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ABSTRACT
Insynd is a cryptographic scheme for privacy-preserving
transparency logging. In the setting of transparency log-
ging, a service provider continuously logs descriptions of its
data processing on its users’ personal data, where each de-
scription is intended for a particular user. Our work focuses
on protecting the privacy of users. Insynd provides secrecy
of messages, message integrity and authenticity, protection
against recipient profiling, and publicly verifiable proofs of
who sent what message to which recipient at what particular
time. Our scheme is built on an authenticated data struc-
ture (Balloon) that enables the safe outsourcing of storage of
messages to an untrusted server (such as commodity cloud
services). The author of messages is in the forward-security
model. Insynd provides stronger privacy protections than
prior work in this setting, improved efficiency in terms of
event generation, and increases the utility of all data sent
through the scheme thanks to the publicly verifiable proofs.
Our prototype implementation shows greatly improved per-
formance over related work and competitive performance for
more data-intensive settings like secure logging.

1. INTRODUCTION
The concept of transparency logging for transparency-

enhancing tools (TETs) has its roots in the Future of Iden-
tity in the Information Society (FIDIS) network [13], funded
by the EU’s 6th Framework Programme. For TETs to per-
form efficient counter profiling and successfully anticipate
consequences of personal data processing, these need in-
sight into the actual data processing being done by service
providers. Transparency logging is a TET for transport-
ing processing data from service providers to the users of
that service. The processing data describe the processing
on the user’s personal data, where the users are data sub-
jects as defined in the EU Data Protection Directive (DPD)
95/46/EC.

Figure 1 shows one use case of transparency logging, where
a user Alice discloses personal data to a service provider
(SP). The service provider provides a service, during which
personal data is processed according to the privacy policy.
The privacy policy should be provided to Alice prior to her
data disclosure to the SP, so that she can provide informed
consent to the data processing by the SP. For transparency
logging, we view each system that processes data (in the
technical sense and not necessarily in the legal sense as de-
fined in, e.g., the DPD) as an author. The author generates
events intended for recipients, like Alice, that describe data
processing as it takes place. Events are stored at a server,

an intermediate party that primarily serves to offload stor-
age of events for authors. Recipients can then retrieve their
events from the server and compare the actual data process-
ing as described in the events with the stated processing in
the privacy policy. Conceptually, this enables Alice to detect
any inconsistencies and in a sense hold the service provider
accountable for its actions.
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Figure 1: Comparing actual data processing of personal data
with the data processing that was agreed upon in the privacy
policy, prior to data disclosure by the user.

This paper focuses on how authors should generate these
events for transparency logging in a secure and privacy-
preserving way. We do not consider what should be logged
to describe data processing, or how privacy policies should
be structured to enable the comparison with stated data
processing. Our primary goal is to construct a privacy-
preserving transparency logging scheme, improving on prior
work by Pulls et al. [21]. Our contributions are:

Stronger privacy protections Servers need not to be
trusted in Insynd, compared to forward secure in prior
work by Pulls et al. [21].

Publicly verifiable consistency Anyone can verify that
snapshots, created as new events are generated, make
consistent claims about the past (no events have been
modified or deleted).

Increased utility Recipients and authors can produce
publicly verifiable proofs of all data sent through In-
synd, convincing a third-party of who sent a particular
message to whom at approximately what time.



More efficient event generation By using modern cryp-
tographic primitives, Insynd generates events at speeds
comparable to state-of-the-art secure logging schemes.

The rest of this paper is structured as follows. Section 2
briefly states our assumptions and goals. Section 3 gives
a high-level overview of our ideas and necessary building
blocks. Section 4 presents the Insynd scheme. Section 5 eval-
uates Insynd’s properties. Section 6 describes extensions to
Insynd, enabling distributed settings, a stronger adversary
model and privacy-preserving downloads. Section 7 presents
related work. Section 8 shows the performance of our proof-
of-concept implementation.

2. ASSUMPTIONS AND GOALS
In the framework by Pulls et al. [21], all authors and

servers are modeled in the forward security model. All en-
tities are assumed initially trusted up to a point in time t
when all entities are assumed compromised simultaneously
by an attacker. While some trust in authors is inevitable,
since authors generate the descriptions of their own process-
ing, servers should not necessarily have to be trusted. The
forward security at the server in [21] is the result of their
scheme requiring the server to keep a cryptographic state
for the recipients. In Insynd, servers only provide storage
of events. Hence, we support a stronger adversarial model
where authors are assumed to be forward secure and servers
do not have to be trusted.

For communication, we assume a secure channel between
the author and the server (such as TLS), and a secure and
anonymous channel for recipients (such as TLS over Tor [12])
to communicate with the author and server. We explicitly
consider availability out of scope, that is, the author and
server will always reply (however, their replies may be ma-
licious). For time-stamps, we assume the existence a trust-
worthy time-stamping authority [8].

2.1 Core Security and Privacy Properties
For defining the core security and privacy properties of

our transparency logging scheme, we adopt and modify the
general model and definitions by Pulls et al. [21]. Their
paper defines secrecy of events, deletion-detection forward
integrity, forward unlinkability of recipient events, and un-
linkability of recipient identifiers in the case of distributed
settings. Our modifications (presented in Sect. 5) are pri-
marily due to our stronger adversarial model.

2.2 Public Verifiability and Proofs
In addition to the core security and privacy properties, we

provide publicly verifiable consistency and a number of pub-
licly verifiable proofs to increase the utility of the data sent
through the transparency logging scheme. Publicly verifi-
able consistency can be seen as a form of publicly verifiable
deletion-detection and forward integrity for all events pro-
duced by the author at a server. Insynd allows for publicly
verifiable proofs of the author of an event, the recipient of
an event, the message sent in an event, and the time an
event existed at a server. While a recipient is always able
to produce these proofs, the author has to decide during
event generation if it wishes to save material to be able to
create these proofs. Each proof is an isolated disclosure and
a potential violation of a property of Insynd, like message
secrecy and forward unlinkability of events.

3. IDEAS
To support a setting where the author does not trust the

server, we make use of an authenticated data structure to
store events at the server. We opted for Balloon [20], an
authenticated data structure that was designed for the set-
ting of transparency logging with an untrusted server. An
authenticated data structure in this setting should allow for
efficient publicly verifiable proofs of both membership and
non-membership of keys. Otherwise, a recipient cannot dis-
tinguish between a server denying service and the lack of an
event with a specific key. The main advantage of Balloon
compared to other authenticated data structures that have
this property (for a more in-depth discussion, we refer the
reader to [20]), is that the author only needs to keep constant
storage (instead of storing a copy of the data structure) and
that proof generation is more efficient for the server. An
overview of Balloon is given in Sect. 3.1.

To protect the privacy of the recipients, the author turns
all descriptions for recipients into events consisting of an
identifier and a payload, where the identifiers are unlink-
able to each other and the payloads contain the encrypted
descriptions for the recipient. It should be noted that not
only the event identifiers but the entire events must be un-
linkable to each other to prevent information leaks due to
event correlation. Therefore, the encryption scheme must
also provide key privacy [2]. Later-on the recipient must be
able to retrieve its relevant events and decrypt the logged
descriptions. During recipient registration, cryptographic
key material will be set up for the recipient: an asymmetric
key-pair, for encryption and decryption, and a symmetric
key to be able to link relevant events together. For each
event, the author updates the symmetric linking key for the
recipient in question using a forward-secure sequential key
generator (forward-secure SKG) in the form of an evolving
hash chain [3, 22, 16]. The recipient can do the same to link
the relevant event identifiers together.

To ensure that the author cannot change or delete any
past events after being compromised (forward-secure au-
thor), we rely on the author keeping a evolving forward-
secure state for each recipient. By enabling the recipient to
query for this state and verifying the response, it is impos-
sible for the author to alter events for this recipient, sent to
the server prior to the time of compromise, as it will not be
able to generate a valid state to send to the recipient. For
each recipient, the current values of the forward-secure SKG
and the forward-secure sequential aggregate authenticator
(FssAgg) [15] over the relevant event values are kept in the
author’s state. Note that Balloon in itself provides forward
integrity and deletion detection over the entire data struc-
ture and is not limited to a specific recipient, however this
assumes a perfect gossiping mechanism for snapshots [20].

To provide the publicly verifiable proofs we need to go into
the details of how the snapshots of the authenticated data
structure are generated and how descriptions for recipients
are encrypted. Details on the used encryption scheme are
presented in Sect. 3.2.

To ease implementation, Insynd is designed around the
use of NaCl [5]. The NaCl library provides all of the core
operations needed to build higher-level cryptographic tools
and provides state of the art security (also taking into ac-
count side-channels by having no data dependent branches,
array indices or dynamic memory allocation) and high speed
implementations.



3.1 Balloon
Balloon is a forward-secure append-only persistent au-

thenticated data structure tailored to the transparency log-
ging setting by Pulls and Peeters [20]. Insynd makes use of
the following algorithms on Balloon:

• (sk, pk) ← B.genkey(1λ): On input of a security pa-
rameter λ, outputs a secret key sk and public key pk.

• (auth(D0), s0) ← B.setup(D0, sk, pk): On input of a
(plain) data structure D0, sk and pk, computes the
authenticated data structure auth(D0) and the corre-
sponding snapshot s0.

• (Dh+1, auth(Dh+1), sh+1) ← B.refresh(u,Dh,
auth(Dh), sh, upd, pk): On input of an update u on
the data structure Dh, the authenticated data struc-
ture auth(Dh), the snapshot sh, relative information
upd and pk, outputs the updated data structure Dh+1

along with the updated authenticated data structure
auth(Dh+1) and the updated snapshot sh+1.

• (Π(q), α(q)) ← B.query(q,Dh, auth(Dh), pk)
(Membership): On input of a membership query q
on data structure Dh, auth(Dh) and pk, returns the
answer α(q) to the query, along with proof Π(q).

• {accept, reject} ← B.verify(q, α,Π, sh, pk)
(Membership): On input of a membership query q,
an answer α, a proof Π, a snapshot sh and the public
key pk, outputs either accept or reject.

• (Π(q), α(q)) ← B.query(q,Dh, auth(Dh), pk)
(Prune): On input of a prune query q on data
structure Dh, auth(Dh) and pk, returns the answer
α(q) to the query, along with proof Π(q).

• {accept, reject} ← B.verify(q, α,Π, sh, pk)
(Prune): On input of a prune query q, an an-
swer α, a proof Π, sh and pk, outputs either accept

or reject.

• (sh+1, upd) ← B.update*(u,Π, sh, sk, pk): On input
of an update u for the (authenticated) data structure
fixed by sh with an accepted verified prune proof Π,
sk and pk, outputs the updated snapshot sh+1, that
fixes an update of the data structure Dh+1 along with
the updated authenticated data structure auth(Dh+1)
using u, and some relative information upd.

Balloon relies upon a pre-image and collision resistant
hash function, and an unforgeable signature algorithm. To
support a forward-secure author (preventing it from creat-
ing snapshots that delete or modify events inserted prior to
compromise), Balloon requires trusted monitors and a per-
fect gossiping mechanism for the snapshots. Monitors con-
tinuously reconstruct Balloon and compare the calculated
snapshots with those gossiped by the author.

3.2 Encryption
For encrypting messages to recipients, we use NaCl’s

crypto_box [5]. However, when encrypting a message,
the author generates a fresh ephemeral key pair pk′ ←
crypto_box_keypair(sk′) to seal crypto_box and the mes-
sage to be encrypted is appended with the ephemeral pri-
vate key m′ = m||sk′. The nonce n used for encryp-
tion/decryption is provided to the author/recipient. These

modifications allow us to efficiently support the forward se-
cure author setting, and help us to efficiently generate pub-
licly verifiable proofs of message as will be shown later on.
We define the following high level functions for a recipient
with an encryption key pair (pk, sk):

• (c, pk′) ← Encnpk(m): Encrypts a message m using an
ephemeral key-pair pk′ ← crypto_box_keypair(sk′),
the public key pk, and the nonce n where the ci-
phertext c = crypto_boxm||sk′, n, pk, sk′). Returns
(c, pk′).

• (m, sk′) ← Decnsk(c, pk
′): Decrypts ciphertext c using

the private key sk, public key pk′, and nonce n where
p← crypto_box_open(c, n, pk′, sk). If decryption fails

p ?
= ⊥, otherwise p ?

= m||sk′. Returns p.

• m ← Decnsk′,pk(c, pk
′): Decrypts ciphertext c using the

private key sk′, public key pk, and the nonce n where
p← crypto_box_open(c, n, pk, sk′). If decryption fails

p ?
= ⊥, otherwise p ?

= m||sk∗. If sk′ ?
= sk∗ and pk′ ?

=

pk∗, where pk∗ ← crypto_box_keypair(sk′), returns
m, otherwise ⊥.

Since we generate a random key-pair for every encryption,
the scheme does not retain any meaningful public-key au-
thenticated encryption on its own. Our construction for
encryption and decryption is very similar to the DHETM
(Diffie-Hellman based Encrypt-then-MAC) construction by
An [1], which is proven IND-CCA2 secure. The differ-
ences are that we use Curve25519, instead of a random DH
group, and a symmetric authenticated key cipher based on
crypto_secretbox as part of NaCl.

4. INSYND
Now we will go into the details of the different protocols

that make up Insynd. Figure 2 shows the five protocols that
make up Insynd between an author A, a server S, and a
recipient R. The protocols are setup (pink box), register
(blue box), insert (yellow box), getEvent (red box), and
getState (green box). The following subsections describe
each protocol in detail.

4.1 Setup and Registration
The author and server each have signature key pairs,

(Ask,Avk) and (Ssk,Svk), respectively. We assume that Avk

and Svk are publicly attributable to the respective entities,
e.g., by the use of some trustworthy public-key infrastruc-
ture. For the author, the key pair is generated using the
B.genkey algorithm of Balloon, as this key pair is also used
to sign the snapshots which are part of Balloon.

4.1.1 Author-Server Setup
The purpose of the setup protocol (pink box in Figure 2)

is for the author and the server to create a new Balloon,
stored at the server, with two associated uniform resource
identifiers: one for the author AURI, and one for the server
SURI. At the former the recipient can later-on query for its
current state, while at the latter it can retrieve stored events.
The result of this protocol, the Balloon setup data (BSD),
commits both the author and the server to the newly created
Balloon.

The protocol is started by the author who sends AURI to
the server. AURI specifies the URI of the state associated
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Figure 2: The Insynd scheme, consisting of five protocols (coloured boxes), between a author A, a server S, and a recipient R.
A solid line indicates the start of protocol and a dashed line a response. Section 4 describes each protocol in detail.

with the to-be created Balloon at the author. After receiv-
ing AURI, the server verifies that AURI identifies a resource
under the control of the author. If so, the server signs this
URI together with the URI to the new Balloon at the server,
SURI. The server replies with SURI and SignSsk(AURI||SURI).
The signature commits the server to the specified Balloon.
Upon receiving the reply from the server, the author ver-
ifies that SURI is under the server’s control and the signa-
ture. If both verify, the author creates an empty Balloon
(auth(D0), s0) ← B.setup(D0,Ask,Avk) for an empty data
structure D0. The author sends its signature on the two
URIs Signsk(AURI||SURI) together with the initial snapshot s0
to the server to acknowledge that the new Balloon is now
set up. Once the server receives this message, it verifies the
authors signature and can finish the setup of the empty bal-
loon now that it has s0. The two signatures, two URIs, and
the initial snapshot s0 together form the BSD.

4.1.2 Recipient Registration
The purpose of the register protocol (blue box in Fig-

ure 2) is to enable the author to send messages to the recipi-
ent later-on, and at the same time have the author commit to
the recipient on how these messages will be delivered. Before
running the protocol, the recipient is assumed to have gener-
ated its encryption key pair (pk, sk) according to the agreed
upon encryption scheme: pk← crypto_box_keypair(sk).

The protocol is initiated by the recipient sending its public
key together with a nonce to the author. The author verifies
that the provided public key is a valid public key according
to the agreed upon encryption scheme.1 If so, the author
generates the initial authentication key k0 ← Rand(|Hash(·)|)
and authenticator value v0 ← Rand(|Hash(·)|) for this recip-

1Specifically for the used encryption scheme, the author
should validate that it received a 32 byte value.

ient and stores these values in its state table for BSD. The
state table contains the current authentication key ki and
authenticator value vi for each recipient’s public key that is
registered in the Balloon for BSD. By generating a random
v0, the state of newly registered recipients is indistinguish-
able from the state of recipients that have already one or
more events created for them.

The author returns to the recipient k0, v0, the
Balloon setup data BSD, and the following signature:
SignAsk

(k0||v0||BSD||pk). The signature covers the public key
of the recipient to bind the registration to a particular pub-
lic key (and hence recipient). The signature (that commits
the author) is necessary to prevent the author from fully
refuting that there should exist any messages for this recip-
ient. The reply to the recipient is encrypted by the author
under the provided public key using the provided nonce. On
receiving the reply, the recipient decrypts the reply, verifies
all three signatures (two in BSD), and stores the decrypted
reply. The recipient now has everything it needs to retrieve
its relevant events and state later on.

4.2 Event Generation
An event e = (eID, eP ) consists of an identifier and a

payload. The event identifier eID identifies the event in a
Balloon and is used by the recipient to retrieve an event.
The event payload eP contains the encrypted message from
the author. The event identifier and payload in Insynd cor-
respond to the event key and value in Balloon.

The nonce n, used in encrypting the event payload, and
the event key k′, used for generating the event identifier,
are derived from the recipient’s current authentication key
k (which the author retrieves from its state table):

n← Hash(1||k) (1)

k′ ← Hash(n) (2)



For deriving the nonce, a prefix 1 is added to k in order to
make a distinction between deriving the nonce and updating
the authentication key, which is done as follows:

ki ← Hash(ki−1) (3)

Figure 3 visualises the derivation of these different values.
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Figure 3: Derivation of the nonce n and event key k′ from
the authentication key k.

The event identifier is generated by computing a MAC on
the recipient’s public key using the event key:

eID ← MACk′(pk) (4)

This links the event to a particular recipient, which can
be used for publicly verifiable proofs of recipient. The
event payload is generated by encrypting the message un-
der the recipient’s public key and the generated nonce:
eP ← Encnpk(m). Since k′ is derived from n, this links the
event identifier and event payload together and can be used
for publicly verifiable proofs of message.

After generating the event, the author updates its state
table, effectively overwriting previous values. First the cur-
rent authenticator value v for the recipient, which aggregates
the entire event, is updated using a FssAgg [15]:

vi ← Hash
(
vi−1||MACki−1(e)

)
(5)

Then the recipient’s current authentication key is updated,
by using Equation 3.

4.2.1 Insert
The purpose of the insert protocol (yellow box in Fig-

ure 2) is for an author to insert a set of generated events
u into a Balloon kept by the server. The author sends u
to the server and gets back a proof that the events can be
correctly inserted. If this proof verifies, the author creates
a new snapshot, committing to the current version of the
Balloon. For this protocol we make extensive use of the
algorithms defined for a Balloon (see Sect. 3.1).

Upon recieving u, the server runs:

(Π(u), α(u))← B.query(u,Dh, auth(Dh),Avk)(Prune)

to generate a proof Π(u) and answer α(u) and sends these
back to the author. To verify the correctness of the server’s
reply, the author runs:

{accept, reject} ← B.verify(u, α,Π, sh,Avk)(Prune)

where sh is the latest snapshot generated by the author. If
the verification fails, the author restarts the protocol. Next,
the author runs:

(sh+1, upd)← B.update*(u,Π, sh,Ask,Avk)

to create the next snapshot sh+1 (which also stored in upd).
The author stores the snapshot in its snapshot table for BSD,

and sends upd to the server. The server verifies the snapshot
and then runs:

(Dh+1, auth(Dh+1), sh+1)← B.refresh(u,Dh, auth(Dh), sh, upd,Avk)

to update the Balloon. Finally, the server stores the snap-
shot sh+1 and events u in its Balloon table for BSD.

4.2.2 Snapshots and Gossiping
Balloon assumes perfect gossiping of snapshots. In order

to relax this requirement, we modify the snapshot construc-
tion. This modification was inspired by CONIKS [18], which
works in a setting closely related to ours and links snapshots
together into a snapshot chain. We redefine a snapshot as:

sh ←
(
i, ci, r, t, SignAsk

(i||ci||r||sh−1||t)
)

Note that h is an index for the number of updates to Balloon,
while i is an index for the number of events in the Balloon.
The snapshot sh contains the latest commitment ci on the
history tree and root r on the hash treap for auth(Dh), fixing
the entire Balloon. The previous snapshot sh−1 is included
to form the snapshot chain. Finally, an optional timestamp
t from a trusted time-stamping authority is included both as
part of the snapshot and in the signature. The timestamp
must be on (i||ci||r||sh−1). How frequently a timestamp is
included in snapshots directly influences how useful proofs
of time are. Timestamping of snapshots is irrelevant for our
other properties.

Gossiping of snapshots is done by having the author and
server making all snapshots available, e.g., on their web-
sites. Furthermore, the latest snapshots are gossiped to
the recipients as part of the getState and getEvent proto-
cols. Since snapshots are both linked and occasionally times-
tamped, this greatly restricts adversaries in the forward-
security model.

4.2.3 The Last Event
When the author no longer wishes to be able to send mes-

sages to a recipient, the author creates one last event with
the message set to a stop marker Ms and the recipient’s
current authenticator value v from state. The stop marker
should be globally known, and have length |Ms| = 2|Hash(·)|
to match the length of (k, v). The stop marker and authen-
ticator are necessary for enabling recipients to distinguish
between the correct stop of sending messages and modifica-
tions by an attacker. After the event containing the stop
marker and authenticator value has been inserted, the au-
thor removes the recipient from its BSD state table.

4.3 Event Reconstruction
A recipient uses two protocols to reconstruct its relevant

messages sent by the author: getEvent and getState. After
explaining how to get the relevant events and the current
state, we show how recipient can verify the consistency of
its retrieved messages.

4.3.1 Getting Events
The purpose of the getEvent protocol (red box in Fig-

ure 2) is for a recipient to retrieve an event with a given
identifier and an optional snapshot. The server replies with
the event (if it exists) and a proof of membership. For this
protocol we make use of the algorithms defined for a Balloon
(see Sect. 3.1). Before running this protocol, the recipient
generates the event identifier it is interested in, by using



equations 1-4 together with the data it received from the
author during registration.

Upon receiving the event identifier eID and optional snap-
shot sj from the recipient, the server runs for q = (eID, sj):(

Π(q), α(q)
)
← B.query(q,Dh, auth(Dh),Avk)(Membership)

If no snapshot is provided, the server uses the latest snapshot
sh. Allowing the recipient to query for any snapshot sj where
j ≤ h, is important for our publicly verifiable proofs of time.
The server replies to the recipient with (Π(q), α(q), sh, sh−1).
Including the two latest snapshot sh and sh−1 is part of our
gossiping mechanism and allows for fast verification at the
recipient without having to download all snapshots sepa-
rately. The recipient verifies the reply by verifying the last
snapshot and running:

{accept, reject} ← B.verify(q, α,Π, sh,Avk)(Membership)

4.3.2 Getting State
The getState protocol (green box in Figure 2) plays a

central role in determining the consistency of the events re-
trieved from the server.

The recipient initiates the protocol by sending its pub-
lic key pk and a nonce n ← Rand(|Hash(·)|) to the author.
Upon receiving the public key and nonce, the author val-
idates the public key and check if its state table for the
BSD in question2 contains an entry for pk. In case there
is an entry, the author sets x ← (ki, vi), where ki is the
current authentication key and vi the current authenticator
value. Otherwise, the author sets x ← Ms. Recall that
Ms has the same length as (ki, vi). The author replies with
Encnpk

(
x||sh||sh−1||SignAsk

(x||sh||pk)
)
. This reply also covers

the two latest snapshots sh and sh−1, as part of the gossiping
mechanism and a signature of the author over (x||sh||pk).
With this signature the author commits itself to its reply
for the recipient with respect to the latest snapshot. The
recipient decrypts the reply, verifies the signature and latest
snapshot.

The reply to the claimed recipient is encrypted using the
provided public key and nonce to ensure that only the re-
cipient with corresponding the private key can decrypt it.
Since the encryption is randomised (and the length of the
plaintext fixed), no third party in possession of the recipi-
ent’s public key can determine if new events are generated
for the recipient. The nonce ensures freshness of the reply.

4.3.3 Verifying Consistency
A recipient can verify the consistency of the messages con-

tained in its events as follows. First, it requests all its events
until the server provides a non-membership proof. Next, the
recipient retrieves its current state from the author. Note
that in order to be able to verify the consistency of the
received messages it is essential that the latest snapshot re-
ceived during getEvent for the last downloaded message (for
which a non-membership proof is received) and the latest
snapshot received during getState are identical. If these
are not identical, the recipient should rerun getEvent for
the last event identifier and continue until it receives a non-
membership proof to ensure that no events were inserted by
the author in the meanwhile.

2Based upon which URI at the author, AURI, the request was
sent to, the author determines which BSD.

With the list of events downloaded and the reply x from
getState, the recipient can now use Algorithm 1 to decrypt
all events and verify the consistency of the messages sent by
the author. Steps 1–8 decrypt all events using the nonce,
event key, and authentication key generation determined by
equations 1-3. If a stop marker (Ms) is found (steps 6–7),
the authenticator v′ in the last event should match the cal-
culated authenticator v and x must match Ms. Otherwise, if
no stop marker are found, the x should match the calculated
state in the form of (k, v) (step 9).

Algorithm 1 Verify message consistency for a recipient.

Require: pk, sk, k0, v0, the reply x from getState, an or-
dered list l of events.

Ensure: true if all events are authentic and the state x is
consistent with the events in l, otherwise false.

1: k′ ← Hash(n), n← Hash(1||k), k ← k0, v ← v0 . k′ is
the event key, n the event nonce, k and v the calculated
state

2: for all e ∈ l do . in the order events were inserted
3: p← Decnsk(e

P )

4: if p ?
= ⊥ then

5: return false . failed to decrypt event

6: if p contains (Ms, v
′) then . check for Ms, v

′

unknown
7: return x ?

= Ms ∧ v ?
= v′ . no state and matching

authenticator
8: k′ ← Hash(n), n ← Hash(1||k), k ← Hash(k), v ←

Hash
(
v||MACk(e)

)
. calculated from right to left

9: return x ?
= (k, v) . state should match calculated state

4.4 Publicly Verifiable Proofs
Insynd allows for four types of publicly verifiable proofs:

author, time, recipient, and message. These proofs can be
combined to, at most, prove that the author had sent a
message to a recipient at a particular point in time. While
the publicly verifiable proof of author and time can be gen-
erated by anyone, the publicly verifiable proofs of recipient
and message can only be generated by the recipient (always)
and the author (if it has stored additional information at the
time of generating the event).

4.4.1 Author
To prove who the author of a particular event is, i.e., that

an author created an event, we rely on Balloon. The proof
is the output from B.query (Membership) for the event.
Verifying the proof uses B.verify (Membership).

4.4.2 Time
To prove when an event existed. The granularity of this

proof depends on the frequency of timestamped snapshots.
The proof is the output from B.query (Membership) for
the event from a timestamped snapshot sj that shows that
the event was part of the data structure fixed by sj . Verify-
ing the proof involves using B.verify (Membership) and
whatever mechanism is involved in verifying the timestamp
from the time-stamping authority.

Note that a proof of time proves that an event existed at
the time as indicated by the time-stamp, not that the event
was inserted or generated at that point in time.



4.4.3 Recipient
To prove who the recipient of a particular event is. This

proof consists of:

1. the output from B.query (Membership) for the
event; and

2. the event key k′ and public key pk used to generate
the event identifier eID.

Verifying the proof involves using B.verify

(Membership), calculating ẽID = MACk′(pk) and compar-
ing it to the event identifier eID.

The recipient can always generate this proof, while the
author needs to store the event key k′ and public key pk

at the time of event generation. If the author stores this
material, then the event is linkable to the recipient’s public
key. If linking an event to a recipient’s public key is not
adequately attributing an event to a recipient (e.g., due to
the recipient normally being identified by an account name),
then the register protocol should also include an extra sig-
nature linking the public key to additional information, such
as an account name.

4.4.4 Message
The publicly verifiable proof of message includes a pub-

licly verifiable proof of recipient, which establishes that the
ciphertext as part of an event was generated for a specific
public key (recipient). The proof is:

1. the output from B.query (Membership) for the
event;

2. the nonce n that is needed for decryption and used to
derive the event key k′;

3. the public key pk used to generate eID; and

4. the ephemeral secret key sk′ that is needed for decryp-
tion.

Verifying the proof involves first verifying the publicly veri-
fiable proof of recipient by deriving k′ = Hash(n). Next, the
verifier can use Decnsk′,pk(c, pk’) to learn the message m.

The recipient can always generate this proof, while the
author needs to store the nonce n, public key pk, and the
ephemeral private key sk’ at event generation. Note that
even thought we allow the author to save the ephemeral key
material to produce publicly verifiable proofs of message, the
author is never allowed to do so for the encrypted replies to
the getState or register protocols.

5. EVALUATION

5.1 Security and Privacy Properties
We make use of the model (and notation) of Pulls

et al. [21], with some modifications to account for our
stronger adversarial setting (untrusted instead of forward-
secure server). In Insynd, it is the author instead of the
server (which is assumed to be untrusted) that keeps the
state, hence the CorruptServer oracle needs to be replaced
by a CorruptAuthor oracle. Without loss of generality, we
assume a single author A and server S. For sake of clarity,
we present full updated definitions.

An adversary A can adaptively control the scheme
through a set of oracles. The adversary has access to a
base set of oracles Obase:

• pk← CreateRecipient(): Generates a new public key
pk← crypto_box_keypair(sk) to identify a recipient,
registers the recipient pk at the author A, and finally
returns pk.

• e ← CreateEvent(pk,m): Creates an event e with
message m at the author A for the recipient pk reg-
istered at A. Returns e.

• (State,#events) ← CorruptAuthor(): Returns the
entire state of the author and the number of created
events before calling this oracle.

Additional oracles will be defined, specifically for each prop-
erty. For properties with the prefix “forward”, the adversary
is not allowed to make any further queries after it makes a
call to CorruptAuthor.

5.1.1 Secrecy
For the security experiment, the adversary can access the

CreateEvent* oracle once for the challenge bit b:

• e ← CreateEvent*(pk,m0,m1)b: Creates an event e
with message mb at the author A for the recipient pk

registered at A. Returns e. Note that this oracle can
only be called once with distinct messages m0 and m1

of the same length.

Specifically for Insynd, the adversary can get hold of side
information through publicly verifiable proofs of message (or
possibly the stored data at the author to be able to make
these proofs), which also needs to be modeled. For this
reason we provide the adversary with a decryption oracle:

• m ← DecryptEvent(e): Decrypts an event e with the
restriction that e was outputted by the CreateEvent

oracle.

The security (SE) experiment is:
ExpSEA (k):

1. b ∈R {0, 1}
2. g ← AObase,CreateEvent*,DecryptEvent()

3. Return g ?
= b.

The advantage of the adversary is defined as:

AdvSEA (k) =
1

2
·
∣∣∣Pr [ExpSEA (k) = 1|b = 0

]
+

Pr
[
ExpSEA (k) = 1|b = 1

]
− 1
∣∣∣ .

Definition 1. A scheme provides computational secrecy
of the data contained within events, if and only if for all poly-
nomial time adversaries A, it holds that AdvSEA (k) ≤ ε(k).

Theorem 1. For an IND-CCA2 secure public-key en-
cryption scheme, Insynd provides computational secrecy of
the messages contained in events, according to Definition 1.

Proof sketch. For each encryption, an ephemeral key-
pair is generated, as specified in Sect. 3.2. The ephemeral
private key is what is being disclosed as part of proofs of
message together with a nonce. This means that the infor-
mation provided in proofs of message reveals nothing to the
adversary beyond the already known public key of the recip-
ient and, notably, the actual message (plaintext) contained



within the ciphertext and the nonce. Conservatively, this
means that proofs of message can be seen as a decryption
oracle where the adversary provides the ciphertext, and as
part of constructing the ciphertext picks a nonce. Since the
used encryption scheme provides IND-CCA2 security, the
adversary has no advantage in winning this game.

5.1.2 Deletion-Detection Forward Integrity
For deletion-detection forward integrity, a helper algo-

rithm valid(e, i) is defined. This algorithm returns whether
or not the full log trail for every recipient verifies when ei
(the event e created at the i-th call of CreateEvent) is re-
placed by e.

For completeness, we modified the model to also take into
account that the adversary might benefit from requesting
the (encrypted) current state for a recipient at the author:

• c ← GetState(pk, n): Returns the ciphertext c that
is generated as the reply to the getState protocol for
the recipient pk and nonce n.

The forward integrity (FI) experiment is defined as:

ExpFIA (k):

1. l← AObase,GetState()

2. Return e 6= ei ∧ valid(e, i) ∧ i ≤ #events.

The advantage of the adversary is defined as:

AdvFIA (k) = Pr
[
ExpFIA (k) = 1

]
.

Definition 2. A scheme provides computational forward
integrity, if and only if for all polynomial time adversaries
A, it holds that AdvFIA (k) ≤ ε(k).

Definition 3. A scheme provides computational
deletion-detection forward integrity, if and only if it is FI
secure and the verifier can determine, given the output of
the scheme and the time of compromise, whether any prior
events have been deleted.

Theorem 2. Given an unforgeable signature algorithm,
an unforgeable one-time MAC, and a IND-CCA2 secure
public-key encryption algorithm, Insynd provides computa-
tional deletion-detection forward integrity in the random or-
acle model, according to Definition 3.

Proof sketch. Insynd provides deletion-detection for-
ward integrity for recipients’ events thanks to the use of the
FssAgg authenticator by Ma and Tsudik [15], which is prov-
ably secure in the random oracle model for an unforgeable
MAC function. The verification is “all or nothing”, i.e., a
recipient can detect if its events are authentic or not, not
which events have been tampered with. We look at three
distinct phases of a recipient in Insynd: before registration,
after registration, and after the last event.

Before registration, the author has not generated any
events for the recipient that can be modified or deleted. The
register protocol establishes the initial key and value for
the forward-secure SKG and FssAgg authenticator. These
values together with the BSD and the public key of the recip-
ient are signed by the author and returned to the recipient.
Assuming an unforgeable signature algorithm, this commits
the author to the existence of either state (in the form of the
initial key and value) or at least one event (the last event
with the stop marker and authenticator) for this recipient.

After registration, but before the last event, the author
must keep state for the recipient. The state is in the form
of the current authentication key k and authenticator value
v. The recipient gets the current state using the getState

protocol for its public key and a fresh nonce. The reply
from the author is encrypted under the recipient’s provided
public key and the nonce provided by the recipient. This
ensures the freshness of the reply, preventing the adversary
from caching replies from the getState protocol made prior
to compromise of the author (using the GetState oracle).
The current authenticator value and authentication key are
updated (and overwritten) by using the FssAgg construc-
tion and a sequential key generator in the form of a hash
chain. Note that each event uses a unique key for the MAC,
where the key is derived from a hash function for which the
adversary does not know the input. This means that it is
an unforgeable one-time MAC function is sufficient.

After the last event, the author has deleted state. The
last event contains a stop marker Ms and the authenticator
value v before the last event was generated. The verification
algorithm, Algorithm 1, verifies the authenticator value in
the case of state (step 9) and no state (step 7). Compared
to the privately verifiable FssAgg construction, we store the
authenticator value in an event instead of state. However
the authenticator value is still verified, and the algorithms
fails if it is unable to do so (steps 4 and 7).

Finally, we note that the use of an IND-CCA2 secure en-
cryption scheme prevents an adversary from learning any
authenticator keys and values from the GetState oracle.

5.1.3 Forward Unlinkability of Events
Informally, we define forward unlinkability of event by

stating that it should be hard for an adversary to determine
whether or not a relationship exists between two events in
one round3 of the insert protocol, even when given at the
end of the round the entire state of the author: (pk, k, v)
of all recipients. We also need to take into account that
for certain events, publicly verifiable proofs of recipient or
message (or data stored at the author to be able to make
these proofs) are available to the adversary. Obviously, the
adversary knows the recipient of these messages, and does
not break forward unlinkability of events, if it can only es-
tablish a link between two events in one round of the insert
protocol for which it knows the recipient.

Even though we do not define forward unlinkability of
events in terms of recipients, it can still be modeled as in [21],
where the adversary can only create recipients before each
round of the insert protocol and is limited to finding a
relationship between two events within one round. The fol-
lowing oracles are defined:

• vuser ← DrawUser(pki, pkj): Generates a virtual user
reference, as a monotonic counter, vuser and stores
(vuser, pki, pkj) in a table D. If pki is already refer-
enced as the left-side user in D or pkj as the right-side
user, then this oracle returns⊥ and adds no entry toD.
Otherwise, it returns vuser.

• Free(vuser): Removes the triple (vuser, pki, pkj) from
table D.

3Since the adversary is (presumably) in control of the server,
it can trivially tell in which round events were added.



• e ← CreateEvent’(vuser,m)b: Creates an event e
with message m at the author A for a recipient reg-
istered at A. Which recipient depends on the value b
and the event vuser in the table D. Returns e.

As for deletion-detection forward integrity, we also allow
the adversary access to the GetState oracle. The experiment
for forward unlinkability of events (FU) is defined as:

ExpFUA (k):

1. b ∈R {0, 1}
2. g ← AObase,DrawUser,Free,CreateEvent’,GetState()

3. Return g ?
= b.

The advantage of the adversary is defined as

AdvFUA (k) =
1

2
·
∣∣∣Pr [ExpFUA (k) = 1|b = 0

]
+

Pr
[
ExpFUA (k) = 1|b = 1

]
− 1
∣∣∣ .

Definition 4. A scheme provides computational forward
unlinkability of events, if and only if for all polynomial time
adversaries A, it holds that AdvFUA (k) ≤ ε(k).

Theorem 3. For an IND-CCA2 secure public-key en-
cryption algorithm, Insynd provides computational forward
unlinkability of events within one round of the insert pro-
tocol in the random oracle model according to Definition 4.

Proof sketch. The adversary has access to the follow-
ing information for events for which no publicly verifiable
proofs of recipient or message (or the data stored at the
author to be able to create these) are available: eID =
MACk′(pk) and eP = Encnpk(m) for which k′ = Hash(n) and
n = Hash(1||k) where k is the current authentication key for
the recipient at the time of generating the event.

In the random oracle model, the output of a hash function
can be replaced by a random value. Note that the output of
the random oracle remains the same for the same input. By
assuming the random oracle model, the key to the one-time
unforgeable MAC function and the nonce as input of the en-
cryption are truly random4. Hence the adversary that does
not know the inputs of these hashes, n and k respectively,
has no advantage towards winning the indistinguishability
game.

Now we need to show that the adversary will not learn
these values n and k, even when given the author’s entire
state (pk, k, v) for all active recipients; and values k′ and n
for events where a publicly verifiable proof of recipient or
message is available or can be constructed from data the
author stored additionally at the time of generating these
events. The state variable k is generated using a forward-
secure sequential key generator in the form of an evolving
hash chain. There is no direct link between the values n,
respectively k′, of multiple events for the same recipient.
Instead, for each event these values are derived from the re-
cipient’s current authentication key k at that time, using a
random oracle. The adversary can thus not learn the value

4If the adversary has no knowledge of n, it cannot tell
whether or not a given ciphertext was encrypted for a given
recipient (with known public key), even when given the
ephemeral secret key sk′ used to seal crypto_box. This im-
plies that the adversary will also not gain any advantage
from learning the corresponding ephemeral public key pk′,
as part of the ciphertext.

of the past authentication keys from the values n and k′.
Lastly, from state, the adversary learns pk for all recipients.
We note that the encryption for events provides key privacy,
because the outputted ciphertext is encrypted using a sym-
metric key that is derived from both the Diffie-Hellman value
and the nonce. Even when assuming that the adversary can
compute the Diffie-Hellman value, it has no information on
the nonce and hence the encryption provides key privacy,
i.e., one cannot tell that the ciphertext was generated for a
given public key.

We need to show that the adversary will not be able to
link events together from the state variable v it keeps for

every recipient. If v ?
= v0, then v is random. Otherwise,

vi = Hash
(
vi−1||MACki−1(ei−1)

)
. The MAC is keyed with the

previous authentication key ki−1, which is either the output
of a random oracle (if i > 1) or random (k0). This means the
adversary does not know the output of MACki−1(eji−1) that is
part of the input for the random oracle to generate v.

Finally, we note that the use of an IND-CCA2 secure en-
cryption scheme prevents an adversary from learning any
authenticator keys and values from the GetState oracle.

5.2 Public Verifiability

5.2.1 Consistency
Assuming a collision resistant hash function, an unforge-

able signature algorithm, monitors, and a perfect gossip-
ing mechanism for snapshots, this follows directly from the
properties of Balloon (Theorem 3 of [20]). However, our
gossiping mechanisms are imperfect. We rely on the fact
that (1) recipients can detect any modifications on their
own events and (2) snapshots are chained together and oc-
casionally timestamped, to deter the author from creating
inconsistent snapshots. The latter one ensures that at least
fork consistency as defined by Mazières and Shasha [17] is
achieved. This means that in order to remain undetected
the adversary needs to maintain a fork for every recipient it
disclosed modified snapshots to.

5.2.2 Author
Assuming a collision resistant hash function and an un-

forgeable signature algorithm, the proof of author cannot
be forged. A proof of author for an event is the output
from B.query (Membership) for the event. Theorem 2 of
[20] proves the security of a membership query in a Balloon.
However, in this theorem, the adversary only has oracle ac-
cess to producing new snapshots. In the forward security
model, the adversary can learn the author’s private signing
key, and can therefore create arbitrary snapshots on its own.
Given that the signature algorithm is unforgeable, the exis-
tence of a signature is therefore non-repudiable evidence of
the snapshot having been made with the signing key.

5.2.3 Time
Assuming a collision resistant hash function, an unforge-

able signature algorithm and a secure time-stamping mech-
anism, the proof of author cannot be forged. A proof of time
depends on the time-stamping mechanism, which is used in
the snapshot against which the proof of author was created.
The exact time-stamping mechanism is out of scope.

5.2.4 Recipient
Assuming a collision resistant hash function, an unforge-

able signature algorithm and an unforgeable one-time MAC



function, the proof of recipient cannot be forged. A proof
of recipient consists of a proof of author, a public key pk,
and an event key k′. The proof of author fixes the event,
which consists of an event identifier eID and an event pay-
load. Now that the output of MAC function is fixed by the
event identifier eID = MACk′(pk), for the adversary cannot
come up with a different pk and k′, it has to break the un-
forgeability of the one-time MAC function.

5.2.5 Message
Assuming a collision and pre-image resistant hash func-

tion, an unforgeable signature algorithm and an unforgeable
one-time MAC function, the proof of message cannot be
forged. From the proof of message, the proof of recipient
can be derived by computing the event key k′ ← Hash(n).
The proof of recipient fixes the payload eP , the recipient’s
public key pk and the nonce n, since the prover provided a
pre-image to k′. The payload consists of the ciphertext c and
the ephemeral public key pk′. The prover provides sk′, such

that pk′ ?
= pk∗, where pk∗ ←crypto_box_keypair(sk′).

This fixes sk′, since there is only one sk′ for each pk′ for
Curve255195. This fixes all the input to crypto_box_open:
c, n, pk and sk′, and crypto_box_open is deterministic.

6. EXTENSIONS

6.1 Non-interactive registration
With non-interactive registration it is possible for the au-

thor to register one of its recipients with another author,
e.g., in distributed settings, while the recipient will still be
able to reconstruct all events both at the original author as
at the next author. Very similar to how this is done in [21],
the original author does the following to register a recipient
non-interactively at the next author:

1. Given pk, generate a blinded public key pk′ using the
blinding value b, where b is randomly generated.

2. Register pk′ with the next author.

3. Generate a new event for the recipient pk, where the
message consists the extend marker Me concatenated
with the blinding value b concatenated with the result
of the register protocol.

At reconstruction, when the recipient encounters the ex-
tension marker Me, it computes its new private key using
b and sk, decrypts the information from the register proto-
col and follows the same procedures to retrieve its relevant
events at the next author.

Blinding the public key of the recipient serves three pur-
poses: First, it hides information from an adversary that
compromises multiple authors, preventing trivial correlation
of state tables to determine if the same recipient has been
registered at both authors, ensuring forward unlinkability
of recipient identifiers; Second, the blinding approach (com-
pared to having the author create a new key pair) has the
added benefit of, if run correctly, it is still only the recipient
that at any point in time has the ability to decrypt events

5There are two points on the curve for Curve25519 such that
pk′ ←crypto_box_keypair(sk′) due to Curve25519 being a
Montgomery curve, but Curve25519 only operates on the
x-coordinate [4].

intended for it; Third, Insynd uses the public key as an iden-
tifier for the registration of a recipient. For each registration,
we need a new identifier.

Theorem 4. Insynd provides forward unlinkability of re-
cipient identifiers for the non-interactive registration assum-
ing that the DDH assumption is valid for Curve25519.

Note that the author can also run the non-interactive reg-
istration with itself. This serves two purposes: First, this
introduces new randomness for the recipient, recovering fu-
ture events from a limited compromise of a passive adversary
in the past; Secondly, this enables the author to register the
recipient in a new Balloon, e.g., when the author want to
start using another server.

6.2 Stronger Adversarial model
By making use of the non-interactive registration, it is

possible to support an even stronger adversary model at
the author: namely that of a time-limited passive adversary
which allows the adversary to recover from compromise. The
fresh randomness for its registered recipients, disables any
further profiling by the adversary. If the adversary got ac-
cess to the author’s signing key, used for showing authorship
and consistency, the author needs to revoke its old signature
key pair and generate a new one which from now on will be
associated with the author. If not, e.g., when the author
uses a Hardware Security Module (HSM) to generate its sig-
natures, this is not necessary.

6.3 Privacy-Preserving Event Retrieval
By retrieving its events, the recipient inadvertently leaks

information that could impact its privacy. For instance, the
naive approach of retrieving events as fast as possible risks
linking the events together, and their relative order within
each run of the insert protocol, due to time, despite our (as-
sumption of) an anonymous communication. To minimise
information leakage, one could:

• Have recipients wait between requests. The waiting
period should be randomly sampled from an exponen-
tial distribution, which is the maximum entropy prob-
ability distribution having mean 1/N with rate param-
eter N [19], assuming that some recipients may never
access their events ([0,∞]).

• Randomise the order in which events are requested.
The getState protocol returns ki, which enables the
calculation of how many events have been generated
so far using ko.

• Introduce request and response padding to minimise
the traffic profile, e.g., to 16 KiB as is done in Pond.6

• Use private information retrieval (PIR) [9, 11]. This
is relatively costly but may be preferred over inducing
significant waiting time between requests.

• Events on servers could safely be mirrored (since
servers are not trusted), enabling recipients to spread
their requests (presumably not all mirrors collude).

For now, we opt for the first two options of adding delays
to requests and randomising the order. PIR-enabled servers

6https://pond.imperialviolet.org

https://pond.imperialviolet.org


would provide added value to recipients. Note that the mir-
roring approach goes hand in hand with our publicly verifi-
able consistency, since mirrors could monitor snapshot gen-
eration as well as serve events to recipients.

7. RELATED WORK
Ma and Tsudik [15] proposed a publicly verifiable FssAgg

scheme by using an efficient aggregate signature scheme,
BLS. The main drawbacks are a linear number of verification
keys with the number of runs of the key update, and relative
expensive bilinear map operations. Similarly, Logcrypt by
Holt [14] also needs a linear number of verification keys with
key updates. The efficient public verifiability, of both the
entire Balloon and individual events, of Insynd comes from
taking the same approach as (and building upon) the History
Tree system by Crosby and Wallach [10] based on authen-
ticated data structures. The main drawback of the work of
Crosby and Wallach, and to a lesser degree of ours on Insynd,
is the reliance upon a gossiping mechanism. Insynd takes the
best of both worlds: the public verifiability from authenti-
cated data structures based on Merkle trees, and the private
all-or-nothing verifiability of the privately verifiable FssAgg
scheme from the secure logging area. Users do not have to
rely on perfect gossiping of snapshots, while the existence of
private verifiability for recipients deters an adversary from
abusing the lack of a perfect gossiping mechanism to begin
with. This is similar to the approach of CONIKS [18], where
users can verify their entries in a data structure as part of a
privacy-friendly key management system. In CONIKS, users
provide all data (their public key and related data) in the
data structure concerning them. This is fundamentally dif-
ferent to Insynd, where the entire point of the scheme is for
the author to inform recipients of the processing performed
on their personal data. The private verifiability mechanism
for Insynd is therefore forward-secure (with regard to the au-
thor), unlike in CONIKS, where the directory is completely
untrusted and only holds data provided by users.

PillarBox is a fast forward-secure logging system by Bow-
ers et al. [7]. Beyond integrity protection, PillarBox also
provides a property referred to as “stealth” that prevents
a forward-secure adversary from distinguishing if any mes-
sages are inside an encapsulated buffer or not. This indistin-
guishability property is similar to our forward unlinkability
of events property. PillarBox has also been designed to be
fast with regard to securing logged messages. The goal is
to minimise the probability that an adversary that compro-
mises a system will be able to shut down PillarBox before the
events that (presumably) were generated as a consequence
of the adversary compromising the system are secured.

The transparency logging scheme by Pulls et al. [21] has
a similar setting to ours with multiple recipients, our non-
interactive registration was inspired by their work. The pur-
pose of their scheme is to enable a one-way communication
channel to make data processing more transparent to users
of data processors. The scheme is based on hash- and MAC-
chains, influenced by the secure log design of Schneier and
Kelsey [22]. We make use of their general framework for
proving the security and privacy properties of Insynd, with
modifications to account for our stronger adversary model
at the server (untrusted instead of forward secure).

Pond and WhisperSystem’s TextSecure7 are prime ex-

7https://whispersystems.org

amples of related secure asynchronous messaging systems.
While these systems are for two-way communication, there
are several similarities. Pond, like Insynd, relies on an
anonymity network to function. Both Pond and TextSecure
introduce dedicated servers for storing encrypted messages.
In Pond, clients pull their server for new messages with ex-
ponentially distributed connections. The Axolotl ratchet8

is used by both Pond and TextSecure. Axolotl is inspired
by the Off-the-Record Messaging protocol [6] and provides
among other things forward secrecy and recovery from com-
promise of keys by a passive adversary. Our non-interactive
registration mimics the behaviour in Axolotl, in the sense
that new ephemeral keying material is sent with messages.
Note that the goal of Insynd is for messages to be non-
repudiable, unlike Pond, TextSecure and OTR who specif-
ically want deniability. Insynd achieves non-repudiation
through the use of Balloon and how we encrypt messages.

8. PERFORMANCE
We implemented Insynd in the Go programming lan-

guage.9 The source code and steps to reproduce our
benchmark are publicly available at http://www.cs.kau.

se/pulls/insynd/. We performed our benchmark on De-
bian 7.8 (x64) using an Intel i5-3320M quad core 2.6GHz
CPU and 7.7 GB DDR3 RAM. The performance benchmark
focuses on the insert protocol since the other protocols are
relatively infrequently used, and reconstruction time is pre-
sumably dominated by the mechanism used to protect the
recipient’s privacy when downloading events. For our bench-
mark, we ran the author and server on the same machine
but still generated and verified proofs of correct insertion
into Balloon.

Figure 4 presents our benchmark, based on averages after
10 runs using Go’s built-in benchmarking tool, where the
x-axis specifies the number of events to insert per run of the
insert protocol. Figure 4a shows the number of events per
second for different message sizes in a Balloon of 220 events.
Clearly, the smaller the message are, the more events can be
sent (and the more potential recipients that can be served)
per second. With at least 100 events to insert per run, we
get ≈7000 events per second with 1KiB messages. Using
the same data as in Figure 4a, Figure 4b shows the goodput
(the throughput excluding the event overhead of 112 bytes
per event) for the different message sizes. At ≈800 100KiB-
messages per second (around at least 200 events to insert),
the goodput is ≈80 MiB/s. 10KiB messages offer a trade-
off between goodput and number of events, providing 4000
events per second with ≈40 MiB/s goodput.

Insynd improves greatly on related work on transparency
logging, and shows comparable performance to state-of-the-
art secure logging systems. Ma and Tsudik[15], for their
FssAgg schemes, achieve event generation (signing) in the
order of milliseconds per event (using significantly older
hardware than us). Marson and Poettering [16], with their
seekable sequential key generators, generate key material
in a few microseconds. Note that for both these schemes,
message are not encrypted and hence the performance re-
sults only take into account the time for providing integrity
protection. The performance results of Insynd, together
with the two following schemes, include the time to en-

8https://github.com/trevp/axolotl/wiki
9https://golang.org

https://whispersystems.org
http://www.cs.kau.se/pulls/insynd/
http://www.cs.kau.se/pulls/insynd/
https://github.com/trevp/axolotl/wiki
https://golang.org
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(a) Events per second in a 220 Balloon.
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Figure 4: A benchmark related to inserting events. Figure 4a shows the number of events that can be inserted per second in
a 220 Balloon for different message sizes. Figure 4b shows the corresponding goodput in MiB/s for the data in Figure 4a.

crypt messages in addition to providing integrity protection.
Pulls et al. [21], for their transparency logging scheme, gen-
erate events in the order of tens of milliseconds per event.
For PillarBox, Bowers et al. [7] generate events in the order
of hundreds of microseconds per event, specifying an average
time for event generation at 163 µs when storing syslog mes-
sages. Syslog messages are at most 1 KiB, so the average for
Insynd of 142 µs at 7000 events per second is comparable.

9. CONCLUSIONS
Insynd’s design is based around concepts from authenti-

cated data structures, forward-secure key generation from
the secure logging area, and ongoing work on secure mes-
saging protocols. Insynd provably achieves the security and
privacy properties for a transparency logging scheme, as
defined within the general framework of Pulls et al. [21],
which was adjusted to take into account our stronger ad-
versarial model that assumes a forward-secure author and
an untrusted server. Furthermore, Insynd achieves publicly
verifiable consistency and allows for a number of publicly
verifiable proofs to show the author, recipient, message and
approximate time of events. This further increases the util-
ity of a transparency logging scheme. Our proof of concept
implementation, which is freely available, shows that Insynd
offers comparable performance for event generation to state-
of-the-art secure logging systems, like PillarBox [7].
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