
New Multilinear Maps over the Integers

Jean-Sébastien Coron1, Tancrède Lepoint2, and Mehdi Tibouchi3

1 University of Luxembourg, jean-sebastien.coron@uni.lu
2 CryptoExperts, tancrede.lepoint@cryptoexperts.com

3 NTT Secure Platform Laboratories, tibouchi.mehdi@lab.ntt.co.jp

February 25, 2015

Abstract. In the last few years, cryptographic multilinear maps have proved their tremendous potential
as building blocks for new constructions, in particular the first viable approach to general program
obfuscation. After the first candidate construction by Garg, Gentry and Halevi (GGH) based on ideal
lattices, a second construction over the integers was described by Coron, Lepoint and Tibouchi (CLT).
However the CLT scheme was recently broken by Cheon et al.; the attack works by computing the
eigenvalues of a diagonalizable matrix over Q derived from the multilinear map.

In this paper we describe a new candidate multilinear map over the integers. Our construction is based
on CLT but with a new arithmetic technique that makes the zero-testing element non-linear in the
encoding, which prevents the Cheon et al. attack. Our new construction is relatively practical as its
efficiency is comparable to the original CLT scheme. Moreover the subgroup membership and decisional
linear assumptions appear to hold in the new setting.

1 Introduction

Multilinear maps. Since the breakthrough construction of Garg, Gentry and Halevi [GGH13a],
there has been a growing interest in cryptographic multilinear maps. They have spurred scores of
new cryptographic applications. Chiefly among them is possibly the first proposed approach to
general program obfuscation [GGH+13b]. Currently only three candidate constructions are known.
Shorty after the first candidate construction of multilinear maps based on ideal lattices [GGH13a]
(which we will refer to as GGH), Coron, Lepoint and Tibouchi proposed a second construction over
the integers (CLT) using the same general paradigm [CLT13]. Recently, Gentry, Gorbunov and
Halevi proposed another multilinear maps in which the map is defined with respect to a directed
acyclic graph [GGH14].

A straightforward application of multilinear maps is multipartite Diffie-Hellman key exchange
with N = κ+ 1 users, where κ is the maximum level of the multilinear map scheme. Initially each
user publishes a level-1 encoding of a random element while keeping a level-0 encoding of the same
element private. Then each user can compute the product its level-0 by the product of the level-1
encodings of the other users. With N = κ+ 1 users this gives a level-κ encoding from which the
same secret value can be extracted by all users. The security of the protocol relies on a new hardness
assumption which is a natural extension of the Decisional Diffie-Hellman assumption.

The CLT multilinear map over the integers. We recall the multilinear maps scheme over the
integers from [CLT13]. One generates n secret primes pi and publishes x0 =

∏n
i=1 pi (where n is

large enough to ensure security); one also generates n small secret primes gi and a random secret
integer z modulo x0. The message space is R = Zg1 × · · · × Zgn . A level-k encoding of a vector

m = (mi) ∈ R is then an integer c such that for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (1)

for some small random integers ri; the integer c is therefore defined modulo x0 by CRT. Encodings
can then be added and multiplied modulo x0, as long as the noise ri is such that ri · gi +mi < p for
each i. The multiplication of a level-i encoding by a level-j encoding gives an encoding at level i+ j.

For level-κ encodings one defines a zero-testing parameter pzt with:

pzt =
n∑
i=1

hi ·
(
zκ · g−1i mod pi

)
· x0
pi

mod x0

for some small integers hi. Given a level-κ encoding c as in (1), as a zero-testing procedure one
computes ω = pzt · c mod x0 which gives:

ω =

n∑
i=1

hi ·
(
ri +mi · (g−1i mod pi)

)
· x0
pi

mod x0 . (2)

If mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is small compared to x0; this
enables to test whether c is an encoding of 0 or not. Moreover for non-zero encodings the leading
bits of ω only depend on the mi’s and not on the noise ri; for level-κ encodings this enables to
extract a function of the mi’s only, which eventually defines a degree-κ multilinear map.

Cheon et al. attack. The CLT scheme above was completely broken by a recent attack from
Cheon, Han Lee, Ryu and Stehlé [CHL+14]; the attack runs in polynomial time, and recovers all
secret parameters. The attack works by computing the eigenvalues of a diagonalizable matrix over Q
derived from the multilinear map. More precisely, when applying the zero-testing procedure to the
product of two encodings x and x′, where x is an encoding of 0, the resulting ω in (2) can be seen as
a diagonal quadratic form over Z in the CRT components x mod pi and x′ mod pi. By computing
the values ωjk of the quadratic form for n2 product pairs of encodings xj · x′k, one can then recover
the coefficients of the quadratic form using eigendecomposition, which reveals all the secret pi’s and
completely breaks the scheme. We recall the attack in more details in Section 3.

Tentative fixes. Shortly after Cheon et al. attack, two independent approaches to fix the CLT
scheme have been proposed on the Cryptology ePrint Archive, due to Garg, Gentry, Halevi and
Zhandry on the one hand [GGHZ14, Sec. 7]1, and Boneh, Wu and Zimmerman on the other [BWZ14].
However, both countermeasures were shown to be insecure in [CLT14]. Indeed, although these
countermeasures do not expose encodings of zero, the value ω from the zero-testing procedure can
still be expressed as a quadratic form in the CRT components of encodings. As a result, they can
both be broken by a variant of the original Cheon et al. attack.

Our new construction. Our new construction keeps the same CLT encodings but departs from
the two previous countermeasures by modifying the zero-testing procedure itself. Namely, we modify
the definition of the zero-testing element pzt so that ω cannot be expressed as a quadratic form

1 We refer to the revised version of [GGHZ14] of November 12 2014, accessible on the Cryptology ePrint Archive.

2

anymore. For this we use a new arithmetic technique that maps the n CRT components c mod pi to
some value modulo an independent integer N , so that the resulting ω in the zero-testing procedure
depends on the CRT components in a non-linear way, rather than linearly as in (2).

The technique works as follows. Consider a level-κ encoding c as in (1); by the Chinese Remainder
Theorem, we can write a relation of the form:

c =
n∑
i=1

(
ri +mi · (g−1i mod pi)

)
· ui − a · x0 (3)

over Z for some a ∈ Z, where the ui’s are the CRT coefficients corresponding to the primes pi’s,
and scaled by gi · z−κ for each i. Let N be a large integer and let pzt ∈ ZN . For the zero-testing
procedure we compute ω = pzt · c mod N which gives from (3):

ω ≡
n∑
i=1

(
ri +mi · (g−1i mod pi)

)
· vi − a · v0 (mod N) (4)

where vi := pzt · ui mod N and v0 := pzt · x0 mod N . Assume now that we can generate pzt and N
such that all the vi’s are small compared to N , including v0. Now if mi = 0 for all i, since the ri’s
are small, the integer a in (3) is also small, which implies that ω in (4) will also be small compared
to N . This enables to test whether c is an encoding of 0 or not. As previously for level-κ encodings
one can then extract a function of the mi’s only, which gives a degree-κ multilinear map. We show
that such an element pzt can be efficiently generated for any large enough N , owing to the particular
structure of the CRT coefficients ui.

Security analysis. By comparing equations (2) and (4), we see that the original CLT scheme is
actually a particular case, with N = x0 and v0 = 0. Therefore the main difference in the new scheme
is that v0 6= 0, which causes the value ω in (4) to depend on the integer a in (3). But that integer a
depends on the CRT components ri in a non-linear way. As a result, it is no longer true that the
value ω computed from encoding products xj · x′k can be expressed as a quadratic form in the CRT
components of xj and x′k, and the Cheon et al. attack is thus thwarted.

Another difference with the original CLT scheme is that we cannot publish x0 =
∏n
i=1 pi anymore.

Namely for encodings of 0 we get a small ω and therefore (4) holds over Z. Therefore from x0 one
could compute v0 = pzt · x0 mod N and apply the Cheon et al. attack modulo v0 instead of over
Z. It is not a problem to keep x0 private, however, as we can mimic the technique introduced by
van Dijk et al. for their fully homomorphic encryption scheme over the integers [DGHV10] and
approximate modular reduction by x0 with a ladder of encodings of zero of increasing sizes.

We provide a detailed security analysis of our new construction in Section 3 (for the Cheon et
al. attack and its variants) and Section 4 (for lattice attacks). We also explain why the subgroup
membership (SubM) and decisional linear (DLIN) problems, which are known to be easy in the
GGH scheme [GGH13a], seem to be hard in our new setting.

Implementation. We describe an implementation of our scheme, with a few optimizations. Instead
of using a ladder of encodings of 0 at every level, we publish a small multiple x′0 of x0 so that
intermediate encodings can be reduced modulo x′0; only at the last level do we use a ladder of a few
level-κ encodings of 0. Additionally, to reduce the size of public parameters, we store only a small

3

subset of the public elements needed for re-randomization and combine them pairwise to generate
the full public parameters, as in [CLT13]; such an optimization was originally described in [GH11].
With these optimizations our scheme is relatively practical; for reasonable security parameters a
multipartite Diffie-Hellman computation with 7 users requires about 30 seconds, with a public
parameter size of roughly 6 GBytes; a proof-of-concept implementation is available at [Lep15].

Extension to GGH. We briefly mention in Appendix G that our arithmetic technique can be
adapted to GGH, in order to prevent attacks against base group assumptions like SubM and DLIN.
However, a thorough security analysis of that GGH variant is beyond the scope of this paper.

2 New Multilinear Map over the Integers

In this section we define our new multilinear scheme. Our scheme is actually a graded encoding
scheme (GES) as in previous works [GGH13a,CLT13]; we recall the notion of GES in Appendix A.
As explained in introduction, our new multilinear map scheme keeps the same CLT encodings as
given by (1), with two main differences:

1. The zero-testing parameter pzt is computed differently, so that the CRT components modulo pi
of a level-κ encoding c are mapped to some value modulo an independent integer N , instead of
modulo x0. The resulting ω in the zero-testing procedure then depends on those CRT components
in a non-linear way, rather than linearly in the original CLT scheme, which prevents the Cheon et
al. attack.

2. The integer x0 =
∏n
i=1 pi is kept private. For re-randomization, this implies that we must slightly

modify the proof of statistical indistinguishability. To reduce the size of intermediate encodings
back to the size of x0, we publish a ladder of encodings of 0. In Section 5 we describe a simple
optimization with a public multiple x′0 of x0.

2.1 Scheme Description

System parameters. The system parameters are similar to the original CLT scheme. One first
defines the security parameter λ and the required multilinearity level κ 6 poly(λ). Based on λ and
κ, we choose:

• n: the vector dimension

• η: the bit-size of the primes pi
• α: the bit-size of the primes gi
• ρ: the bit-size of the randomness used in encodings

and various other parameters that will be specified later. The constraints that these parameters
must satisfy are described in Section 2.2. For integers z, p we denote the reduction of z modulo p by
(z mod p) or [z]p with −p/2 < [z]p 6 p/2. For integers x1, . . . , xn we denote CRTp1,...,pn(x1, . . . , xn)
the unique integer x such that x ≡ xi mod pi for all 1 6 i 6 n and 0 6 x <

∏n
i=1 pi.

As in the original CLT scheme a level-k encoding of a vector m = (mi) is an integer c such that
for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (5)

4

where the ri’s are ρ-bit random integers (specific to the encoding c), with the following secret
parameters: the pi’s are random η-bit prime integers, the gi’s are random α-bit primes, and the
denominator z is a random (invertible) integer modulo x0 =

∏n
i=1 pi. The integer c is therefore

defined by CRT modulo x0, but as opposed to the original CLT scheme, x0 is kept secret. We denote
by γ the size of x0 in bits. As in the CLT scheme the domain is the ring R = Zg1 × · · · × Zgn , so
that for m = (mi) ∈ R the components mi are defined modulo gi for all 1 6 i 6 n.

Instance generation: (pp,pzt)← instGen(1λ, 1κ). Instance generation is similar to [CLT13], except
for the generation of pzt; moreover x0 is kept private. We generate n secret random η-bit primes
pi and compute x0 =

∏n
i=1 pi. We generate a random invertible integer z modulo x0. We generate

n random α-bit prime integers gi, and various other parameters that will be specified later. We
publish the parameters (pp,pzt) with

pp =
(
n, η, α, ρ, β, τ, `, µ, y, {x′j}`j=1, {X

(j)
i }, {xj}

τ
j=1, {Πj}n+1

j=1 , s
)
.

Sampling level-zero encodings: c← samp(pp). Since the primes pi’s in (5) must remain secret,
the user cannot encode a vector m ∈ R by CRT directly from (5). Instead, as in [CLT13], a level-0
encoding c is generated as a random subset sum of random level-0 encodings x′j from the public
parameters. The only difference with [CLT13] is that the random subset-sum is computed over Z
instead of modulo x0, since x0 is not public.

Therefore we publish as part as our instance generation a set of ` integers x′j , where each x′j
encodes at level-0 the column vector aj ∈ Zn of a secret matrix A = (aij) ∈ Zn×`, where each
component aij is randomly generated in [0, gi) ∩ Z. More precisely, using the CRT modulo x0 we
generate integers x′j such that:

1 6 j 6 `, x′j ≡ r′ij · gi + aij (mod pi) (6)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.

To generate a level-0 encoding c, we first generate a random binary vector b = (bj) ∈ {0, 1}`
and output the level-0 encoding

c =
∑̀
j=1

bj · x′j .

From (6), this gives c ≡ (
∑`

j=1 r
′
ijbj) · gi +

∑`
j=1 aijbj (mod pi); as required the output c is a level-0

encoding:
c ≡ ri · gi +mi (mod pi) (7)

of some vector m = A · b ∈ R which is a random subset-sum of the column vectors aj . We note
that for such level-0 encodings we get |ri · gi +mi| 6 ` · 2ρ+α for all i. As in [CLT13] by applying
the leftover hash lemma over R = Zg1 × · · · × Zgn the distribution of m can be made statistically
close to uniform over R.

Lemma 1 ([CLT13]). Let c← samp(pp) and write c ≡ ri ·gi+mi (mod pi). Assume ` > n ·α+2λ.
The distribution of (pp,m) is statistically close to the distribution of (pp,m′) where m′ ← R.

As opposed to [CLT13] we cannot reduce c modulo x0; we only have the upper-bound |c| 6 ` · 2γ ,
where γ is the size of x0 in bits. In Appendix F, we show that instead of random sampling one can
also publicly encode elements from the domain R, using a technique described in [BWZ14].

5

Encoding at higher levels: ck ← enc(pp, k, c). As in [CLT13], to allow encoding at higher levels,
we publish as part of our instance-generation a level-one random encoding of 1, namely an integer y
such that:

y ≡ ri · gi + 1

z
(mod pi)

for random ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed by CRT modulo x0. Given a
level-0 encoding c of m ∈ R as given by (7), we can then compute a level-1 encoding of the same m
by computing over Z:

c1 = c · y.

Namely we obtain as required:

c1 ≡
r′i · gi +mi

z
(mod pi)

for some integers r′i. From |c| 6 ` · 2γ , we obtain |c1| 6 ` · 22γ .

The difference with [CLT13] is that we cannot reduce c1 modulo x0. Instead we provide a

ladder of level-1 encodings of zero X
(1)
i of increasing size, so that the size of a level-1 encoding can

be progressively reduced down to the size of x0, as in the DGHV scheme [DGHV10, Sec. 3.3.1].
Specifically, for j = 0, . . . , γ + blog2 `c, we set:

X
(1)
j = CRTp1,...,pn ([r1j · g1/z]p1 , . . . , [rnj · gn/z]pn) + qi · x0

where rij ← (−2ρ, 2ρ) ∩ Z and qi ← [2γ+i−1/x0, 2
γ+i/x0) ∩ Z.

We can then iteratively reduce the size of c1 down to the size of x0, first by X
(1)
γ+blog2 `c

and

eventually by X
(1)
0 . Since the size reduction is done bit-by-bit, at each step some integer bj ·X(1)

j is
subtracted from c1, for bj ∈ {0, 1}. Therefore the noise increases additively by at most (γ+ blog2 `c+
1) · 2ρ in absolute value. After reduction, the resulting encoding ĉ1 will be such that

ĉ1 ≡ (r̂i · gi +mi)/z (mod pi) , (8)

with |r̂i · gi +mi| 6 ` · 2ρ+α · 2ρ+α + (γ + blog2 `c+ 1) · 2ρ 6 2` · 22ρ+2α for all i.

More generally to generate a level-k encoding we compute ck = c0 · yk, and the size of ck can
be iteratively reduced after each multiplication by y using ladders of similarly designed level-j

encodings {X(j)
i }

γ+blog2 `c
i=0 for levels j = 1, . . . , k.

Re-randomization: c′ ← reRand(pp, k, ĉk). Our re-randomization procedure is similar to [CLT13]
except that again we cannot reduce the encodings modulo x0. We describe the re-randomization
of encodings at level k = 1; the procedure can be easily adapted to randomize at level k > 1. We
publish as part of our instance-generation a set of n+ 1 integers Πj :

1 6 j 6 n+ 1, Πj =
n∑
i=1

$ij · gi · ui +$n+1,j · x0

where the ui’s are appropriate CRT coefficients so that the Πj ’s are all level-1 random encodings of
zero:

1 6 j 6 n+ 1, Πj ≡
$ij · gi
z

(mod pi) .

6

Namely, we let for all 1 6 i 6 n:

ui :=

(
z−1 ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(9)

The matrix Π = ($ij) ∈ Z(n+1)×(n+1) is a diagonally dominant matrix generated as follows: the
non-diagonal entries are randomly and independently generated in (−2ρ, 2ρ) ∩ Z, while the diagonal
entries are randomly generated in ((n+ 1)2ρ, (n+ 2)2ρ) ∩ Z.

We also publish as part of our instance-generation a set of τ integers xj :

1 6 j 6 τ, xj =
n∑
i=1

rij · gi · ui + rn+1,j · x0

so that each xj is a level-1 random encoding of zero:

1 6 j 6 τ, xj ≡
rij · gi
z

(mod pi)

and where the column vectors of the matrix X = (rij) ∈ Z(n+1)×τ are randomly and independently
generated in the half-open parallelepiped spanned by the columns of the previous matrix Π; an
algorithm to generate such ri’s is described in [CLT13, App. E]; we obtain |rij · gi| 6 3n2ρ+α for all
i, j.

Given as input a (reduced) level-1 encoding ĉ1 as given by Equation (8), we randomize ĉ1 with
a random subset-sum of the xj ’s and a linear combination of the Πj ’s, over Z:

c′1 = ĉ1 +
τ∑
j=1

bj · xj +
n+1∑
j=1

b′j ·Πj (10)

where bj ← {0, 1}, and b′j ← [0, 2µ) ∩ Z, where µ := ρ+ α+ λ. The following Lemma shows that as
required the distribution of c′1 is nearly independent of the input (as long as it encodes the same
m). This essentially follows from the “leftover hash lemma over lattices” of [CLT13, Sec. 4.2]; we
refer to Appendix B for the proof.

Lemma 2. Let the encodings c ← samp(pp), ĉ1 ← enc(pp, 1, c), and c′1 as given by (10). Write
c′1 ≡ (ri · gi + mi)/z (mod pi) for all 1 6 i 6 n and rn+1 = (c′1 −

∑
ri · gi · ui)/x0, and define

r = (r1, . . . , rn, rn+1)T . If 2(ρ+ α+ λ) 6 η and τ > (n+ 2) · ρ+ 2λ, then the distribution of (pp, r)
is statistically close to that of (pp, r′), where r′ ∈ Zn+1 is randomly generated in the half-open
parallelepiped spanned by the column vectors of 2µΠ. Moreover we have |ri ·gi+mi| 6 4n2 ·22ρ+2α+λ

for all 1 6 i 6 n.

Finally, we can reduce the size of c′1 down to the size of x0 using the ladder {X(1)
i }, and we

obtain an encoding ĉ′1. Writing ĉ′1 ≡ (r̂′i · gi +mi)/z (mod pi), we obtain

|r̂′i · gi +mi| 6 4n2 · 22ρ+2α+λ + (γ + blog2 `c+ 1) · 2ρ 6 5n2 · 22ρ+2α+λ .

7

Adding, negating and multiplying encodings. As in [CLT13] we can add, negate and multiply
encodings. The difference is that we do those operations over Z instead of modulo x0. More precisely,
given level-one encodings vj of vectors mj ∈ Zn for 1 6 j 6 κ, with vj ≡ (rij · gi +mij)/z (mod pi),
we compute over Z:

v =
κ∏
j=1

vj .

This gives:

v ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

(κ∏
j=1

mij

)
mod gi

zκ
(mod pi)

for some integers ri ∈ Z. Hence we obtain a level-κ encoding of the vector m obtained by compo-
nentwise product of the vectors mj , as long as the components do not wrap modulo pi, that is∏κ
j=1(rij · gi +mij) < pi for all i. Then, using the ladder X

(κ)
i one can reduce its size down to the

size of x0, at the cost of an additive increase in absolute value of the noise.

In multipartite Diffie-Hellman key exchange we compute the product of κ level-1 encodings from
reRand and one level-0 encoding from samp, which gives from previous bounds for all i:

|ri| 6 (6n222ρ+2α+λ)κ · ` · 2ρ+1

In Section 5 we describe an optimization in which we publish a multiple x′0 of x0; then all
intermediate encodings can be reduced modulo x′0, instead of using a ladder of encodings of zero;
only at the last stage do we need a ladder of a few level-κ encodings of zero.

Zero testing. isZero(pp,pzt, c)
?
= 0/1. To prevent the Cheon et al. attack, we keep the same

encoding as in (1) but we compute the pzt differently; this is the most important difference. Let c
be a level-κ encoding. We assume 0 6 c < x0, as a result of approximate modular reduction using a
ladder of level-κ encodings of 0. From (5) we can write by CRT:

c ≡
n∑
i=1

(
ri · gi +mi

zκ
mod pi

)
·

((
x0
pi

)−1
mod pi

)
· x0
pi

(mod x0)

c ≡
n∑
i=1

(
ri +mi · g−1i mod pi

)
·

(
gi · z−k ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(mod x0)

Therefore we can write over the integers:

c =
n∑
i=1

(
ri +mi · g−1i mod pi

)
· u′i − a · x0 (11)

for some integer a, where the u′i’s are the scaled CRT coefficients:

u′i =

(
gi · z−k ·

(
x0
pi

)−1
mod pi

)
· x0
pi

(12)

8

We generate a random prime integer N of size γ + 2η + 1 bits. Using LLL in dimension 2, we
obtain2 pairs of nonzero integers (αi, βi) satisfying:

|αi| < 2η−1 |βi| 6
4

3
· N

2η−1
< 22−η ·N βi ≡ αi · (u′i/pi) (mod N).

We also generate as in [CLT13] an integer matrix H = (hij) ∈ Zn×n such that H is invertible
in Z and both ‖HT ‖∞ 6 2β and ‖(H−1)T ‖∞ 6 2β, for some parameter β specified later; here
‖ · ‖∞ is the operator norm on n× n matrices with respect to the `∞ norm on Rn. A technique for
generating such H is discussed in Appendix C. We then publish as part of our instance generation
the following zero-testing vector pzt ∈ Zn:

(pzt)j =
n∑
i=1

hij · αi · p−1i mod N (13)

To determine whether a level-κ encoding c is an encoding of zero or not, we compute the vector
ω = c · pzt mod N and test whether ‖ω‖∞ is small:

isZero(pp,pzt, c) =

{
1 if ‖c · pzt mod N‖∞ < N · 2−ν
0 otherwise

for some parameter ν specified later.
Namely for a level-κ ciphertext c we obtain from (11):

(ω)j = (c · pzt mod N)j =

n∑
i=1

hij · αi · p−1i · c mod N

=

n∑
i=1

hij · αi · p−1i ·

(
n∑
k=1

(
rk +mk · g−1k mod pk

)
· u′k − a · x0

)
mod N

which gives:

(ω)j =
n∑
i=1

hij ·
((
ri +mi · g−1i mod pi

)
· βi +

αi ·
n∑

k=1, k 6=i

(
rk +mk · g−1k mod pk

)
·
u′k
pi
− a · αi ·

x0
pi

)
mod N (14)

Recall that αi is at most η − 1 bits, therefore αi · u′k/pi has size at most η − 1 + γ − (η − 1) = γ
bits; the integer αi · x0/pi has size also at most γ bits; moreover βi is at most |N | − η + 1 bits.
Therefore in Equation (14) the integers βi, αi · uk/pi and αi · x0/pi are all small compared to N .
This implies that if mi = 0 for all 1 6 i 6 n, then ωj will be small compared to N , when the ri’s are
small enough, i.e. a limited number of additions/multiplications on encodings has been performed.
Conversely if mi 6= 0 for some i we show that ‖ω‖∞ must be large. This shows the correctness of
our zero-testing procedure. More precisely we prove the following lemma in Appendix D.

2 More precisely, we apply Legendre reduction to the 2-dimensional lattice generated by the rows of(
dN/B2e u′i/pi mod N

0 N

)
, where B = (3/4)1/42η−1. The shortest vector is of the form (αidN/B2e, βi).

9

Lemma 3. Let n, η, α and β be as in our parameter setting. Let ρf be such that α+ log2 n < ρf 6
η−2β−2α−λ−8, and let ν = η−ρf −β−λ−3 > 2α+β+5. Let c be such that c ≡ (ri ·gi+mi)/z

κ

(mod pi) for all 1 6 i 6 n, where 0 6 mi < gi for all i. Let r = (ri)16i6n and assume that
‖r‖∞ < 2ρf . If m = 0 then ‖ω‖∞ < 2−ν−λ ·N . Conversely if m 6= 0 then ‖ω‖∞ > 2−ν+2 ·N .

Extraction. sk ← ext(pp,pzt, uκ). This part is essentially the same as in [GGH13a]. To extract a
random function of the vector m encoded in a level-κ encoding c, we multiply c by the zero-testing
parameter pzt modulo N , collect the ν most significant bits of each of the n components of the
resulting vector, and apply a strong randomness extractor (using the seed s from pp):

ext(pp,pzt, c) = Extracts
(
msbsν(c · pzt mod N)

)
where msbsν extracts the ν most significant bits of the result.

Namely if two encodings c and c′ encode the same m ∈ Zn then from Lemma 3 we have
‖(c − c′) · pzt mod N‖∞ < N · 2−ν−λ, and therefore we expect that ω = c · pzt mod N and
ω′ = c′ · pzt mod N agree on their ν most significant bits, and therefore extract to the same
value.

Conversely if c and c′ encode different vectors then by Lemma 3 we must have ‖(c − c′) ·
pzt mod N‖∞ > N · 2−ν+2, and therefore the ν most significant bits of the corresponding ω and
ω′ must be different. This implies that for random m ∈ R = Zg1 × · · · × Zgn the min-entropy of
msbsν(c · pzt mod N) when c encodes m is at least log2 |R| > n(α − 1). Therefore we can use a
strong randomness extractor to extract a nearly uniform bit-string of length blog2 |R|c − λ.

This concludes the description of our new multilinear encoding scheme.

Remark 1. By comparing equations (2) and (4) we see that the original CLT scheme is a particular
case with N = x0 and αi = 0 for all 1 6 i 6 n. Therefore the main difference of our construction is
that it incorporates the additional term a, which depends on the ri’s in a non-linear way; this is to
prevent the Cheon et al. attack (see Section 3).

2.2 Setting the Parameters

The constraints on the system parameters are similar to [CLT13].

• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ) to avoid brute force
attack on the noise. The improved attacks from [CN12] and [LS14] both have complexity Õ(2ρ/2),
but with a large overhead, so in practice we can take ρ = λ.

• The bit-size α of the primes gi must be large enough so that the order of the group R =
Zg1 × · · · × Zgn does not contain small prime factors (see Appendix E). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on the encodings, namely
n = ω(η log λ); see Section 4.

• The number ` of level-0 encodings x′j for samp must satisfy ` > n · α+ 2λ in order to apply the
leftover hash lemma; see Lemma 1.

• The number τ of level-1 encodings xj must satisfy τ > (n + 2) · ρ + 2λ in order to apply the
leftover hash lemma over lattices; see Lemma 2.

• As a conservative security precaution, we take β = 3λ (see Section 4.3).

10

• The bit-size η of the primes pi must satisfy η > ρf + 2α+ 2β + λ+ 8, where ρf is the maximum
bit size of the randoms ri a level-κ encoding (see Lemma 3). When computing the product of κ
level-1 encodings and an additional level-0 encoding (as in a multipartite Diffie-Hellman key
exchange with κ+ 1 users), one obtains ρf = κ · (2ρ+ 2α+ λ+ 2 log2 n+ 3) + ρ+ log2 `+ 1 (see
previous Section).

• We set ν = η − ρf − λ− β − 3 for the number of most significant bits to extract (see Lemma 3).

2.3 Security of Our Construction

As in the original CLT scheme [CLT13] and in the GGH scheme [GGH13a] the security of our
construction does not seem to be reducible to more classical assumptions, such as for example the
Approximate-GCD problem. To prove the security of the one-round (κ + 1)-way Diffie-Hellman
key exchange protocol, as in [GGH13a] one must therefore make the assumption that solving the
Graded DDH problem (GDDH) is hard in our scheme; see Appendix A.

3 Cheon et al. Attack

The goal of this section is to argue that the Cheon et al. attack [CHL+14] is prevented in our new
construction.

3.1 Attack Description

We first recall the Cheon et al. attack against the original CLT scheme. This attack makes use of
low-level encodings of 0: if such encodings are made public, one can recover in polynomial time
all secret parameters. In the CLT scheme such encodings of 0 are used for the rerandomization
procedure, therefore the Cheon et al. attack leads to a complete break of CLT.

In the following we describe a slight simplification of [CHL+14] in which only a single ciphertext
c is used instead of two ciphertexts c0 and c1; this enables to obtain as eigenvalues directly the
CRT components of c, instead of the ratios of the CRT components of c0 and c1. For simplicity we
assume κ = 2; the attack is easily extended to any κ > 2. Let c be a level-0 encoding with c ≡ ci
(mod pi). Let x be a level-1 encoding with x ≡ xi/z (mod pi), and let x′ be a level-1 encoding of 0
with x′ ≡ r′i · gi/z (mod pi). Let c′ be the level-κ product encoding

c′ = x · c · x′ mod x0

From c′ ≡ xi · ci · r′i · gi · z−2 (mod pi), we obtain by CRT:

c′ ≡
n∑
i=1

xi · ci · r′i · ui (mod x0) (15)

with the CRT coefficients:

ui =

(
gi · z−2 ·

(
x0
pi

)−1
mod pi

)
· x0
pi

In the original CLT scheme, the zero-testing parameter pzt is given by

pzt =

n∑
i=1

hi ·
(
z2 · g−1i mod pi

)
· x0
pi

mod x0

11

Using pzt · ui ≡ hi · x0/pi (mod x0) for all 1 6 i 6 n, we obtain from (15):

ω = [pzt · c′]x0 =

n∑
i=1

xi · ci · r′i · hi · x0/pi (16)

where the last equality holds over Z because c′ is an encoding of 0.
More generally, let xj be level-1 encodings with xj ≡ xij/z (mod pi), and let x′k be a level-1

encodings of 0 with x′k ≡ r′ik · gi/z (mod pi). One can therefore compute for 1 6 j, k 6 n:

ωjk = [(xj · c · x′k) · pzt]x0 (17)

which gives as previously:

ωjk =
n∑
i=1

xij · ci · r′ik · hi · x0/pi (18)

over the integers. We note that ωjk is a diagonal quadratic form over Z in the xij ’s and the r′ik’s.
By spanning 1 6 j, k 6 n, one can construct a matrix Wc = (ωjk)16j,k6n such that

Wc = X ×C ×R , (19)

where C = diag(c1, c2, . . . , cn), X = (xij · hi · x0/pi)16j,i6n and R = (r′ik)16i,k6n.
We perform the same computation with c = 1 in (17); one can therefore compute a matrix W1

such that W1 = X × I ×R, where I is the n×n identity matrix. Finally, one can publicly compute:

W = Wc ·W1
−1 = X ×C ×X−1 .

Since C is a diagonal matrix, by computing the eigenvalues of W one can recover the ci’s, and then
the pi’s. Finally, Cheon et al. describe how to recover all the other secret values in [CHL+14].

Extension. A similar attack applies against two independent approaches to fix the CLT scheme,
[GGHZ14, Sec. 7] and [BWZ14], proposed shortly after the Cheon et al. attack. Namely, although the
two countermeasures do not expose encodings of zero, the value ω from the zero-testing procedure
can still be expressed as a diagonal quadratic form in the CRT components of encodings, as in
Equation (18), hence the two countermeasure can be broken by the same technique; we refer to
[CLT14] for a description of the modified attacks.

3.2 Non-Applicability of Cheon et al. Attack

In this section we explain why the above attack does not apply against our new scheme. As previously
we let x be a level-1 encoding with x ≡ xi/z (mod pi), and let x′ be a level-1 encoding of 0 with
x′ ≡ r′i · gi/z (mod pi). We consider as previously the level-κ product encoding, with κ = 2:

c′ = x · c · x′

Here we cannot reduce c′ modulo x0 since x0 is kept private; instead we must use a ladder of level-2
encodings of zero. Let c′′ be the resulting encoding, with 0 6 c′′ < x0; we obtain:

c′′ ≡ c′ + si · gi
z2

(mod pi)

12

for some integers si of size roughly ρ bits. Therefore instead of (15) we obtain over the integers:

c′′ =
n∑
i=1

(
xi · ci · r′i + si

)
· ui − a · x0 (20)

for some integer a. Using the new definition of pzt ∈ ZN , and letting vi = pzt · ui mod N for all
1 6 i 6 n and v0 = pzt · x0 mod N , we obtain from (20):

ω = [pzt · c′′]N =
n∑
i=1

(xi · ci · r′i + si) · vi − a · v0 (21)

where as previously the last equality holds over Z.

Now comparing equalities (16) and (21), we see that we obtain two additional terms: the si’s
and the integer a. The si’s come from reducing c′ with the ladder of level-κ encodings of 0, so that
eventually 0 6 c′′ < x0; therefore the si’s depend on x · c · x′ in a non-linear way. Similarly the
integer a in (21), which is the quotient of the division of

∑n
i=1 (xi · ci · r′i + si) · ui by x0, depends

on the xi · ci · x′i in a non-linear way. Therefore, if we apply Cheon et al. attack, we do not obtain a
quadratic form as in (18) anymore.

More precisely, we can let as previously xj be level-1 encodings with xj ≡ xij/z (mod pi), and
let x′k be a level-1 encodings of 0 with x′k ≡ r′ik · gi/z (mod pi). As previously for all 1 6 j, k 6 n,
we can compute the product encodings c′jk = xj · c · x′k and we let c′′jk be the encodings obtained
after reducing c′jk such that 0 6 c′′jk < x0, using the ladder of level-κ encodings of zero. This gives:

ωjk = [pzt · c′′jk]N =
n∑
i=1

(xij · ci · r′ik + sijk) · vi − ajk · v0 (22)

for integers sijk and ajk. Compared to (18), we see that the previous equation has two additional
terms sijk and ajk. As previously we can write:

Wc = X ×C ×R+ S −A · v0 (23)

for some matrices S and A. However we see that the previous attack does not apply, because of
the additional terms S and A · v0. Namely if as previously we perform the same computation with
c = 1, we obtain:

W1 = X × I ×R+ S′ −A′ · v0 (24)

but as opposed to the CLT scheme we cannot get a simple expression for W = Wc ×W1
−1. More

generally, as opposed to the CLT case, it seems difficult to extract useful information about C from
the matrices Wc and W1, since in equations (23) and (24) all terms X, R, S, S′, A, A′ and v0
are unknown.

Remark 2. If we do not reduce c′jk with the ladder of encodings, the sijk terms disappear but the
integers ajk becomes too large and (22) does not hold over Z anymore. The equation still holds
modulo N , however there is still the additional term ajk that prevents the Cheon et al. attack.

13

3.3 Attack with Known x0.

In this section we describe an extension of the Cheon et al. attack against our scheme when x0 is
known; this explains why x0 must be kept secret in our scheme.

When x0 is known, we can reduce the previous ciphertexts c′jk modulo x0, and therefore the
sijk terms in (22) disappear. Moreover v0 = [pzt · x0]N is known. Therefore we can compute the Wc

matrix as previously, and we obtain from (23) with S = 0:

Wc = X ×C ×R mod v0

which is the same equation as (19) in the original attack except that it holds modulo v0 instead of
over Z.

Therefore we can apply the Cheon et al. attack modulo v0 instead of over Z. If v0 is prime, one
can recover the eigenvalues of W = Wc ·W1

−1 mod v0 by factoring the characteristic polynomial
modulo v0, which reveals the ci’s as previously. If a prime p can be extracted from v0, one can still
apply the attack modulo p and recover the ci’s modulo p; for large enough p this reveals the ci’s;
alternatively for sufficiently many such primes p, the ci’s could be recovered by CRT.

Actually the attack also works even if v0 is hard to factor and no prime can be extracted. Namely
the eigenvalues ci’s are small, so to recover the roots of the characteristic polynomial one can use
Coppersmith’s first theorem for finding small roots of polynomial equations modulo an integer of
unknown factorization [Cop97]. Namely Coppersmith’s bound applies: with a modulus v0 of size
roughly γ bits and a characteristic polynomial of degree n, the roots have size only roughly ρ bits,
with ρ� η ' γ/n.

3.4 Attack for Small Multiple of x0

In Section 5 we describe an optimization with a known multiple x′0 = q · x0, in order to avoid the
ladder of encodings of 0. Here we show that we cannot take a too small multiple x′0, otherwise the
attacker can compute:

v′0 = [pzt · x′0]N = [pzt · q · x0]N = q · v0 mod N

where, as in Section 3.3, we let v0 := pzt ·x0 mod N . If the prime q is small enough then the previous
equation holds over the integers, and the attacker obtains v′0 = q · v0. Therefore the attacker can
possibly extract a few primes from v′0 and therefore from v0. Letting b be a divisor of v0, one could
then apply the Cheon et al. attack modulo b instead of modulo v0 and recover all secret parameters.
Therefore one should make sure that q · v0 is greater than N . Letting ηq be the bitsize of q, this
gives the condition ηq + γ > γ + 2η + 1. Therefore we can take ηq = 2η + λ.

3.5 The Subgroup Membership and Decision Linear Problems

In this section we also explain why the subgroup membership (SubM) and decisional linear (DLIN)
problems, which are known to be easy in the GGH scheme [GGH13a], seem to be hard in our new
setting.

We first describe the attacks against SubM and DLIN in the original CLT scheme, following
[CHL+14, Appendix A]. Obviously CLT is broken so the SubM and DLIN assumptions cannot hold
for CLT, but this enables to argue why SubM and DLIN should be hard for our new scheme.

14

The SubM problem. Let R = Zg1 × . . .× Zgn and let G be a subgroup of R obtained by fixing
some of the n components to zero; for example we can take G = {0}×Zg2 × . . .×Zgn . The subgroup
membership problem consists in distinguishing between c1 = enc(m1) and c2 = enc(m2), where
m1 ← R and m2 ← G. Let c = enc(0). We first describe the distinguishing attack against the
original CLT scheme. The attack is based on the Cheon et al. attack. Namely as in (19) we can
compute the matrices:

Wc = X × diag(g1 · r1 , g2 · r2 , . . . , gn · rn)×R
Wc1 = X × diag(g1 · r(1)1 +m11 , g2 · r(1)2 +m12 , . . . , gn · r(1)n +m1n)×R
Wc2 = X × diag(g1 · r(2)1 , g2 · r(2)2 +m22 , . . . , gn · r(2)n +m2n)×R

Therefore we obtain:

gcd(detWc,detWc1) = ∆ · det(X) · det(R)

gcd(detWc,detWc2) = ∆′ · g1 · det(X) · det(R)

for some integers ∆ and ∆′ of roughly the same size on average; this enables to distinguish between
c1 and c2.

It seems difficult to adapt the above attack against our new multilinear scheme, because of the
additional terms S and A in Equation (23); namely because of those additional terms we cannot
extract useful information from the encodings by computing determinants and gcds; therefore we
conjecture that SubM is hard in our setting.

The DLIN problem. Consider a matrix of elements B = (bij) ∈ RL×L and their encodings
T = (enc(bij)), the DLIN problem consists, given the matrix of encodings T , in distinguishing
between rank L and rank L − 1 matrices B. In the CLT scheme, the attack is similar to the
above. Namely from the matrix of encodings T = (Tij) one can compute the matrix of matrices
V = (W Tij). One can see that if B is a rank L− 1 matrix, then detV will contain the factor

∏
i gi,

whereas if B is full rank, detV will not contain this factor; this enables to solve the DLIN problem
in case of CLT.

As previously it seems difficult to adapt the above attack against our new multilinear scheme,
because of the additional terms S and A in Equation (23); therefore we conjecture that DLIN is
also hard in our setting.

4 Lattice Attacks

4.1 Lattice Attack on the Encodings

The first attack considered in [CLT13] against the original CLT scheme was based on computing
a short basis for the lattice of vectors orthogonal modulo x0 to x = (xj)16j6t, where the xj ’s are
level-0 encodings of zero [CLT13, Sec. 5.1]. If the reduced basis vectors are short enough, they can
reveal the noise values of the xj ’s and hence break the scheme.

The attack does not apply directly to our modified scheme, because x0 is now secret, and it is
therefore no longer possible to compute a basis for the lattice of vectors orthogonal to x modulo x0.
However, we can also mount the attack using the lattice x⊥ of vectors orthogonal to x over Z, or
the lattice of vectors orthogonal to x modulo some multiple x′0 of x0 when using the optimization
suggested in Section 5 below.

15

Just as in [CLT13, Sec. 5.1], though, the complexity of these extended attacks remains exponential
in n; it is in fact slightly worse, because the new lattice has slightly longer vectors for a given choice
of the lattice dimension t. In particular, the complexity lower bound of 2Ω(γ/η2) applies a fortiori.
The attack is therefore defeated by letting n = ω(η log λ).

4.2 Lattice Attack against pzt

From x0 =
∏n
i=1 pi and (pzt)j =

∑n
i=1 hij · αi · p

−1
i mod N , we obtain:

x0 · (pzt)j =
n∑
i=1

hij · αi ·
x0
pi

mod N.

Now x0 is of size γ bits, and the right-hand side of this congruence, which we denote by wj , is
bounded above by n2β+γ : they are both small compared to N . Therefore, if we consider a vector
p formed by a subset of the (pzt)j ’s, say p =

(
(pzt)j

)
16j6t ∈ Zt, it may be possible to recover

w = (wj)16j6t as a short vector in the lattice generated by p and NZt, and obtain x0 accordingly.

More precisely, w+ = (w, n2β · x0) ∈ Zt+1 is a vector of norm bounded by
√
t+ 1 · n2β+γ in the

lattice L generated by the rows of the following matrix:
N

. . .

N
(pzt)1 · · · (pzt)t n2β

 .

The volume of L is vol(L) = n2β ·N t, and therefore we expect w+ to be the shortest vector in L
when:

√
t+ 1 · n2β+γ �

√
t+ 1

2πe
vol(L)

1
t+1 .

Taking logarithms and neglecting logarithmic terms, this gives:

β + γ .
t log2N + β

t+ 1

t &
γ

log2N − γ − β
≈ γ

2η + 1− β
≈ n

2

since N is of size γ + 2η + 1 bits. When that condition is satisfied, the gap between λ1(L) = ‖w+‖
and the second minimum λ2(L) of the lattice is expected to be roughly:

λ2(L)

λ1(L)
≈
(

vol(L)/‖w+‖
)1/t

‖w+‖
≈ N · 2−γ/t

2β+γ
≈ 22η−β−γ/t . 2η

since we must have t 6 n due to the size of the zero-testing vector. As a result, to find w+, we need
to solve the Unique SVP problem within a factor at most 2η in a lattice of dimension t > n/2. This
requires a lattice reduction method with Hermite constant at most 22η/n, hence a complexity lower
bound of 2Ω(n/η) = 2Ω(γ/η2), just as in Section 4.1. Thus, this attack is thwarted by our choice of
parameters.

16

4.3 Attack against pzt

Another attack considered in [CLT13, Sec. 5.2], and later improved in [LS14], would recover a factor
of x0 when some of the secret coefficients hij of the zero-testing matrix were too small (the improved
attack of Lee and Seo had complexity Õ(2b/2) where b is the actual bit size of the hij ’s, which is
upper bounded by β but not tightly so in the original CLT construction).

The attack crucially requires x0 as an input, however, so it doesn’t seem to apply to our new
scheme since x0 is now kept secret. Therefore, we are not aware of an attack in the case the
hij ’s are small. Nevertheless, as a security precaution, we now suggest using an improved method
for generating the matrix H in a way that yields much larger coefficients than previously (see
Appendix C).

4.4 Hidden Subset Sum Attack on Zero Testing

One can also consider a hidden subset sum attack on the zero-testing parameter pzt, similar to the
approach described in [CLT13, Sec. 5.3]. More precisely, we can write pzt in the following way:

pzt =

n∑
i=1

hi · αi · p−1i (mod N)

as a hidden subset sum of the secret vectors hi. Therefore, the Nguyen-Stern orthogonal lattice
technique [NS99] can in principle be used to recover the hi’s. Indeed, any vector u orthogonal to
pzt modulo N satisfies:

n∑
i=1

αi
pi
〈hi,u〉 = 0 (mod N).

This means that the vector v =
(
〈hi,u〉

)
16i6n is orthogonal modulo N to a =

(
αi/pi mod N

)
16i6n.

In particular, if u is short enough to ensure that v is shorter than the shortest vector of the lattice
La of vectors orthogonal to a modulo N , then we get v = 0 and hence u is orthogonal to each
of the hi’s over Z. If we can find sufficiently many such vectors u, the hi’s can be retrieved by
orthogonal lattice techniques again.

For this general approach to succeed, we need to be able to compute the very short vectors
u. Just like in the setting of [CLT13, Sec. 5.3], however, short enough vectors simply do no exist.
Indeed, the length condition is that 2β‖u‖ < λ1(La), and the shortest vector of La is actually of the
form (α′1p1, . . . , α

′
npn) where

∑
αiα

′
i = 0. This yields λ1(La) ≈ 2(1+1/n)η. Thus, we need to find u

of length significantly less than 2(1+1/n)η. Now the lattice Lpzt of vectors orthogonal to pzt modulo
N is of volume N , so we expect its successive minima to all be around N1/n > 2(1+2/n)η. Therefore,
short enough vectors u do not exist, and the approach of Nguyen-Stern does not yield an attack in
our setting.

A similar technique can be considered against the vector ω = pzt · c mod N that arises from
applying the zero-testing algorithm to an encoding of 0 at level κ, but the approach similarly fails
to yield an attack for exactly the same reason.

17

4.5 Attack on the Inverse Zero Testing Matrix

Similarly to the above, we can also consider an attack approach analogous to [CLT13, Sec. 5.4]
using the inverse zero-testing matrix. From

(pzt)j =
n∑
i=1

hij · αi · p−1i mod N

and since the matrix H is invertible, with inverse H−1 = T , we obtain for all rows ti of T :

〈ti,pzt〉 = αi · p−1i (mod N)

and therefore:
〈piti,pzt〉 = αi (mod N).

As a result, we may hope to recover (piti, 2
β · αi) as a short vector (of length ≈ 2η+β) orthogonal to

p+ = (pzt,−1/2β) modulo N . However, the lattice of vectors orthogonal to p+ modulo N is of rank
n+1 and volume N , so its successive minima are expected to be around N1/(n+1) ≈ 2((n+2)η+λ)/(n+1).
Therefore, we can only hope to recover the secret vectors if the size condition:

(n+ 1)(η + β) . (n+ 2)η + λ, i.e. β .
η + λ

n+ 1

is satisfied, which is clearly not the case. Therefore, this approach does not actually yield an attack
either.

5 Optimizations and Implementation

In this section we describe an implementation of our new multilinear map scheme in the one-
round (κ + 1)-way Diffie-Hellman key exchange protocol; we recall the protocol in Appendix E,
following [BS03,GGH13a]. We use the following optimizations:

1. Integer pzt: as in [CLT13] we use a single integer pzt instead of a vector pzt with n components,
as this is enough for Diffie-Hellman key exchange. Moreover the integer N can be generated as
the product of large enough prime integers, instead of being prime.

2. Known multiple of x0: we publish a multiple x′0 = q · x0 of x0, so that all intermediate encodings
can be reduced modulo x′0, instead of using a ladder of encodings of 0 at each level.3

3. Quadratic re-randomization: as in [CLT13] we only store a small subset of encodings which are
later combined pairwise to generate the full set of encodings. This implies that the randomization
of encodings becomes heuristic only. We describe a slightly more efficient variant.

5.1 Zero-Testing Element

As in [CLT13] we can use a single integer pzt instead of a vector with n components:

pzt =

n∑
i=1

hi · αi · p−1i mod N

3 Note that Lem. 2 can be adapted, based on the Leftover-Hash-Lemma over lattices.

18

where the hi’s are random β-bit integers, and the αi’s are generated as previously. Therefore we
obtain a single integer ω = pzt · c mod N , with

ω =
n∑
i=1

hi ·
((
ri +mi · g−1i mod pi

)
· βi +

αi ·
n∑

k=1, k 6=i

(
rk +mk · g−1k mod pk

)
·
u′k
pi
− a · αi ·

x0
pi

)
mod N

As before, if ‖r‖∞ < 2ρf we still have |ω| < x0 · 2−ν−λ−2. However the converse is no longer true:
we can have |ω| < x0 · 2−ν for an encoding of a non-zero vector m. This implies that two encodings
of different vectors can now extract to the same value. As in [CLT13], while it is actually easy to
generate such collisions using LLL, this does not seem to give an attack against the GDDH problem.

5.2 Optimization with a Known Multiple of x0

As explained in Section 3.3 one should not publish x0; however one can still publish a large enough
multiple of x0:

x′0 = q · x0

where q is a prime integer of size ηq; since x0 is of size γ bits, the size of x′0 is therefore at most γ+ηq
bits. Then all intermediate encodings can be first reduced modulo x′0, instead of using a ladder of
encodings of 0 at each level, which is simpler and more efficient. For encodings of intermediate level
k < κ, we can keep the encoding reduced modulo x′0 only.

Eventually we obtain at level κ an encoding c of size γ+ηq. In principle the zero-testing procedure
for an encoding c requires that 0 6 c < x0; therefore only at this stage do we use a ladder of level-κ
encodings of 0. Actually we show that it is not strictly necessary to ensure that 0 6 c < x0. Namely
from

c =
n∑
i=1

(
ri +mi · g−1i mod pi

)
· u′i − a · x0

one obtains the upper bound when mi = 0 for all i:

|a| 6 n · 2ρf · x0 + |c|
x0

6 n · 2ρf +
|c|
x0

which gives |a| 6 n ·2ρf + 1 when 0 6 c < x0. Therefore it is not necessary to ensure that 0 6 c < x0;
if we only require that c has at most γ + ρf bits, we get the similar bound:

|a| 6 3n · 2ρf

Therefore we must reduce the size of c by ηq − ρf bits. For this we use a ladder of level-κ encodings
of 0 of increasing size. We use encodings of only ρ bits of noise, and we are allowed to reach ρf bits
of noise, so we can work by increment of ρf − ρ bits. Therefore we need a ladder of

ne =

⌈
ηq − ρf
ρf − ρ

⌉
19

level-κ encodings of zero, of size γ + ρf + i · (ρf − ρ) for 0 6 i < ne. As explained in Section 3.4 we
can take ηq = 2η + λ, which gives:

ne =

⌈
2η + λ− ρf
ρf − ρ

⌉
From the parameter constraints in Section 2.2, with α = λ and β = 3λ we can take η = ρf + 10λ;
with ρ = λ and using ρf > 2 · κ · ρ we obtain:

ne 6

⌈
ρf + 21λ

ρf − λ

⌉
6

⌈
2κ+ 21

2κ− 1

⌉
6 9

for κ > 2. Therefore only a small number of encodings is needed for the ladder.

5.3 Improved Quadratic Re-randomization

To reduce the public parameters size, in [CLT13] only a small subset of low level encodings is stored
and then combined pairwise to generate the full public parameters; such optimization was originally
described in [GH11].

In the original CLT scheme, one only stores ∆ = b
√
nc level-0 encoding x

(0)
j and also ∆ level-1

encodings x
(1)
j of 0. Given a level-1 encoding c, one randomizes it using a random subset-sum of

pairwise products of the previous encodings:

c′ = c+

∆∑
i,j=1

αij · x(0)i · x
(1)
j mod x0 ,

where the αij ’s are random bits. As a further optimization, one can use as in [CMNT11] a sparse
vector αij , with small Hamming weight θ; for example one can take θ = 16.

In this paper we use a slightly faster variant; namely we compute c′ as:

c′ = c+

(
∆∑
i=1

αi · x(0)i

)
·

 ∆∑
j=1

α′j · x
(1)
j

 ,

where the αi’s and α′j ’s are random bits. Therefore we have replaced θ = 16 multiplications by
∆ ' 100 additions on average, and one multiplication, which is faster in practice.

After re-randomization the CRT components c′ mod pi are still upper-bounded in absolute value
by ` · 22(ρ+α) +∆2 · 2ρ+α 6 2n · 22(ρ+α). Therefore for level-κ encodings we obtain the bound on the
noise:

ρf = κ · (2ρ+ 2α+ log2 n+ 1) + ρ+ log2 `+ 1

which is slightly smaller than in Section 2.2.

5.4 Parameters and Timings

We have implemented a one-round (κ+ 1)-way Diffie-Hellman key exchange protocol with κ+ 1 = 7
users, in C++ using the GMP library [Gt14] to perform operations on large integers and fplll [ACPS]
for LLL. We refer to Appendix E for a description of the protocol. We provide our concrete parameters
and the resulting timings in Table 1, for security parameters ranging from 52 to 80 bits. As in

20

[CLT13], for a security level λ we expect that the best attack requires at least 2λ clock cycles. We
also provide in Table 2 a comparison with the initial CLT implementation [CLT13] and with the
implementation of GGHLite recently described in [ACLL14]; GGHLite is an improvement of GGH
proposed by Langlois, Stehlé and Steinfeld [LSS14].

The timings of Table 2 show that the implementation of our scheme improves upon the imple-
mentation in [CLT13], especially for the Setup phase, but is not as efficient as [ACLL14] at high
security level. The KeyGen phase of the multipartite Diffie-Hellman protocol requires only a few
seconds per user, but public parameter size is large, even with our optimizations.

Instantiation λ κ n η ∆ ρ γ = n · η pk size

Small 52 6 540 1679 23 52 0.9 · 106 27 MB
Medium 62 6 2085 1989 45 62 4.14 · 106 175 MB
Large 72 6 8250 2306 90 72 19.0 · 106 1.2 GB
Extra 80 6 25305 2619 159 85 66.3 · 106 6.1 GB

Setup Publish KeyGen

5.9 s 0.10 s 0.17 s
36 s 0.33 s 1.06 s
583 s 2.05 s 6.17 s
4528 s 7.8 s 23.9 s

Table 1. Parameters and timings to instantiate a one-round 7-way Diffie-Hellman key exchange protocol with κ = 6,
` = 2λ and α, β, ν = λ on a 16-core computer (Intel Xeon E7-8837 at 2.67GHz). Setup was run in parallel on the 16
cores, while the other steps ran on a single core. Publish and KeyGen timings are per party.

Setup Publish (pp) KeyGen (pp)

Instantiation λ κ time # cores time # cores time #cores

[CLT13] 52 6 7 s 16 0.18 s 1 0.20 s 1
[ACLL14] 52 6 187 s 16 1.59 s 16 0.38 s 16
Ours 52 6 5.9 s 16 0.10 s 1 0.17 s 1

[CLT13] 80 6 27295 s 16 17.8 s 1 20.2 s 1
[ACLL14] 80 6 2532 s 16 7.31 s 16 1.75 s 16
Ours 80 6 4528 s 16 7.8 s 1 23.9 s 1

Table 2. Comparison with timings reported in [CLT13] and [ACLL14]. Both [CLT13] experiments and ours were run
on Intel Xeon E7-8837 2.67Ghz and [ACLL14] experiments were run on Intel Xeon E5-2667 v2 3.30Ghz.

References

[ACLL14] Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie, and Adeline Langlois. The whole alphabet (and
then some) agree on a key in one round: making multilinear maps practical. IACR Cryptology ePrint
Archive, 2014:928, 2014.

[ACPS] M. Albrecht, D. Cadé, X. Pujol, and D. Stehlé. fplll-4.0, a floating-point LLL implementation. Available
at http://perso.ens-lyon.fr/damien.stehle.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary
Mathematics, 324:71–90, 2003.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against zeroizing attacks.
Cryptology ePrint Archive, Report 2014/930, 2014. http://eprint.iacr.org/.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
of the multilinear map over the integers. Cryptology ePrint Archive, Report 2014/906, 2014. http:

//eprint.iacr.org/. To appear at EUROCRYPT 2015.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the

integers. In Ran Canetti and Juan A. Garay, editors, CRYPTO, volume 8042 of LNCS, pages 476–493.
Springer, 2013.

21

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of two candidate fixes
of multilinear maps over the integers. Cryptology ePrint Archive, Report 2014/975, 2014. http:

//eprint.iacr.org/.
[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic

encryption over the integers with shorter public keys. In Phillip Rogaway, editor, CRYPTO, volume 6841
of LNCS, pages 487–504. Springer, 2011.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT, volume 7237 of LNCS, pages 502–519. Springer, 2012.

[Cop97] Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J.
Cryptology, 10(4):233–260, 1997.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of LNCS, pages 24–43. Springer,
2010.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT, volume 7881 of LNCS, pages 1–17. Springer,
2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, pages 40–49. IEEE
Computer Society, 2013.

[GGH14] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. IACR
Cryptology ePrint Archive, 2014:645, 2014. To appear at TCC 2015.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional encryption without
obfuscation. Cryptology ePrint Archive, Report 2014/666, 2014. http://eprint.iacr.org/.

[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In Kenneth
Paterson, editor, EUROCRYPT, volume 6632 of LNCS, pages 129–148. Springer, 2011.

[Gt14] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 6.0.0 edition, 2014. http://gmplib.org/.

[HSW13] Susan Hohenberger, Amit Sahai, and Brent Waters. Full domain hash from (leveled) multilinear maps
and identity-based aggregate signatures. In Ran Canetti and Juan A. Garay, editors, CRYPTO, pages
494–512. Springer, 2013.

[Lep15] Tancrède Lepoint. Proof-of-concept implementation of the ”new” multilinear maps over the integers,
2015. https://github.com/tlepoint/new-multilinear-maps.

[LS14] Hyung Tae Lee and Jae Hong Seo. Security analysis of multilinear maps over the integers. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO, volume 8616 of LNCS, pages 224–240. Springer, 2014.

[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear maps from
ideal lattices. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume 8441 of LNCS,
pages 239–256. Springer, 2014.

[NS99] Phong Q. Nguyen and Jacques Stern. The hardness of the hidden subset sum problem and its cryptographic
implications. In Michael J. Wiener, editor, CRYPTO ’99, volume 1666 of LNCS, pages 31–46. Springer,
1999.

[Pri51] G. Baley Price. Bounds for determinants with dominant principal diagonal. Proceedings of the American
Mathematical Society, 2(3):497–502, 1951.

[PS14] David Pointcheval and Olivier Sanders. Forward secure non-interactive key exchange. In Michel Abdalla
and Roberto De Prisco, editors, SCN, volume 8642 of LNCS, pages 21–39. Springer, 2014.

[Var75] James M. Varah. A lower bound for the smallest singular value of a matrix. Linear Algebra and its
Applications, 11(1):3–5, 1975.

A Graded Encoding Schemes

In [BS03], Boneh and Silverberg proposed a generalization of pairings called cryptographic multilinear
maps. A (symmetric) κ-multilinear map is a non-degenerate map e : Gκ → GT (where G and GT

are groups of prime order p, denoted additively, and g is a generator of G) such that, for all
a1, . . . , aκ ∈ Zp, e(a1 · g, . . . , aκ · g) = (a1 · · · aκ) · e(g, . . . , g). In [GGH13a], Garg, Gentry and Halevi

22

introduced a richer structure than cryptographic multilinear maps – as in [HSW13], we denote it
leveled multilinear maps – and proposed an approximation of these maps called graded encoding
schemes.

Definition 1 (Leveled Multilinear Map). A κ-leveled multilinear map is a set of bilinear
maps {ei,j : Gi × Gj → Gi+j | i, j ∈ [κ], i + j 6 κ} where each Gi is a group of prime order
p, denoted additively and generated by gi for all i ∈ [κ], and such that each map ei,j satisfies
ei,j(a · gi, b · gj) = (a · b) · gi+j for a, b ∈ Zp and i, j ∈ [κ] and i+ j 6 κ.

The integer κ is called the multilinearity level. The graded encoding schemes candidates are only
approximate leveled multilinear maps [GGH13a,CLT13]. The main difference is that encodings are
randomized (with some noise) instead of deterministic and one can only test whether an encoding
in Gκ encodes 0 or not. We recall the definition of graded encoding system from [GGH13a]:

Definition 2 (Graded Encoding System [GGH13a]). A κ-graded encoding system for a ring

R is a system of sets S = {S(α)
v ∈ {0, 1}∗ : v ∈ N, α ∈ R}, with the following properties:

1. For every v ∈ N, the sets {S(α)
v : α ∈ R} are disjoint.

2. There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈ R, every v ∈ N,

and every u1 ∈ S(a1)
v and u2 ∈ S(a2)

v , it holds that u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation × (on {0, 1}∗) such that for every α1, α2 ∈ R, every v1,

v2 with 0 6 v1 + v2 6 κ, and every u1 ∈ S(α1)
v1 and u2 ∈ S(α2)

v2 , it holds that u1 × u2 ∈ S(α1·α2)
v1+v2

where α1 · α2 is multiplication in R.

Definition 3 (Graded Encoding Schemes). A symmetric κ-graded encoding scheme G with
rerandomization and public sampling consists of the following (polynomial time) procedures G =
{instGen, samp, enc, reRand, neg, add,mult, isZero, ext}:

instGen(1λ, 1κ) : The randomized instance generation procedures takes as input the security parameter
λ, the multilinearity level κ, and outputs the public parameters (pp,pzt) where pp is a description
of a κ-graded encoding system as above, and pzt is a zero-test parameter;

samp(pp) : The randomized sampling procedure takes as input the public parameters pp and outputs

a “level-0” encoding u ∈ S(α)
0 for a nearly uniform α ∈ R;

enc(pp, i, u) : The (possibly randomized) encoding procedure takes as inputs the parameters pp, an

index i ∈ [κ] and a “level-0” encoding u ∈ S(α)
0 for some α ∈ R and outputs a “level-i” encoding

u′ ∈ S(α)
i ;

reRand(pp, i, u) : The randomized rerandomization procedures takes as inputs the parameters pp, an

index i ∈ [κ] and a “level-i” encoding u ∈ S(α)
i for some α ∈ R, and outputs another u′ ∈ Si(α)

such that, for any u1, u2 ∈ S(α)
i , the output distributions of reRand(pp, i, u1) and reRand(pp, i, u2)

are nearly the same;
neg(pp, u) The arithmetic negation is deterministic, takes as input the public parameters pp and a

“level-i” encoding u ∈ S(α)
i for some α in R and outputs a “level-i” encoding u′ ∈ S(−α)

i ;
add(pp, u1, u2) The arithmetic addition is deterministic, takes as input the public parameters pp

and “level-i” encodings u1 ∈ S(α1)
i and u2 ∈ S(α2)

i for some α1, α2 in R and outputs a “level-i”

encoding u′ ∈ S(α1+α2)
i ;

23

mult(pp, u1, u2) The arithmetic multiplication is deterministic, takes as input the public parameters

pp, a “level-i” encoding u1 ∈ S(α1)
i and a level-j encoding u2 ∈ S(α2)

j for some α1, α2 in R such

that i+ j 6 κ and outputs a “level-(i+ j)” encoding u′ ∈ S(α1·α2)
i+j ;

isZero(pp, u) The zero-testing procedure is deterministic, takes as input the public parameters pp

and a “level-κ” encoding u ∈ S(α)
κ and outputs 1 if α = 0 and 0 otherwise;

ext(pp,pzt, u) The extraction procedure is deterministic, takes as input the public parameters pp, the

zero-test parameter pzt and a “level-κ” encoding u ∈ S(α)
κ and outputs a λ-bit string s such that:

1. For any α ∈ R and u1, u2 ∈ S(α)
κ , ext(pp,pzt, u1) = ext(pp,pzt, u2);

2. The distribution {ext(pp,pzt, v) | α← R, v ∈ S(α)
κ } is nearly uniform over {0, 1}λ.

The graded encoding schemes proposed in [GGH13a,CLT13] consider slightly relaxed definitions
of isZero and ext, where isZero can output 1 for some non-zero encoding with negligible probability
and ext can extract to different outputs for encodings of the same ring element with negligible
probability.

Hardness assumption. In [GGH13a] is introduced an analogue of the multilinear decisional Diffie-
Hellman assumption (see [BS03]) for graded encoding schemes: the Graded Decisional Diffie-Hellman
assumption (GDDH).

Definition 4 (κ-GDDH). Let G denote a GES. For any security parameter λ ∈ N, the κ-
Graded Decisional Diffie-Hellman assumption is to distinguish between the following distributions
D0[(pp,pzt)] and D1[(pp,pzt)], where (pp,pzt)← G.instGen(1λ, 1κ):

D0[(pp,pzt)] =

(
{u′j}j∈[κ+1], γ

) ∣∣∣∣∣∣∣∣
∀j ∈ [κ+ 1], aj ← G.samp(pp),

uj ← G.enc(pp, 1, aj)
u′j ← G.reRand(pp, 1, uj)

γ ← G.ext(pp,pzt, aκ+1 ·
∏
j∈[κ] u

′
j)

and

D1[(pp,pzt)] =

(
{u′j}j∈[κ+1], γ

) ∣∣∣∣∣∣∣∣
∀j ∈ [κ+ 1], aj ← G.samp(pp),

uj ← G.enc(pp, 1, aj)
u′j ← G.reRand(pp, 1, uj)

γ ← {0, 1}λ

B Proof of Lemma 2

We have by definition of c′1:

c′1 = ĉ1 +

τ∑
j=1

bj · xj +

n+1∑
j=1

b′j ·Πj (25)

where ĉ1 is given as input of the reRand algorithm. We have:

ĉ1 =
n∑
i=1

(r̂i · gi +mi) · ui + r̂n+1 · x0 (26)

24

where we write ĉ1/z mod pi = r̂i · gi + mi, where |r̂i · gi + mi| 6 ρenc for all 1 6 i 6 n, where
ρenc = 2` · 22ρ+2α; since 0 6 ĉ1 < x0, we must also have |r̂n+1| 6 1 + n · ρenc. We obtain from (25):

c′1/z ≡ r̂i · gi +mi +
τ∑
j=1

bj · rij · gi +
n+1∑
j=1

b′j ·$ij · gi (mod pi)

Since the column vectors of the matrix X are randomly generated in the half-open parallelepiped
spanned by the columns of Π , we have |rij · gi| 6 3n · 2ρ+α for all i, j. Therefore the right-hand side
of the previous equation is upper bounded in absolute value by:

1 + n · ρenc + τ · 3n · 2ρ+α + 2n2 · 2µ+α+ρ 6 4n2 · 2µ+α+ρ

using µ = ρ+ α+ λ. Therefore under the condition:

µ+ α+ ρ+ λ 6 η

the right-hand side does not wrap modulo pi.
We define the function g : Zp1 × · · · × Zpn × Z→ Z with:

g(a1, . . . , an, an+1) =
n∑
i=1

ai · ui + an+1 · x0

where the CRT coefficients ui are defined by (9). We have that g a bijection; namely its inverse f is
defined as:

f(a) =
(

[a · z]p1 , . . . , [a · z]pn ,
(
a−

n∑
i=1

[a · z]pi · ui
)
/x0

)
.

Let a, b ∈ Z; if for all 1 6 i 6 n, the i-th coefficient ai of f(a) and the i-th coefficient bi of f(b) are
such that |ai + bi| < pi/2, we have:

f(a+ b) = f(a) + f(b) .

Since f is a bijection, we can work with the (n+ 1)-vector f(a) instead of a ∈ Z; moreover if the
CRT components are small enough, we can work with these vectors additively.

We can write from (26):

f(ĉ1) = (r̂1 · g1 +m1, . . . , r̂n · gn +mn, r̂n+1) = diag(g1, . . . , gn, 1) · r̂ +m

where r̂ = (r̂i)16i6n and m = (m1, . . . ,mn, 0). Since the CRT components do not wrap modulo pi,
Equation (25) can be rewritten

f(c′1) = f
(
ĉ1 +

τ∑
j=1

bj · xj +

n+1∑
j=1

b′j ·Πj

)
= m+ diag(g1, . . . , gn, 1) ·

(
r̂ +X · b+Π · b′

)
,

where b = (bi)i and b′ = (b′i)i. Now, using the notations introduced in Lemma 2 we can also write:

f(c′1) = m+ diag(g1, . . . , gn, 1) · r ,

25

which gives:

r = r̂ +X · b+Π · b′ .

The latter equation is the same equation as in [CLT13, Sec. 4.3], except that r has n+ 1 components
instead of n, because of the additional multiple of x0; the rest of the proof is therefore similar; it is
based on the Leftover-Hash-Lemma over lattices and some facts on diagonally dominant matrices
[CLT13, Sec. 4].

We first recall the Leftover-Hash-Lemma over lattices. Let L ⊂ Zn be a lattice of rank n of basis
B = (b1, . . . , bn). We denote by DB the distribution obtained by generating a random element in
the quotient Zn/L and taking its unique representative in the half-open parallelepiped generated by
the basis B. For any µ ∈ Z∗, we denote by µB the basis (µb1, . . . , µbn).

Lemma 4 (Leftover-Hash-Lemma over Lattices [CLT13]). Let L ⊂ Zn be a lattice of rank
n of basis B = (b1, . . . , bn). Let xi for 1 6 i 6 m be generated independently according to the
distribution DB. Set s1, . . . , sm ← {0, 1} and t1, . . . , tn ← Z∩ [0, 2µ). Let y =

∑m
i=1 sixi +

∑n
i=1 tibi

and y′ ← D2µB. Then the distributions (x1, . . . ,xm,y) and (x1, . . . ,xm,y
′) are ε-statistically close,

with ε = mn · 2−µ + 1/2
√
|detL|/2m.

Since at instance generation the columns of X are generated uniformly and independently in
the parallelepiped spanned by the columns of Π , Lemma 4 shows that the distribution of (pp, r) is
ε1-close to the distribution of (pp, r̂ +D2µΠ), with

ε1 = τ(n+ 1)2−µ + 1/2
√
| detΠ|/2τ .

Moreover it is proved in [CLT13] that D2µB is not significantly modified when a small vector
z ∈ Zn is added, if the operator norm of the corresponding matrix B−1 is upper-bounded.

Lemma 5 ([CLT13]). Let L ⊂ Zn be a full-rank lattice of basis B = (b1, . . . , bn), and let B ∈ Zn×n
be the matrix whose column vectors are the bi’s. For any z ∈ Zn, the distribution of z +D2µB is
ε-statistically close to that of D2µB, where ε = 2−µ · (‖z‖∞ · ‖B−1‖∞ + 1).

Using Lemma 5, we obtain that the distribution of (pp, r) is (ε1 + ε2)-close to that of (pp,D2µΠ) for

ε2 = 2−µ · (‖r̂‖∞ · ‖Π−1‖∞ + 1) .

We recall the following facts for diagonally dominant matrices [Var75,Pri51]. Given a matrix
B = (bij) ∈ Rn×n, we let Λi(B) =

∑
k 6=i |bik|. A matrix B = (bij) ∈ Rn×n is said to be diagonally

dominant if |bii| > Λi(B) for all i.

Fact 1 Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then the matrix B is invertible
and ‖B−1‖∞ 6 maxi=1,...,n (|bii| − Λi(B))−1 where ‖ · ‖∞ is the operator norm on n × n matrices
with respect to the `∞ norm on Rn.

Fact 2 Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then

n∏
i=1

(|bii| − Λi(B)) 6 | detB| 6
n∏
i=1

(|bii|+ Λi(B)) .

26

Using Fact 2 we obtain using |$ii| 6 (n+ 2) · 2ρ and ∆i(Π) 6 n · 2ρ for all i:

ε1 6 τ(n+ 1)2−µ + 2((n+1)(ρ+log2(3n))−τ)/2 .

Given the constraint τ > (n+ 2) · ρ+ 2λ, we obtain ε1 = negl(λ). Moreover using Fact 1, we obtain
‖Π−1‖∞ 6 2−ρ and therefore:

ε2 6 2−µ · ((1 + n · ρenc) · 2−α+1 · 2−ρ + 1) 6 2−µ · n · 3` · 22ρ+2α · 2−ρ−α+1 6 6`n · 2ρ+α−µ .

With µ = ρ+ α+ λ, we obtain ε2 = negl(λ). This proves Lemma 2.

C Generation of the Zero-Testing Matrix

For the construction of zero-testing parameters, it is necessary to generate, with sufficient entropy,
an invertible matrix H ∈ Zn×n such that the operator norm of both H and its inverse is suitably
bounded: ‖H‖∞ 6 2β and ‖H−1‖∞ 6 2β . The following approach to do so was described in [CLT13]:
simply choose H as a product of random matrices of the form:

HA =

(
Ibn/2c A

0 Idn/2e

)
.

and transposes of such matrices, with A of size bn/2c × dn/2e and coefficients in {−1, 0, 1}.
Indeed, since the matrix norm ‖M‖∞ is simply the maximum absolute row sum of M , both

‖HA‖∞ and ‖HT
A‖∞ are bounded by 1 + dn/2e, and the same holds for their inverses because

H−1A = H(−A). Therefore, if we generate H as a product H1 · · ·Hβ′ where each H i is randomly

chosen as either HA or HT
A and β′ 6 β/dlog2(1 + dn/2e)e, the required bounds on ‖H‖∞ and

‖H−1‖∞ hold:

‖H‖∞ 6
β′∏
i=1

‖H i‖∞ 6 (1 + dn/2e)β′ 6 2β,

and similarly for H−1.

However, it was pointed out by Lee and Seo [LS14] that the norms of matrices H generated
with this method is typically much smaller than the conservative upper bound by 2β . This may be
a security concern (it definitely was in the original CLT scheme, but not necessarily in ours: see
Section 4.3), and is mainly due to the fact that HA ·HA′ = H(A+A′), and thus the matrix norm
increases additively rather than multiplicatively in products that involve only matrices of the form
HA (and not their transposes). To alleviate this problem, Lee and Seo suggested to always choose
H i of the form HA when i is even and of the form HT

A when i is odd; they found that the resulting
distribution of H contains substantially larger matrices.

It is easy to improve the algorithm even further by not fixing the number β′ of matrices HA in
the product a priori: we can simply keep multiplying alternatingly by random matrices of the form
HA and HT

A until either the norm of the product or its inverse exceeds 2β/(1 + dn/2e), say. Since
we can always keep track of the inverse as we go, the overhead of this improvement is relatively
small, and although it is not trivial to bound the number of required iterations, we find that the
modified algorithm is only a few times slower than the one from [CLT13] in practice, and returns
matrices with much larger coefficients.

27

D Proof of Lemma 3

We consider a level-κ encoding c, with 0 6 c < x0, which we can write:

c =
n∑
i=1

(
ri +mi · g−1i mod pi

)
· u′i − a · x0 (27)

where

u′i =

(
gi · z−k ·

(
x0
pi

)−1
mod pi

)
· x0
pi

From (27), using 0 6 c < x0 and 0 6 u′i < x0 for all 1 6 i 6 n, we obtain:

|a| 6 1 + n · 2η

Consider the row vectors s, t ∈ Zn given by:

si =
(
ri +mi · g−1i mod pi

)
· βi mod N

ti = αi ·
n∑

k=1, k 6=i

(
rk +mk · g−1k mod pk

)
·
u′k
pi
− a · αi ·

x0
pi

for all i (where the mod operator denotes centered modular reduction, so that |x mod N | 6 |x| for
all x ∈ Z). Then, from (14) we obtain:

ωT = HT
(
s+ t

)T
mod N. (28)

In all cases, we have for all i, using N > 2γ+2η:

|ti| 6 2η−1
n∑

k=1, k 6=i

pk
2
·
|u′k|
pi

+ 2η−1|a| · x0
pi

6 (n− 1)2η+γ + 2γ · (1 + n · 2η) 6 2n2η+γ 6
n

2η−1
·N

and hence ‖t‖∞ 6 n2−η+1 ·N .
On the other hand, the size of s depends on whether m is the zero vector or not. Indeed, suppose

first that m = 0. For all i we then have:

|si| =
∣∣(ri mod pi) · βi mod N

∣∣ 6 |ri| · |βi| < 2ρf−η+2 ·N

and hence ‖s+ t‖∞ < 2ρf−η+3 ·N . Now, in view of (28), we obtain with ν = η − ρf − β − λ− 3:

‖ω‖∞ =
∥∥HT

(
s+ t

)T
mod N

∥∥
∞ 6

∥∥HT
(
s+ t

)T∥∥
∞ 6 ‖HT‖∞‖s+ t‖∞

< 2β+ρf−η+3 ·N = 2−ν−λ ·N

as required.
Conversely, suppose that m 6= 0, so that mi 6= 0 for at least one index i. Recall that

βi = αi · (u′i/pi) mod N.

In view of Lemma 6 below, we must have |βi| > N/(2pi), which gives:

2−η−1 ·N < |βi| 6 2−η+2 ·N.

28

Lemma 6. For any integers a, b,m such that |b| < m/2, gcd(a,m) = 1 and a 6= 0 does not divide
b, if x = b/a mod m, then |x| > m

2|a| .

Proof. Indeed, if we had |a| · |x| < m/2, then the congruence ax ≡ b (mod m) would actually be an
equality over Z, implying that a divides b: a contradiction. ut

Let:
fi = (g−1i mod pi) · βi mod N. (29)

We have:

fi =
(g−1i mod pi) · αi · u′i

pi
mod N

and since pi does not divide the numerator, Lemma 6 implies

|fi| > N/(2pi) > 2−η−1 ·N

Similarly, there exists |µ| < gi/2 such that gi · (g−1i mod pi) = 1 + µpi, and we can then write from
(29):

fi =
(1 + µpi) · βi

gi
mod N =

βi + µαiu
′
i

gi
mod N. (30)

If gi divided the numerator, we would thus get using N > 2γ+2η:

|fi| =
∣∣∣∣βi + µ · αi · u′i

gi

∣∣∣∣ 6 2−η−α+3 ·N + 2γ+η−2 6 2−η−1 ·N

which would contradict the previous bound. Therefore, Lemma 6 applies and ensures that

|fi| > N/(2gi) > 2−α−1 ·N.

Now, since mi 6= 0 and gi is prime, mi has an inverse m′i = m−1i mod gi in Zgi , and we can write:

si = (m′−1i mod gi)fi + riβi mod N.

If we define |µ′| < gi/2 such that mim
′
i = 1 + µ′gi, we obtain using (30):

m′isi ≡ (1 + µ′gi)fi +m′iriβi ≡ fi + µ′(βi + µαiu
′
i) +m′iriβi (mod N).

Therefore:
fi =

[
m′isi − (m′iri + µ′)βi − µµ′αiu′i

]
mod N,

and since modular reductions are centered, it follows that:

|fi| 6 2α|si|+ 2α+ρf+2−η ·N + 22α+η−1+γ

6 2α · (|si|+ 2ρf−η+2 ·N + 2α−η−1 ·N) 6 2α
(
|si|+ 23+ρf−η ·N

)
,

and as a result:
|si| > 2−α|fi| − 23+ρf−η ·N > 2−2α−1 ·N − 23+ρf−η ·N

and using ρf 6 η − 2α− 5, we get:
|si| > 2−2α−2 ·N.

29

It follows that ‖s‖∞ > 2−2α−2 ·N , and hence:

‖s+ t‖∞ > ‖s‖∞ − ‖t‖∞ > 2−2α−3 ·N.

Finally, using (28) again, we get:

‖s+ t‖∞ =
∥∥(HT)−1ωT mod N

∥∥
∞ 6

∥∥(HT)−1ωT
∥∥
∞ 6

∥∥(HT)−1
∥∥
∞ · ‖ω‖∞

‖ω‖∞ >
‖s+ t‖∞∥∥(HT)−1

∥∥
∞
> 2−2α−β−3 ·N > 2−ν+2 ·N

which concludes the proof.

E One-Round N -Way Diffie-Hellman Key Exchange Protocol

A straightforward application of multilinear maps is multipartite Diffie-Hellman key exchange,
with N = κ+ 1 users, where κ is the maximum level of the multilinear map scheme. It was first
described in [BS03], and was adapted to graded encoding schemes in [GGH13a]. As in [CLT13], our
scheme can be used to instantiate a one-round N -way Diffie-Hellman key exchange protocol in the
common reference string model, under the GDDH assumption, with N = κ+ 1 users. We recall the
construction from [CLT13].

Setup(1λ, 1N). Output (pp,pzt)← instGen(1λ, 1κ) as the public parameter, with κ = N − 1.

Publish(pp, i). Each party i samples a random ui ← samp(pp) as a secret value, and publishes as
the public value the corresponding level-1 encoding

u′i ← reRand(pp, 1, enc(pp, 1, ui)) .

KeyGen(pp,pzt, i, ui, {u′j}j 6=i). Each party i computes ũi = ui ·
∏
j 6=i u

′
j , and uses the extraction

routine to locally compute the key s← ext(pp,pzt, ũi).

The protocol is correct (i.e. the N parties generate the same shared key s with high probability)
because all parties get valid encodings of the same vector when using the constraints of Section 2.2.
The security of the protocol follows from the randomness property of the extraction procedure, and
the GDDH hardness assumption. The proof of the following theorem is the same as in [CLT13].

Theorem 3 (Th. 3 of [CLT13]). The protocol described above is a secure one-round N-way
Diffie-Hellman key exchange if the GDDH assumption holds for the underlying encoding scheme.

F Public Sampling Domain

The sampling procedure of graded encoding schemes (namely samp) has been defined as a procedure
outputting a nearly uniform (unknown) element in the domain R = Zg1 × · · · × Zgn in [CLT13].
However, some applications building upon graded encoding schemes might require to select elements
from the domain R (see e.g. [PS14, Sec. 4.4]). In [BWZ14, Sec. 4.3], a procedure to publicly encode
values up to blog2(g1 · · · gn)c bits was described for a CLT-based scheme. In this section, we show
that their technique can be applied to our new scheme.

30

First, we publish as part of our instance generation θ = blog2(g1 × · · · × gn)c + 1 elements
y0, . . . , yθ−1 such that

yj ≡ rij · gi + (2j mod gi) (mod pi) ,

for random rij ∈ (−2ρ, 2ρ) ∩ Z; the integers yj ’s are computed by CRT modulo x0.

Then, we define the procedure publicSamp(pp,m) which takes as input the public parameters
pp and an integer M ∈ Z, M < 2θ−1. Denote M = M0 · · ·Mθ−1 the binary decomposition of M .
Compute the level-0 encoding

c =
θ−1∑
i=0

Mi · yi .

As required, c ≡ (ri ·gi+mi) (mod pi) encodes the valuem = (mi)i = (M mod g1, . . . ,M mod gn) ∈
R, and we get |ri · gi +mi| 6 θ · 2ρ+α for all i.

G Preventing SubM and DLIN Attacks for GGH

In this section we show how to adapt our technique to the GGH scheme [GGH13a]. The goal is to
prevent attacks against base group problems such as SubM and DLIN, which are known to be easy
in GGH. However, a thorough security analysis of that GGH variant is beyond the scope of this
paper.

The GGH multilinear maps scheme. The construction from [GGH13a] works in the polynomial
ring R = Z[X]/(Xn + 1), where n is large enough to ensure security. One generates a secret short
ring element g ∈ R, generating a principal ideal I = 〈g〉 ⊂ R. One also generates an integer
parameter q and another random secret z ∈ R/qR. One encodes elements of the quotient ring R/I,
namely elements of the form e+ I for some e, as follows: a level-i encoding of the coset e+ I is an
element of the form uk = [c/zi]q, where c ∈ e+ I is short. Such encodings can be both added and
multiplied, as long as the norm of the numerators remain shorter than q; in particular the product
of κ encodings at level 1 gives an encoding at level κ. For such level-κ encodings one can then define
a zero-testing parameter

pzt = [hzκ/g]q

for some small h ∈ R. Then given a level-κ encoding u = [c/zκ]q one can compute:

ω = [pzt · u]q = [hc/g]q

We can write c = rg + e for some small r, e ∈ R, which gives:

ω ≡ h · (r + e · g−1) (mod q)

Therefore when u is an encoding of 0, i.e. when e = 0, we obtain ω = [h · r]q and therefore ω
is small. Otherwise when e 6= 0 we have that ω is not small with high probability. This gives a
zero-testing procedure.

31

Our GGH Variant. We show how to adapt our techique to GGH. Let N be a prime integer of
the same size as q, and let pzt ∈ R/NR. For zero-testing a level-κ encoding u, we compute:

ω = [pzt · u]N

where u is viewed as an element of R, instead of R/qR. As previously we must ensure that ω is
small when u is an encoding of 0. We show how to generate pzt and z to ensure this property.

Let u be a level-κ encoding, with u = [c/zκ]q, where c = rg + e. We can write over R:

u = [r + e · g−1]q · [g/zκ]q − k · q (31)

for some k ∈ R. We obtain:

ω ≡ pzt · u ≡ [r + e · g−1]q · [g/zκ]q · pzt − k · q · pzt (mod N) (32)

We wish to obtain a small ω when e = 0. For this we generate pzt and z such that both [g/zκ]q ·pzt
and q · pzt are small modulo N . We proceed as follows. We first generate a small h ∈ R, and we let:

pzt = q−1 · h mod N (33)

This ensures that q · pzt is small modulo N . We also generate a small s ∈ R, and we let z ∈ R/qR
such that:

[g/zκ]q · q−1 · h ≡ s (mod N) (34)

For this we let t ∈ R such that t ≡ q · s · h−1 (mod N), and it suffices to solve:

[g/zκ]q = t

Therefore we let over R/qR:
z = (g/t)1/κ

Eventually combining (32), (33) and (34) we obtain:

ω ≡ [r + e · g−1]q · s− k · h (mod N)

By construction both s and h are small; moreover r is small, and when e = 0, from (31) we have
that k is also small; therefore when e = 0 we obtain that ω is small; conversely when e 6= 0 we have
that ω is not small with high probability. Hence we have a zero-testing procedure.

32

