed 2015-01-29.
6whispersystems.org, accessed 2015-01-29.
7github.com/trevp/axolotl/wiki, accessed 2015-01-29.

pond.imperialviolet.org
whispersystems.org
github.com/trevp/axolotl/wiki
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Figure 3: Three benchmarks related to inserting events. Figure 3a shows the number of events that can be inserted per second
in a 220 Balloon for different message sizes. Figure 3b shows the corresponding goodput in MiB/s for the data in Figure 3a.
Figure 3c shows the size of the insert proof in KiB based on the number of events to insert for different sizes of the Balloon.

sages. Note that the goal of Insynd is for messages to be non-
repudiable, unlike Pond, TextSecure and OTR who specif-
ically wants deniability. Insynd achieves non-repudiation
through the use of Balloon and how we encrypt messages,
as outlined for proofs of messages in Section 4.4.4.

7. PERFORMANCE
We implemented Insynd in the Go8 programming lan-

guage. The source code and steps to reproduce our
benchmarks are available at http://www.cs.kau.se/pulls/
insynd/. We performed our benchmarks on Debian 7.8
(x64) using an Intel i5-3320M quad core 2.6GHz CPU and
7.7 GB DDR3 RAM. The performance benchmarks focus on
the insert protocol since the other protocols are relatively
infrequently used, and reconstruction time (as described in
Section 4.3) is presumably dominated by the mechanism
used to protect privacy when downloading events. For our
benchmarks, we ran the author and server on the same ma-
chine but still generated and verified proofs of correct inser-
tion into the Balloon.

Figure 3 presents our three benchmarks, based on aver-
ages after 10 runs using Go’s built-in benchmarking tool,
where the x-axis specifies the number of events to insert per
run of the insert protocol. Figure 3a shows the number
of events per second for different message sizes in a Balloon
of 220 events. Clearly, the smaller the message the more
events (and therefore potential recipients) can be sent per
second. With at least 100 events to insert per run, we get
≈7000 events per second with 1KiB messages. Using the
same data as in Figure 3a, Figure 3b shows the goodput
(not including event overhead of 112 bytes per event) for
the different message sizes. At ≈800 100KiB-messages per
second (around at least 200 events to insert), the goodput
is ≈80 MiB/s. 10KiB messages offer a trade-off between
goodput and number of events, providing 4000 events per
second with ≈40 MiB/s goodput. Pulls et al. [28], for their
transparency logging scheme, generate events in the order
of tens of milliseconds per event. Ma and Tsudik, for their
FssAgg schemes, achieve event generation (signing) in the
order of milliseconds per event [21] (using significantly older
hardware than us). Marson and Poettering, with their seek-
able sequential key generators, generate key material in a
few microseconds [22]. For PillarBox, Bowers et al. [12] gen-
erate events in the order of hundreds of microseconds per
event, specifying an average time for event generation at
163 µs when storing syslog messages. Syslog messages are
at most 1 KiB, so the average for Insynd of 142 µs at 7000

8golang.org, accessed 2015-02-12.

events per second is comparable. Insynd therefore improves
greatly on related work on transparency logging, and shows
comparable performance to state-of-the-art secure logging
systems. Figure 3c shows the size (in KiB) of the proof of
correct insertion provided by the server for different Balloon
sizes. For a 220 Balloon, the proof size is ≈2KiB per event,
requiring messages to be at least 2KiB for a 1 : 1 ratio be-
tween data sent to the server (the events) and the reply to
the author (the proof).

8. CONCLUSIONS
Insynd provides a number of privacy and security proper-

ties for one-way messaging. Insynd’s design is based around
concepts from authenticated data structures, forward-secure
key generation from the secure logging area, and ongoing
work on secure messaging protocols. Insynd is built around
Balloon, a forward-secure append-only authenticated data
structure by Pulls and Peeters [27], inspired and built upon
a history tree system by Crosby and Wallach [16]. For
forward-secure key generation, Insynd borrows from FssAgg
by Ma and Tsudik [21] and forward-secure SKGs originating
from Schneier and Kelsey [4, 29]. Finally, Insynd shares sim-
ilarities with Pond, TextSecure, and OTR [11], by evolving
key material and supporting “self healing” in case of time-
limited compromise by a passive adversary. Insynd offers
comparable performance for event generation to state-of-
the-art secure logging systems, like PillarBox [12].

The use of recipient-specific FssAgg authenticators acts as
a deterrent for an adversary to create snapshots that modify
or delete events sent prior to compromise. In future work,
we would like to strengthen this deterrent by enabling re-
cipients to create publicly verifiable proofs of inconsistency
in case of inconsistencies between the FssAgg authenticator
and the snapshots produced by the author. This would en-
able recipients to publicly shame misbehaving authors, and
presumably act as an even stronger deterrent. We think
that recipient-specific verifiability coupled with publicly ver-
ifiable proofs of inconsistency is a promising approach for
enforcing proper gossiping of snapshots.
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APPENDIX
A. DETAILED EVALUATION

Where possible, we make use of the model of Pulls
et al. [28], with minor modifications. Given the stronger ad-
versarial setting of Insynd (untrusted server), and the fact
that a state per recipient is kept at the author as opposed
to the server, the CorruptLogServer() oracle is replaced by
a CorruptAuthor() oracle.

A.1 Secrecy
Secrecy of ciphertexts in Insynd can be modeled as in [28],

if the adversary is also given a decryption oracle for target
ciphertexts. The latter models that adversaries must not
gain any advantage toward learning plaintexts for cipher-
texts other than those from selected events for which pub-
licly verifiable proofs of message (or the values stored by the
author for producing these proofs afterwards) are released.

Theorem 1. Insynd provides computational secrecy of
ciphertexts under the DDH assumption on Curve25519.

Specifically for the used crypto_box (in the default mode
of operandus), we have to take into account that the ad-
versary, by invoking CorruptAuthor(), would learn the au-
thor’s private key which used to seal crypto_box and the
current values of the nonces for each recipient9. By generat-
ing an ephemeral key pair for every encryption (effectively
randomising the author’s private key), this risk at the au-
thor is mitigated. The output of the ephemeral public key
as part of the ciphertext obviously has no impact on the
security of crypto_box. The fact that a publicly verifiable
proof of message outputs the ephemeral private key, and
the nonce used in crypto_box, does not affect the secrecy
of other ciphertexts since this private key is randomised for
every encryption.

A.2 Forward Integrity and Deletion Detection
Insynd provides forward integrity and deletion detection

for individual recipient’s events thanks to the use of the Fs-
sAgg authenticator by Ma and Tsudik [21]. The verification
is “all or nothing”, i.e., we can detect if all events are au-
thentic or not, not which events have been tampered with.

Theorem 2. Given an unforgeable signature algorithm,
an unforgeable MAC, and a collision and pre-image resis-
tant hash function, Insynd provides computational forward
integrity and deletion dection.

We look at three distinct phases of a recipient in In-
synd: before registration, after registration, and after the
last event. Before registration, the author has not generated
any events for the recipient that can be modified or deleted.
The register protocol establishes the initial key and value
for the forward-secure SKG and FssAgg authenticator, as
described in Sections 3.2 and 4.1.2. Furthermore, the au-
thor signs the initial key and value together with the BSD

and public key of recipient. This forces the author to com-
mit to the existence of either state (in the form of the initial
key and value) or at least one event for the recipient (the last
event with the stop marker and authenticator) assuming an

9Insynd generates nonces for encrypting events with a for-
ward secure construction, however we do not rely on it for
(forward) secrecy.

unforgeable signature algorithm. These steps corresponds
to the log file initialization in the Ma and Tsudik construct.

After registration, but before the last event, the author
must keep state for the recipient. The state is in the form
of the current key k and authenticator v. In Algorithm 1,
steps 4–5 authenticates the entire event into v and over-
writes the key k. This construction is identical to the Ma
and Tsudik privately verifiable FssAgg construction that is
provable forward-secure given a collision resistant hash func-
tion and an unforgeable MAC [21].

After the last event, the author has deleted state. The last
event, as described in Section 4.2.3, contains a stop marker
Ms and the authenticator v before the last event was gener-
ated. Since the verification algorithm, Algorithm 2, verifies
the authenticator in the case of state (step 9) and no state
(step 7), this is the same as in the previous case after regis-
tration but before the last event. Compared to the privately
verifiable FssAgg construction, we store the authenticator
in an event instead of state. This is irrelevant for security,
since we still verify the authenticator.

One last complexity for us to take into account are proofs
of messages, as described in Section 4.4.4. A proof of mes-
sage consists of a membership query for an event, the nonce
n, a public key pk, and the ephemeral secret key sk’. This
enables an adversary to change the ciphertext for the event
using crypto_box such that the decryption is successful,
since the adversary learns sk’ and n. This leaks no informa-
tion about the k used to derive n (see Figure 2), due to the
pre-image resistance of the hash function. Therefore, the
adversary cannot forge the authenticator, even if it can re-
place the last event with the stop marker and authenticator
with an arbitrary message.

A.3 Forward Unlinkability of Events
It should be hard for an adversary to determine whether

or not a relationship exists between two events in one round
of the insert protocol, even when given at the end of the
insert protocol the entire state of the author: (pk, k, v)
of all recipients. We also need to take into account that
for certain events, publicly verifiable proofs of recipient or
message or data stored at the author to be able to make
these proofs are available to the adversary. Obviously, the
adversary knows the recipient of these messages, and does
not break forward unlinkablilty of events, if it can only es-
tablish a link between two events in one round of the insert
protocol for which it knows the recipient.

Even though we do not define forward unlinkability of
events in terms of recipients, it can easily be modeled as
in [28], where the adversary can only create users before
each round of the insert protocol and is limited to finding a
relationship between two events within one round. In their
definition, the adversary has to output a guess for the bit b,
which does not imply one has to know the recipient for each
message. Note however, that this definition also covers that
it is hard for the adversary to link a user to one particular
event. For the following sequence of oracles calls:
• vuser ← Drawuser(A,B)

• e1 ← CreateEntryb(vuser,message)

• Free(vuser)

• vuser ← Drawuser(A,C)

• e2 ← CreateEntryb(vuser,message)



• Free(vuser)

finding a relationship between e1 and e2 implies that the
bit b = 0. The events for which a publicly verifiable proof
of recipient or message is available (or for which the author
stored data to be able to make these proofs) can be modeled
by creating these event by invoking CreateEntryb() for a
vuser that was drawn by selecting the same recipient as
left and right argument, e.g. Drawuser(A,A). As such the
adversary does not gain any information towards the value
of the bit b. Before outputting its guess, the adversary is
allowed to make a call to the CorruptAuthor() oracle.

Theorem 3. Insynd provides computational forward un-
linkability of events within one round of the insert protocol
in the random oracle model.

The adversary has access to the following information for
events for which no publicly verifiable proofs of recipient or
message (or the data stored at the author to be able to create
these) are available: eID = MACk′(pk) and eP = Encnpk(m)
for which k′ = Hash(n) and n = Hash(1||k) where k is the
current key for the recipient at the time of generating the
event.

In the random oracle model, the output of a hash function
is replaced by a random value. Note that the output of the
random oracle remains the same when the same input is
applied. By assuming the random oracle model, the key
to the one-time unforgeable MAC function and the nonce
as input of the encryption10 are truly random. Hence the
adversary that does not know the inputs of these hashes, n
and k respectively, has no advantage towards winning the
indistinguishability game.

Now we need to show that the adversary will not learn
these values n and k, even when given the author’s entire
state (pk, k, v for all active recipients) and values k′ and n for
events where a publicly verifiable proof of recipient or mes-
sage is available or can be constructed from data the author
stored additionally at the time of generating these events.
The state variable k is generated using a forward-secure se-
quential key generator [4, 29, 22]. Hence the adversary is not
able to learn any past values of the current authentication
key. There is no direct link between the values n, respec-
tively k′, of multiple events for the same recipient. Instead,
for each event these values are derived from the recipient’s
current authentication key k at that time, using a random
oracle. The adversary can thus not learn the value of the
past authentication keys from the values n and k′. Lastly,
from state, the adversary learns pk for all recipients. We
note that the encryption for events provides key privacy as
assumed in Section 3.4, because the outputted ciphertext is
encrypted using a symmetric key that is derived from both
the Diffie-Hellman value and the nonce (which has sufficient
entropy to base our security on). Even when assuming that
the adversary can compute the Diffie-Hellman value, it has
no information on the nonce and hence the encryption pro-
vides key privacy, i.e., one cannot tell that the ciphertext
was generated for a given public key.

10If the adversary has no knowledge of n, it cannot tell
whether or not a given ciphertext was encrypted for a given
recipient (with known public key), even when given the
ephemeral secret key sk’ used to seal crypto_box. This
implies that the adversary will also not gain any advantage
from learning the corresponding ephemeral public key pk’,
as part of the ciphertext.

Finally, we need to show that the adversary will not be
able to link events together from the state variable v it
keeps for every recipient. This follows directly from the used
Forward-Secure Sequential Aggregate (FssAgg) authentica-
tor [21].

A.4 Publicly Verifiable Proofs
We look at each proof individually.

A.4.1 Author
A proof of author for an event is a B.MembershipQuery in

a Balloon for the event. A membership query in Balloon is
an authenticated path in a Merkle tree from a signed snap-
shot by the author. The signature cannot be forged, since
the signature algorithm is unforgeable, and the security of
an authenticated path in a Merkle tree has been shown by
Coronado to reduce to the collision resistance of the hash
algorithm [15].

A.4.2 Time
A proof of time for an event consists of a proof of author

from a snapshot that contains a time-stamp from a time-
stamping authority. Forging a proof of author involves, as
noted previously, forging the signature on the snapshot or
the authenticated path to the event. In addition, a the proof
of time depends on the time-stamping mechanism, which we
consider out of scope. We note that a proof of time only
proves that an event existed at a particular point in time as
indicated by the time-stamp, not that the event was inserted
or generated at that point in time.

A.4.3 Recipient
A proof of event recipient consists of a proof of author,

a public key pk, and an event key k′. Forging a proof of
author involves, as noted previously, forging the signature
on the snapshot or the authenticated path to the event. The
proof of author fixes the event, which consists of an event
identifier eID and an event payload. The proof is verified

by computing and comparing eID
?
= MACk′(pk), Forging the

event identifier is therefore forging the tag of the MAC since
the tag is fixed by the proof of author, which is not possible,
since the MAC is unforgeable.

A.4.4 Message
A proof of message consists of a proof of author, a public

key pk, a nonce n, and a ephemeral secret key sk’. The
proof of author, public key, and event key k′ ← Hash(n)
(see Algorithm 1) results in a proof of recipient. The proof
of author fixes the event, that consists of the event iden-
tifier and event payload. The proof of recipient fixes the
public key, event key and nonce, since the prover provided
a pre-image of the event key (the nonce). The payload
consists of the ciphertext c and the ephemeral public key

pk’. The prover provides sk’, such that pk’
?
=pk∗, where

crypto_scalarmult_base(pk∗, sk’). This fixes sk’, since
there is only one sk’ for each pk’ for Curve2551911. This
fixes all the input to crypto_box_open: c, n, pk and sk’, and
crypto_box_open is deterministic.

11There are two points on the curve for Curve25519 such that
crypto_scalarmult_base(pk’, sk’) due to Curve25519
being a Montgomery curve, but Curve25519 only operates
on the x-coordinate [6].
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