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Abstract
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1 Introduction

Program obfuscation, aiming to turn programs into “unintelligible” ones while preserving functionality,
has been a holy grail in cryptography for over a decade. Rather unfortunately, the most natural and
intuitively appealing notion of obfuscation, namely virtual-black-box (VBB) obfuscation [BGI+12], was
shown to have strong limitations [BGI+12, GK05, BCC+14]. Furthermore, except for very restricted
function classes, no candidate construction with any form of meaningful security was known.

This dramatically changed with recent breakthrough results. First, Garg, Gentry, Halevi, Raykova,
Sahai and Waters [GGH+13] demonstrated a candidate obfuscation algorithm for all circuits, and con-
jectured that it satisfies an apparently weak notion of indistinguishability obfuscation (IO) [BGI+12,
GR07], requiring only that the obfuscations of any two circuits of the same size and functionality are in-
distinguishable. Since then, a sequence of works, pioneered by Sahai and Waters [SW14], have demon-
strated that IO is not such a weak notion after all, leading to a plethora of applications and even resolving
long standing open problems. The number of cryptographic primitives that we do not know how to con-
struct from IO is small and dwindling fast.1

The tremendous power of IO also begets its reliance on strong and untested computational assump-
tions. Despite significant progress [PST14, GLSW14], all known IO constructions [GGH+13, PST14,
BR14, BGK+14, GLSW14, AB15, Zim15] are still based on the hardness of little-studied problems on
multi-linear maps [GGH12]. Thus, an outstanding question in the foundations of cryptography is:

Can we base indistinguishability obfuscation on strong cryptographic foundations?

1.1 This Work

In this work, we make progress in the above direction, showing how to construct indistinguishability
obfuscation from an apparently weaker primitive: public-key functional encryption. In a functional
encryption scheme [BCOP04, SW05, BSW12, O’N10], the owner of a master secret key MSK can
produce functional keys FSKf for functions f . Given such a functional key FSKf and an encryption of
an input x, one can compute f(x), but nothing more about x itself.

In the past few years, functional encryption schemes with different efficiency and security features
were constructed from various computational assumptions. One central measure of interest (in general
and in the specific context of this work) is the size of ciphertexts. Here the ideal requirement is that the
size of ciphertexts depends only on the underlying plaintext x, but this requirement may be relaxed in
several meaningful ways, such as allowing it to depend on the size of outputs, the number of generated
functional keys, or the size of the circuit computing the function.

Our main result is the following:

Theorem 1.1 (informal). Assuming the existence of a sub-exponentially secure public-key functional
encryption scheme for all circuits, where the ciphertext size is polynomial in the input-size and sub-
linear in the circuit-size, there exists indistinguishability obfuscation for all circuits.

Furthermore, in the above theorem, it suffices to start from a scheme that supports only a single-key
and satisfies a mild selective-security indistinguishability-based guarantee. The underlying assumption
can in fact be further relaxed to require only functional encryption for NC1, assuming (sub-exponential)
puncturable pseudo-random functions in NC1, or fully homomorphic encryption with decryption in NC1.

Interpretation. As far as we know, functional encryption schemes satisfying the ciphertext compactness
required in Theorem 1.1 are only known based on (sub-exponential) IO [GGH+13, Wat14], and thus our
result establishes the equivalence of these two primitives (up to some sub-exponential loss). The question

1Strictly speaking, we need the assumption that IO exists, plus a very mild (and minimal) complexity-theoretic assumption
that NP * RP [KMN+14].
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of basing IO on more standard assumptions still stands, but is now reduced to improving the state of the
art in functional encryption.

It is rather tempting to be pessimistic and to interpret our result as a lower-bound showing that im-
proving functional encryption based on standard assumptions may be very hard, or perhaps straight out
impossible. Our take on the result is quite optimistic. Indeed, in the past few years, we have seen a re-
markable progress in the area of functional encryption [SS10, GVW12, GVW13, GGHZ14]. The state
of the art scheme based on a standard assumption is that of Goldwasser, Kalai, Popa, Vaikuntanathan and
Zeldovich [GKP+12] relying on the sub-exponential learning with errors assumption. The construction
achieves ciphertext size that only grows polynomially with the circuit output size and depth; thus, for
circuits with say a single output bit, ciphertexts may indeed be sub-linear in circuit size, but this will
not be the case for circuits with long outputs. Interestingly, the latter construction achieves a strong
simulation-based security guarantee, under which sub-linear growth in the output size is actually im-
possible [AGVW13, GKP+12]. Reducing the dependence on the output (under an indistinguishability-
based notion) has been a tantalizing problem. Now this question becomes of central importance in the
quest to achieve indistinguishability obfuscation.

In a recent result, Gorbunov, Vaikuntanathan and Wee [GVW15] showed how to construct predicate
encryption schemes for all circuits (with a-priori bounded depth) from the sub-exponential learning with
errors (LWE) assumption. In their scheme, the ciphertext size is polynomial in the input length and the
depth of the circuit, and otherwise independent of the circuit size and output size. A predicate encryption
scheme can be interpreted as a functional encryption scheme with a “weak attribute hiding” property (see
[KSW13, AFV11, GVW15] for more details). Strengthening this to “full attribute hiding” will give us a
functional encryption scheme that satisfies the requirements of Theorem 1.1, and is yet another frontier
in achieving indistinguishability obfuscation from LWE.

1.2 Main Ideas

A salient feature present in obfuscation and absent in functional encryption is function-hiding. Indeed,
the standard notion of functional encryption does not guarantee that functional keys do not leak infor-
mation regarding the underlying function. Moreover, it seems that any meaningful notion of public-key
functional encryption that is also function-hiding would already imply some sort of obfuscation.

As observed in [GKP+12], and generalized in [BS15], in private-key functional encryption schemes,
it is always possible to harness the existing message-hiding to also guarantee function-hiding. This
can be interpreted as a relaxed form of interactive obfuscation termed in [GKP+12] as token based
obfuscation. Here the function-hiding functional-key FSKf is seen as an obfuscation of f . In order to
evaluate the obfuscation on an input x, the evaluator first needs to request a corresponding token, which
is just an encryption of x. The major drawback of course is that encryption is a private-key operation,
meaning that tokens cannot be generated publicly and require interaction with the secret-key owner.

While the above solution may still be far in spirit from the desired notion of obfuscation, it does
seem to have a certain gain. Intuitively, and thinking for a moment in terms of ideal obfuscation, it seems
that rather than obfuscating an entire circuit f , we can first derive a function-hiding FSKf (namely, a
token-based obfuscation), and then only obfuscate the encryption algorithm Enc(·) (namely, the token
generator). Indeed, we may expect Enc(·) to be less complex, or at least smaller, than the circuit f we
started with; in fact, ideally it should depend only on the size of the input x and nothing else.

Our approach attempts to exploit exactly this gain, and can be divided into two high-level steps:

1. IO from much less IO. We first show that the above intuition can be fulfilled, not only with ideal
obfuscation, but also in the context of indistinguishability obfuscation. Concretely, starting from
functional encryption, we obfuscate, under the IO notion, any function f assuming IO only for a
restricted class of smaller circuits that simply generate encrypted inputs.
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2. Recurse: IO from slightly less IO. In the second step, with the goal of obfuscating the latter input
encryption circuit, we show how to recursively reduce IO for circuits that encrypt n input bits to
functional encryption and IO for circuits that encrypt only a smaller number of n − 1 bits. At
the base of this recursion, we only need to obfuscate circuits with a single input bit, which can be
done trivially by writing only their respective outputs.

Materializing this high-level strategy encounters several difficulties, which eventually lead to our re-
quirement on the effiency of encryption, to the sub-exponential security requirement, as well as the fact
the need for public-key functional encryption (rather than private-key). We next go in more detail into
the above two steps and overview these challenges and the way they are dealt with.

Step 1: IO from much less IO. A natural first attempt to achieve our goal is to mimic the ideal solution.
Namely, starting from a (private-key) function-hiding functional encryption scheme, to obfuscate any
f , generate the functional key FSKf and add an obfuscation iO(Enc(MPK, ·)) of the corresponding
encryption circuit. Here encryption is derandomized in the standard way by applying a pseudo-random
function (PRF) to the inputs. While this solution would have worked with an ideal notion of obfuscation
(e.g. auxiliary-input VBB), it is not clear how to prove its security based solely on IO. In fact, using
similar ideas to those in the impossibility result of Barak et al. [BGI+12], one can show that we cannot
hope to rely any private-key (function-hiding) scheme, since there exists such schemes where access to
an encryption circuit may lead to a devastating attack.

Our solution will, in fact, rely on public-key functional encryption. Here function-hiding is not be
guaranteed; rather, we shall enforce it explicitly in our construction using similar techniques to those
used in the private-key setting [BS15] going back to the classic two-key paradigm [FS89, NY90].

Concretely, to obfuscate f , our obfuscation will once again consist of a functional key FSKf∗ , this
time to an augmented function f∗, and an obfuscation iO(Enc∗) to an augmented encryption algorithm
Enc∗. The circuit f∗ will consist of two symmetric-key encryptions CT0,CT1, under two independently
chosen symmetric keys SK0,SK1, where in the real world both ciphertexts encrypt f . The function f∗

expects as input, not only an input x for f , but also a symmetric SKb, and decrypts the corresponding
ciphertext CTb, and applies the decrypted function to the input x. Accordingly, the encryption algorithm
Enc∗, given input x, will generate a (public-key) encryption of x as well as SKb, where in the real world
b will always be set to say 0.

Proving that the above construction is secure can be decoupled into two main ideas that go back to
previous works. The first comes from the work of Brakerski and Segev [BS15]. There the adversary,
whose goal is to distinguish between a functional key corresponding to f0 to one corresponding to a
functionally-equivalent f1, does not ever obtain a circuit that computes the above encryptions. Rather
it only views the outputs of this circuit. Let us, in fact, think about a simple case where the distin-
guisher only obtains a single encryption Enc∗(x) := Enc(MPK, (x,SK0)) of some pre-selected input
x. In this setting, we can employ a straight forward hybrid argument to show that the functional keys
(FSKf∗0 ,FSKf∗1 ) corresponding to f0 and f1 are indistinguishable. Indeed, relying on the symmetric-key
guarantee we can change CT1 to encrypt f1, and then relying on the FE guarantee we change Enc∗(x)
to encrypt SK1 instead of SK0, indeed we know that f0(x) = f1(x). Then, we can symmetrically switch
the other cipher to encrypt f1 and switch the keys again.

The above argument would even hold had the functional encryption scheme been a symmetric-key
one. However, going back to reality, we have to deal with a setting where the adversary does not get
a single (or a polynomial) number of encryptions, but rather has the actual circuit for generating any
encryption. Can we still employ the previous argument? It turns out that, at least if we use public-key
functional encryption, the answer is yes.

Concretely, it would suffice to show that we can change the circuit Enc∗(x) to freely switch between
encrypting SK0 to encrypting SK1 for all inputs simultaneously. Here comes into play another idea that
has been used in several recent works and formalized by Canetti, Lin, Tessaro, and Vaikuntanthan as
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probabilistic IO. They show that given two public samplers C0(x; r), C1(x; r) such that for any input
x C0(x) and C1(x) are computationally indistinguishable, the circuits can be derandomized using a
puncturable PRF and obfuscated so that their IO obfuscations are indistinguishable. In our setting, we
simply apply this argument to the circuits Cb(x) := Enc∗(x,SKb), and make sure to derandomize it with
a puncturable PRF. One restriction inherited from this argument is that it only works assuming that the
underlying IO and puncturable PRF are both sub-exponentially secure. Also, for the argument to hold
indistinguishability is required even given the public circuits, which is the reason for our reliance on
public-key functional encryption. We do not know whether the above solution (or any solution) can be
based on general private-key functional encryption. (It does seem that a certain notion of a puncturable
private-key scheme would suffice, but at this point do not know how to achieve this notion, without
relying on public-key schemes.)

Step 2: IO from slightly less IO. We have reduced the complexity of the circuit to be obfuscated from
that of f to that of Enc∗, but how do we obfuscate Enc∗? Here using a similar approach to that above,
we show how to reduce the obfuscation of Enc∗ that deals with n bit inputs, to an obfuscation of Enc∗n−1

that only deals with n − 1 input bits. Concretely, we now think of a function f∗n that expects an input
x ∈ {0, 1}n−1 and outputs two encryptions Enc∗(x0),Enc∗(x1). Accordingly, we publish FSKf∗n and
of Enc∗n−1. This process is than performed recursively, at each level sampling a new instance of the
functional encryption scheme as well of the symmetric key encryption, until the last step where Enc∗1
simply consists of two hardwired encryption.

Proving that the obfuscation of Enc∗i is IO assuming that the obfuscation of Enc∗i−1 is IO is done
using a similar argument to the one used in the first step. The exponential loss due to the use of proba-
bilistic IO accumulates recursively: roughly, the indistinguishability gap δi for level i is at most 2i ·δi−1,
requiring that all underlying cryptographic primitives are roughly 2−n

2
-secure.

A Recap. Unravelling the recursion, an obfuscation of f eventually consists of n functional keys
FSK1, . . . ,FSKn as well as a single initial pair of encryptions of 0 and 1. The evaluator gradually con-
structs an encryption of its input x, where at step i it chooses the encryption of x1 . . . xi−1xi between
the two encryptions of x1 . . . xi−10 and x1 . . . xi−11 produced by the previous function decryption step.
Then the next key FSKi is used to obtain the next two encryptions. Eventually, having constructed the
encryption of x, decrypts using FSKn and obtains the actual function value f(x).

Crucially, for this recursion to be efficient and not result in an obfuscation of exponential size,
we must require that encrypting is indeed simple enough. Indeed, as long as it only depends on the
underlying plaintext, throughout we will have the invariant that the functions Enc∗i that we recursively
obfuscate are always bounded by a fixed polynomial in the total input size n and the security parameter,
and accordingly so do the functions f∗i for which keys are derived (except for the last one which depends
on the size of the function f we’ve started from). In the body, we show that we may in fact allow the
complexity of encryption to depend also on the circuit size, as long as this dependence is only sub-linear.

Organization

In Section 2, we give the definitions of the cryptographic primitives used throughout the work, including
functional encryption. In Section 3, we describe the transformation from public-key functional encryp-
tion to indistinguishability obfuscation and analyze it.

2 Definitions

The cryptographic definitions in the paper follow the convention of modeling security against non-
uniform adversaries. An efficient adversaryA is modeled as a sequence of circuitsA = {Aλ}λ∈N, such
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that each circuit Aλ is of polynomial size λO(1) with λO(1) input and output bits. We often omit the
subscript λ when it is clear from the context.

2.1 Public-Key Functional Encryption

We recall the definition of public-key functional encryption (FE) with selective indistinguishability-
based security [BSW12, O’N10].

A public-key functional encryption (FE) scheme FE, for a function class F (represented by boolean cir-
cuits) and message space {0, 1}∗, consists of four PPT algorithms (FE.Setup, FE.Gen, FE.Enc, FE.Dec)
with the following syntax:

• FE.Setup(1λ): Takes as input a security parameter λ in unary and outputs a (master) public key
and a secret key (MPK,MSK).

• FE.Gen(MSK, f): Takes as input a secret key MSK, a function f ∈ F and outputs a functional
key FSKf .

• FE.Enc(MPK,m): Takes as input a public key MPK, a message m ∈ {0, 1}∗ and outputs an
encryption of m. We shall sometimes address the randomness r used in encryption explicitly,
which we denote by FE.Enc(MPK,m; r).

• FE.Dec(FSKf ,CT): Takes as input a functional key FSKf , a ciphertext CT and outputs m̂.

We next the define the required correctness and security properties.

Definition 2.1 (Selectively-secure public-key FE). A tuple of PPT algorithms FE = (FE.Setup, FE.Gen,
FE.Enc, FE.Dec) is a selectively-secure public-key functional encryption scheme, for function class F ,
and message space {0, 1}∗, if it satisfies:

1. Correctness: for every λ, n ∈ N, message m ∈ {0, 1}n, and function f ∈ F , with domain
{0, 1}n,

Pr

f(m)← FE.Dec(FSKf ,CT)

∣∣∣∣∣∣
(MPK,MSK)← FE.Setup(1λ)
FSKf ← FE.Gen(MSK, f)
CT← FE.Enc(MPK,m)

 = 1 .

2. Selective-security: for any polysize adversaryA, there exists a negligible function µ(λ) such that
for any λ ∈ N, it holds that

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),
where for each b ∈ {0, 1} and λ ∈ N the experiment ExptFEA (1λ, b), modeled as a game between
the challenger and the adversary A, is defined as follows:

(a) The adversary submits the challenge message-pair m0,m1 ∈ {0, 1}n to the challenger.

(b) The challenger executes FE.Setup(1λ) to obtain (MPK,MSK). It then executes FE.Enc(MPK,mb)
to obtain CT. The challenger sends (MPK,CT) to the adversary.

(c) The adversary submits function queries to the challenger. For any submitted function query
f ∈ F defined over {0, 1}n, if f(m0) = f(m1), the challenger generates and sends
FSKf ← FE.Gen(MSK, f). In any other case, the challenger aborts.

(d) The output of the experiment is the output of A.
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We further say that FE is δ-secure, for some concrete negligible function δ(·), if for all polysize
adversaries the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

Relaxation: single key schemes with sub-linear circuit dependence. In this paper, we can further
relax the above definition in two ways:

1. Single-key release: in the above definition, the adversary may make any polynomial number of
functional queries {fi}. It will suffice that security holds with respect to adversaries that only
perform a single query f .

2. Sub-linear output dependence: in the above definition, the running time of the encryption algo-
rithm (and ciphertext size) is polynomial in the plaintext size n and the security parameter λ. We
can, in fact, allow encryption time (and ciphertext size) to grow sub-linearly in the circuit size
of functions. We shall say that encryption is (1 − ε)-compact if encryption time is bounded by
s1−ε · poly(n, λ) where s = max

f∈Fn
|f |, Fn ⊆ F is the subset of functions defined on {0, 1}n, and

poly is any fixed polynomial.

2.2 Indistinguishability Obfuscation

We define indistinguishability obfuscation (IO) with respect to a give class of circuits. The definition is
formulated as in [BGI+12].

Definition 2.2 (Indistinguishability obfuscation). A PPT algorithm iO is said to be an indistinguisha-
bility obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C and security parameter λ,

Pr
iO

[
∀x : iO(C, 1λ)(x) = C(x)

]
= 1 .

2. Indistinguishability: for any polysize distinguisherD there exists a negligible function µ(·), such
that for any two circuits C0, C1 ∈ C that compute the same function and are of the same size:∣∣∣Pr[D(iO(C0, 1

λ)) = 1]− Pr[D(iO(C1, 1
λ)) = 1]

∣∣∣ ≤ µ(λ) ,
where the probability is over the coins of D and iO.

We further say that iO is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.3 Puncturable Pseudorandom Functions

We consider a simple case of the puncturable pseudo-random functions (PRFs) where any PRF may
be punctured at a single point. The definition is formulated as in [SW14], and is satisfied by the GGM
[GGM86] PRF [BW13, KPTZ13, BGI14].

Definition 2.3 (Puncturable PRFs). Let n, k be polynomially bounded length functions. An efficiently
computable family of functions

PRF =
{
PRFK:{0, 1}∗ → {0, 1}λ

∣∣∣ K ∈ {0, 1}k(λ), λ ∈ N
}

,

associated with an efficient (probabilistic) key sampler GenPRF , is a puncturable PRF if there exists a
poly-time puncturing algorithm Punc that takes as input a key K, and a point x∗, and outputs a punctured
key K{x∗}, so that the following conditions are satisfied:
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1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}∗,

Pr
K←GenPRF (1λ)

[
∀x 6= x∗ : PRFK(x) = PRFK{x∗}(x)

∣∣ K{x∗} = Punc(K, x∗)
]
= 1 .

2. Indistinguishability at punctured points: for any polysize distinguisher D there exists a negli-
gible function µ(·), such that for all λ ∈ N, and any x∗ ∈ {0, 1}∗,

|Pr[D(x∗,K{x∗},PRFK(x∗)) = 1]− Pr[D(x∗,K{x∗}, u) = 1]| ≤ µ(λ) ,

where K← GenPRF (1
λ),K{x∗} = Punc(K, x∗), and u← {0, 1}λ.

We further say that PRF is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.4 Symmetric Encryption

A symmetric encryption scheme Sym consists of a tuple of two PPT algorithms (Sym.Enc,Sym.Dec).
The encryption algorithm takes as input a symmetric key SK ∈ {0, 1}λ, where λ is the security parameter
and a message m ∈ {0, 1}∗ of polynomial size in the security parameter, and outputs is a ciphertext CT.
The decryption algorithm takes as input (SK,CT), and outputs the decrypted message m. For this work
we only require one-time security.

Definition 2.4 (One-Time Symmetric Encryption). A pair of PPT algorithms (Sym.Enc,Sym.Dec) is a
one-time symmetric encryption scheme for message space {0, 1}∗ if it satisfies:

1. Correctness: For every security parameter λ and message m ∈ {0, 1}∗,

Pr

[
Sym.Dec(SK,CT) = m

∣∣∣∣ SK← {0, 1}λ
CT← Sym.Enc(SK,m)

]
= 1 .

2. Indistinguishability: for any polysize distinguisherD there exists a negligible function µ(·), such
that for all λ ∈ N, and any equal size messages m0,m1,

|Pr[D(Sym.Enc(SK,m0)) = 1]− Pr[D(Sym.Enc(SK,m1)) = 1]| ≤ µ(λ) ,

where SK← {0, 1}λ.

We further say that Sym is δ-secure, for some concrete negligible function δ(·), if for all polysize
distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

3 The Transformation

In this section, we describe the transformation and analyze it.

Ingredients. We rely on the following primitives:

• A 2−λ̃
ε
-secure public-key functional encryption scheme FE for P/poly, for a single key (possibly

with sub-linear ciphertext dependence on circuit size).

• A 2−λ̃
ε
-secure one-time symmetric encryption scheme Sym,

• A 2−λ̃
ε
-secure puncturable pseudo-random function family PRF .
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where λ̃ is the security parameter and ε < 1.

The obfuscator iO. Given a circuit C : {0, 1}n → {0, 1} and security parameter λ̃, the obfuscator
iO(C, 1λ), computes a new security parameter λ̃ = ω((n2 + log λ)1/ε), and invokes a recursive obfus-
cation procedure rO.Obf(n,C, 1λ̃). In general, the recursive obfuscation procedure rO.Obf(i, Ci, 1λ̃)
extends obfuscation for circuits with i − 1 bits to obfuscation for circuits with i bits. To do this it gen-
erates an obfuscation of an encryption circuit Ei that takes a prefix xi−1 ∈ {0, 1}i−1 and generates two
encyptions of each possible continuatoin x0 or x1. The procedure is given in Figure 1. A corresponding
recursive evaluation procedure rO.Eval is described right after.

rO.Obf(i, Ci, 1λ̃)

Input: An input length i ∈ N, a circuit Ci : {0, 1}i → {0, 1}∗, and security parameter λ̃.

1. If i = 1, output (Ci(0), Ci(1)).

2. Otherwise, generate:

• Master FE keys (MPKi,MSKi)← FE.Setup(1λ̃).

• Symmetric encryption keys (SK0
i ,SK

1
i )← {0, 1}λ̃ × {0, 1}λ̃.

• Symmetric encryption (CT0
i ,CT

1
i )← Sym.Enc(SK0

i , Ci)× Sym.Enc(SK1
i , Ci).

• A circuit fi defined for (xi,SK, β) ∈ {0, 1}i × {0, 1}λ̃ × {0, 1} by

fi(xi,SK, β) = U(Sym.Dec(SK,CTβi ),xi) ,

where U(·, ·) is the universal circuit.

• A Functional secret key FSKi ← FE.Gen(MSK, fi).

• Seed Ki ← GenPRF (1
λ̃) for a puncturable pseudo random function.

• A circuit E0
i−1 defined for any xi−1 ∈ {0, 1}i−1 by

E0
i−1(xi−1) =

{
FE.Enc(MPKi, ((xi−1, xi),SK

0
i , 0);PRFKi

(xi−1, xi))
}
xi∈{0,1}

,

padded to some size `(λ̃) for some polynomial `(·) determined in the analysis.

• An obfuscation
Ẽi−1 = rO.Obf(i− 1,E0

i−1, 1
λ̃) .

3. Output Ẽi := (Ẽi−1,FSKi).

Figure 1: The recursive obfuscation procedure.

Theorem 3.1. iO is an indistinguishability obfuscator for P/poly.

Functionality. The evaluation of the obfuscated iO(C, 1λ) = Ẽn on input x ∈ {0, 1}n is done by
invoking the recursive evaluation procedure rO.Eval(n, Ẽn,x). This procedure gradually constructs an
encryption FCTn of x. At step i, given encryptions (FCT0

i ,FCT
1
i ) of (xi−1, 0) and (xi−1, 1) it chooses

FCTxii and decrypts with FSKi to compute (FCT0
i+1,FCT

1
i+1) or C(xn) in the very last step. The

procedure is given in Figure 2.
Functionality follows readily by the correctness of the functional encryption scheme FE and the

symmetric encryption scheme Sym. Indeed, each FCTxii is an encryption of xi, the ith prefix of x; in
particular, FCTxnn encrypts x = xn. Thus, the last decryption operation results in C(x).
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rO.Eval(i, Ẽi,xi)

Input: An input length i ∈ N, an obfuscation Ẽi = (Ẽi−1,FSKi), and prefix xi ∈ {0, 1}i.

1. If i = 1, parse Ẽ1 = (FCT0
1,FCT

1
1), and output FCTx1

1 .

2. Otherwise, compute (FCT0
i ,FCT

1
i ) = rO.Eval(Ẽi−1,xi−1), where xi−1 are the first i− 1 bits of xi.

3. Output FE.Dec(FSKi,FCTxi
i ).

Figure 2: The recursive evaluation procedure.

Efficiency. For simplicity, let us first assume that the encryption time of the underlying FE scheme
is completely independent of the circuit or output size of functions. In Appendix A, we show how to
extend the analysis to the case of sub-linear dependence on the circuit size.

Note that the running time of each invocation of rO.Obf(i, Ci, 1λ̃) is bounded by some polynomial
poly(|Ci|, |E0

i |, λ, n) plus the running time of the recursive call to rO.Obf(i− 1, · · · ) (and poly is fixed
independently of i). Second, note that the obfuscated circuit Ci is C when i = n, and E0

i for any
i ∈ [n − 1]. It is left to see that the maximal size of any circuit E0

i , maxi |E0
i | is bounded by some

fixed polynomial poly(n, λ). Indeed, each such circuit computes two encryptions of i+ λ+ 1 bits and
a pseudo-random function to derive randomness for this operation. Here we invoke the assumption that
the size of the encryption circuit only depends on the size of the plaintext and the security parameter
(and not say on the number of keys in the system, or output length of functional keys). Thus, overall the
time to obfuscate (and size of the resuting obfuscation) is bounded by a fixed polynomial poly(|C|, λ)
as required.

3.1 Security Analysis

Let s(·), n(·) be any two polynomially-bounded functions and D = {Dλ}λ∈N be any poly-size distin-
guisher that works on obfuscations iO(C, 1λ) for any circuit C of size s(λ) defined on {0, 1}n(λ).

Our goal is to show that

δiO(λ) := max
C0,C1

∣∣∣Pr [D(iO(C0, 1
λ)) = 1

]
− Pr

[
D(iO(C1, 1

λ)) = 1
] ∣∣∣ =

max
C0,C1

∣∣∣Pr [D(rO.Obf(n,C0, 1
λ̃)) = 1

]
− Pr

[
D(rO.Obf(n,C1, 1

λ̃)) = 1
] ∣∣∣ ≤ 2−ω(log λ) ,

where C0 and C1 are any two circuits defined on {0, 1}n(λ) of the same functionality and size s(λ).

For every every λ ∈ N, define δn(λ) := δiO(λ) and for 1 ≤ i < n(λ), define

δi := max
C0,C1,z

∣∣∣Pr [D(rO.Obf(i, C0, 1
λ̃), z) = 1

]
− Pr

[
D(rO.Obf(i, C1, 1

λ̃), z) = 1
]∣∣∣ ,

where C0 and C1 are any two circuits defined on {0, 1}i of the same functionality and size `(λ̃).

Proposition 3.1. δ1 = 0 and for any i ∈ {2, . . . , n(λ)}, δi ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)).
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Before proving the proposition, note that it concludes the security analysis since it implies

δiO(λ) = δn ≤

2n−1 ·O(δn−1 + 2−Ω(λ̃ε)) ≤

2n−1 ·O(2−Ω(λ̃ε)) + 2n−1 · 2n−2 ·O(δn−2 + 2−Ω(λ̃ε)) ≤
... n∑

i=1

i∏
j=1

2n−j

 ·O(2−Ω(λ̃ε)) ≤

O(n · 2n2/2) ·O(2−Ω(λ̃ε)) ≤

O(n · 2n2/2) ·O(2−ω(n2+log λ)) =

2−ω(log λ) .

Proof of Proposition 3.1. First, to see that δ1 = 0, note that for any C defined on {0, 1},

rO.Obf(1, C, 1λ̃) = (C(0), C(1))

by definition, and thus for any two C0, C1 with the same functionality

rO.Obf(1, C0, 1
λ̃) ≡ rO.Obf(1, C1, 1

λ̃) .

We now prove the main part of the proposition. Fix i ∈ {2, . . . , n(λ)}, and letC0, C1 be any two circuits
defined on {0, 1}i of eqaul size `(λ̃) and fix any auxiliary z. Our goal is to show that∣∣∣Pr [D(rO.Obf(i, C0, 1

λ̃), z) = 1
]
− Pr

[
D(rO.Obf(i, C1, 1

λ̃), z) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1+2−Ω(λ̃ε)) .

Recall that
rO.Obf(i, Cb, 1λ̃) = Ẽi−1 = rO.Obf(i− 1,E0

i−1, 1
λ̃),FSKi ,

where E0
i−1 is a circuit that has (MPKi, SK

0
i ,Ki) hardwired, and which on input xi−1 ∈ {0, 1}i−1,

computes two encryptions{
FE.Enc(MPKi, ((xi−1, xi), SK

0
i , 0);PRFKi(xi−1, xi))

}
xi∈{0,1}

,

and FSKi is a functional decryption that has two hardwired syemmetric encryptions CT0
i and CT1

i both
of the circuit Cb; FSKi corresponds to the function that decrypts according to the key specified in the
plaintext.

For every three bits β, γ0, γ1 ∈ {0, 1}, we consider a hybrid experimentHγ0,γ1β where

• Ẽi−1 is an obfuscation of Eβi−1 that encrypts (SKβi , β), rather than always encrypting (SK0
i , 0).

The circuit is independent of SK1−β
i .

• CT0
i encrypts Cγ0 and CT1

i encrypts Cγ1 , and it may be that γ0 6= γ1.

Note thatH0,0
0 andH1,1

0 exactly correspond to obfuscating either C0 or C1. We show that∣∣∣Pr [D(H0,0
0 ) = 1

]
− Pr

[
D(H0,1

0 ) = 1
]∣∣∣ ≤ 2−Ω(λ̃ε) ,∣∣∣Pr [D(H0,1

0 ) = 1
]
− Pr

[
D(H0,1

1 ) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) ,∣∣∣Pr [D(H0,1

1 ) = 1
]
− Pr

[
D(H1,1

1 ) = 1
]∣∣∣ ≤ 2−Ω(λ̃ε) ,∣∣∣Pr [D(H1,1

1 ) = 1
]
− Pr

[
D(H1,1

0 ) = 1
]∣∣∣ ≤ 2i−1 ·O(δi−1 + 2−Ω(λ̃ε)) .
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In the first and third inequalities, we simply change the symmetrically encrypted plaintext in some
CTbi where only the key SK1−b

i is present. Thus the inequalities follow from the (one-time) symmetric
encryption guarantee.

We now show equations two and four; concretely, we focus on the second equation, and the forth
is proven using a similar argument. Recall again that the difference between H0,1

0 and H0,1
1 is in the

obfuscated Ẽi−1. In the first, the circuit E0
i−1, which always puts SK0

i in the plaintext, is obfuscated,
and in the second E1

i−1, which always puts SK1
i in the plaintext, is obfuscated. The key to the indis-

tinguishability behind the hybrids is that the output of the two circuits on any point xi−1 ∈ {0, 1}i−1

is indistinguishable even given the two circuits themselves as long as the randomness used to generate
the output is not revealed. Indeed, because the circuits encrypted in CT0

i ,CT
1
0 compute the same func-

tion, FSKi does not allow distinguishing between the two cases and we can invoke the FE guarantee.
Canetti, Lin, Tessaro, and Vaikuntanathan [CLTV15] show that sub-exponential IO in conjunction with
sub-exponential puncuturable PRFs are sufficient in this setting, which they formalize by probabilistic
IO notion. For the sake of completeness, we next give the full argument.

We consider a sequence of 2i−1 +1 hybrids {Hx}x∈{0,...,2i−1}, where we naturally identify integers
in [2i−1] with strings in {0, 1}i−1. In Hx, both CT0

i and CT1
i encrypt the same circuit Ex(x

′) that
computes E0

i−1(x
′) for all x′ > x and E1

i−1(x
′) for all x′ ≤ x; the circuit Ex is padded to size `(λ̃).

We first note that E0 computes the same function as E0
i−1 and that E2i−1 computes the same function

as E1
i−1, and thus ∣∣∣Pr [D(H0,1

0 ) = 1
]
− Pr [D(H0) = 1]

∣∣∣ ≤ δi−1 ,∣∣∣Pr [D(H2i−1) = 1]− Pr
[
D(H0,1

0 ) = 1
]∣∣∣ ≤ δi−1 .

We now show that for any x ∈ [2i−1],

|Pr [D(Hx−1) = 1]− Pr [D(Hx) = 1]| ≤ O(δi−1 + 2−Ω(λ̃ε)) .

Note that the difference between Hx−1 and Hx is in the circuits encrypted in CT0
i ,CT

1
i : Ex−1 in

Hx−1 and Ex in Hx. Further note that these two circuits only differ on x: the first returns E0
i−1(x)

whereas the second returns E1
i−1(x). We consider the following sub-hybrids:

• G1: instead of Ex−1, CT0
i ,CT

1
i both encrypt E′x−1 that has

Ex−1(x) = E0
i−1(x) =

{
FEnc(MPKi, ((x, xi), SK

0
i , 0);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}}
hardwired as well as a punctured key Ki {x}. The circuit is padded to size `(λ̃).

Since Ex−1 and E′x−1 compute the same function:

|Pr [D(Hx−1) = 1]− Pr [D(G1) = 1]| ≤ δi−1 .

• G2: Here we replace the hardwired{
FEnc(MPKi, ((x, xi),SK

0
i , 0);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}}
so that instead of using the pseudo-randomness PRFKi(x, xi), true randomness r is used{

FEnc(MPKi, ((x, xi), SK
0
i , 0); r)

∣∣ xi ∈ {0, 1}} .

By pseudo-randomness at punctured points

|Pr [D(G1) = 1]− Pr [D(G2) = 1]| ≤ 2−Ω(λ̃ε) .
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• G3: Here we replace the hardwired{
FEnc(MPKi, ((x, xi),SK

0
i , 0); r)

∣∣ xi ∈ {0, 1}}
to encrypt (SK1

i , 1) instead of (SK0
i , 0):{

FEnc(MPKi, ((x, xi), SK
1
i , 1); r)

∣∣ xi ∈ {0, 1}} .

Since, CT0
i and CT1

i encrypt circuits C0 and C1, respectively, with the exact same functionality,
we can apply the FE guarantee to deduce

|Pr [D(G2) = 1]− Pr [D(G3) = 1]| ≤ 2−Ω(λ̃ε) .

• G2′ : reverses G2, we replace the hardwired{
FEnc(MPKi, ((x, xi),SK

1
i , 1); r)

∣∣ xi ∈ {0, 1}}
with {

FEnc(MPKi, ((x, xi), SK
1
i , 1);PRFKi(x, xi))

∣∣ xi ∈ {0, 1}} .

By pseudo-randomness at punctured points

|Pr [D(G3) = 1]− Pr [D(G2′) = 1]| ≤ 2−Ω(λ̃ε) .

• Denote by E′x the circuit E′x−1 after the above changes to the hardwired encryption. Note that E′x
and E2i−1 compute the same function, we deduce

|Pr [D(G2′) = 1]− Pr [D(Hx) = 1]| ≤ 2−Ω(λ̃ε) .

Overall,

|Pr [D(Hx−1) = 1]− Pr [D(Hx) = 1]| ≤ O(δi−1 + 2−Ω(λ̃ε)) ,

as required, which completes the proof of the proposition.

The padding parameter: `(λ̃) is chosen to account for the maximal-size circuit considered in any of
the above hybrids.

Remark 3.2 (Functional encryption for NC1 rather than for all circuits). We observe that in our con-
struction one can start from a functional encryption scheme only for NC1 assuming symmetric-key
encryption with decryption in NC1. The resulting IO will accordingly hold only for NC1 and can then
be bootstrapped using known techniques based on either fully-homomorphic encryption with decryption
in NC1 [GGH+13] or based on sub-exponential punctutrable PRFs in NC1 [App14, CLTV15, BGL+15].
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A Efficiency Analysis given Sub-linear Dependence on Circuit Size

In Section 3, we have analyzed the efficiency of our obfuscator, assuming that the running time of the
functional encryption algorithm is bounded by some fixed polynomial poly(n, λ) in the total input size
n and the security parameter λ, independently of either the circuit or output size of functions.

We now show that efficiency is still guaranteed if we allow encryption time (and ciphertext size) to
grow sub-linearly with the circuit size of functions. Namely, encryption time is bounded by

s1−ε · poly(n, λ) ,

where s = max
f∈Fn
|f |, and ε < 1 is some constant, and poly is any fixed polynomial. Concretely, we will

first show that this holds for some ε related to the underlying cryptographic primitives. We will then
observe that this holds for any ε assuming efficient enough pseudo-random generators.

First, we note that the size of each circuit fi for which a functional key FSKi is derived is bounded by

|fi| ≤ |E0
i |c · poly(λ) ,

where poly is some fixed polynomial and c is some constant that depends on the efficiency of symmetric
decryption. We can now bound the size of each circuit E0

i as follows

|E0
i | ≤ |fi+1|1−ε · poly(n, λ) ≤ |E0

i+1|c(1−ε) · poly(n, λ) ,

16



where the first inequality follows by the bound on encryption time, and the second follows from the
previous bound on fi+1. Also,

|E0
n−1| ≤ |C|1−ε · poly(n, λ) ,

where C is the obfuscated circuit. It follows that,

|E0
i | ≤ |C|1−ε · poly(n, λ) ·

n−i−1∏
j=0

(poly(n, λ))(c(1−ε))
j

.

Now, provided that c(1− ε) < 1, for any k, p ∈ N,

k∏
j=0

p(c(1−ε))j = 2log p
∑k
j=0(c(1−ε))j ≤ p

1
1−c(1−ε) .

We conclude that

max
i
|E0
i | ≤ |C|1−ε · (poly(n, λ))

1
1−c(1−ε)+1

.

Efficiency now follows as in the case of total independence of the circuit size for any ε > 1− 1
c .

Remark A.1. A slight inaccuracy is that in Section 3, we have assumed that encryption always uses
λ̃ bits of randomness (recall that λ is polynomimally related to (n, λ)). Thus when E0

i computes the
pseudo-random function it only incurs fixed blowup poly(n, λ). Now, when encryption time depends
on s1−ε, more randomness might be required. We can always resolve this by applying a pseudo-random
generator, but we should account for it running time. This can also be reflected in the constant c.

Working with any ε < 1. Looking more closely in the complexity of fi we observe that we can
assume that c = 1 − o(1), assuming pseudo-random generators that run in qausi-linear time in their
outputs. Indeed, the circuit fi first decrypts one of the (symmetric) encryptions of E0

i and then applies a
universal circuit to the decrypted E0

i and the input x. These operations are quasi-linear in |E0
i | assuming

that encryption and encryption is done by padding with the result of a PRG that can be computed in
quasi-linear time in its output. (The efficiency of the PRG is needed again when taking into account
Remark A.1.)
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