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Abstract. We introduce quantitative usability and security models to
guide the design of password management schemes — systematic strate-
gies to help users create and remember multiple passwords. In the same
way that security proofs in cryptography are based on complexity-theoretic
assumptions (e.g., hardness of factoring and discrete logarithm), we quan-
tify usability by introducing usability assumptions. In particular, pass-
word management relies on assumptions about human memory, e.g., that
a user who follows a particular rehearsal schedule will successfully main-
tain the corresponding memory. These assumptions are informed by re-
search in cognitive science and can be tested empirically. Given rehearsal
requirements and a user’s visitation schedule for each account, we use
the total number of extra rehearsals that the user would have to do to
remember all of his passwords as a measure of the usability of the pass-
word scheme. Our usability model leads us to a key observation: password
reuse benefits users not only by reducing the number of passwords that
the user has to memorize, but more importantly by increasing the natural
rehearsal rate for each password. We also present a security model which
accounts for the complexity of password management with multiple ac-
counts and associated threats, including online, offline, and plaintext
password leak attacks. Observing that current password management
schemes are either insecure or unusable, we present Shared Cues — a
new scheme in which the underlying secret is strategically shared across
accounts to ensure that most rehearsal requirements are satisfied nat-
urally while simultaneously providing strong security. The construction
uses the Chinese Remainder Theorem to achieve these competing goals.

Keywords: Password Management Scheme, Security Model, Usability Model,
Chinese Remainder Theorem, Sufficient Rehearsal Assumption, Visitation Sched-
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1 Introduction

A typical computer user today manages passwords for many different online ac-
counts. Users struggle with this task—often forgetting their passwords or adopt-
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ing insecure practices, such as using the same password for multiple accounts and
selecting weak passwords [33, 30, 39, 24]. While there are many articles, books,
papers and even comics about selecting strong individual passwords [29, 42, 35,
61, 55, 27, 48, 3], there is very little work on password management schemes—
systematic strategies to help users create and remember multiple passwords—
that are both usable and secure. In this paper, we present a rigorous treatment
of password management schemes. Our contributions include a formalization of
important aspects of a usable scheme, a quantitative security model, and a con-
struction that provably achieves the competing security and usability properties.

Usability Challenge. We consider a setting where a user has two types of mem-
ory: persistent memory (e.g., a sticky note or a text file on his computer) and
associative memory (e.g., his own human memory). We assume that persistent
memory is reliable and convenient but not private (i.e., accessible to an ad-
versary). In contrast, a user’s associative memory is private but lossy—if the
user does not rehearse a memory it may be forgotten. While our understand-
ing of human memory is incomplete, it has been an active area of research [17]
and there are many mathematical models of human memory [37, 59, 14, 40, 56].
These models differ in many details, but they all model an associative memory
with cue-association pairs: to remember â (e.g., a password) the brain associates
the memory with a context ĉ (e.g., a public hint or cue); such associations are
strengthened by rehearsal . A central challenge in designing usable password
schemes is thus to create associations that are strong and to maintain them
over time through rehearsal. Ideally, we would like the rehearsals to be natural,
i.e., they should be a side-effect of users’ normal online activity. Indeed insecure
password management practices adopted by users, such as reusing passwords,
improve usability by increasing the number of times a password is naturally
rehearsed as users visit their online accounts.

Security Challenge. Secure password management is not merely a theoretical
problem—there are numerous real-world examples of password breaches [2, 30,
20, 7, 51, 12, 5, 9, 8, 11, 10]. Adversaries may crack a weak password in an online
attack where they simply visit the online account and try as many guesses as
the site permits. In many cases (e.g., Zappos, LinkedIn, Sony, Gawker [12, 5, 8,
7, 20, 11]) an adversary is able to mount an offline attack to crack weak pass-
words after the cryptographic hash of a password is leaked or stolen. To protect
against an offline attack, users are often advised to pick long passwords that
include numbers, special characters and capital letters [48]. In other cases even
the strongest passwords are compromised via a plaintext password leak attack
(e.g., [4, 9, 51, 10]), for example, because the user fell prey to a phishing attack
or signed into his account on an infected computer or because of server miscon-
figurations. Consequently, users are typically advised against reusing the same
password. A secure password management scheme must protect against all these
types of breaches.



Contributions. We precisely define the password management problem in Sec-
tion 2. A password management scheme consists of a generator—a function that
outputs a set of public cue-password pairs—and a rehearsal schedule. The gen-
erator is implemented using a computer program whereas the human user is
expected to follow the rehearsal schedule for each cue. This division of work is
critical—the computer program performs tasks that are difficult for human users
(e.g., generating random bits) whereas the human user’s associative memory is
used to store passwords since the computer’s persistent memory is accessible to
the adversary.

Quantifying Usability. In the same way that security proofs in cryptography are
based on complexity-theoretic assumptions (e.g., hardness of factoring and dis-
crete logarithm), we quantify usability by introducing usability assumptions. In
particular, password management relies on assumptions about human memory,
e.g., that a user who follows a particular rehearsal schedule will successfully main-
tain the corresponding memory. These assumptions are informed by research in
cognitive science and can be tested empirically. Given rehearsal requirements
and a user’s visitation schedule for each account, we use the total number of
extra rehearsals that the user would have to do to remember all of his passwords
as a measure of the usability of the password scheme (Section 3). Specifically, in
our usability analysis, we use the Expanding Rehearsal Assumption (ER) that
allows for memories to be rehearsed with exponentially decreasing frequency,
i.e., rehearse at least once in the time-intervals (days) [1, 2), [2, 4), [4, 8) and so
on. Few long-term memory experiments have been conducted, but ER is con-
sistent with known studies [53, 60]. Our memory assumptions are parameterized
by a constant σ which represents the strength of the mnemonic devices used to
memorize and rehearse a cue-association pair. Strong mnemonic techniques [52,
34] exploit the associative nature of human memory discussed earlier and its
remarkable visual/spatial capacity [54].

Quantifying Security. We present a game based security model for a password
management scheme (Section 4) in the style of exact security definitions [18]. The
game is played between a user (U) and a resource-bounded adversary (A) whose
goal is to guess one of the user’s passwords. Our game models three commonly
occurring breaches (online attack, offline attack, plaintext password leak attack).

Our Construction. We present a new password management scheme, which we
call Shared Cues, and prove that it provides strong security and usability prop-
erties (see Section 5). Our scheme incorporates powerful mnemonic techniques
through the use of public cues (e.g., photos) to create strong associations. The
user first associates a randomly generated person-action-object story (e.g., Bill
Gates swallowing a bike) with each public cue. We use the Chinese Remainder
Theorem to share cues across sites in a way that balances several competing se-
curity and usability goals: 1) Each cue-association pair is used by many different
web sites (so that most rehearsal requirements are satisfied naturally), 2) the



total number of cue-association pairs that the user has to memorize is low, 3)
each web site uses several cue-association pairs (so that passwords are secure)
and 4) no two web sites share too many cues (so that passwords remain secure
even after the adversary obtains some of the user’s other passwords). We show
that our construction achieves an asymptotically optimal balance between these
security and usability goals (Lemma 2, Theorem 3).

Related Work. A distinctive goal of our work is to quantify usability of pass-
word management schemes by drawing on ideas from cognitive science and
leverage this understanding to design schemes with acceptable usability. We
view the results of this paper–employing usability assumptions about rehearsal
requirements—as an initial step towards this goal. While the mathematical con-
structions start from the usability assumptions, the assumptions themselves are
empirically testable, e.g., via longitudinal user studies. In contrast, a line of prior
work on usability has focused on empirical studies of user behavior including
their password management habits [33, 30, 39], the effects of password composi-
tion rules (e.g., requiring numbers and special symbols) on individual passwords
[38, 22], the memorability of individual system assigned passwords [50], graphi-
cal passwords [28, 19], and passwords based on implicit learning [23]. These user
studies have been limited in duration and scope (e.g., study retention of a single
password over a short period of time). Other work [25] articulates informal, but
more comprehensive, usability criteria for password schemes.

Our use of cued recall is driven by evidence that it is much easier than pure
recall [17]. We also exploit the large human capacity for visual memory [54]
by using pictures as cues. Prior work on graphical passwords [28, 19] also takes
advantage of these features. However, our work is distinct from the literature
on graphical passwords because we address the challenge of managing multiple
passwords. More generally, usable and secure password management is an excel-
lent problem to explore deeper connections between cryptography and cognitive
science.

Security metrics for passwords like (partial) guessing entropy (e.g., how many
guesses does the adversary need to crack α-fraction of the passwords in a dataset
[41, 44, 24]? how many passwords can the adversary break with β guesses per ac-
count [26]?) were designed to analyze the security of a dataset of passwords
from many users, not the security of a particular user’s password management
scheme. While these metrics can provide useful feedback about individual pass-
words (e.g., they rule out some insecure passwords) they do not deal with the
complexities of securing multiple accounts against an adversary who may have
gained background knowledge about the user from previous attacks — we refer
an interested reader to the full version [21] of this paper for more discussion.

Our notion of (n, ℓ, γ)-sharing set families (definition 5) is equivalent to Nisan
and Widgerson’s definition of a (k,m)-design [43]. However, Nisan and Widger-
son were focused on a different application (constructing pseudorandom bit gen-
erators) and the range of parameters that they consider are not suitable for our
password setting in which ℓ and γ are constants. See the full version[21] of this
paper for more discussion.



2 Definitions

We use P to denote the space of possible passwords. A password management
scheme needs to generate m passwords p1, ..., pm ∈ P — one for each account
Ai.

Associative Memory and Cue-Association Pairs. Human memory is associative.
Competitors in memory competitions routinely use mnemonic techniques (e.g.,
the method of loci [52]) which exploit associative memory[34]. For example, to
remember the word ‘apple’ a competitor might imagine a giant apple on the
floor in his bedroom. The bedroom now provides a context which can later be
used as a cue to help the competitor remember the word apple. We use ĉ ∈ C to
denote the cue, and we use â ∈ AS to denote the corresponding association in
a cue-association pair (ĉ, â). Physically, ĉ (resp. â) might encode the excitement
levels of the neurons in the user’s brain when he thinks about his bedroom (resp.
apples) [40].

We allow the password management scheme to store m sets of public cues
c1, ..., cm ⊂ C in persistent memory to help the user remember each password.
Because these cues are stored in persistent memory they are always available to
the adversary as well as the user. Notice that a password may be derived from
multiple cue-association pairs. We use ĉ ∈ C to denote a cue, c ⊂ C to denote a
set of cues, and C =

∪m
i=1 ci to denote the set of all cues — n = |C| denotes the

total number of cue-association pairs that the user has to remember.

Visitation Schedules and Rehearsal Requirements. Each cue ĉ ∈ C may have a
rehearsal schedule to ensure that the cue-association pair (ĉ, â) is maintained.

Definition 1. A rehearsal schedule for a cue-association pair (ĉ, â) is a sequence
of times tĉ0 < tĉ1 < .... For each i ≥ 0 we have a rehearsal requirement, the
cue-association pair must be rehearsed at least once during the time window[
tĉi , t

ĉ
i+1

)
= {x ∈ R tĉi ≤ x < tĉi+1}.

A rehearsal schedule is sufficient if a user can maintain the association (ĉ, â) by
following the rehearsal schedule. We discuss sufficient rehearsal assumptions in
section 3. The length of each interval

[
tĉi , t

ĉ
i+1

)
may depend on the strength of

the mnemonic technique used to memorize and rehearse a cue-association pair
(ĉ, â) as well as i — the number of prior rehearsals. For notational convenience,
we use a function R : C × N → R to specify the rehearsal requirements (e.g.,
R (ĉ, j) = tĉj), and we use R to denote a set of rehearsal functions.

A visitation schedule for an account Ai is a sequence of real numbers τ i0 <
τ i1 < . . ., which represent the times when the account Ai is visited by the user.
We do not assume that the exact visitation schedules are known a priori. Instead
we model visitation schedules using a random process with a known parameter λi

based on E
[
τ ij+1 − τ ij

]
— the average time between consecutive visits to account

Ai. A rehearsal requirement
[
tĉi , t

ĉ
i+1

)
can be satisfied naturally if the user visits

a site Aj that uses the cue ĉ (ĉ ∈ cj) during the given time window. Formally,



Definition 2. We say that a rehearsal requirement
[
tĉi , t

ĉ
i+1

)
is naturally sat-

isfied by a visitation schedule τ i0 < τ i1 < . . . if ∃j ∈ [m], k ∈ N s.t ĉ ∈ cj and

τ jk ∈
[
tĉi , t

ĉ
i+1

)
. We use

Xt,ĉ =
∣∣∣{i tĉi+1 ≤ t ∧ ∀j, k.

(
ĉ /∈ cj ∨ τ jk /∈

[
tĉi , t

ĉ
i+1

))}∣∣∣ ,

to denote the number of rehearsal requirements that are not naturally satisfied
by the visitation schedule during the time interval [0, t].

We use rehearsal requirements and visitation schedules to quantify the us-
ability of a password management scheme by measuring the total number of
extra rehearsals. If a cue-association pair (ĉ, â) is not rehearsed naturally dur-
ing the interval

[
tĉi , t

ĉ
i+1

)
then the user needs to perform an extra rehearsal to

maintain the association. Intuitively, Xt,ĉ denotes the total number of extra re-
hearsals of the cue-association pair (ĉ, â) during the time interval [0, t]. We use
Xt =

∑
ĉ∈C Xt,ĉ to denote the total number of extra rehearsals during the time

interval [0, t] to maintain all of the cue-assocation pairs.

Usability Goal: Minimize the expected value of E [Xt].

Password Management Scheme. A password management scheme includes a
generator Gm and a rehearsal schedule R ∈ R. The generator Gm (k, b,λ, R)
utilizes a user’s knowledge k ∈ K, random bits b ∈ {0, 1}∗ to generate passwords
p1, ..., pm and public cues c1, ..., cm ⊆ C. Gm may use the rehearsal schedule R
and the visitation schedules λ = ⟨λ1, ..., λm⟩ of each site to help minimize E [Xt].
Because the cues c1, ...cm are public they may be stored in persistent memory
along with the code for the generator Gm. In contrast, the passwords p1, ...pm
must be memorized and rehearsed by the user (following R) so that the cue
association pairs (ci, pi) are maintained in his associative memory.

Definition 3. A password management scheme is a tuple ⟨Gm, R⟩, where Gm is
a function Gm : K×{0, 1}∗ ×Rm ×R →

(
P × 2C

)m
and a R ∈ R is a rehearsal

schedule which the user must follow for each cue.

Our security analysis is not based on the secrecy of Gm, k or the public
cues C =

∪m
i=1 ci. The adversary will be able to find the cues c1, ..., cm because

they are stored in persistent memory. In fact, we also assume that the adversary
has background knowledge about the user (e.g., he may know k), and that the
adversary knows the password management scheme Gm. The only secret is the
random string b used by Gm to produce p1, ..., pm.
Example Password Management Schemes. Most password suggestions
are too vague (e.g.,“pick an obscure phrase that is personally meaningful to
you”) to satisfy the precise requirements of a password management scheme —
formal security proofs of protocols involving human interaction can break down
when humans behave in unexpected ways due to vague instructions [46]. We con-
sider the following formalization of password management schemes: (1) Reuse



Weak — the user selects a random dictionary word w (e.g., from a dictionary of
20, 000 words) and uses pi = w as the password for every account Ai. (2) Reuse
Strong — the user selects four random dictionary words (w1, w2, w3, w4) and
uses pi = w1w2w3w4 as the password for every account Ai. (3) Lifehacker (e.g.,
[3]) — The user selects three random words (w1, w2, w3) from the dictionary as
a base password b = w1w2w3. The user also selects a random derivation rule d
to derive a string from each account name (e.g., use the first three letters of the
account name, use the first three vowels in the account name). The password for
account Ai is pi = bd (Ai) where d (Ai) denotes the derived string. (4) Strong
Random and Independent — for each account Ai the user selects four fresh
words independently at random from the dictionary and uses pi = wi

1w
i
2w

i
3w

i
4.

Schemes (1)-(3) are formalizations of popular password management strategies.
We argue that they are popular because they are easy to use, while the strongly
secure scheme Strong Random and Independent is unpopular because the
user must spend a lot of extra time rehearsing his passwords. See the full ver-
sion [21] of this paper for more discussion of the security and usability of each
scheme.

3 Usability Model

People typically adopt their password management scheme based on usability
considerations instead of security considerations [33]. Our usability model can
be used to explain why users tend to adopt insecure password management
schemes likeReuse Weak, Lifehacker, orReuse Strong. Our usability metric
measures the extra effort that a user has to spend rehearsing his passwords. Our
measurement depends on three important factors: rehearsal requirements for
each cue, visitation rates for each site, and the total number of cues that the
user needs to maintain. Our main technical result in this section is Theorem 1
— a formula to compute the total number of extra rehearsals that a user has to
do to maintain all of his passwords for t days. To evaluate the formula we need
to know the rehearsal requirements for each cue-association pair as well as the
visitation frequency λi for each account Ai.

Rehearsal Requirements. If the password management scheme does not man-
date sufficient rehearsal then the user might forget his passwords. Few memory
studies have attempted to study memory retention over long periods of time
so we do not know exactly what these rehearsal constraints should look like.
While security proofs in cryptography are based on assumptions from complex-
ity theory (e.g., hardness of factoring and discrete logarithm), we need to make
assumptions about humans. For example, the assumption behind CAPTCHAs
is that humans are able to perform a simple task like reading garbled text [58]. A
rehearsal assumption specifies what types of rehearsal constraints are sufficient
to maintain a memory. We consider two different assumptions about sufficient
rehearsal schedules: Constant Rehearsal Assumption (CR) and Expanding Re-
hearsal Assumption (ER). Because some mnemonic devices are more effective



than others (e.g., many people have amazing visual and spatial memories [54])
our assumptions are parameterized by a constant σ which represents the strength
of the mnemonic devices used to memorize and rehearse a cue association pair.

Constant Rehearsal Assumption (CR): The rehearsal schedule given by
R (ĉ, i) = iσ is sufficient to maintain the association (ĉ, â).

CR is a pessimistic assumption — it asserts that memories are not perma-
nently strengthened by rehearsal. The user must continue rehearsing every σ
days — even if the user has frequently rehearsed the password in the past.

Expanding Rehearsal Assumption (ER): The rehearsal schedule given
by R (ĉ, i) = 2iσ is sufficient to maintain the association (ĉ, â).

ER is more optimistic than CR — it asserts that memories are strengthened
by rehearsal so that memories need to be rehearsed less and less frequently as
time passes. If a password has already been rehearsed i times then the user
does not have to rehearse again for 2iσ days to satisfy the rehearsal require-
ment

[
2iσ , 2iσ+σ

)
. ER is consistent with several long term memory experiments

[53],[17, Chapter 7], [60] — we refer the interested reader to full version[21] of this
paper for more discussion. We also consider the rehearsal schedule R (ĉ, i) = i2

(derived from [15, 57]) in the full version — the usability results are almost
indentical to those for ER.

Visitation Schedules. Visitation schedules may vary greatly from person to per-
son. For example, a 2006 survey about Facebook usage showed that 47% of users
logged in daily, 22.4% logged in about twice a week, 8.6% logged in about once a
week, and 12% logged in about once a month[13]. We use a Poisson process with
parameter λi to model the visitation schedule for site Ai. We assume that the
value of 1/λi — the average inter-visitation time — is known. For example, some
websites (e.g., gmail) may be visited daily (λi = 1/1 day) while other websites
(e.g., IRS) may only be visited once a year on average (e.g., λi = 1/365 days).
The Poisson process has been used to model the distribution of requests to a
web server [47]. While the Poisson process certainly does not perfectly model
a user’s visitation schedule (e.g., visits to the IRS websites may be seasonal)
we believe that the predictions we derive using this model will still be useful
in guiding the development of usable password management schemes. While we
focus on the Poisson arrival process, our analysis could be repeated for other
random processes.

We consider four very different types of internet users: very active, typical,
occasional and infrequent. Each user account Ai may be visited daily (e.g., λi =
1), every three days (λi = 1/3), every week (e.g. λi = 1/7), monthly (λi = 1/31),
or yearly (λi = 1/365) on average. See table 1 to see the full visitation schedules
we define for each type of user. For example, our very active user has 10 accounts
he visits daily and 35 accounts he visits annually.



Schedule λ 1
1

1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35

Typical 5 10 10 10 40

Occasional 2 10 20 20 23

Infrequent 0 2 5 10 58

Table 1: Visitation Schedules -
number of accounts visited with
frequency λ (visits/days)

Assumption CR (σ = 1) ER (σ = 1)

Schedule/Scheme B+D SRI B+D SRI

Very Active ≈ 0 23, 396 .023 420

Typical .014 24, 545 .084 456.6

Occasional .05 24, 652 .12 502.7

Infrequent 56.7 26, 751 1.2 564

Table 2: E [X365]: Extra Rehearsals over the
first year for both rehearsal assumptions.
B+D: Lifehacker
SRI: Strong Random and Independent

Extra Rehearsals. Theorem 1 leads us to our key observation: cue-sharing bene-
fits users both by (1) reducing the number of cue-association pairs that the user
has to memorize and (2) by increasing the rate of natural rehearsals for each
cue-association pair. For example, a active user with 75 accounts would need to
perform 420 extra-rehearsals over the first year to satisfy the rehearsal require-
ments given by ER if he adopts Strong Random and Independent or just
0.023 with Lifehacker — see table 2. The number of unique cue-association
pairs n decreased by a factor of 75, but the total number of extra rehearsals
E[X365] decreased by a factor of 8, 260.8 ≈ 75×243 due to the increased natural
rehearsal rate.

Theorem 1. Let iĉ∗ =
(
argmaxx t

ĉ
x < t

)
− 1 then

E [Xt] =
∑
ĉ∈C

iĉ∗∑
i=0

exp

−

 ∑
j:ĉ∈cj

λj

(
tĉi+1 − tĉi

)
Theorem 1 follows easily from Lemma 1 and linearity of expectations. Each

cue-association pair (ĉ, â) is rehearsed naturally whenever the user visits any site
which uses the public cue ĉ. Lemma 1 makes use of two key properties of Poisson
processes: (1) The natural rehearsal schedule for a cue ĉ is itself a Poisson process,
and (2) Independent Rehearsals - the probability that a rehearsal constraint is
satisfied is independent of previous rehearsal constraints.

Lemma 1. Let Sĉ = {i ĉ ∈ ci} and let λĉ =
∑

i∈Sĉ
λi then the probability that

the cue ĉ is not naturally rehearsed during time interval [a, b] is exp (−λĉ (b− a)).

4 Security Model

In this section we present a game based security model for a password manage-
ment scheme. The game is played between a user (U) and a resource bounded
adversary (A) whose goal is to guess one of the user’s passwords. We demon-
strate how to select the parameters of the game by estimating the adversary’s
amortized cost of guessing. Our security definition is in the style of the exact



security definitions of Bellare and Rogaway [18]. Previous security metrics (e.g.,
min-entropy, password strength meters) fail to model the full complexity of the
password management problem (see the full version [21] of this paper for more
discussion). By contrast, we assume that the adversary knows the user’s pass-
word management scheme and is able to see any public cues. Furthermore, we
assume that the adversary has background knowledge (e.g., birth date, hobbies)
about the user (formally, the adversary is given k ∈ K). Many breaches occur
because the user falsely assumes that certain information is private (e.g., birth
date, hobbies, favorite movie)[6, 49].

Adversary Attacks. Before introducing our game based security model we con-
sider the attacks that an adversary might mount. We group the adversary attacks
into three categories: Online Attack — the adversary knows the user’s ID and at-
tempts to guess the password. The adversary will get locked out after s incorrect
guesses (strikes). Offline Attack — the adversary learns both the cryptographic
hash of the user’s password and the hash function and can try many guesses
q$B . The adversary is only limited by the resources B that he is willing to invest
to crack the user’s password. Plaintext Password Leak Attack — the adversary
directly learns the user’s password for an account. Once the adversary recov-
ers the password pi the account Ai has been compromised. However, a secure
password management scheme should prevent the adversary from compromising
more accounts.

We model online and offline attacks using a guess-limited oracle. Let S ⊆ [m]
be a set of indices, each representing an account. A guess-limited oracle OS,q is
a blackbox function with the following behavior: 1) After q queries OS,q stops
answering queries. 2) ∀i /∈ S, OS,q (i, p) = ⊥ 3) ∀i ∈ S, OS,q (i, pi) = 1 and 4)
∀i ∈ S, p ̸= pi,OS,q (i, p) = 0. Intutively, if the adversary steals the cryptographic
password hashes for accounts {Ai i ∈ S}, then he can execute an offline attack
against each of these accounts. We also model an online attack against account
Ai with the guess-limited oracle O{i},s with s ≪ q (e.g., s = 3 models a three-
strikes policy in which a user is locked out after three incorrect guesses).

Game Based Definition of Security. Our cryptographic game proceeds as follows:
Setup: The user U starts with knowledge k ∈ K, visitation schedule λ ∈ Rm, a
random sequence of bits b ∈ {0, 1}∗ and a rehearsal schedule R ∈ R. The user
runs Gm (k, b,λ, R) to obtain m passwords p1, ..., pm and public cues c1, ..., cm ⊆
C for accounts A1, ..., Am. The adversary A is given k, Gm, λ and c1, ..., cm.
Plaintext Password Leak Attack: A adaptively selects a set S ⊆ [m] s.t |S| ≤ r
and receives pi for each i ∈ S.
Offline Attack: A adaptively selects a set S′ ⊆ [m] s.t. |S′| ≤ h, and is given
blackbox access to the guess-limited offline oracle OS′,q .
Online Attack: For each i ∈ [m]− S, the adversary is given blackbox access to
the guess-limited offline oracle O{i},s.
Winner: A wins by outputting (j, p), where j ∈ [m]− S and p = pj .

We use AdvWins (k, b,λ,Gm,A) to denote the event that the adversary
wins.



Definition 4. We say that a password management scheme Gm is (q, δ,m, s, r, h)-
secure if for every k ∈ K and adversary strategy A we have

Pr
b
[AdvWins (k, b,λ,Gm,A)] ≤ δ .

Discussion: Observe that the adversary cannot win by outputting the pass-
word for an account that he already compromised in a plaintext password leak.
For example, suppose that the adversary is able to obtain the plaintext pass-
words for r = 2 accounts of his choosing: pi and pj . While each of these breaches
is arguably a success for the adversary the user’s password management scheme
cannot be blamed for any of these breaches. However, if the adversary can use
this information to crack any of the user’s other passwords then the password
management scheme can be blamed for the additional breaches. For example, if
our adversary is also able to use pi and pj to crack the cryptographic password
hash h(pt) for another account At in at most q guesses then the password man-
agement scheme could be blamed for the breach of account At. Consequently,
the adversary would win our game by outputting (t, pt). If the password manage-
ment scheme is (q, 10−4,m, s, 2, 1)-secure then the probability that the adversary
could win is at most 10−4 — so there is a very good chance that the adversary
will fail to crack pt.

Economic Upper Bound on q. Our guessing limit q is based on a model of a
resource constrained adversary who has a budget of $B to crack one of the
user’s passwords. We use the upper bound qB = $B/Cq , where Cq = $R/fH
denotes the amortized cost per query (e.g., cost of renting ($R) an hour of
computing time on Amazon’s cloud [1] divided by fH — the number of times the
cryptographic hash function can be evaluated in an hour.) We experimentally
estimate fH for SHA1, MD5 and BCRYPT[45] — more details can be found
in the full version [21] of this paper. Assuming that the BCRYPT password
hash function [45] was used to hash the passwords we get qB = B

(
5.155× 104

)
— we also consider cryptographic hash functions like SHA1, MD5 in the full
version[21] of this paper. In our security analysis we focus on the specific value
q$106 = 5.155×1010 — the number of guesses the adversary can try if he invests
$106 to crack the user’s password.

Sharing and Security. In section 3 we saw that sharing public cues across ac-
counts improves usability by (1) reducing the number of cue-association pairs
that the user has to memorize and rehearse, and (2) increasing the rate of natural
rehearsals for each cue-association pair. However, conventional security wisdom
says that passwords should be chosen independently. Is it possible to share pub-
lic cues, and satisfy the strong notion of security from definition 4? Theorem 2
demonstrates that public cues can be shared securely provided that the public
cues {c1, . . . , cm} are a (n, ℓ, γ)-sharing set family. The proof of theorem 2 can
be found in the full version of this paper [21].



Definition 5. We say that a set family S = {S1, ..., Sm} is (n, ℓ, γ)-sharing if
(1) |

∪m
i=1 Si| = n, (2)|Si| = ℓ for each Si ∈ S, and (3) |Si ∩ Sj | ≤ γ for each

pair Si ̸= Sj ∈ S.

Theorem 2. Let {c1, . . . , cm} be a (n, ℓ, γ)-sharing set of m public cues produced
by the password management scheme Gm. If each ai ∈ AS is chosen uniformly
at random then Gm satisfies (q, δ,m, s, r, h)-security for δ ≤ q

|AS|ℓ−γr and any h.

Discussion: To maintain security it is desirable to have ℓ large (so that
passwords are strong) and γ small (so that passwords remain strong even after
an adversary compromises some of the accounts). To maintain usability it is
desirable to have n small (so that the user doesn’t have to memorize many
cue-association pairs). There is a fundamental trade-off between security and
usability because it is difficult to achieve these goals without making n large.

For the special case h = 0 (e.g., the adversary is limited to online attacks)
the security guarantees of Theorem 2 can be further improved to δ ≤ sm

|A|ℓ−γr

because the adversary is actually limited to sm guesses.

5 Our Construction

(a) PAO Story with Cue
(b) Account A19 using Shared Cues with the
(43, 4, 1)-sharing set family CRT (90, 9, 10, 11, 13).

Fig. 1

We present Shared Cues— a novel password management scheme which bal-
ances security and usability considerations. The key idea is to strategically share
cues to make sure that each cue is rehearsed frequently while preserving strong
security goals. Our construction may be used in conjunction with powerful cue-
based mnemonic techniques like memory palaces [52] and person-action-object
stories [34] to increase σ — the association strength constant. We use person-
action-object stories as a concrete example.

Person-Action-Object Stories. A random person-action-object (PAO) story for a
person (e.g., Bill Gates) consists of a random action a ∈ ACT (e.g., swallowing)
and a random object o ∈ OBJ (e.g., a bike). While PAO stories follow a very
simple syntactic pattern they also tend to be surprising and interesting because



the story is often unexpected (e.g., Bill Clinton kissing a piranha, or Michael
Jordan torturing a lion). There is good evidence that memorable phrases tend
to use uncommon combinations of words in common syntactic patterns [31].
Each cue ĉ ∈ C includes a person (e.g., Bill Gates) as well as a picture. To help
the user memorize the story we tell him to imagine the scene taking place inside
the picture (see Figure 1a for an example). We use algorithm 2 to automatically
generate random PAO stories. The cue ĉ could be selected either with the user’s
input (e.g., use the name of a friend and a favorite photograph) or automatically.
As long as the cue ĉ is fixed before the associated action-object story is selected
the cue-association pairs will satisfy the independence condition of Theorem 2.

5.1 Constructing (n, ℓ, γ)-sharing set families

We use the Chinese Remainder Theorem to construct nearly optimal (n, ℓ, γ)-
sharing set families. Our application of the Chinese Remainder Theorem is differ-
ent from previous applications of the Chinese Remainder Theorem in cryptogra-
phy (e.g., faster RSA decryption algorithm [32], secret sharing [16]). The inputs
n1, ..., nℓ to algorithm 1 should be co-prime so that we can invoke the Chinese
Remainder Theorem — see Figure 1b for an example of our construction with
(n1, n2, n3, n4) = (9, 10, 11, 13).

Algorithm 1 CRT (m,n1, ..., nℓ)

Input: m, and n1, ..., nℓ.
for i = 1→ m do

Si ← ∅
for j = 1→ ℓ do

Nj ←
∑j−1

i=1 nj

Si ← Si ∪ {(i mod nj) +Nj}
return {S1, . . . , Sm}

Algorithm 2 CreatePAOStories

Input: n, random bits b, images I1, ..., In, and names P1, ..., Pn.
for i = 1→ n do

ai
$← ACT , oi

$← OBJ %Using random bits b
%Split PAO stories to optimize usability

for i = 1→ n do
ĉi ← ((Ii, Pi, ‘Act′) , (Ii+1 mod n, Pi+1 mod n, ‘Obj′))
âi ← (ai, oi+1 mod n)

return {ĉ1, . . . , ĉn}, {â1, . . . , ân}

Lemma 2 says that algorithm 1 produces a (n, ℓ, γ)-sharing set family of
size m as long as certain technical conditions apply (e.g., algorithm 1 can be



run with any numbers n1, ..., nℓ, but lemma 2 only applies if the numbers are
pairwise co-prime.).

Lemma 2. If the numbers n1 < n2 < . . . < nℓ are pairwise co-prime and
m ≤

∏γ+1
i=1 ni then algorithm 1 returns a (

∑ℓ
i=1 ni, ℓ, γ)-sharing set of public

cues.

Proof. Suppose for contradiction that |Si

∩
Sk| ≥ γ + 1 for i < k < m, then

by construction we can find γ + 1 distinct indices j1, ..., jγ+1 ∈ such that i ≡ k
mod njt for 1 ≤ t ≤ γ + 1. The Chinese Remainder Theorem states that there

is a unique number x∗ s.t. (1) 1 ≤ x∗ <
∏γ+1

t=1 njt , and (2) x∗ ≡ k mod njt for

1 ≤ t ≤ γ + 1. However, we have i < m ≤
∏γ+1

t=1 njt . Hence, i = x∗ and by
similar reasoning k = x∗. Contradiction!

Example: Suppose that we select pairwise co-prime numbers n1 = 9, n2 =
10, n3 = 11, n4 = 13, then CRT (m,n1, . . . , n4) generates a (43, 4, 1)-sharing
set family of size m = n1 × n2 = 90 (i.e. the public cues for two accounts will
overlap in at most one common cue), and for m ≤ n1 × n2 × n3 = 990 we get a
(43, 4, 2)-sharing set family.

Lemma 2 implies that we can construct a (n, ℓ, γ)-sharing set system of size

m ≥ Ω
(
(n/ℓ)

γ+1
)

by selecting each ni ≈ n/ℓ. Theorem 3 proves that we

can’t hope to do much better — any (n, ℓ, γ)-sharing set system has size m ≤
O
(
(n/ℓ)

γ+1
)
. We refer the interested reader to the full version[21] of this paper

for the proof of Theorem 3 and for discussion about additional (n, ℓ, γ)-sharing
constructions.

Theorem 3. Suppose that S = {S1, ..., Sm} is a (n, ℓ, γ)-sharing set family of

size m then m ≤
(

n
γ+1

)/(
ℓ

γ+1

)
.

5.2 Shared Cues

Our password management scheme —Shared Cues— uses a (n, ℓ, γ)-sharing set
family of size m (e.g., a set family generated by algorithm 1) as a hardcoded
input to output the public cues c1, ...cm ⊆ C and passwords p1, ..., pm for each
account. We use algorithm 2 to generate the underlying cues ĉ1, . . . , ĉn ∈ C
and their associated PAO stories. The computer is responsible for storing the
public cues in persistent memory and the user is responsible for memorizing and
rehearsing each cue-association pair (ĉi, âi).

We use two additional tricks to improve usability: (1) Algorithm 2 splits each
PAO story into two parts so that each cue ĉ consists of two pictures and two
corresponding people with a label (action/object) for each person (see Figure 1b).
A user who sees cue ĉi will be rehearsing both the i’th and the i+1’th PAO story,
but will only have to enter one action and one object. (2) To optimize usability
we use GreedyMap (Algorithm 4) to produce a permutation π : [m] → [m] over
the public cues — the goal is to minimize the total number of extra rehearsals
by ensuring that each cue is used by a frequently visited account.



Algorithm 3 SharedCues [S1, . . . , Sm, ] Gm

Input: k ∈ K, b, λ1, ..., λm, Rehearsal Schedule R.
{ĉ1, . . . , ĉn}, {â1, . . . , ân} ← CreatePAOStories (n, I1, ..., In,P1, . . . ,Pn)
for i = 1→ m do

ci ← {ĉj j ∈ Si}, and pi ← {âj j ∈ Si}.
% Permute cues

π ← GreedyMap (m,λ1, ..., λm, c1, . . . , cm, R, σ)
return

(
pπ(1), cπ(1)

)
, . . . ,

(
pπ(m), cπ(m)

)
User: Rehearses the cue-association pairs (ĉi, âi) by following the rehearsal schedule
R.
Computer: Stores the public cues c1, ..., cm in persistent memory.

Once we have constructed our public cues c1, ..., cm ⊆ C we need to create a
mapping π between cues and accounts A1, ..., Am. Our goal is to minimize the
total number of extra rehearsals that the user has to do to satisfy his rehearsal
requirements. Formally, we define the Min-Rehearsal problem as follows:
Instance: Public Cues c1, ..., cm ⊆ C, Visitation Schedule λ1, ..., λm, a rehearsal
schedule R for the underlying cues ĉ ∈ C and a time frame t.
Output: A bijective mapping π : {1, ...,m} → {1, ...,m} mapping account Ai

to public cue Sπ(i) which minimizes E [Xt].
Unfortunately, we can show that Min-Rehearsal is NP-Hard to even approx-
imate within a constant factor. Our reduction from Set Cover can be found in
the full version[21] of this paper. Instead GreedyMap uses a greedy heuristic to
generate a permutation π.

Theorem 4. It is NP-Hard to approximate Min-Rehearsal within a constant
factor.

Algorithm 4 GreedyMap

Input: m,λ1, ..., λm, c1, . . . , cm, Rehearsal Schedule R (e.g., CR or ER with param-
eter σ).
Relabel: Sort λ’s s.t λi ≥ λi+1 for all i ≤ m− 1.
Initialize: π0 (j)← ⊥ for j ≤ m, UsedCues← ∅.
%πi denotes a partial mapping [i] → [m],for j > i, the mapping is

undefined (e.g., πi (j) = ⊥). Let Sk = {ĉ ĉ ∈ ck}.
for i = 1→ m do

for all j ∈ [m]− UsedCues do

∆j ←
∑
ĉ∈Sj

E

Xt,ĉ λĉ = λi +
∑

j:ĉ∈Sπi−1(j)

λj

−E

Xt,ĉ λĉ =
∑

j:ĉ∈Sπi−1(j)

λj


% ∆j: expected reduction in total extra rehearsals if we set πi(i) = j

πi (i)← argmaxj ∆j , UsedCues← UsedCues ∪ {πi (i)}
return πm



5.3 Usability and Security Analysis

We consider three instantiations of Shared Cues: SC-0, SC-1 and SC-2. SC-0
uses a (9, 4, 3)-sharing family of public cues of size m = 126 — constructed
by taking all

(
9
4

)
= 126 subsets of size 4. SC-1 uses a (43, 4, 1)-sharing family

of public cues of size m = 90 — constructed using algorithm 1 with m = 90
and (n1, n2, n3, n4) = (9, 10, 11, 13). SC-2 uses a (60, 5, 1)-sharing family of pub-
lic cues of size m = 90 — constructed using algorithm 1 with m = 90 and
(n1, n2, n3, n4, n5) = (9, 10, 11, 13, 17).

Our usability results can be found in table 3 and our security results can be
found in table 4. We present our usability results for the very active, typical,
occasional and infrequent internet users (see table 1 for the visitation schedules)
under both sufficient rehearsal assumptions CR and ER. Table 3 shows the values
of E [X365] — computed using the formula from Theorem 1 — for SC-0, SC-
1 and SC-2. We used association strength parameter σ = 1 to evaluate each
password management scheme — though we expect that σ will be higher for
schemes like Shared Cues that use strong mnemonic techniques 1.

Assumption CR (σ = 1) ER (σ = 1)

Schedule/Scheme SC-0 SC-1 SC-2 SC-0 SC-1 SC-2

Very Active ≈ 0 1, 309 2, 436 ≈ 0 3.93 7.54

Typical ≈ 0.42 3, 225 5, 491 ≈ 0 10.89 19.89

Occasional ≈ 1.28 9, 488 6, 734 ≈ 0 22.07 34.23

Infrequent ≈ 723 13, 214 18, 764 ≈ 2.44 119.77 173.92

Table 3: E [X365]: Extra Rehearsals over the first year for SC-0,SC-1 and SC-2.

Our security guarantees for SC-0,SC-1 and SC-2 are illustrated in Table 4.
The values were computed using Theorem 2. We assume that |AS| = 1402 where
AS = ACT × OBJ (e.g., their are 140 distinct actions and objects), and that
the adversary is willing to spend at most $106 on cracking the user’s passwords
(e.g., q = q$106 = 5.155 × 1010). The values of δ in the h = 0 columns were
computed assuming that m ≤ 100.

Discussion: Comparing tables 3 and 2 we see that Lifehacker is the most
usable password management scheme, but SC-0 compares very favorably! Un-
like Lifehacker, SC-0 provides provable security guarantees after the adversary
phishes one account — though the guarantees break down if the adversary can
also execute an offline attack. While SC-1 and SC-2 are not as secure as Strong
Random and Independent— the security guarantees from Strong Random
and Independent do not break down even if the adversary can recover many
of the user’s plaintext passwords — SC-1 and SC-2 are far more usable than
Strong Random and Independent. Furthermore, SC-1 and SC-2 do provide
very strong security guarantees (e.g., SC-2 passwords remain secure against of-
fline attacks even after an adversary obtains two plaintext passwords for accounts

1 We explore the effect of σ on E [Xt,c] in the full version[21] of this paper.



Offline Attack? h = 0 h > 0

(n, ℓ, γ)-sharing r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
(n, 4, 3) (e.g., SC-0) 2× 10−15 0.011 1 3.5× 10−7 1 1
(n, 4, 1) (e.g., SC-1) 2× 10−15 4× 10−11 8× 10−7 3.5× 10−7 0.007 1
(n, 5, 1) (e.g., SC-2) 1× 10−19 2× 10−15 4× 10−11 1.8× 10−11 3.5× 10−7 0.007

Table 4: Shared Cues (q$106 , δ,m, s, r, h)-Security: δ vs h and r using a (n, ℓ, γ)-
sharing family of m public cues.

of his choosing). For the very active, typical and occasional user the number of
extra rehearsals required by SC-1 and SC-2 are quite reasonable (e.g., the typ-
ical user would need to perform less than one extra rehearsal per month). The
usability benefits of SC-1 and SC-2 are less pronounced for the infrequent user
— though the advantage over Strong Random and Independent is still
significant.

6 Discussion and Future Work

We conclude by discussing future directions of research.
Sufficient Rehearsal Assumptions: While there is strong empirical evidence
for the Expanding Rehearsal assumption in the memory literature (e.g., [60]),
the parameters we use are drawn from prior studies in other domains. It would
be useful to conduct user studies to test the Expanding Rehearsal assumption in
the password context, and obtain parameter estimates specific to the password
setting. We also believe that user feedback from a password management scheme
like Shared Cues could be an invaluable source of data about rehearsal and long
term memory retention.
Expanding Security over Time: Most extra rehearsals occur soon after the
user memorizes a cue-association pair — when the rehearsal intervals are still
small. Is it possible to start with a password management scheme with weaker
security guaratnees (e.g., SC-0), and increase security over time by having the
user memorize additional cue-association pairs as time passes?
Human Computable Passwords: Shared Cues only relies on the human
capacity to memorize and retrieve information, and is secure against at most r =
ℓ/γ plaintext password leak attacks. Could we improve security (or usability) by
having the user perform simple computations to recover his passwords? Hopper
and Blum proposed a ‘human authentication protocol’ — based on the noisy
parity problem — as an alternative to passwords [36], but their protocol seems
to be too complicated for humans to execute. Could similar ideas be used to
construct a secure human-computation based password management scheme?
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