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Abstract—Several new services incentivize clients to compete in
solving large computation tasks in exchange for financial rewards.
This model of competitive distributed computation enables every
user connected to the Internet to participate in a game in which
he splits his computation power among a set of competing pools
— the game is called a computation power splitting game. We
formally model this game and show its utility in analyzing the
security of pool protocols that dictate how financial rewards are
shared among the members of a pool.

As a case study, we analyze the Bitcoin cryptocurrency
which attracts computing power roughly equivalent to billions
of desktop machines, over 70% of which is organized into public
pools. We show that existing pool reward sharing protocols
are insecure in our game-theoretic analysis, when considering
a single attack strategy called the “block withholding attack”.
This attack is a topic of debate, initially thought to be ill-
incentivized in today’s pool protocols: i.e., causing a net loss
to the attacker, and later argued to be always profitable. Our
analysis shows that the attack is always well-incentivized in the
long-run, but may not be so for a short duration. This implies that
existing pool protocols are insecure, and if the attack is conducted
systematically, Bitcoin pools could lose millions of dollars worth
in months. The equilibrium state is a mixed strategy—that is—in
equilibrium all clients are incentivized to probabilistically attack
to maximize their payoffs rather than participate honestly. As
a result, the overall capacity of the Bitcoin network is under-
utilized.

I. INTRODUCTION

Distributed computation enables solving large computa-
tional problems by harnessing the availability of machines
connected to the Internet. A new paradigm of distributed
computation is emerging wherein participants contribute their
computing resources in exchange for direct financial gain
or monetary compensation. In this paradigm, all participants
compete in performing computation tasks to obtain rewards.
We call such computation competitive distributed computation.
There are many examples of such competitive distributed
computation today. Public challenges for testing the strength
of cryptographic constructions (e.g., the RSA Secret-Key chal-
lenge [1]) invites participants to find and exploit weaknesses
using huge computational resources in exchange for monetary
prizes. Crowd-sourced security testing of applications is an
emerging commercial industry (c.f. BugCrowd [2], CrowdCu-
rity [3], the HeartBleed challenge [4]), wherein computation
is dedicated to penetration testing tasks in software. Here,
bug bounties are offered to the first participant that finds
exploitable bugs. Perhaps one of the most direct examples

of competitive distributed computation are cryptocurrencies,
such as Bitcoin, which attract computation power equivalent
to nearly a billion desktop computers. In cryptocurrencies,
participants—often called miners—solve cryptographic puz-
zles as “proof-of-work” [5] in exchange for obtaining rewards
in cryptocurrency coins.

Distributed computation scales by incentivizing large num-
ber of participants to contribute their computation power.
When the computation problems demand high resources,
participants resort to pooling their resources together in the
competition. This is both natural and useful as it reduces
the uncertainity or variance in obtaining rewards for the
pool participants. Typically, such computation pools have
a designated supervisor who is responsible for distributing
computation sub-tasks to users and distributing the reward
obtained from winning the competition. When such delegation
of computation tasks is in place, the question of designing fair
pool protocols—which ensure that each participant get paid for
the computation they perform and only for the computation
they perform—become important.

Problems with designing secure or fair pool protocols are
relatively less explored, especially in the setting of competitive
distributed computation. Previous work have investigated so-
lutions to prevent participants from specific forms of cheating,
often considering a single supervisor system [6]. Indeed, for
example in Bitcoin pool protocols, techniques for preventing
misbehaving clients in a single pool are known and have
been implemented. For instance, solutions preventing unfair
supervisors, lazy clients who claim more than what they
have done, and hoarders that keep the results secret to gain
extra reward from it (e.g., by gaining lead time for another
competition) are known [6, 7, 8, 9]. Many other systems
such as the SETI@home project use redundancy to check for
mismatch in replicated computation tasks [10]. However, a
generic model for security analysis of pool protocols when
there are multiple competing supervisors is a subject of open
investigation.

There are some unique characteristics of competitive dis-
tributed computation that makes designing secure pool proto-
cols difficult. First, solving the computation task is competi-
tive. The first supervisor publishing the valuable results gets
the reward, and others get nothing. Here, the competition game
is zero-sum and timing is critically sensitive. For example,
in the RSA Secret-Key Challenge [1], a client once finds



a possible plaintext should submit to the group supervisor
immediately to claim for the reward, otherwise other groups
may find it and make the result obsolete. Second, the com-
putation tasks can be delegated to anonymous participants—
in fact, the primary function of pool operators is to securely
delegate tasks. This opens up analysis of the incentives of the
participant which can decide to split its computation across
multiple supervisors. Protocols that may be secure in a single
supervisor setting [6] (e.g. with no delegation) are often used
in practice, but can turn out to be insecure in multiple-
supervisor setting. Detecting if and how a participant splits
its power is difficult since participants are anonymous or can
form a large sybil sub-network.

The Computing Power Splitting Game. In this paper, we
introduce a new distributed computation model which in-
cludes multiple supervisors competing with each other to solve
computationally large problems. Participants with computation
power play a game of solving computation problems by
acting as a supervisor or joining other pools, which we call
as the Computing Power Splitting game or the CPS game.
Participants have the choice to contribute their power to
one supervisor’s pool or anonymously spread it across many
pools. Each participant can choose to either follow the pool
protocol honestly or deviate from it arbitrarily. The goal of
each participant is to maximize its expected profits. A pool
protocol is secure with respect to the CPS game if following
the protocol maximizes each participant’s profit. We show
an example analysis of the CPS game in the this paper, to
illustrate how it acts as a powerful tool in analyzing protocols
in competitive distributed computation scenarios.

The Case Study on Bitcoin Network. Bitcoin [5] is the largest
cryptocurrency reaching a market capitalization of over 5.5
billion US dollars in 2014 [11]. Bitcoin is representative of
over 50 new cryptocurrencies or alt-coins which have a sim-
ilar structure. In Bitcoin, each participating client (or miner)
contributes computation power to solve cryptographic puzzles
in a process called block mining, which acts as the basis
for minting coins (Bitcoins). The computational resources
required for Bitcoin mining increases over time and is already
significant: finding a block in late 2014 requires computing
about 270 ≈ 1021 SHA-256 hashes; the Bitcoin network as a
whole finds a block approximately once every 10 minutes.
Since the computational difficulty is high, most users join
mining pools, where they aggregate their computing resources
into a pool and share the reward. Pooled mining constitutes
72% of the Bitcoin computation network today.

Bitcoin pools are a direct example of competitive distributed
computation. In each round of mining (which roughly takes
10 minutes), pools compete to solve the puzzle and the first
one to solve claims a set of newly minted Bitcoins. This can
be viewed as the CPS game. Each pool has a designated pool
supervisor or operator, who then distributes the earned rewards
among pool members using a pool protocol. Existing pool
protocols are designed carefully to block several attacks from
its anonymous miners [12]. For instance, the pool protocol
ensures that all blocks found by miners can only be reported
via the pool operator, thereby ensuring that a lucky miner

cannot claim the rewards directly from the network. However,
the answer to the question—does a miner maximize its profit
by following the pool protocol honestly?—is not yet known.

Findings. In our case study, we investigate the utility of one
cheating technique called block withholding using the CPS
game formulation of Bitcoin. In a Block Withholding (or BWH)
attack, when a miner finds a winning solution, he does not
submit it to the pool, nor can he directly submit it to the
Bitcoin network. Instead, he simply withholds the finding,
thereby undermining the overall earnings of all miners in the
victim pool, including himself. Existing pool protocols are
secure against this attack when one considers a single pool in
the system. However, when we carefully analyze the existing
popular pool protocols using our CPS-game formulation, we
find that it is insecure. Specifically, we establish that rational
miners are well-incentivized to withhold blocks and earn
higher profits by being dishonest. Further, a sybil network
of dishonest miners can cost pool operators large fraction
of their earnings (often millions of US Dollars per month).
Further, this finding implies that big pools can dominate the
Bitcoin network by carrying out the BWH attack on new or
smaller pools, yet earning more reward than mining honestly
by themselves. We study the damage a set of miners (say of
one pool) can cause to another pool, and the conditions under
which such behavior is well-incentivized. This makes BWH
a real threat to the viability of pooled mining with existing
protocols in cryptocurrencies. We further show that this game
has no Nash equillibrium with pure strategies; in fact, this
implies that the pure strategy of all players being honest
is not a Nash equillibrium. As a result, in the equillibrium
state all miners are devoting some fraction of computation
for witholding rather than mining honestly, and therefore the
network as a whole is under-utilized.

We point out that witholding attacks are well-known, but
their efficacy is a topic of hot debate on Bitcoin forums [13,
14, 15] and recent papers [16, 17]. Intuition and popular belief
suggests that these attacks are ill-incentivized [13, 14, 15]
because in a single pool game, the attacker strictly loses
parts of their profits by witholding. However, we study the
incentives with respect to the general CPS game, in which we
show existing pool protocols to be insecure. The profitability
explains why one such real attack conducted on a Bitcoin
pool in April 2014 could indeed be well-incentivized, though
pool operators claimed that such attacks have no incentives
for attackers [18]. The attack caused nearly 200,000 USD
in damage to the victim pool. We further study whether the
attacks are profitable over a short period of time or over a long
period of time, and under what conditions.

Finally, we initiate a study on effective strategies to achieve
secure protocols in CPS games, specifically in the context of
Bitcoin. We discuss several public proposals to mitigate these
attacks in § VI. We recognize that for a defense to become
immediately practical on the existing Bitcoin network, it
should be non-intrusive, i.e., should require no incompatibility
with the existing Bitcoin protocol—however, our conclusion
in achieving a secure solution is still an open problem worthy
of future work. Finally, we hope that our work provides a
building block for designing cryptocurrencies which support
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Fig. 1: The CPS game setup of n+ 1 pools with respect to a player
with α fraction of total computing power in the game.

pooled mining natively in their core protocol, unlike Bitcoin.

Contributions. To summarize, this work makes the following
main contributions:
• Computing Power Splitting Game. We give a novel for-

mulation as a CPS game for a new model of distributed
computation, in which multiple supervisors compete with
each other. The CPS game precisely captures a number
of real world applications. We expect that our model
will enable more research questions regarding designing
a secure protocol.

• Analysis of BWH in Bitcoin pooled mining. Applying
our novel CPS model allows us to systematically study
the security of pooled mining protocols in Bitcoin. We
explain why block withholding is well-incentivized for
rational miners, providing an algorithmic strategy to gain
higher rewards than honest mining. We confirm our
findings by experiments running real Bitcoin miners and
pools on Amazon EC2.

II. THE COMPUTING POWER SPLITTING GAME

A player with non-zero computing power naturally has the
ability to choose among different ways of multihoming among
pools accessible to him. We intend to analyze strategies for
such a player to distribute his power into different pools such
that his net reward is maximum. We formulate this problem
as a multi-player game where each player independently and
anonymously participates in.

A pool is accessible (inaccessible) to the player if he can
(cannot) anonymously join the pool. For simplicity, from now
on we consider all inaccessible pools to be grouped into a
single inaccessible pool.

The Computing Power Splitting (CPS) game consists of:
• Computationally Difficult Problem T : A problem that

requires a large amount of computation to solve.
• Partition function φ(T ) → {T1, T2, .., Tn}: The func-

tion φ(T ) splits T into many smaller tasks Ti, such
that the difficulty of solving T is equivalent to the total
difficulty of solving all Ti. For example, in the RSA
Secret-Key challenge, the key value space X is split into
various Xi, each of which covers a specific range of the
key space and will be delegated to some particular client
to perform the search. Similarly, in crowd-source scanner,
each client will scan some particular set of program paths
in a program with an exponential number of paths, to
check if one is exploitable.

• Players: A client with positive computing power is a
player in this game who has a fraction of the total network
computing power. In this game, we study the behavior of
a miner who has a specific (say) α fraction of the total
computing power.

• Information available to all players: There is a finite
set of n + 1 pools P = {P1, P2, . . . , Pn} ∪ {Pn+1}
where P1, P2, . . . , Pn are accessible pools and Pn+1 is
the inaccessible one to the player. The computing power
function cp : P → (0, 1] describes the power of each
pool as a fraction of the total computing power in the
game. Thus, the total computing power in the game is
α+

∑n+1
i=1 cp(Pi) = 1.

• Actions: For any particular player, a Strategy Distribution
Vector (SDV) ~β = (β0, β1, β2, . . . , βn) is defined such
that (i) the player plays privately with computing power
αβ0, (ii) for each i ∈ {1, . . . , n}, the player mines
in pool Pi with contribution αβi power of the whole
network, (iii) 0 ≤ βi ≤ 1 for each i ∈ {0, 1, . . . , n} and∑n
i=0 βi = 1. The player moves by choosing an SDV ~β

for one game. For simplicity, we assume that ~β remains
constant for all players in one game.

• Payoff Scheme: There is a payoff distribution scheme
applied in a pool where, irrespective of the internal im-
plementation, an individual player’s payoff is proportional
to the number of smaller tasks Ti that he has solved.

• Utility: Let Ui denote the random variable describing
the reward the player receives from pool Pi by playing
for one game with βi fraction of his power α. Let R =∑n
i=1 Ui denote the random variable representing total

reward for one game for the player. The player’s goal is
to maximize E(R), the expected reward.

The CPS game formulation enables us to study a variety of
attack strategies that a player can carry out to maximize his
profit. Specifically, as a case study in this work, we present a
new strategy to utilize the block withholding attack in Bitcoin
pooled mining, that is always more rewarding than mining
honestly. Under this attack, a number of pools suffer financial
losses whereas the attacker gains a better reward than from
the honest strategy.

Assumptions for the CPS game. For simplicity, we make the
following realistic assumptions for the CPS game:

• A1. Other Players are Honest. The attacker is the only
rational player and hence is carrying out some attack.
The rest of the miners will pick the honest strategy, i.e,
following the protocol. We also discuss effects of relaxing
this assumption. Nonetheless, we assume all other players
are honest unless explicitly specified.

• A2. Known Power Distribution. The computing power
distribution of the game—including the accessibility and
payoff mechanism of all the pools—is correctly estimated
by the attacker at the start of the game. This is a fairly
practical assumption. For example, in Bitcoin, most of
the information is publicly available [19] and also easy
to be estimated by listening on the Bitcoin network for a
small period of time.

• A3. Constant power distribution throughout the game. We



assume that the network state stays constant throughout
the game. In practice, if there is significant variation in
one game, it can be analyzed as multiple smaller games.

• A4. Independence of games. We assume that the reward
and the winner in one game have no effect on that in
the other. More specifically, finding a solution in a game
does not yield any advantage in wining any subsequent
ones.

We do not make any assumption about other properties of
the game state, e.g., the total mining power or if the problem
difficulty remains constant across games. In fact, in Section V,
in the case study of Bitcoin pooled mining, we show that these
factors do not affect our analysis results significantly. We also
demonstrate that our analysis results for Bitcoin pooled mining
still hold without the assumptions A2, A3.

III. A CASE STUDY OF BITCOIN POOLED MINING

A. Background

Mining Bitcoins. Unlike traditional monetary systems, Bitcoin
is a decentralized crytocurrency with no central authority to
issue fiat currency [20]. In Bitcoin, the history of transactions
between users is stored in a global data structure called the
blockchain, which acts as a public ledger of who owns what.
Users perform two key functions: (i) verifying newly spent
transactions and (ii) creating a new block (or proof-of-work)
to include these transactions. In the Bitcoin protocol, both
these functions are achieved via an operation called mining, in
which a miner validates the new transactions broadcasted from
other users and in addition solves a computational puzzle to
demonstrate a proof-of-work [21], which is then verified by a
majority consensus protocol [5]. The first miner to demonstrate
a valid proof-of-work is said to have “found a block” and
is rewarded a new set of minted coins, which works as an
incentive to continue mining for blocks.

In terms of a CPS game, the computationally large problem
T in the Bitcoin protocol is based on the pre-image resistance
of a cryptographic hash function SHA-256 [22]. Specifically,
the puzzle involves finding a value whose hash begins with
some zero bits derived from a variable D, which represents the
global network difficulty. For each block, this value includes
the already computed hash for the previous block, information
of some transactions and a nonce — the miner’s goal is to find
a suitable nonce such that the hash of the corresponding block
has at least f(D) leading zeros [23]. The network self-adjusts
D after every 2016 blocks found, such that the time to find a
valid block is roughly 10 minutes. Relating to the CPS game
model, the search space X of T has the size |X| = 2|f(D)|.
At present, f(D) is roughly 70, thus the average hashrate
(H/s—the number of SHA-256 hash computations per second)
required to find a block in 10 minutes is around 1.96× 1018

H/s. One can verify that with a standard computer having
a hashrate of 1 million H/s, a miner has to mine for on an
average of 62,000 years to find a block.

Pooled mining. The probability of an individual miner to find
a new block every 10 minutes is excruciatingly small, which
led miners to combine their computing power into a group or
pool. If anyone in the pool finds a block, the block reward is

split among members according to their contributed processing
power. This shared mining approach is called pooled mining,
which effectively reduces the uncertainty or “variance” in
the reward for individual miners [12]. Typically, the pool
operates by asking its miners to solve easier problems Ti
with a smaller difficulty d (d < D) whose solution, called
shares, has probability d

D to be the solution for the new block.
Shares do not have any real value other than acting as the main
reference when distributing the reward. For example, instead
of searching in a space of size |X| = 270, the pooled miners
only need to search in a smaller space of size |Xi| = 240,
i.e., finding hashes with 40 leading zero bits. Every block is
trivially a valid share, because a hash value with 70 leading
zeros also has 40 leading zeros—however, the probability of
a share being a block is 1/230.

When a member in a pool finds a share that is also a valid
block, the pool operator submits it to the Bitcoin blockchain
and distributes the claimed reward to all miners in the pool.
The pool protocol ensures that the work is distributed in a
way which prevents miners from directly claiming rewards
for found blocks, thereby forcing all rewards to be funneled
through the pool operator.

Payoff schemes in pooled mining. There are multiple ap-
proaches to design a fair reward distribution system in pooled
mining [12]. Some of the popular schemes include (i) Pay-per-
share (PPS)—where the expected reward per share is paid, (ii)
Pay-per-last-N-shares (PPLNS)—the last N submitted shares
are considered for payment when a block is found. While there
are differences among these schemes (and their variations), all
of them aim to distribute the reward such that the payoff of
an individual miner is proportional to the number of shares
he submitted, which in turn is proportional to his individual
computing power contributed to the pool.

The main question we study is, given a payoff scheme,
does the miner have incentive to follow the honest mining
strategy—i.e., to honestly contribute all of his available power
to pools to maximize his profit? Intuitively, if all pools employ
fair protocols and if the miner contributes his complete power
to one or more of them, he should receive rewards proportional
to his true computing power. We study the correctness of this
intuition and whether the attacker can systematically exploit
mining pools to extract higher profits.

B. Block Withholding (BWH) attack

Our focus in this paper is on studying the efficacy of one
attack strategy called block withholding to gain more reward.
When a pool is under BWH attack, the attacker submits all
shares he computes to the pool except shares which are also
valid blocks. Since these withheld blocks would have directly
translated into rewards for the pool, such an attack decreases
the overall profit of the pool, thereby decreasing the reward
for all individual miners in the pool including the attacker. For
example, later in § IV-E, we analytically and experimentally
show that miners in a pool with 25% of the total computing
power in the Bitcoin network will lose 10.31% of their reward,
if 20% of the pool carries out the BWH attack. Therefore,
a naive intuition may suggest that miners do not have any



incentive to conduct such an attack. We claim that this intuition
is against the rational choice for any miner.

To see if BWH attack is well-incentivized, we consider the
two extreme options for a miner—(i) to withhold all blocks
or (ii) to submit all found blocks honestly on a pool. In
practice, the attacker may withhold some of the blocks he
finds and our analysis can be easily extended to model this
degree of withholding behavior. With BWH attackers present,
the overall efficiency of a pool is no longer proportional to its
miners’ actual total computing power—i.e. the overall reward
generated by the pool is proportional only to the computing
power contributed by honest miners. Nonetheless, the reward
earned is shared equitably with all miners, proportional to their
submitted shares. This imbalance allows a miner to collect
(reduced) reward even from pools in which he withholds.

The Block Withholding Attack in the CPS game. To system-
atically study the attacker’s advantage, we define a version of
the CPS game called the CPS-BWH game. Specifically, the
following extension is made to the generic CPS game:
• When the attacker makes a move, in addition to choosing

the distribution ~β of his own computing power, he also
decides which pools to withhold in—denoted by the
attack vector ~γ = (γ1, γ2, . . . , γn). The attack vector is
chosen such that γi = 1 if the attacker withholds all
blocks he finds in pool Pi and γi = 0 otherwise.

• All the assumptions stated in A1 — A4 are valid.

The goal is to find the optimal SDV (say) ~βa and the attack
vector (say) ~γa, such that the expected gain over honest mining
is maximum. Let Rh denotes the expected reward with the
honest mining strategy, i.e., attack vector ~0. Similarly, let R
denotes the expected reward with the attack vector ~γa. Our
goal is to maximize the expected gain, defined as

∆R =
R−Rh
Rh

.

Incentive for BWH attack. The main insight which incen-
tivizes the BWH attack is that Bitcoin mining is a zero-sum
game, i.e. to find a block all pools compete and exactly one
pool wins by consensus, all others do not get any reward. In
this game, although the attacker’s reward drops in the pool
being victimized, this loss could be compensated from the
reward gained from other pools in which the attacker mines
honestly. The victim pool’s loss due to withholding translates
into better rewards for other pools competing in the game,
since pools with no withholding miners have a competitive
advantage of being rewarded a block. Thus, if the attacker
mines only on the victim pool, he will definitely share the loss
with the pool and earn less reward as in the aforementioned
intuition, i.e., the reward protocol is fair and secure in a single
supervisor system. However, when he also mines strategically
on another pool at the same time, his reward gain from that
pool may outweigh his loss on the victim pool and make his
overall extra reward positive.

To illustrate this, we show a concrete example (shown in
Figure 2) of two pools constituting the Bitcoin network. An
attacker with 25% computing power can split his power —
5% to conduct a BWH attack on the first pool, while mining

Fig. 2: Simple illustration of the BWH attack: if an attacker with
25% of the mining power of the network attacks Pool 1 with 5% of
the network mining power, he gains 25.72% of the reward instead of
the expected 25%.

honestly on the second pool with 20%. It is clear that the
attacker’s expected reward from the victim pool falls to 4.67%
as intuition suggests. However, the total reward earned by
other pool increases, as the first pool’s loss shifts to the second
pool’s gain, and thus the attacker overall makes more reward.

C. Approach overview
The example above shows the feasibility of a BWH attack.

To analyze the scenarios and the extent of damage to pools
and honest miners, we study the following research questions
in this work.
• Q1. We ask whether the attack is well-incentivized re-

gardless of the number of pools, their respective com-
puting power and the attacker’s computing power, i.e.,
whether the attacker always has a strategy to gain more
reward than by honest mining.

• Q2. Given that the BWH attack is well-incentivized,
rational miners will tend to dishonestly attack the pools
to gain extra reward. This raises a question whether the
attack is still profitable when the pool is “contaminated”
by, say, a factor c, i.e., the BWH miners account for c
fraction of the mining power in the pool.

• Q3. We study the best strategy that maximizes the at-
tacker’s expected reward when the attacker attacks one
or multiple pools.

• Q4. We seek the stable equilibrium in Bitcoin when block
withholding miners are participating in pooled mining.

To answer these questions, we leverage our CPS-BWH
game to study the behavior of miners. In this game, a miner is
considered to be a player, and he makes a move by distributing
his power to pools in order to maximize his reward. Our
theoretical analysis uses the CPS game formulation to address
questions Q1, Q2 and Q3 in several attack scenarios in § IV.
To empirically verify our analysis findings, we run experiments
in a custom Testnet Bitcoin network on Amazon EC2 using
roughly 70, 000 CPU-core-hours for several months with a
popular Bitcoin client [24], mining software [25] and pool
server software [26]. We answer question Q4 in § IV-F.

IV. BLOCK WITHHOLDING ATTACK ANALYSIS

Analysis overview. We discuss several Block withholding
attack scenarios in this section. In what follows, we treat E(R)
as R. Our goal is to find an optimal strategy for the attacker



such that his gain in expected reward is maximum. Table I
gives an illustrative overview of the attacker gain, given a
network distribution before the attack happens (as in Figure 3),
in several attack scenarios.

30 %

Discus Fish

15 %

GHash.io

15 %
KnCMiner

25 %

Attacker

15 %

Unknown

Fig. 3: Mining power distribution before the attack happens. This
constructive example is similar to the Bitcoin network state in
November 2014 [27].

§ Scenario Victim(s) Rh R ∆R

IV-B One pool Discus Fish 25.00% 25.56% 2.26%

IV-C Multiple pools All,
except Unknown 25.00% 26.19% 4.76%

IV-D One
“contaminated” pool

Discus Fish,
2.5% is contaminated 25.64% 25.86% 0.89%

TABLE I: Example results of several attack scenarios that we study
in this paper given the pool distribution as in Figure 3.

In this section and the rest of the paper, for simplicity, we
use the term “private mining” to represent the honest mining
part of the attacker, which can be from solo mining or joining
a public pool. A careful reader may be concerned about the
high variance in solo mining if the attacker’s mining power is
not large enough. However, it is easy to see that he can avoid
it by honestly mining on one pool and carrying out the attack
on the target pools to achieve similar expected reward with
low variance.

Experiment setup and goals. To support our analysis, we run
several experiments in our customized Testnet Bitcoin network
using computation resources from Amazon EC2. Each exper-
iment simulates the actual mining in the real Bitcoin network
for 2 to 3 months. The detailed report of our experiment setup
is described in Appendix B.

We argue that the empirical validation of Bitcoin attacks
is essential to check the correctness of our analysis and to
show that our CPS game is faithful to the actual Bitcoin
mining software implementation. Meanwhile, an algebraic
and probabilistic model of computation used in previous
work [28] does not capture all the network factors (e.g.,
geographic placement, latency) and Bitcoin network properties
which may considerably affect the validity of the numerical
analysis. Thus, to our best knowledge, this work is the first
attempt to simulate the exact mining behavior that models
the underlying implementation. Moreover, our experiments are
motivated by discussions with real Bitcoin pool operators,
who suspected that variations in difficulty, distribution of
pool power, hashrates, etc., would play a role in the total
payoff of the attacker. Our experiments in § V confirm that
these intuitive misgivings do not affect results significantly.
Thus, our game-theoretic approach is valid to deduce practical
results.

A. Intuition: Bitcoin network as one accessible pool

To demonstrate the intuition behind the BWH attack, we
start with a toy attack scenario where the whole Bitcoin
network is one large pool accessible to the attacker. We assume
that the pool P1 has computing power cp(P1) = 1 − α and
naturally γa = (1). The attacker is the only rational player in
this game, i.e., aware of the BWH strategy and the rest of the
players are mining with honest mining strategy. We assume
that the attacker attacks with SDV (1 − β, β), i.e., he mines
privately with α(1−β) and attacks pool P1 with αβ fraction of
the network computing power. However, if the attacker were
mining honestly, the expected reward would have been directly
proportional to his computing power, i.e. Rh = α, no matter
how he chooses the SDV.

In the attack, the fraction of computing power of P1 remains
at (1 − α), while the reward generated has to be split with
1 − α(1 − β) fraction of the network. Since only (1 − αβ)
of the network is actually mining blocks now, the expected
reward for the attacker from private mining is

R0 =
α(1− β)

1− αβ .

For P1, the pool is rewarded 1−α
1−αβ and, on average, the

expected reward for the attacker from the pool is

R1 =
1− α

1− αβ ×
αβ

1− α(1− β)
.

Hence the total reward for the attacker is

R = R0 +R1 = 1− (1− α)2

(1− αβ)(1 + αβ − α)
.

Comparing the reward after attacking with that of the honest
mining, we get

R

Rh
=

αβ − αβ2 + 1− α
(1− αβ)(1 + αβ − α)

,

and we prove in Appendix C that ∀α, β ∈ (0, 1), RRh > 1. This
shows that regardless of his mining power and the strategy
vector, the attacker always has an incentive to carry a BWH
attack in this particular scenario.

We also prove that for β = 0.5, the attacker gains max-
imum relative reward for any α in Appendix C. Thus, by
performing the attack, the attacker of power α gains maximum
∆R = R/Rh − 1 = α−α2

(2−α)2 more than the original mining 1.
More specifically, for α = 0.2, we have ∆R = 0.05, i.e. the
attacker obtains 5% more than mining with honest strategy.
We illustrate the percentage of extra reward that the attacker
gains corresponding to his power proportion in Figure 4.

Experimental evaluation. We evaluate our results when β =
0.5 for α = 0.2 and α = 0.4. As reported in Section A of
Table V, when α = 0.2, the attacker receives 20.78% of the
network reward, which is close to the 20.98% given by our
analysis. Similarly, he receives 43.29% reward, which is 8.2%
relatively more than his honest reward, while having only 40%
mining power of the network.

1Our result differs here from the previous paper [16], because their analysis
overestimates R1, thus giving imprecise result
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Fig. 4: The attacker’s extra reward (∆R) in the scenario where the
whole network is considered as one public pool. We plot reward gain
for several β to show that the attacker gains maximum reward when
β = 0.5.

B. Multiple pools: attack only one victim pool

We have established that if the attacker can access the
whole network, then by spending a fraction of his power for
withholding, he can gain extra reward. The intuition behind the
result is that the loss of the victim pool, which everyone joins,
will go to the private mining part of the attacker. However, in
a different attack scenario where part of the Bitcoin network
is not accessible to the attacker, or the attacker only wants to
attack a specific pool, the loss from the victim pool also pays
for the gain of other miners outside the victim pool. Thus, the
above result may or may not hold if the attacker spends too
much power on attacking the victim pool so that the gain from
the private part is not sufficient to compensate for his loss in
the victim pool. We study this scenario next.

To study the attack in this particular scenario, we assume
that there are two pools—one target pool P1 and one inaccessi-
ble pool 2 P2. Let the computing power of P1 and P2 be p′ and
(1−p′−α) respectively. The SDV is (1−β, β), i.e. the attacker
mines privately with α(1 − β) and attacks pool P1 with βα
fraction of the whole Bitcoin network. Thus, the computing
power of P1 when the attack happens is p = p′ + αβ.

Pool Pool 1 Pool 2 Solo Total
Attacker αβ 0 α(1− β) α
Other miners p′ 1− p′ − α 0 1− α
Pool(s) total p = p′ + αβ 1− p′ − α α(1− β) 1

TABLE II: Mining power distribution when part of the network is
inaccessible to the attacker. Note that 0 < α, β, p < 1.

We now compute the expected reward for the attacker
similar to the previous analysis. The reward from honest
private mining is:

R0 =
α(1− β)

1− αβ .

However, P1 has to split the reward to p fraction of the network
even though only p′ = p − αβ fraction is spent on actual
mining. The reward that the attacker gets from pool P1 is

R1 =
p− αβ
1− αβ ×

αβ

p
.

2Either it is inaccessible or the attacker chooses not to attack.

The reward R and the relative gain ∆R for the attacker are

R = R0 +R1 =
−α2β2 + αp

p(1− αβ)
,

∆R =
R

Rh
− 1 =

αβ(p− β)

p(1− αβ)
. (1)

From Equation (1), we imply the following results.

Theorem IV-B.1 (Always withhold rule). The attacker always
gains more reward by mining dishonestly.

Proof. The attack gains extra reward when ∆R > 0, or
from (1) we have p > β, or β < p′

1−α . Since p′ > 0 & α < 1,
there always exists β that helps the attacker to gain more
payoff regardless of α and p′.

An immediate consequence of Theorem IV-B.1 is that the
network state when all players are honest is not a Nash equilib-
rium. That is, in the Nash equilibrium state, at least some of the
miners are withholding, thereby wasting computing resource
for competitive gains.

Theorem IV-B.2 (Stay Low rule). The attacker of power α
gains more reward only when the power he spends on BWH
attacking a pool less than a specific threshold αβt.

Proof. Equation (1) also shows that the attacker will gain
“negative” extra reward, i.e., start losing, if β > p′

1−α . The
threshold value βt in Theorem IV-B.2 is p′

1−α .

Theorem IV-B.3 (Target Big rule). The attacker has more
incentive to target big pools than small ones.

Proof. Equation (1) can be rewritten as

∆R =
αβ

(1− αβ)
− αβ2

(p′ + αβ)(1− αβ)
.

With a given α, β, it clearly shows that ∆R is larger if p′ is
large (since p′ > 0), or the pool is big.

Theorem IV-B.4 (Best strategy). There exists a β that maxi-
mizes the attacker reward.

Proof. We prove that given the attacker power α, the target
pool power p′, the attacker gets maximum payoff when

β = βmax =
−
√
−p′2(αp′ + α− 1))− αp′ + p′

α(α+ p′ − 1)
,

if a+ p′ < 1, otherwise β = 1/2.

Experimental evaluation. We have run several experiments
to simulate different CPD-BWH game settings in which the
value β equal to, less than and greater than the threshold value
p′

1−α . We illustrate our experiment results in Figure 5.
We discuss each of our theoretical results based on our

experimental results as follows.
• Stay low rule (Theorem IV-B.2). Our experiments show

that, when β exceeds the threshold value p′

1−α , the at-
tacker will get less payoff than from mining honestly.
For example, when p′ = 0.1, β = 0.4, α = 0.25,
the attacker receives only 21.82% reward, thus making
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Fig. 5: Simulated reward Rsim and honest reward Rh of the attacker
α in different CPD-BWH game settings when he spends αβ power
to attack only one pool p′.

a relative loss of 12.72%. On the other hand, when
p′ = 0.35, α = 0.25, β = 0.2 < 0.35

1−0.25 = 0.47, he
earns 25.65% reward, which is 2.64% relatively more.

• Target big rule (Theorem IV-B.3). This rule easily applies
to our experiment results. Specifically, given a specific
α = 0.25, β = 0.2, reward that the attacker earns from
carrying out BWH attack is more when target the pool
of p′ = 0.35 (R = 25.66%) than to the pool of p′ = 0.2
(R = 25.08%). We experience the same results for the
setting of α = 0.3, β = 0.33 and two targeted pools
of size 0.3 and 0.4. Thus, our experiments support our
Theorem IV-B.3.

• Always withhold rule (Theorem IV-B.1) and Best strategy
rule (Theorem IV-B.4). Our existing experimental results
for α = 0.25 and α = 0.3 show that the attacker
always has incentive to cheat, i.e., BWH attack, the
pool if he keeps his β smaller than the threshold. The
Always withhold rule holds in our experiments although
we were not able to split our resource to even finer
grained settings, say α = 1%, to intensively verify them.

C. Mutilple pools: Attack as many as possible

We now consider a general strategy to attack a set of pools
such that the SDV is (β0, β1, . . . , βn) and the attack vector
(γ1, γ2, . . . , γn). From § IV-B and § IV-A, one clear intuition
is to attack every pool that the attacker can access. In this
section, we formally study the intuition and find the best
strategy for the attacker to gain maximum profit.

The expected reward for attacker from pool Pi is

cp(Pi)

1− α∑n
i=1 βiγi

× αβi
cp(Pi) + αβi

, if Pi is attacked,

αβi
1− α∑n

i=1 βiγi
, if Pi is not attacked.

Thus the total reward for the attacker is

R =

n∑
i=1

[
cp(Pi)

1− α∑n
i=1 βiγi

× αβi
cp(Pi) + αβi

× γi

+
αβi

1− α∑n
i=1 βiγi

× (1− γi)
]
. (2)

Finally, the extra reward that the attacker receives is

∆R = R/Rh − 1

=
∑

1≤i,γi=1

1− αβi
1− α∑γi=1 βi

× αβi(cp(Pi) + αβi − βi)
(1− αβi)(cp(Pi) + αβi)

=
∑

1≤i,γi=1

1− αβi
1− α∑γi=1 βi

×∆i (3)

Note that the term ∆i is the reward gain (∆Ri) that the
attacker gets when he only attacks pool Pi as shown in
Equation (1). Since ∀ βi ∈ [0, 1], 1−αβi

1−α∑
γi=1 βi

≥ 1, the
attacker always gains more reward if he follows the Stay
low rule in each pool. From (3), it is clear that attacking
one pool, say P2 (β2 > 0), will make the extra reward in
another pool, say P1, bigger and vice versa. Hence, as proved
in Appendix C.4, γi = 1 ∀i will give the attacker the maximum
reward, i.e., he is well-incentivized to attack all the pools
he can access and privately mine with the rest of his power.
However, as explained earlier in this section, if the variance
in private mining is a concern, the attacker can honestly mine
in one pool and attack the rest.

Thus, the Best strategy problem is now converted to finding
the optimal SDV (β0, β1, . . . , βn) such that R is maximum
given ~γ = (1, 1, . . . , 1). One can use a variety of optimiza-
tion techniques to find the optimal value. As an example,
we have performed Sequential Least Squares Programming
technique [29] with this strategy on the scenario illustrated in
Figure 3. We have found that the optimal SDV is

(0.60644771, 0.19677677, 0.09838776, 0.09838776)

i.e., to mine privately with 0.60644771 fraction of the at-
tacker’s power, attack Discus Fish with 0.19677677, Ghash.io
with 0.09838776 and KnCMiner with 0.09838776. The corre-
sponding reward that the attacker receives is 26.19%, which
is 4.76% relatively more than his honest reward.

Experimental evaluation. We run an experiment with the
above optimal SDV setting and the reward that the attacker
receives accounts for 26.23% of the network reward, which is
close to our analytical result within an experimental error of
0.15% (see Section B, Table V).

D. BWH when dishonest miners dominate Bitcoin

In the analysis in § IV-B, we assume that all miners except
the attacker are honest. We now consider the case of more
than one player being rational and incentivized to carry out the
BWH attack. Hence, our attack scenario is quite similar to that
in § IV-B with two pools P1, P2 of mining power p′ and 1−
α−p′ respectively, except that P1 includes the “contaminated”
power fraction c (0 < c < p′). For simplicity, we also assume
that miners in Pool P2 are all honest. Intuitively, the reward
even when the attacker only mines privately honestly is Rh =
α

1−c > α, since he can pick the loss from the contaminated
pool. In this section, we ask whether the attacker still gains
more reward than α

1−c by attacking P1. If so, we further study
the validity of Theorems IV-B.1, IV-B.2, IV-B.3, and IV-B.4
in this new scenario.

Our CPS game now has an SDV ~βa = (1 − β, β) and an



attack vector ~γa = (1). Thus the power distribution will be as
in Table III.

Pool P1 P2 Solo Total
Attacker αβ 0 α(1− β) α

Other
miners

Dishonest c 0 0 c
Honest p′ − c 1− p′ − α 0 1− α− c

Pool(s) total p = p′ + αβ 1− p′ − α α(1− β) 1

TABLE III: Mining power distribution while there is other dishonest
miners, in P1. When c = 0, we have the distribution in § IV-B.

The analysis is analogous to the previous ones, but with
only (1− αβ − c) power of the network is mining. Thus, the
reward that the attacker will get is as follows:

R0 =
(1− β)α

1− c− αβ (private mining),

R1 =
αβ

p
× p− αβ − c

1− c− αβ (from pool P1),

R = R0 +R1 =
pα− α2β2 − αβc
p(1− αβ − c) . (4)

Thus, the attacker gets extra reward by conducting a BWH
attack when:

R > Rh ⇔
pα− α2β2 − αβc
p(1− αβ − c) ≥ α

1− c

⇔ β ≤ p′α− c(1− c)
α(1− α− c) . (5)

Equation (5) shows that, if p′α−c(1−c) ≤ 0, or α < c(1−c)
p′ ,

the attacker should not attack Pool 1 because regardless of the
strategy he uses, he will lose out. Thus it also shows that, the
Always withhold rule in the previous analysis does not hold if
α < c(1−c)

p′ . However, the following rules still apply, and are
verified with the experimental results reported in Table IV.
• Stay Low Rule. If β > p′α−c(1−c)

α(1−α−c) , the attacker will get
less payoff than from mining honestly. For example, if
α = 0.20, c = 0.05, p′ = 0.35, the attacker loses his
reward (R = 20.77% < Rh = 22.22%) if he uses β =
0.25 to attack. On the other hand, in the first and second
experiment, he still earns more if he attacks with β =
0.125 which is smaller than the threshold.

• Target Big Rule. With a given α, β, c, Equation (4) shows
that R is large if p′ is large, i.e., the pool is big. Thus,
the rule still holds. For example, with the same setting
of (α = 0.4, c = 0.025, β = 0.125), the attacker gets
more reward when targeting a pool with p′ = 0.375
(R = 42.30%) than another one with p′ = 0.325
(R = 41.74%).

• Best strategy Rule. When α < c(1−c)
p′ , there exists a

strategy other from honest mining for the attacker to
maximize his reward. The value β for that strategy is
the value that maximizes the Equation (4).

E. Quantifying loss for honest miners
In this section, we discuss the loss of the pool and other

honest miners in the pool when the BWH attack happens.
Intuitively, the pool of size p′, when attacked by a power of c
fraction, will receive only p′

1−c ×
p′

p′+c ≤ p′ reward. We take
the scenario when (α, β, p′) = (0.2, 0.25, 0.2) as an example.

α β c p′
R

Rh
∆R

Theory Sim. Sim.

0.2
0.125 0.05 0.35 21.32% 20.98% 21.05% -0.33%
0.125 0.05 0.4 21.14% 21.27% 21.05% 1.00%
0.25 0.1 0.35 21.08% 20.77% 22.22% -6.43%

0.4
0.125 0.025 0.375 42.29% 42.30% 41.02% 3.33%
0.125 0.025 0.325 42.16% 41.74% 41.02% 1.76%
0.25 0.05 0.3 42.64% 41.87% 42.11% -0.57%

TABLE IV: The reward R and relative reward ∆R gained by attacker
when there is already a “contamination” factor of c in the pool. We
report the expected (theoretical) results (Theory column) as well as
our simulation results (Sim. column) of R and ∆R in each game.
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Fig. 6: The pool’s loss in experiments and in theory for different pool
size (p′) and contaminated factor (c).

Although the attacker does not gain or lose any reward, the
honest miners in the pool lose ∆P = 10.31% of their reward.
Tha is because other miners outside the target pool also enjoy
the gain, even though they do not attack the pool. We plot the
theoretical and experimental loss of the pool in Figure 6.

Although the big victim pools bring more reward to the
attacker than the small ones, the pool of smaller size will have
to bear much more damage than the bigger one. For example,
a contaminated factor of c = 0.05 causes a 15%-pool around
20% loss in reward, almost twice as much as the 10.31% loss
on a 20% pool.

Relating to current Bitcoin network. Our experiments show
that, the pool of size 30% (p′ = 0.3)—size of Discus Fish,
the real biggest pool as of November 2014—will lose 9.94%
of its reward if attacked with a contamination power of c =
0.05. Given the price of a B is 350 US Dollars and the attack
happens for one month, it may cost Discus Fish miners around
1 million USD in that month.

F. The Nash Equilibrium

Since we have shown that the BWH attack is profitable
and causes a serious loss to a honest miner, the implication
is that rational miners will be incentivized to form a private
group and carry out the attack widely. More interestingly, since
from the network point of view, a pool is similar to one “big”
miner, thus the pool is also able to attack others. We study
whether there exists a Nash equilibrium with a pure strategy in
this game. Specifically, does there exist a deterministic attack
strategy for each miner? For sake of simplicity, we assume that
the Bitcoin network comprises of only two accessible pools
P1 and P2, each has only one miner with computing power
α1, α2 respectively. We also assume that P1 and P2 are both



No. Settings R EErr #. of
blocks

α β p′ c Sim. Theory
A. Bitcoin as one pool
1 0.2 0.5 0.8 0 20.78% 20.98% 0.95% 10929
2 0.4 0.5 0.6 43.29% 43.75% 1.05% 6507

B. Attack multiple pools
1 0.25 Strategy in § IV-C 26.23 26.19 0.15% 2905
1 0.25 Strategy in § V 26.49% N/A N/A 10934

TABLE V: The theoretical and experimental rewards for several
experiment settings. The parameters are α: attacker’s power, β:
amount of power that attacker uses for BWH attack, p′: the pool
power before the attack and c: the fraction of BWH attacker already
in the pool.

rational and motivated to perform the BWH attack on the other
pool with c1 (c1 < α1) and c2 (c2 < α2) power. Before each
miner makes a move, the network state is known to everyone.
The goal of each of them is to adjust his attacking power ci
properly to achieve the higher reward.

We show that there exists no pure strategy for the miner
in this two-pool setting. Thus, this game has only a mixed
strategy in its equilibrium. Therefore, we can conclude that
the game does not have any pure strategy, otherwise the other
miner always finds a better strategy in his move to win back
the game. To arrive at this result, we prove the following
Theorem IV-F.1.

Theorem IV-F.1. In the two-pool game, given any network
state, if the player i ∈ (1, 2) has picked a strategy with ci
fraction to attack, then the opponent has a strategy to gain
more reward in the game.

Proof. In the two-pool game, given (α1, α2, c2), P1 wants to
determine c1 that optimizes his payout R1, which is computed
in the same fashion as in previous sections:

R1 =
1

1− c1 − c2
(

(α1 − c1)2

α1 − c1 + c2
+

c1(α2 − c2)

α2 − c2 + c1
).

Similarly, P2 wants to maximize R2 given α1, α2, and c1,

R2 =
1

1− c1 − c2
(

(α2 − c2)2

α2 − c2 + c1
+

c2(α1 − c1)

α1 − c1 + c2
).

As we prove in Appendix C, for any given network state,
there exists a ci value for the miner Pi to increase his reward
Ri and cause the other pool a loss.

Theorem IV-F.1 implies that being honest is not the best
strategy in Bitcoin pooled mining. Since there exists a mixed
strategy, a fraction of the network is always dishonest and the
overall network resource is under-utilized.

V. DO NETWORK STATE AND GAME DURATION MATTER?
This section is partially motivated from our discussion with

Bitcoin pool operators to address their concern that variations
in difficulty, distribution of pool power, hashrates, etc. would
affect our findings.

A. Is it necessary to have a constant network state?
Our aim in this experiment is to show that the attacker still

gains extra reward even when both the total mining power, thus
the network difficulty, and the power distribution are not stable
through out the simulation. We also show that the attacker only

32,000 34,000 36,000 38,000 40,000

1

1.5

2

·108

Block number

H
as

hr
at

e
(H

/s
)

0

0.5

1

1.5

2

D
iffi

cu
lty

D

Hashrate
Difficulty

Fig. 7: Hashrate & difficulty of the network in our experiment in § V.

adjusts his power distribution after the change in the power
distribution happens. We only keep the attacker power α as
constant as a fraction of the entire network power, but the
difficulty D, the total power, the pool power distribution cp and
the vector ~β will change frequently throughout the experiment.
We only use the best strategy vector ~β for the attacker initially.
When the network and its power distribution changes, it takes
some time for the attacker to adjust his ~β. Thus after the first
change, the exact power distribution of the current network is
no longer available to the attacker.

Typically, we start with the same setup as in § IV-C where
the attacker attacks multiple pools and add more mining power
to the network for five times. We allocate the additional power
to the pools but still keep α = 0.25. We only adjust the ~β of
the attacker strategy corresponding to the distribution after the
i-th change when the next (i+ 1-th) change happens.

The power and difficulty changes in our experiments are
illustrated in Figure 7. The attacker’s power distribution, ~β
value, and attacker reward after each change are illustrated
in Figure 8. The attacker always receives more than 25%
of reward and make a final gain of 5.96%. This makes our
assumption about the constant distribution power fair and
practical. Our experimental results also imply two additional
important points. First, network and difficulty fluctuation do
not have any significant impact on the attacker gain, as we
expected. Second, since the power distribution change may
require the attacker some time to recognize, one “safe strategy”
is to set all βi lower than the value in best strategy and adjust
them later when the attacker is aware of the change. This
“safe strategy” will secure the positive gain for the attacker
even when he is not able to immediately recognize the power
distribution change.

B. Does duration of BWH attack matter?
In our analysis, we have have ignored the duration variation

of each game and only take into account the game reward to
consider the profit of the attacker. However, a common factor
used in practice is the reward rate, say per day. Thus, although
we have showed that the BWH attack yields a net profit in a
game for the attacker, it is not always the case that his reward
rate gets increased. In fact, we show that the attacker most
likely gains profit by carrying out the attack in a long period
of time, but that may not hold in the short term one.



20%	  

22%	  

24%	  

26%	  

28%	  

30%	  

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

Before	  
a3ack	  

1st	  
change	  

2nd	  
	  change	  

3rd	  
	  change	  

4th	  
change	  

5th	  	  
change	  

6th	  
	  change	  

A"
ac
ke
r	  R

ew
ar
d	  

Pr
op

o/
on

	  o
f	  m

in
in
g	  
po

w
er
	  

Unknown	  

KNC	  

Ghash	  

Discus	  
	  Fish	  
A3acker	  

Reward	  
1   

0   

0   

0   

 0   

0.6   

0.2   

0.1   

0   

0.64   

0.18   

0.09   

0.09   

0 

0.67   

0.17   

0.08   

0.08   

0 

0.62   

0.15   

0.08   

0.15   

0 

0.64   

0.14   

0.07   

0.14   

0 

0.53   

0.13   

0.13   

0.20   

0 

0.1   

Fig. 8: Power distribution, attacker’s strategy and reward vary several
times in our experiment. The number in the white box represents
the β of the attacker for that pool. The attacker reward, however, is
always greater than the reward he receives when mining honestly.

Short-term profit. When BWH attack happens, a fraction of
the network is wasted performing the attack, thus taking the
network longer to find a block, i.e., finish the game. In fact, the
attacker gets better reward rate in a game only if the condition
in Theorem V-B.1 holds.

Theorem V-B.1. A miner with computing power α using c as
the contamination factor to attack will only gain higher reward
rate if the following inequation is satisfied: ∆R

α > c
1−c

Here, ∆R is the extra reward computed in our various
analysis scenarios in § IV. We prove Theorem V-B.1 in
Appendix C.

Theorem V-B.1 implies that in a short period of time,
whether the attacker’s reward rate increases depends on var-
ious factors, e.g., c, α, although his reward per game gets
increased.

Long-term profit. We show that, in a longer duration, the
BWH attack allows rational miners to gain higher reward rate.
The following theorems establishes the claim.

Theorem V-B.2. Over any fixed number of games, a rational
miner always gains more absolute reward by withholding.

Proof. We have established that there exists a mixed-strategy
for the rational miner to maximize his absolute reward in a
game, albeit at a different reward rate than honest mining.
Thus, when the attacker plays his mixed-strategy in every
game, his total reward in any number of games will be strictly
more than that by honest mining.

Note that in a long period of time, the number of blocks
mined (or games played) remains constant. This is because
Bitcoin is a self- adjusting network, i.e., the difficulty D
adjusts after every 2, 016 blocks (~2 weeks) to make the
average time to find a block is 10 minutes. This accounts
for any power lost due to withholding. Therefore, the number
of blocks solved in a sufficiently long duration stay constant,
which is consistent with the empirical observation [30]. Since
the number of games over a given time period (say 3 months)
stays constant, Theorem V-B.2 implies that the BWH attack
is profitable.

VI. DISCUSSION ON DEFENSES

Since the BWH attack yields net profit for the attacker, as
the attack becomes better understood it may become popular
unless countermeasures are developed. Rational miners will
face a troubling choice: mine honestly solo or in private pools
with those they trust, or—if dishonest—attack any accessible
pool in which honest miners are operating. In this section we
first discuss about how to detect a possible BWH attacker
in a pool. We then describe several fixes and discuss their
drawbacks.

A. Desired properties
In order to determine whether a fix is adequate and practical,

we propose a set of desired properties for a pool and a fix. A
pool is considered ideal if
• P1. It does not favor either big or small player, and should

treat them equally as long as they are honest.
• P2. It disincentivizes both pool operator and player to

drop valid blocks.
The current pooled mining protocol does not satisfy P2, thus
making the fix necessary. We also define several practical
properties required in a desirable fix—these are specifically to
Bitcoin and may or may not apply in other CPS applications.
• P3. It preserves the existing Bitcoin blockchain.
• P4. It is compatible with existing mining hardware.
• P5. It does not affect miners who are not in the pool.
• P6. It requires a minor Bitcoin protocol’s change.
• P7. It does not make a pool non-ideal.
One possible approach to eliminate the attack and satisfy

all properties is to early detect the attacker. We introduce two
detection tests using statistics and cross checking technique,
then explain why these tests are not practical in Appendix A.

B. Change to payoff scheme
One of the main reasons that make the BWH attack prof-

itable is that every share has the same value from the miner’s
perspective. Thus, we propose that some shares which are also
valid blocks should be considered to be more valuable than
others. While this intuition is solid, the key question is how
much more reward is necessary for these shares.

Call x the fraction of the current block reward that will be
necessary to ensure that attackers do not drop blocks. We first
prove that this reward scheme is still fair in Appendix C. Since
the reward for carrying out the BWH attack depends on the
amount of computational power α controlled by the attacker, it
makes sense that x depends on α. In fact, in Appendix C, we
prove that x = α is the smallest fraction necessary to dissuade
an attacker completely. In other words, to prevent an attacker
with α = 0.25 from withholding blocks, we need to make the
valid-block share worth 25% of the block reward. Since when
α > 0.5 the attack is meaningless anyway (the attacker could
simply take control of the entire blockchain), setting x = 0.5
is a very conservative upper bound.

Drawbacks. Although this technique satisfies the above prop-
erties P3 to P6, it suffers from several drawbacks:
• P1 breaks down: normal shares are worth significantly

lesser. Thus, compared to present experience in pools,



volatility increases for all pool participants and especially
for smaller ones.

• Fundamentally, the technique does not prevent the attack,
but merely disincentivizes it. Attackers may have other
reasons to attack (such as a desire to discredit the Bitcoin
ecosystem by a disapproving state-sponsored actor).

C. Bitcoin protocol with native support for pooled mining
As argued above, changing payoff schemes does not prevent

the BWH attack completely. Thus, we seek for a change in the
Bitcoin protocol to prevent the threat. Despite the fact that the
BWH attack has been a controversial topic, some developers
and researchers still proposed the fix to mitigate the attack.
Till date we know of two proposed solutions, which require
changes in the proof-of-work (PoW) algorithm [31, 12]. The
general idea of these approaches is to not allow miners to
recognize which share is a valid block, thus not allowing
dishonest miners to drop the block on his will.

Luke Dashjr proposed to include the next block candidate
hash in the PoW of the current block [31]. Thus, the miners
never know which share is a valid block until the subsequent
block is also found. We find that his solution can actually de-
feat the attack but is not necessarily complicated and changes
the Bitcoin protocol significantly — violating property P4,
P6, which the Bitcoin community is highly reluctant to do.
Further more, it changes the blockchain structure and affects
solo miners largely, for example it takes longer time to validate
a transaction now, thus not satisfying properties P5.

In [12], Rosenfeld proposes a solution which requires less
modification than Luke’s by introducing the oblivious share
concept which is to ensured that miner is unable to determine
if a share is a valid block. More specifically, he suggests a
two-part PoW with 3 additional fields to each block, namely
SecretSeed, ExtraHash and SecretHash, in which ExtraHash=
SHA256(SecretSeed). The two-part PoW works as following.
• The hard (public) part. The ExtraHash is included in the

block header which is given to the miner to try all the
Nonce. A hash is a valid share iff it satisfies difficulty d1.

• The easy (secret) part. The pool operator will compute
SecretHash = SHA256(SecretSeed || Share) and check
if it satisfies a difficulty d2. If so, the SecretHash is
also a valid block and the operator will broadcast it
to the network. Since only the pool operator obtains
the SecretSeed, the miners do not know which share is
corresponding to a valid block.

In the above PoW, the total difficulty of both parts d1+d2 is
greater or equal to the network difficulty D. Thus, solo miners
may not need to split the mining into two parts but only set
d2 = 0 & d1 = D to mine as currently.

Drawbacks. We find that this proposal is quite simple and
easier to implement. It satisfies all properties mentioned above
except the P2, i.e., it is not compatible to the current ASIC
(application-specific integrated circuit) miners [32, 33], which
is a substantial mining force in Bitcoin currently.

VII. RELATED WORK

Detection Cheating in Distributed computation. Numerous
previous works have considered distributed computation tasks

which are not competitive or time-sensitive, and often con-
sider a single supervisor system rather than one with many
supervisors outsourcing tasks [6]. One practical line of work
which focuses more on detecting cheating clients in distributed
computation [6, 8, 7]. A complimentary line of work studies
the problem of verifiable computing, which enables checking if
an arbitrary program has computed correctly from designated
inputs using cryptographic constructions or using trusted hard-
ware [34, 35, 36, 37, 38, 39, 40]. These techniques can help in
ensuring that the pool protocol is strictly followed, disallowing
players from diveating from prescribed behavior. In contrast,
our work studies the question of eliminating the incentives for
cheating by using secure payoff schemes.

Block withholding attacks. BWH attacks have been a subject
of a few recent papers. In [12], Rosenfeld et al. discusses
BWH and considers it as a non-incentivized sabotaging attack,
simply to sabotage the pool profits. Recently, an initial work
by Nicolas et al. showed that the BWH is possibly profitable
and well-incentivized [16]. However, the analysis in [16] is
inordinately abstract and an overestimation leads to imprecise
results, as we explain in the footnote of § IV-A. Further, their
work only analyzes a simplified case where the whole network
is one large pool (a special case of our analysis in § IV-A).

We are aware of a recent paper, concurrent and independent
to our work, that discusses how pools can use BWH attacks
to infiltrate each other [17]. We have privately communicated
with the author of [17] in November 2014. The two works
are similar—we approach the problem of understanding the
incentive structure for miners in an arbitrary CPS game,
where the concurrent work aims to calculate infiltration rates
of pools at war. Both [17] and our work arrive at some
consistent findings, for example, that the honest mining is
not the stable equilibrium (§ IV-F) and the amount of loss to
pools(§ IV-E). However, our work studies the problem from
a different perspective and considers several other scenarios,
for example, the general case of attacking multiple pools and
when there are multiple dishonest miners in the victim pool.
Our work further explains the temporal conditions under which
the attacks are possibly profitable, conduct experimental tests
and discuss potential defenses. The work in [17] additionally
explains the Nash equilibrium for two pools and multiple pools
of symmetric power, which are interesting special cases of the
general game.

Other Bitcoin attacks. A number of previous works study
non-withholding attacks. Our CPS game model generalizes
previous studies and can be useful to systematize the study of
these attacks in the future. In particular, in [12] Rosenfeld et
al. discusses (i) “pool hopping” in which miners hop across
different pools utilizing a weakness of an old payoff scheme,
and (ii) “Lie in wait” attacks where the miner strategically
calculates the time to submit the found block. Another line
of work studies attacks that subvert the basic guarantees of
the Bitcoin consensus protocol, such as preventing double-
spending. Eyal et al. introduced “Selfish mining”, where a
pool with more than 1/4th of the total computing power
can subvert the Bitcoin consensus protocol [28], improving
over the well-understood 51%-attack [41, 42]. Johnson et al.



distributed denial-of-service (DDoS) attacks between pools,
taking a take a game-theoretic approach to understand the
economics of DDoS attack [43]. This game-theoretic model
is different from our CPS game, since ours is appropriate for
studying the incentive structure for individual miners.

VIII. CONCLUSION

In this paper, we introduce a new game model called
computing power splitting game, which is useful for studying
the security of payoff schemes in competitive distributed
computation tasks. As a case study, we analyze the suscep-
tibility of existing Bitcoin mining pool protocols. We find that
these protocols are insecure against block withholding. Our
CPS game model generalizes such reasoning in many other
cryptocurrency attacks and is a step towards systematizing the
study of such attacks.
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APPENDIX

A. Detecting BWH attack in a pool

Bitcoin is an anonymous currency, and is proliferating
with computation-on-rent services — this makes it hard to
conclusively detect if a user is withholding blocks and mining
honestly elsewhere. The problem of detecting Block Withhold-
ing miner in a pool is widely considered hard, and a correct
solution is still an open question. In this section, we describe
potential approaches to address the problem.

1) Statistical detection test: We explain how statistical
methods can help determine malicious activity in pools. It
is important to note that statistical methods can only infer
whether a user’s pool activity is close to its theoretically
estimate or is “anomalous”; being anomalous does not imply
with certainty that users are mining dishonestly. However, they
can be helpful in determining anomalous activity by a user or
a group of users. For the purpose of this measurement, we use
publicly available data about the submitted shares by users on
a real-world pool named Eligius. Eligius is presently the only
pool that makes such data public.

Choice of Statistical Inference Strategy.
In our work, we use statistical significance testing. Intu-

itively, in this approach, one adapts the standard proof-by-
contradiction idea to probabilistic domain, as follows. Suppose
the user mines honestly—let us call this the null hypothesis.
Compute the probability (p-value) that the user would behave
as observed in our dataset, assuming the null hypothesis is
true. If the probability is very low (say below a threshold
of confidence), then the null hypothesis can be confidently
rejected. In other words, given the data we have, we can say
that there is statistically significant evidence against the null
hypothesis implying that the user mined honestly. We use
a standard [44] threshold of 0.05 as a confidence level. We
then perform the Holm-Bonferroni method [45] to perform a
simultaneous inference and report the users with suspicious
behavior.

Calculating P-value. Let P be a pool we are interested in, with
a set of miners U . Let dI and DI be the pool and network
difficulty respectively over time interval I . Since dI and DI

changes over a typically long time period I , we split I in
ordered and disjoint time intervals I1, I2, . . . , It such that dIi
and DIi are fixed for all i ∈ {1, . . . , t}. Naturally, the new
time intervals are maximal in the sense that either dIi 6= dIi+1

or DIi 6= DIi+1
for all i ∈ {1, . . . , t− 1}. We often simplify

Ii indexed variables with i when the context is clear.
We are interested to analyze if over a given time interval

I , any user u ∈ U is withholding blocks in pool P , thus
performing a block withholding attack. Let Nu

I be the number
of shares submitted by user u over the time period I . Similarly,
let BuI denotes the number of blocks submitted by user u
over I . Since the user u can potentially withhold blocks, the
number of blocks he submits can only be less than or equal
the number of blocks he actually mines. Let Xu

I denote the
random variable representing the number of blocks mined by
u over time period I . Again, we omit mentioning u when the
context is clear.
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It is easy to see that in the time period Ii, the probability
of a valid share being a block is di/Di in pool P . Thus Xi

follows a Poisson distribution with mean λi = Ni × di/Di

for i ∈ {1, . . . , t} and XI =
∑t
i=1Xi. Since the number of

blocks mined over two disjoint time periods are independent,
{Xi}i∈{1,...,t} are mutually independent. Consequently, XI

follows Poisson distribution with mean λI =
∑t
i=1 λi.

Let us hypothesize that user u is honest in pool P . We
now calculate Pr(Xu

I ≤ BuI | u is honest), the probability
that the number of blocks he actually mined is less than or
equal to BuI , with the assumption that u is honest. If this
probability value (p-value) falls below a certain predetermined
threshold (say) s, we reject the hypothesis. Since Xu

I follows
Poisson distribution with mean λI , we can readily calculate
Pr(Xu

I ≤ BuI ) using the cumulative density function for
Poisson distribution.

The numbers of shares and blocks submitted by 58 users in
Eligius are illustated in Table VI.

Results. We analyze the public data of top 58 users who
have submitted the most shares on the Eligius pool [46] from
1st Jan 2014 to 1st Oct 2014. Presently, Eligius is the the
fourth largest Bitcoin mining pool. Since the number of shares
submitted is sufficiently large for major users, for example the
minimum and maximum values of that are 1, 321, 008, 768 and
2, 020, 713, 113, 960 respectively, there are enough samples
to perform statistical inference test. After performing Holm-
Bonferroni method with significance level 0.05, we reject null
hypothesis for 1 user, while the remaining users are well above
the threshold. We find that the user reported in our test was
actually banned by the pool operator in April 2014 for block
withholding [18]. Thus, this method detects the banned user
reliably.

Drawbacks. In order to run the statistical inference test, we
have to collect enough samples. Thus, the attacker can simply
bypass the test by splitting his mining force into multiple
smaller sub-miners, making the number of samples of each
individual sub-miner insufficient for the test. However, it is
open to see how one can group multiple users into one and
apply similar statistical method to detect group of users with
anomalous activity.

2) Cross-checking: Another possible technique to detect if
there is block withholding miner in a pool is to send a block
template which allows miners to instantly return a valid block.
One way to do that is to extract the block template from a
newly submitted block, and send it randomly to, say, 5% of
the miners in the pool. Since the work required to find a valid
block from that template is negligible, the pool operator should
expect those miners to return the work within some seconds 3.
Thus, after several blocks, the pool operator will be able to
detect with high probability if someone is dropping the valid
block.

Drawbacks. However, cross-checking has several drawbacks.
First, the attacker can divide his power to work as many
smaller sub-miners, and check if two sub-miners have the

3With the current design of the block, it requires only 231 SHA-256 hash
computation on average to find a valid block from such a block template.

same work template. Second, the technique will cost the pool
operator more as he has to pay for the redundant shares and
blocks, also reduce the overall efficiency of the pool.

B. Experiment setup
We evaluate our theoretical analysis on our customized Test-

net Bitcoin network. Specifically, we incorporate all important
components of the current network into our simulation.

• Testnet Bitcoin. We create our own Testnet Bitcoin net-
work in our simulation by modifying the official Bitcoin
Bitcoind client [24] to adjust the expected time to
generate a block to 1 minute instead of 10 minutes as
in the real network to increase the rate at which blocks
are generated. We start our experiment with the network
difficulty D of 1, thus a valid block hash needs to have
at least 32 leading zeros. During the experiments, D
varies within the range of (1, 2). Other properties of the
network stay unchanged, for example the network adjusts
its difficulty after every 2016 blocks.

• Mining pools. We setup our pools as stratum pools using
a popular Node.js module [26]. Stratum protocol is used
in almost all mining pools currently since it significantly
reduces the network overhead in pooled mining. The
share difficulty in every pool is fixed at d = 0.001. We
run our pools in one Amazon EC2 instance and in our
local server, which connect to Testnet Bitcoin node there.
We compute the reward by using the Proportion scheme,
i.e., distributing the reward proportionally to the number
of shares submitted.

• Mining software. Our miners run within Amazon in-
stances from different regions and use cpuminer soft-
ware [25] to mine on our stratum pools. In each experi-
ment, we use 20 to 60 CPU cores from 5 different AWS
regions. We also modify cpuminer to perform the BWH
attack. Our BWH version of cpuminer is available at
our public repository [47].

To our best knowledge, this work is the first attempt to
simulate the exact mining behavior by mining in a modified
Testnet Bitcoin network. Previous work only uses probabilistic
programing models to back up their analysis and do not closely
model the real Bitcoin network as we do [28]. The reason is
Bitcoin mining is an extremely resource-extensive activity and
may require a long period of time to see the result, especially
when one wants to conduct the experiment in the real network.
For example, the cost to have 10% of the network mining
power currently is roughly 26 million US dollars by buying
23, 0000 latest Avalon AISC miner [48]. Further, we decided
against carrying out the BWH in the real network for ethical
reasons. Thus, the best we can do to empirically verify our
analysis results is to mine on our custom Bitcoin network,
with our CPU miners from Amazon EC2.

C. Proof of Analysis
Lemma C.1. ∆R > 0 in Section IV-A.

Proof. We prove that ∀α, β that α, β ∈ (0, 1), we have:

R

R′
=

αβ − αβ2 + 1− α
(1− αβ)(1 + αβ − α)

> 1 (6)



address shares blocks address shares blocks address shares blocks
1Fxky... 413,904,209,640 40 1A7tU... 185,009,798,672 10 13RGB... 20,216,769,408 0
19ChC... 210,887,124,992 8 1LLb3... 86,104,016,000 4 1ACZk... 18,702,475,776 0
145Xk... 25,593,869,184 0 1LaiU... 247,113,783,248 26 17m3V... 31,124,492,864 3
1Nbq2... 2,020,713,113,960 389 17ZT9... 7,452,058,240 0 1EHwN... 34,294,658,816 0
1swrt... 1,573,798,539,880 160 181pf... 2,494,064,324 1 159Fe... 192,214,203,316 28
1Fewy... 470,566,555,648 19 1JR61... 45,317,980,416 5 1Jf5j... 35,966,974,784 2
1Hzo3... 619,240,529,040 72 1JvyT... 20,709,143,168 2 1Q3Ra... 17,466,170,576 2
12igy... 520,417,170,656 27 1LV1u... 109,057,555,744 14 1ARpm... 39,879,195,180 2
1CChw... 2,147,350,272 0 18p8H... 102,476,205,104 7 19WS1... 35,148,570,624 0
1FLaP... 19,624,097,408 0 13fV6... 11,316,227,712 1 12uqb... 16,732,044,544 0
15WoP... 182,515,162,484 6 17pXe... 52,436,585,344 1 16UCd... 26,741,572,480 1
1Dxgm... 4,062,457,344 0 1J77q... 87,764,939,376 3 1L2Ji... 15,847,872,256 2
124dy... 176,867,929,600 6 1B5Ye... 97,768,452,736 1 1LTZY... 2,580,223,544 0
1G9Bp... 119,790,292,272 8 1Axys... 2,703,766,736 0 1Bitm... 60,076,837,712 7
16aCW... 1,321,008,768 1 1DMoe... 55,222,216,704 0 159QB... 30,577,090,380 1
1DBgt... 49,867,838,256 1 14gdn... 38,655,262,720 0 13d1h... 64,919,323,472 7
191R2... 161,416,275,072 5 1LTLE... 6,062,968,704 0 1HGYn... 13,609,541,760 0
1BgcK... 98,735,700,624 4 1g7tQ... 37,565,265,376 0 17JkL... 136,884,607,664 1
1Bso6... 39,354,938,368 1 1MHbC... 8,287,148,160 0 1Gu8z... 34,191,432,784 6

1QFHe... 9,007,225,472 0
TABLE VI: Numbers of shares and blocks submitted by 58 major users in Eligius pool from Jan-2014 to Nov-2014.

The proof is simple. since both α and β are in the range
(0, 1), the denominator and numerator of (6) are both positive.
Thus,

(6)⇔ αβ − αβ2 + 1− α > (1− αβ)(1 + αβ − α)

⇔ αβ − αβ2 + 1− α− 1 + α2β2 + α− α2β > 0

⇔ αβ − αβ2 + α2β2 − α2β > 0

⇔ αβ(1− α)(1− β) > 0

It always holds since 0 < α, β < 1.

Lemma C.2. The attacker gains maximum reward when β =
0.5 in Section IV-A.

Proof. We define

F(α, β) = ∆R =
R

R′
− 1 =

αβ − αβ2 + 1− α
(1− αβ)(1 + αβ − α)

− 1

=
αβ(1− α)(1− β)

(1− αβ)(1 + αβ − α)

as a function represents the fraction of reward that the attacker
gains by performing the BWH attack. We will show that

∀0 < β,α < 1, F(α, β) ≤ F(α, 0.5) (7)

Our proof is as follows:

(7)⇔ F(α, β)− F(α, 0.5) ≤ 0

⇔ αβ(1− α)(1− β)

(1− αβ)(1 + αβ − α)
≤ α(1− α)

(2− α)2

⇔ β(1− β)

1 + αβ − α ≤
1

(2− α)2
(since 0 < α, β < 1)

⇔ (4− 4α+ α2)(β − β2) ≤ (1− αβ)(1 + αβ − α)

⇔ 4β(1− β)(1− α) ≤ 1− α
⇔ 4β(1− β) ≤ 1

⇔ (2β − 1)2 ≥ 0

Lemma C.3. The reward scheme in Section VI-B is still a
FRS.

Proof. We have the expected reward for a miner with mining
power α is α when joining a pool p with normal payoff
schemes. Now consider the scheme in which the pool pays
x(0 ≤ x ≤ 1) portion of the block value to the founder. If we
excluded the extra reward by submitting the block out of the
total reward, the miner would get

α(1− x) (8)

reward on average. However, the miner is expected to con-
tribute α portion of all the blocks that the pool found. Thus
on average, he will get α of the extra reward given to the
founder of the blocks. In other words, he expects αx reward
more for submitting valid blocks to the operator. Combining
with (8), we have the average reward that the miner gets is α
— same as of normal fair payoff schemes.



Lemma C.4. Given ~β = (β0, β1, ...βn), a pool Pk, where the
attacker spends αβk > 0 power to mine on pool Pk, the extra
reward ∆R1 when the attacker attacks the pool Pk (or γk = 1)
is always greater than ∆R0 when he honestly mines on Pk (or
γk = 0) (Section IV-C).

Proof. From (3), we have

∆R0 =
∑

1≤i,γi=1

1− αβi
1− α∑γi=1 βi

×∆i

∆R1 = ∆R0 ×
1− α∑γi=1,i6=k βi

1− α∑γi=1,i6=k βi − αβk

+
1− αβk

1− α∑γi=1 βi
×∆k

It is easy to see that ∆R0 < ∆R1.

Lemma C.5. For non-technical solution in Section VI-B, x =
α is the smallest fraction necessary to dissuade an attacker
completely.

Proof. Following the analogous analysis in Section IV-B, the
attacker reward includes two parts: the reward from the pool

R1 =
p′

1− αβ ×
αβ

p′ + αβ
× (1− x)

and the reward from honest mining with the rest of his power

R0 =
α(1− β)

1− αβ
Thus his total reward is

R =
−α2β2 + α(p′ + αβ)

(p′ + αβ)(1− αβ)
− αβp′

1− αβx

and the relative extra reward that he gets is

∆R =
R

Rh
−1 =

αβ(p′ + αβ − β)

(p′ + αβ)(1− αβ)
− βp′

(p′ + αβ)(1− αβ)
x.

To disincentivize the attack, we must choose x such that
∆R < 0, or

x > α+
α(αβ − β)

p′
(9)

From Section IV-B, we have 0 ≤ β ≤ p′

1−α , which makes
0 ≤ α + α(αβ−β)

p′ ≤ α. Thus, x = α will ensure that the
attacker of mining power up to α will not be incentived to
perform the attack.

Lemma C.6. For any given network state, there exists a strat-
egy for the pool to make his attack profitable (Section IV-F).

Proof. Without loss of generality, we show that, given a fixed
network state (α1, α2, c2), there exists c1 that maximizes R1

and makes a loss on R2. We have the formulas for R1, R2 as
below

R1 =
1

1− c1 − c2

(
(α1 − c1)2

α1 − c1 + c2
+

c1(α2 − c2)

α2 − c2 + c1

)

R2 =
1

1− c1 − c2

(
(α2 − c2)2

α2 − c2 + c1
+

c2(α1 − c1)

α1 − c1 + c2

)
If both the miners are honest, i.e., c1 = c2 = 0, we have

R1 = α1 and R2 = α2. Thus, if any of the miners carry out the
BWH attack by selecting his best value ci on the other pool,
his reward would increase while the other’s will decrease. For
example, if P2 properly attacks P1, we will have R2 > α2

and R1 < α1, thus R1

R2
< α1

α2
.

We show that, given any fixed value of (α1, α2, c2) that P2

optimally picks, there exits c1 that makes R1

R2
> α1

α2
. We have

R1

R2
=

(α1−c1)2

α1−c1+c2
+ c1(α2−c2)

α2−c2+c1
(α2−c2)2

α2−c2+c1
+ c2(α1−c1)

α1−c1+c2

=

(α1−c1)(α2−c2+c1)
α2−c2 + c1(α1−c1+c2)

α1−c1
(α2−c2)(α1−c1+c2)

α1−c1 + c2(α2−c2+c1)
α2−c2

=
(α1 − c1) + c1

α2−c2 + c1 + c2
α1−c1

(α2 − c2) + c2
α1−c1 + c2 + c1

α2−c2

=
α1 + c1(α1−c1)

α2−c2 + c2c1
α1−c1

α2 + c2(α2−c2)
α1−c1 + c1c2

α2−c2

Thus
R1

R2
>
α1

α2

⇔
(
c1(α1 − c1)

α2 − c2
+

c1c2
α1 − c1

)
α2 >(

c2(α2 − c2)

α1 − c1
+

c1c2
α2 − c2

)
α1

⇔ (α1α2 − c1α2 − α1c2)(c21 − c1α1 + c22 − c2α2) < 0
(10)

It is trivial to see that there exists c1 < α1 to make
Inequation 10 valid.

Lemma C.7. A player of computing power α using c as
the contamination factor to attack will only gain higher
reward rate if the inequation in Theorem V-B.1 is satisfied
(Theorem V-B.1).

Proof. Denote Th and T are the original time to find a block,
the time when the attack happens respectively. We have ∆T =
T − Th. When A miner of computing power α using c as
the contamination factor to attack, only 1 − c fraction of the
network power contributing to find the block. Thus, the time
to find a block increased as T = Th/(1− c), giving us ∆T =
Th

c
1−c .



The attacker gains better reward rate only if:

R

T
>
Rh
Th

⇔ (α+ ∆R)Th > αTh
c

1− c
⇔ ∆R > α

c

1− c
⇔ ∆R

α
>

c

1− c
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