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Abstract

Recent devastating attacks by Cheon et al. [Eurocrypt’15] and others have highlighted signifi-
cant gaps in our intuition about security in candidate multilinear map schemes, and in candidate
obfuscators that use them. The new attacks, and some that were previously known, are typically
called “zeroizing” attacks because they all crucially rely on the ability of the adversary to create
encodings of 0.

In this work, we initiate the study of post-zeroizing obfuscation, and we present a construction
for the special case of evasive functions. We show that our obfuscator survives all known attacks
on the underlying multilinear maps, by proving that no encodings of 0 can be created by a
generic-model adversary. Previous obfuscators (for both evasive and general functions) were
either analyzed in a less-conservative “pre-zeroizing” model that does not capture recent attacks,
or were proved secure relative to assumptions that are now known to be false.

To prove security, we introduce a new technique for analyzing polynomials over multilinear
map encodings. This technique shows that the types of encodings an adversary can create are
much more restricted than was previously known, and is a crucial step toward achieving post-
zeroizing security. We also believe the technique is of independent interest, as it yields efficiency
improvements for existing schemes.

∗This paper subsumes a previous work of Sahai and Zhandry [SZ14].
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0389. The views expressed are those of the author and do not reflect the official policy or position of the Department
of Defense, the National Science Foundation, or the U.S. Government.
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1 Introduction

Obfuscation is a cryptographic tool that offers a powerful capability: software that can keep a
secret. That is, consider a piece of software that makes use of a secret to perform its computation.
Then obfuscation allows us to transform this software so that it can be run publicly: anyone can
obtain the full code of the program, run it, and see its outputs, but no one can learn anything
about the embedded secret, beyond what can be learned by examining the outputs of the program.

The first candidate construction for a general-purpose obfuscator was given by Garg, Gentry,
Halevi, Raykova, Sahai, and Waters [GGH+13b]. The [GGH+13b] construction, and all subsequent
works constructing obfuscators [BR14, BGK+14, PST14a, GLSW14, AGIS14, Zim14, MSW14], are
built on top of another cryptographic primitive called a graded encoding scheme, also known as an
approximate multilinear map. Candidate graded encoding schemes were given previously by Garg,
Gentry, and Halevi [GGH13a] and Coron, Lepoint, and Tibouchi [CLT13]. Some of the obfuscation
works prove security in an idealized “generic multilinear model” that seeks to capture the algebraic
restrictions imposed by the graded encoding scheme [BR14, BGK+14, AGIS14, Zim14, MSW14],
while others prove security in the plain model starting from specific assumptions on the graded
encoding scheme [BBC+14, PST14a, GLSW14].

In a graded encoding scheme, plaintext elements are encoded at various levels, and there is a
top level at which one can test whether an element encodes 0. It was known previously that low-
level encodings of 0 allowed for “zeroizing” attacks on [GGH13a], but recently, Cheon, Han, Lee,
Ryu, and Stehlé [CHL+14] demonstrated a new such zeroizing attack on the [CLT13] scheme, again
relying on low-level encodings of 0. Notably, none of the proposed obfuscation schemes required
low-level encodings of 0 to be given to the adversary, and so it seemed plausible that the security
arguments that we had for obfuscation are still persuasive.

However, subsequent concurrent works by Gentry, Halevi, Maji, and Sahai [GHMS14] and
Boneh, Wu, and Zimmerman [BWZ14] (see also further follow-up work [CLT14]) showed for the
first time that zeroizing attacks are possible even when no low-level encodings of zero are made
available to the adversary, just as long as top-level encodings of zero can be created. These attacks
are particularly devastating in the case of [CLT13], where they lead to a complete break and recover
all secret parameters. The attacks all obey the algebraic restrictions of the graded encoding scheme,
and in general they have highlighted significant gaps in our intuition about the source of security
in graded encoding scheme candidates.

The current state of affairs is worrisome. It is true that some of the above obfuscation schemes
[BR14, BGK+14, AGIS14, Zim14, MSW14] are not known to be broken by the new attacks. How-
ever, all previous proofs of security for obfuscation are no longer persuasive. This is because
the new zeroizing attacks show that there are natural and devastating algebraic attacks that are
not captured by the generic multilinear model, and therefore a proof in the generic multilinear
model fails to rule out real attacks. Similarly, many reduction-based security arguments for ob-
fuscation [BBC+14, PST14a, GLSW14] reduce to assumptions that are known to be false due
to the new zeroizing attacks, and there is increased scrutiny on the remaining assumptions (e.g.
[GGH+13b] when instantiated with [GGH13a]).

Post-zeroizing obfuscation. The new zeroizing attacks give rise to a pressing question: can there
be any persuasive argument of security for obfuscation schemes? To this end, the work of [GHMS14]
proposes a new kind of post-zeroizing generic model, that seeks to capture the power that zeroizing
attacks offer to an adversary. In this work, we take an even more conservative approach: All
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known efficient attacks on multilinear map candidates make use of information that is leaked when
a top-level encoding of 0 is created by the adversary. Thus, we consider a generic model where the
adversary “wins” whenever it manages to create an encoding of 0 at any level. Thus, a security
proof in our generic model would rule out not only any current zeroizing attacks, but even future
extensions of zeroizing attacks that exploit information leaked by encoded 0s.

Armed with this generic model, we give the first candidate obfuscator for a natural class of
functions that provably does not allow any encodings of 0 to be constructed, and we initiate gen-
erally the study of this type of security. In this work we show how to obfuscate evasive functions
[BBC+14], namely functions for which it is hard to find an input that evaluates to 0. (Typically one
defines evasive functions as having hidden 1-outputs, but in terms of their functionality this is only
a semantic difference.) A natural example of an evasive function is the “password check” function
(typically called a point function), which evaluates to 0 on only a single, secret input. Obfuscat-
ing general evasive functions would have many applications, including most notably obfuscating
important classes of software patches that check for rare inputs on which the unpatched software
is known to misbehave (see [BBC+14] for further discussion).

Prior to our work, except as a special case of general obfuscation, the only work that considered
obfuscating general classes of evasive functions is that of [BBC+14]. However, the positive results
in [BBC+14] were based on assumptions over approximate multilinear maps that are now known to
be false [CHL+14], and furthermore the positive results in [BBC+14] did not consider completely
arbitrary distributions of evasive circuits, as we do here.

Our main theorem is the following.

Theorem 1.1 (informal). There exists a PPT obfuscator O such that, for any evasive function
family C on n-bit inputs and any efficient generic-model adversary A,

Pr [A(O(C)) constructs an encoding of 0] < negl(n)

where the probability is over the choice of C ← C and the coins of A and O.

Crucially, this theorem allows us to prove the security of our construction in a generic model
which, for the first time, captures all known attacks on graded encoding schemes. In previous
works that prove security in a generic model, the graded encoding scheme’s zero-test function is
modeled as a Boolean function (i.e. one that returns a yes/no answer). In candidate constructions
however [GGH13a, CLT13], a successful zero-test actually returns an algebraic element in the ring
of encodings, and this fact is crucially exploited in the attacks. By contrast, we consider any
encoding of 0 to be a complete break, thereby capturing these “zeroizing” attacks.

Avoiding encodings of 0. Because we focus on obfuscating evasive functions, we can hope to
at least avoid the “easy” encodings of 0 corresponding to an honest evaluation that outputs 0.
However, we stress that previous obfuscators do not prevent encodings of 0 even when the function
being obfuscated is evasive. The obfuscation scheme of Brakerski and Rothblum [BR14] gives a
concrete example of this: the obfuscator operates on matrix branching programs constructed using
Barrington’s theorem [Bar86], in which the product matrix corresponding to any honest function
evaluation is either the identity or is another fixed permutation matrix. In either case, the product
matrix contains some 0 entries which the adversary then obtains as encodings of 0. Beyond just
the [BR14] construction however, no previous obfuscator precluded the adversary from constructing
top-level encodings of 0 that may be unrelated to any honest function evaluation.
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We introduce a new “core obfuscator” that expands the class of matrix branching programs that
can be directly obfuscated. In addition to being a key component of the proof of Theorem 1.1, this
obfuscator also gives efficiency improvements. We prove a key technical theorem for this obfuscator
(Theorem 5.2), which was not present in any previous work and is likely of independent interest.
This theorem shows that any polynomial p over the obfuscation O(f) can be efficiently mapped
to a poly-size set of inputs X ⊂ {0, 1}n such that p evaluates to an encoding of 0 if and only if
some x ∈ X satisfies f(x) = 0. Thus, provided that f is evasive, no PPT adversary can create an
encoding of 0. For context, previous works only gave a map that allowed the evaluation of p to be
simulated given the set {f(x) | x ∈ X}, but did not show the stronger condition that we require.
Furthermore, our theorem shows for the first time how to obfuscate matrix branching programs
that are represented with low-rank matrices, or where the matrices are non-square. This leads
to efficiency improvements even beyond previous obfuscators that lack a post-zeroizing proof of
security, as detailed in Appendix A. Our analysis also extends to other settings besides obfuscation:
for example, Boneh et al. [BLR+14] rely on our analysis to obtain near-practical order-revealing
encryption.

We also show that the “bootstrapping” theorem of [GGH+13b] extends to the setting of evasive
functions. This theorem transforms a core obfuscator for a “small” class of functions (e.g. poly-size
branching programs) into an obfuscator for all efficient functions. We observe that this theorem
only uses the core obfuscator on evasive functions, and we show that the proof goes through
only assuming its security on such functions. In particular, we show that Theorem 1.1 applies
to all evasive functions and not only those on which the core obfuscator operates. Interestingly,
the bootstrapping technique of Applebaum [App13] cannot be used for our purposes, because it
inherently produces encodings of 0 regardless of the function being obfuscated.

Our Techniques. As stated above, the main technical challenge in our paper is to show that
any polynomial p over the obfuscation O(f) can be efficiently mapped to a poly-size set of inputs
X ⊂ {0, 1}n such that p evaluates to an encoding of 0 if and only if some x ∈ X satisfies f(x) = 0.

One ingredient in our paper is the notion of strong straddling sets from the recent paper
of [MSW14], as this tool allows us to eliminate the possibility of any encodings of 0 below the
top level. Thus, the only obstacle that remains is to prove the theorem above for top-level encod-
ings of 0.

The technical barrier – Kilian’s statistical simulation. Before we proceed to provide intuition
about our proof, let us consider the technical roots of how this theorem was avoided in previous
papers on obfuscating matrix branching programs. In every paper constructing secure obfuscation
for matrix branching programs so far [GGH+13b, BR14, BGK+14, PST14a, GLSW14, AGIS14,
MSW14] and in every different model that has been considered, one theorem has played a starring
role in all security analyses: Kilian’s statistical simulation theorem [Kil88]. As relevant here,
Kilian’s theorem considers the setting where we randomize each matrix in a sequence of matrices
as follows:

B̂i = R−1
i−1BiRi

where Ri are random invertible matrices for i ∈ [ℓ − 1], and identity otherwise. Note that this
randomization does not affect the iterated product. Then, for any particular input x, if the iterated
product is M , Kilian’s theorem states that we can statistically simulate the collection of matrices
{B̂i}i∈[ℓ] knowing only M but with no knowledge of the original matrices {Bi}.

Kilian’s statistical simulation theorem has been a keystone in all previous analyses of obfuscation:
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in one way or another, all previous security analyses for obfuscation methods have found some
way to isolate the adversary’s view of the obfuscation to a single input. Once this isolation was
accomplished, Kilian’s theorem provided the assurance that the adversary’s view of the obfuscation,
as it related to this single input, only encoded information about the output of the computation
within M , and nothing more.

However, note that Kilian’s statistical simulation theorem only allows for simulation. It does
not rule out the possibility that an encoding of 0 may result no matter what the function outputs
on the input in question. Indeed, as pointed out earlier in the case of [BR14], this in fact can
actually happen in some obfuscators from the literature that apply Kilian’s theorem.

If we are to obtain a method for obfuscation that avoids encodings of 0s altogether for eva-
sive functions, then we would need to avoid Kilian’s theorem entirely, deviating from all previous
analyses of obfuscation.

Our Approach. Our key technical challenge is to replace the use of Kilian’s theorem [Kil88] from
previous generic model proofs for obfuscation (e.g. [BGK+14, AGIS14]). Nevertheless, even though
we will not rely on Kilian’s simulation theorem, we will use a matrix randomization scheme that is
essentially1 identical to the one used when applying Kilian’s randomization.

To obtain our result, we must directly analyze what kinds of polynomials an adversary can
generate using multilinear operations. Before continuing, we remark that our analysis at this stage
will not be efficient. Nevertheless, this analysis will allow us to obtain an efficient simulator in our
generic model.

Roughly speaking, we can model the multilinear setting as follows: There is a universe set [ℓ].
For every subset S ⊂ [ℓ], we have a copy of Zq that we name GS . Then, the adversary has access
to the following operations:

• Add: GS ×GS → GS , for every subset S ⊂ [ℓ].

• Mult: GS ×GT → GS∪T , for every pair S, T ⊂ [ℓ] : S ∩ T = ∅.

• ZeroTest: G[ℓ] → {True, False}.

This is sometimes called the “asymmetric” multilinear setting, is natively supported by known
instantiations of graded encoding schemes [GGH13a, CLT13], and was used in previous works.
Observe that in this setting, if the adversary is given a matrix entirely encoded in G{1}, for example,
then it will not be possible for the adversary to compute the rank of this matrix. This is because no
two entries within this matrix can be multiplied together, since they both reside in the same group
G{1}, and multiplication is only possible across elements of groups corresponding to disjoint index
sets. This is essential: if the adversary could compute ranks, then our goal would be impossible.
Note however, that computation of such ranks is beyond the scope even of new zeroizing attacks,
because it would require obtaining meaningful information from levels far “above” the top level.

Our analysis proceeds by considering the most general polynomial that the adversary can con-
struct in G[ℓ]. More precisely, we consider every possible monomial m that can exist over the
matrix entries that are given to the adversary. For each such monomial m, we associate with it
a coefficient αm that the adversary could potentially choose arbitrarily. Finally, the adversary’s
polynomial is a giant sum p = Σmαmm over all these potential monomials. We first observe that

1Because we consider rectangular matrices in general, we do need to modify this slightly. Also, for technical
simplification, we consider the adjugate matrix rather than the inverse. However, for the purposes of this technical
overview, these variations can be ignored.
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the adversary can only extract useful information from this polynomial by passing it to ZeroTest,
thereby determining if it is zero or not. However, recall that the matrices {Ri} are randomly chosen
during obfuscation. Therefore, by the Schwartz-Zippel lemma, we know that unless the adversary’s
polynomial p is the zero polynomial over the entries of the Ri matrices, ZeroTest will declare
the polynomial to be nonzero with overwhelming probability. So, we restrict ourselves to analyzing
adversarial polynomials that end up being the zero polynomial over the entries of the Ri matrices.

Our analysis proceeds inductively. At its heart, in the inductive step, we consider what a single
Ri matrix and its inverse R−1

i can contribute to the adversary’s polynomial. At a high level, we
divide the monomials m into two categories: First, we consider all those monomials that do not arise
from standard matrix multiplication. By the examining the structure of the R−1

i matrix together
with the constraint that the adversary’s polynomial must be identically zero over the entries of
Ri, we are able to conclude that these monomials must have zero coefficients: αm = 0, because
otherwise this monomial’s contributions over the entries of Ri would survive and the adversary’s
polynomial cannot be identically zero over the entries of Ri. Next, we do the same for those
monomials that do arise in standard matrix multiplication; however this time we instead conclude
that the coefficients of these monomials must be the same: that is, αm = αm′ for monomials m and
m′ that both arise in matrix multiplication.

As a result, inductively, we can conclude that any adversarial polynomial that is identically
zero over the entries of the {Ri} matrices must in fact be the result of an honest iterated matrix
multiplication. In other words, such an adversarial polynomial will result in an encoding of 0 only if
the iterated matrix multiplication yielded the identity matrix, as desired. Even though this analysis
is not efficient, as mentioned above, we are still able to use it to yield an efficient simulator in our
generic model. At a high level, this is done by using the Schwartz-Zippel lemma to “weed out”
most adversarial polynomials without needing to simulate their structure at all.

Directions for future work. An obvious next step is to consider obfuscating non-evasive func-
tions. To do so, we will need to look precisely at the kinds of elements that can be obtained using
zeroizing attacks during zero testing for general (non-evasive) functions. This is beyond the scope
of our paper. However, we note that our paper answers a critical first question toward this goal:
we show that in our scheme, the only way that the adversary can create top-level encodings of zero
are the prescribed ways of evaluating the function at a particular input. This is a necessary first
step in understanding what kinds of elements arise in the general case.

2 Preliminaries

2.1 Evasive circuits

We define evasive circuit collections as in Barak et al. [BBC+14], except that in our definition it is
hard to find a 0-output (typically one says that it is hard to find a 1-output).

Definition 2.1. A function family {Cℓ}ℓ∈N is evasive if for every oracle-aided adversary A(·) that
makes at most poly(ℓ) queries on input 1ℓ, and every ℓ ∈ N:

Pr
C←Cℓ

[
C
(
AC

(
1ℓ
))

= 0
]

= negl(ℓ).

{Cℓ}ℓ∈N is evasive with auxiliary input Aux for a (possibly randomized) function Aux : Cℓ → {0, 1}∗

if A additionally receives Aux(C) when its oracle is C.
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2.2 Obfuscation

We now give the definition of virtual black-box obfuscation in an idealized model, identical to the
model studied in Barak et al. [BGK+14] and Ananth et al. [AGIS14], with one exception: we also
consider giving both the adversary and simulator an auxiliary input determined by the program.

Definition 2.2 ( Virtual Black-Box Obfuscation in an M-idealized model). For a (possibly ran-
domized) oracle M, a circuit class

{
Cℓ

}
ℓ∈N

, and an efficiently computable deterministic function

Auxℓ : Cℓ → {0, 1}tℓ , we say that a uniform PPT oracle machine O is a “Virtual Black-Box" Ob-
fuscator for

{
Cℓ

}
ℓ∈N

in the M-idealized model with respect to auxiliary information Auxℓ, if the
following conditions are satisfied:

• Functionality: For every ℓ ∈ N, every C ∈ Cℓ, every input x to C, and for every possible coins
for M:

Pr[(OM(C))(x) 6= C(x)] ≤ negl(|C|) ,

where the probability is over the coins of C.

• Polynomial Slowdown: there exist a polynomial p such that for every ℓ ∈ N and every C ∈ Cℓ,
we have that |OM(C)| ≤ p(|C|).

• Virtual Black-Box: for every PPT adversary A there exist a PPT simulator Sim, and a negli-
gible function µ such that for all PPT distinguishers D, for every ℓ ∈ N and every C ∈ Cℓ:

∣∣∣Pr
[
D
(
AM

(
OM(C), Auxℓ(C)

) )
= 1,

]
− Pr

[
D
(

SimC
(
1|C|, Auxℓ(C)

) )
= 1

]∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D,A,Sim,O and M.

Note that in this model, both the obfuscator and the evaluator have access to the oracle M but
the function family that is being obfuscated does not have access to M.

We also define the average-case version of VBB obfuscation, which is the correct security notion
when obfuscating evasive circuit collections.

Definition 2.3 (Average-case Virtual Black-Box Obfuscation in an M-idealized model). Let M,{
Cℓ

}
ℓ∈N

, and Auxℓ be as in Def. 2.2. We say that a uniform PPT oracle machine O is an average-

case Virtual Black-Box Obfuscator for
{
Cℓ

}
ℓ∈N

in the M-idealized model with respect to auxiliary
information Auxℓ, if it satisfies all properties in Def. 2.2 except that in the Virtual Black-Box
property the probabilities are over a uniform choice of C ← Cℓ (as opposed to ∀C ∈ Cℓ).

Definition 2.4 (Average-case Indistinguishability Obfuscation in an M-idealized model). For a
(possibly randomized) oracleM, a circuit class

{
Cℓ

}
ℓ∈N

, we say that a uniform PPT oracle machine

O is an Average-case Indistinguishability Obfuscator for
{
Cℓ

}
ℓ∈N

in the M-idealized model if the
following conditions are satisfied:

• Functionality: Same as in the definition of VBB.

• Polynomial Slowdown: Same as in the definition of VBB.
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• Indistinguishability: For every PPT Distinguisher D, there exists a negligible function µ such
that the following holds : for every ℓ ∈ N, for a uniform choice of circuit C ∈ Cℓ and for every
pair of circuits C0, C1 ∈ Cℓ that compute the same function as C, we have :

∣∣∣Pr
[
D(OM(C0)) = 1

]
− Pr

[
D(OM(C1)) = 1

]∣∣∣ ≤ µ(|C|) ,

where the probabilities are over the coins of D, O, M and the choice of C.

Note that in this model, both the obfuscator and the evaluator have access to the oracle M but
the function family that is being obfuscated does not have access to M.

2.3 Branching Programs

We now define branching programs. We will actually define three notions of branching programs.
The first, layered (graphical) branching programs, corresponds to the standard notion of branching
programs found in the literature. Second, we define the notion of a matrix branching program,
which can be seen as a generalization of graphical branching programs. Finally, we define a matrix
branching program sampler, which is again a generalization of matrix branching programs.

Layered Graphical Branching Programs. Our notion of a layered graphical branching pro-
gram corresponds to the traditional notion of branching programs.

Definition 2.5. A (graphical) branching program is a finite directed acyclic graph with two special
nodes, a source node and a sink node, also referred to as an “accept” node. Each non-sink node
is labeled with a variable xi and can have arbitrary out-degree. Each of the out-edges is either
labeled with xi = 0 or xi = 1. The sink node has out-degree 0. We denote a branching program
by BP and denote the restriction of the branching program consistent with input x by BP |x. BP
accepts an input x ∈ {0, 1}n if and only if there is at least one path from the source node to the
accept node in BP |x. The length ℓ of BP is the maximum length of any such path in the graph.
The node size t of the branching program is the total number of nodes in the graph.

A layered (graphical) branching program is a branching program such that nodes can be parti-
tioned into a sequence of layers L0 through Lℓ where all the nodes in Li−1 have only outgoing edges
to Li, and all of the outgoing edges from Li−1 are labeled with the same input variable, denoted
xinp(i) where inp : [ℓ] → [n]. We can assume without loss of generality that L0 contains only the
source node and Lℓ contains only the sink node. The length of a layered branching program is ℓ,
and the shape (d0, . . . , dℓ) counts the number of nodes in each layer: di = |Li|. Finally, the width w
is the maximum di. The node size t of BP is still the total number of nodes in the graph,

∑ℓ
i=0 di.

We also define an additional quantity, the total size u is the sum of the products of sizes of adjacent
layers

∏ℓ
i=1 di−1di. Consider a slight modification to BP where there is an edge from every node in

Li to every node in Li+1, and the edges are labeled with either xi = 0, xi = 1, xi = 0, 1 (represent-
ing that this edge is always used), or xi = ⊥ (representing that this edge is never used). Then u
counts the total number of edges in BP , and therefore represents the actual size of the description
of BP .

Matrix Branching Programs. Note that our definition of a matrix branching program will
depart in several ways from the standard definitions of matrix branching programs in the literature.
At a high level, a matrix branching program consists of a sequence of pairs of matrices (Bi,0, Bi,1).
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To evaluate the branching program on an input x, select one matrix from each pair based on the
input, and multiply all of the matrices together. The matrices are shaped so that the products
are valid and the end result is a scalar; otherwise, there are no restrictions on the shapes of the
matrices. The branching program evaluates to 0 if and only if the product of all the matrices is 0,
and otherwise it evaluates to 1. We can also easily generalize to multi-bit outputs by having the
final matrix product be an actual matrix, and test each component independently for zero.

Definition 2.6. A generalized matrix branching program of length ℓ and shape (d0, d1, . . . , dℓ) ∈
(Z+)ℓ+1 for n-bit inputs is given by a sequence

BP =
(
inp, (Bi,0, Bi,1)i∈[ℓ]

)

where Bi,b ∈ Zdi−1×di are di−1 × di matrices, and inp : [ℓ] → [n] is the evaluation function of BP .
BP defines the following three functions:

• BParith : {0, 1}n → Zd0×dℓ computed as

BParith(x) =
n∏

i=1

Bi,xinp(i)

• BPbool : {0, 1}n → {0, 1}d0×dℓ computed as

BPbool(x)j,k =

{
0 if BParith(x)j,k = 0

1 if BParith(x)j,k 6= 0

• BPbool(q) : {0, 1}n → {0, 1}d0×dℓ computed as

BPbool(q)(x)j,k =

{
0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k 6= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k. In other words, t
bounds the possible output values of BParith.

We define the width w = maxi∈[0,ℓ] di, node size t =
∑ℓ

i=0 di, and total size u =
∑ℓ

i=1 di−1di.

Fact 2.7. Any graphical layered branching program BP of length ℓ and shape (d0, . . . , dℓ) can be
converted into a generalized matrix branching program BP ′ of length ℓ, shape (d0, . . . , dℓ), and
bound t =

∏ℓ−1
i=1 di ≤ wℓ−1 such that BP ′bool(x) = BP (x) for all x.

For our obfuscator, similar to existing works, we will need to actually consider dual-input
generalized matrix branching programs:

Definition 2.8. A dual-input generalized matrix branching program of length ℓ and shape
(d0, d1, . . . , dℓ) ∈ (Z+)ℓ+1 for n-bit inputs is given by a sequence

BP =
(
inp0, inp1, {Bi,b0,b1}i∈[ℓ],b0,b1∈{0,1}

)

where Bi,b0,b1 ∈ Zdi−1×di are di−1× di matrices, and inp : [ℓ]→ [n] is the evaluation function of BP .
BP defines the following three functions:
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• BParith : {0, 1}n → Zd0×dℓ computed as

BParith(x) =
n∏

i=1

Bi,xinp0(i),xinp1(i)

• BPbool : {0, 1}n → {0, 1}d0×dℓ computed as

BPbool(x)j,k =

{
0 if BParith(x)j,k = 0

1 if BParith(x)j,k 6= 0

• BPbool(q) : {0, 1}n → {0, 1}d0×dℓ computed as

BPbool(q)(x)j,k =

{
0 if BParith(x)j,k = 0 mod q

1 if BParith(x)j,k 6= 0 mod q

A matrix branching program is t-bounded if |BParith(x)j,k| ≤ t for all x, j, k.

We note that is it easy to transform any normal matrix branching program into a dual input
matrix branching program of the same length, shape, and bound: set inp0 = inp1 = inp, and
Bi,b,b = Bi,b (the values Bi,b,1−b can be set arbitrarily).

Unlike previous obfuscation constructions [GGH+13b, BR13, BGK+14, PST14b, AGIS14, MSW14],
we allow the matrices in the branching program to be singular, and even to be rectangular. This
gives us the ability to have the product matrix have any desired shape — in particular, it can be a
scalar for single-bit outputs. Thus, we do not need the “bookends” used in previous works to turn
the matrix product into a scalar.

We will impose one requirement on matrix branching program, called non-shortcutting, which
will be important in the security analysis of our obfuscator. We say that a branching program
shortcuts on an input x if there is an interval [j, k] ( [ℓ] strictly smaller than [ℓ] such that the
sub-product

k∏

i=j

Bi,xinp0(i),xinp1(i)
= 0 .

In other words, for the input x, it is possible to determine that BP (x)j,k = 0 prematurely without
evaluating the entire product. We say that a branching program is non-shortcutting if it does not
shortcut on any x:

Definition 2.9. A dual-input generalized matrix branching program is non-shortcutting if, for any
input x, and any j ∈ [d0] and any k ∈ [dℓ], the following holds:

eT
j ·

(
ℓ−1∏

i=1

Bi,xinp0(i),xinp1(i)

)
6= 0dℓ−1 and

(
ℓ∏

i=2

Bi,xinp0(i),xinp1(i)

)
· ek 6= 0d1

where ej and ek are the jth and kth standard basis vectors of the correct dimension. Equivalently,
each row of the product

∏ℓ−1
i=1 Bi,xinp0(i),xinp1(i)

and each column of the product
∏ℓ

i=2 Bi,xinp0(i),xinp1(i)

has at least one non-zero entry.
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A similar definition holds for regular (non-dual-input) branching programs.
We will see in the next section that it is easy to convert any matrix branching program into a

non-shortcutting branching program, and only increasing its width by 2.

A final property of matrix branching programs, which we call exactness, says that the outputs
of BParith and BPbool are the same on all inputs:.

Definition 2.10. A matrix branching program BP is exact if, for all inputs x, it holds that

BParith(x) ∈ {0, 1}d0×dℓ

In other words,
BParith(x) = BPbool(x)

In this case, we simply write BP (x) to denote BPairth(x) = BPbool(x) = BPbool(q) for all q ≥ 2.

Matrix Branching Program Samplers. We now define a matrix branching program sampler
(MBPS). Roughly, an MBPS is a procedure that takes as input a modulus q, and outputs a matrix
branching program BP . However, we will be interested mainly in the function BPbool(q).

Definition 2.11. A matrix branching program sampler (MBPS) is a possibly randomized proce-
dure BP S that takes as input a modulus q satisfying q > t for some bound t. It outputs a matrix
branching program.

Fact 2.12. Any matrix branching program BP with bound t can trivially be converted into a
matrix branching program sampler BP S with the same bound t, such that if BP ′ ← BP S(q), then
BP ′bool(q)(x) = BPbool(x).

2.4 The Ideal Graded Encoding Model

In this section, we describe the ideal graded encoding model. This section has been taken almost
verbatim from [BGK+14] and [AGIS14]. All parties have access to an oracle M, implementing an
ideal graded encoding. The oracle M implements an idealized and simplified version of the graded
encoding schemes from [GGH13a]. The parties are provided with encodings of various elements at
different levels. They are allowed to perform arithmetic operations of addition/multiplication and
testing equality to zero as long as they respect the constraints of the multilinear setting. We start
by defining an algebra over the elements.

Definition 2.13. Given a ring R and a universe set U, an element is a pair (α, S) where α ∈ R is
the value of the element and S ⊆ U is the index of the element. Given an element e we denote by
α(e) the value of the element, and we denote by S(e) the index of the element. We also define the
following binary operations over elements:

• For two elements e1, e2 such that S(e1) = S(e2), we define e1 + e2 to be the element (α(e1) +
α(e2), S(e1)), and e1 − e2 to be the element (α(e1)− α(e2), S(e1)).

• For two elements e1, e2 such that S(e1) ∩ S(e2) = ∅, we define e1 · e2 to be the element
(α(e1) · α(e2), S(e1) ∪ S(e2)).

We will often use the notation [α]S to denote the element (α, S). Next, we describe the oracle
M. M is a stateful oracle mapping elements to “generic" representations called handles. Given
handles to elements, M allows the user to perform operations on the elements. M will implement
the following interfaces:
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Initialization. M will be initialized with a ring R, a universe set U, and a list L of initial elements.
For every element e ∈ L,M generates a handle. We do not specify how the handles are generated,
but only require that the value of the handles are independent of the elements being encoded, and
that the handles are distinct (even if L contains the same element twice). M maintains a handle
table where it saves the mapping from elements to handles. M outputs the handles generated
for all the elements in L. After M has been initialized, all subsequent calls to the initialization
interface fail.

Algebraic operations. Given two input handles h1, h2 and an operation ◦ ∈ {+,−, ·}, M first
locates the relevant elements e1, e2 in the handle table. If any of the input handles does not appear
in the handle table (that is, if the handle was not previously generated by M) the call to M fails.
If the expression e1 ◦ e2 is undefined (i.e., S(e1) 6= S(e2) for ◦ ∈ {+,−}, or S(e1) ∩ S(e2) 6= ∅ for
◦ ∈ {·}) the call fails. Otherwise,M generates a new handle for e1 ◦ e2, saves this element and the
new handle in the handle table, and returns the new handle.

Zero testing. Given an input handle h, M first locates the relevant element e in the handle
table. If h does not appear in the handle table (that is, if h was not previously generated by M)
the call to M fails. If S(e) 6= U, the call fails. Otherwise, M returns 1 if α(e) = 0, and returns 0
if α(e) 6= 0.

2.5 Straddling Set Systems

We use the strong straddling set system of [MSW14], which modifies the straddling set system of
[BGK+14] to obtain a denser intersection graph between the subsets. This extra power is used in
Section 8 when showing that the adversary cannot create low-level encodings of 0.

Definition 2.14 (Strong straddling set system). A strong straddling set system with n entries is
a collection of sets S = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a universe U, such that ∪i∈[n]Si,0 = U =
∪i∈[n]Si,1, and the following holds.

• (Collision at universe.) If C, D ⊆ S are distinct non-empty collections of disjoint sets such
that

⋃
S∈C S =

⋃
S∈D S, then ∃b ∈ {0, 1} such that C = {Si,b}i∈[n] and D = {Si,1−b}i∈[n].

• (Strong intersection.) For every i, j ∈ [n], Si,0 ∩ Sj,1 6= ∅.

We will need the following simple lemma.

Lemma 2.15. Let S = {Si,b : i ∈ [n] , b ∈ {0, 1}} be a strong straddling set system over a universe
U. Then for any T ( U that can be written as a disjoint union of sets from S, there is a unique
b ∈ {0, 1} such that T =

⋃
i∈I Sb,i for some I ⊆ [n].

Proof. By the second property of Def. 2.14, any pairwise disjoint collection of sets from S must
be either all of the form Si,0 or all of the form Si,1. If there are two sets I0, I1 ⊆ [n] such that⋃

i∈I0
Si,0 = T =

⋃
i∈I1

Si,1, then by the first property of Def. 2.14 we must have T = U which
contradicts our assumption.

We use the following construction from [MSW14].

11



Construction 2.16 (Strong straddling set system). Define S = {Si,b : i ∈ [n] , b ∈ {0, 1}} over a
universe U =

{
1, 2, ..., n2

}
as follows for all 1 ≤ i ≤ n.

Si,0 = {n(i− 1) + 1, n(i− 1) + 2, . . . , ni} Si,1 = {i, n + i, 2n + i, . . . , n(n− 1) + i}

3 Building Low-Rank Branching Programs

In this section, we describe some procedures to be carried out on branching programs. We will
use these procedures to show how to make any branching program non-shortcutting, and how to
convert formulas into matrix branching programs.

In particular, we will describe a way to convert any formula of size s over NOT, AND, XOR

gates into an exact matrix branching program of length s + 1 and maximum width ⌈log2(s + 2)⌉.
Our result gives a qualitative improvement to a result of Cleve [Cle91], which achieves similar
asymptotics, but only for balanced formula, and only for formula over NOT, AND gates.

3.1 Operations on Generalized Matrix Branching Programs

We now describe several operations on generalized matrix branching programs. We will use these
operations to build our branching program for formulas.

Transpose. Let BP =
(
inp, (Bi,0, Bi,1)i∈[ℓ]

)
be a branching program of length ℓ and shape

(d0, d1, . . . , dℓ) ∈ (Z+)ℓ+1. The transpose of BP , denoted BP T , is a branching program of length ℓ
and shape (dℓ, . . . , d0), given by

BP T =

(
inpT ,

(
BT

ℓ+1−i,0, BT
ℓ+1−i,1

)
i∈[ℓ]

)

where inpT (i) = inp(ℓ + 1 − i). Observe that (BP T )arith/bool(x) = (BParith/bool(x))T . Note that if

BP is exact, then so is BP T .

Augment. Let BP be as above. The r-augmentation of BP is the branching program BP ′ =
Augment(BP, r) of length ℓ and shape (d0 + r, d1 + r, . . . , dℓ + r) given by

BP ′ =

(
inp,

(
B′i,0, B′i,1

)
i∈[ℓ]

)
where B′i,b =

Bi,b 0di−1×r

0r×di Ir

Observe that

BP ′arith/bool(x) =
BParith/bool(x) 0d0×r

0r×dℓ Ir

Moreover, if BP is exact, then so is BP ′. We will define Augment(BP ) = Augment(BP, 1).

Linear Operations. Let BP be as above. Given a d′0× d0 matrix L and a dℓ× d′ℓ matrix R, we
can compute the branching program L ·BP ·R which has length ℓ, shape (d′0, d1, . . . , dℓ−1, d′ℓ), and
is given by

L · BP ·R =

(
inp,

(
B′i,0, B′i,1

)
i∈[ell]

)
where B′i,b =





Bi,b if i 6= 1, ℓ

L ·B1,b if i = 1

Bℓ,b ·R if i = ℓ

12



Observe that (L · BP ·R)arith(x) = L · (BParith(x) ·R), and that if BP is non-shortcutting, then
L · BP ·R is also non-shortcutting.

Merge. Let BP (0), BP (1) be two branching programs of length ℓ(b) and shape (d
(b)
0 , . . . , d

(b)
ℓ ) for

b ∈ {0, 1} with the property that d
(0)
ℓ = d

(1)
1 . Then we can compute the merge of BP (0) and BP (1)

as
BP (0) · BP (1) =

(
inp, (Bi,0, Bi,1)i∈[ℓ′]

)

where ℓ′ = ℓ(0) + ℓ(1), inp′ : [ℓ(0) + ℓ(1)]→ [n] is defined as inp(i) =

{
inp(0)(i) if i ≤ ℓ(0)

inp(1)(i− ℓ(0)) if i > ℓ(1)
, and

Bi,b =





B
(0)
i,b if i ≤ ℓ(0)

B
(1)

i−ℓ(0),b
if i > ℓ(0)

. Observe that
(
BP (0) · BP (1)

)
arith

(x) = (BP
(0)
arith(x)) · (BP

(1)
arith(x)).

3.2 Making any branching program non-shortcutting

Let BP be an arbitrary matrix branching program of shape (d0, d1, . . . , dℓ). Define

BP ′ =
(

Id0 1d0×1 0d0×1
)
· Augment(BP, 2) ·




Idℓ

01×dℓ

11×dℓ




Notice that the shape of BP ′ is (d0, d1 + 2, . . . , dℓ−1 + 2, dℓ). Moreover, BP ′arith computes the
matrix

BP ′arith =
(

Id0 1d0×1 0d0×1
)
·

(
BParith 0d0×2

02×dℓ I2

)
·




Idℓ

01×dℓ

11×dℓ




=
(

Id0 1d0×1 0d0×1
)
·




BParith

0dℓ×1

1dℓ×1


 = BParith

Finally, we have the following:

Lemma 3.1. BP ′, as defined above, is non-shortcutting.

Proof. The branching program BP (L) = Augment(BP, 2) ·




Idℓ

01×dℓ

11×dℓ


 on input x computes the

matrix 


BParith(x)
0dℓ×1

1dℓ×1




which always has all columns not identically zero. Therefore the sub-product of BP
(L)
arith(x) con-

sisting of all matrices except the left-most matrix will always have non-zero columns. We obtain
BP ′ from BP (L) by left-multiplying the left-most matrix by a matrix. Therefore, the sub-product

of BP ′arith(x) that drops the left-most matrix is identical to the sub-product of BP
(L)
arith(x) that
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drops the left-most matrix, and therefore has non-zero columns. Similarly, we can conclude that
any sub-product that does not include the right-most matrix has non-zero rows. Therefore, the
branching program is non-shortcutting, as desired.

3.3 Arithmetic Formulas to Matrix Branching Programs

We now give our conversion of formulas to matrix branching programs. We will build a a branching
program for any arithmetic formula taking 0/1 inputs, where every gate is an arbitrary bilinear
polynomial in its inputs. That is, for any such arithmetic formula f , we build a branching program
BP such that BParith(x) = f(x). We note, however, that BPbool only reveals if f(x) is zero or not.

As a first step, we build a branching program BP such that BParith(x) = ( 1 f(x) ). The

final branching program BP ′ is given as BP ′ = BP ·

(
0
1

)

For input wires xi, the branching program is trivial: inp maps 1 to i, and B1,b = ( 1 b ).
We now build BP recursively. Suppose f = f0OPf1 for some bilinear OP. Write y0OPy1 =

c0 + c1y0 + c2y1 + c3y0y1. We observe that

(
1 y0

)
·

(
0 c2 1
c1 c3 0

)
·




1 0
y1 0
0 1


 ·

(
0 1
1 c0

)
=
(

1 y0OPy1

)

Therefore, we can compute the branching programs BP0 and BP1 for f0 and f1, and let

BP = BP0 ·

((
0 c2 1
c1 c3 0

)
· Augment(BP T

1 ) ·

(
0 1
1 c0

))

It follows that BParith(x) = ( 1 f(x) ), meaning BP computes the correct function.

Now notice that f0 and f1 are not treated symmetrically above. Indeed, the width w of the
branching program BP is equal to max(w0, 1 + w1), where w0 and w1 are the widths of BP0 and
BP1, respectively. For very unbalanced formula, this could lead the total width to be linear in the
formula size.

However, we can easily exchange the roles of f0 and f1. In particular, for a gate OP, let OPT

be the operation defined as y0OPT y1 = y0OPy1. Now we can write f = f0OPf1 or f = f1OPT f0.
In the first case, the total width becomes w = max(w0, 1 + w1), and in the second case, the width
becomes w = max(w1, 1 + w0). Therefore, we can choose which recursion to perform to arrive at
the minimum:

w = min (max(w0, 1 + w1), max(w1, 1 + w0))

For reasons that make the proof below more straightforward, we actually choose the order based
on the formula size, rather than the resulting branching program width. That is, we have s0 ≥ s1

where sb is the size of fb.

Lemma 3.2. The length ℓ, width w, total nodes t and total size u of the branching program BP ′
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satisfy

ℓ = s + 1

w ≤ ⌈log2(s + 2)⌉

t ≤ ⌈(s + 1)(1 +
1

2
log2(s + 2))⌉

u ≤ ⌈(s + 1)(3 + log2(s + 2))2/4⌉

Proof. The fact that ℓ = s + 1 follows easily from the recurrence. We will prove that the profile
of BP , (d0, . . . , ds+1), satisfies the following:

d0 = 1 ds+1 = 2

2 ≤ d1 ≤ ⌈log2(s + 2)⌉ for i ∈ [s]

s+1∑

i=0

di ≤ 1 + ⌈(s + 1)(1 +
1

2
log2(s + 2))⌉

s∑

i=0

didi+1 ≤ ⌈(s + 1)(3 + log2(s + 2))2/4⌉

The final branching program BP ′ has the same profile, except that ds+1 is set to 1 instead of
2. The lemma easy follows.

The base case where s = 0 is trivial. For a formula f = f0OPf1 of size s, let the size of the sub-
formulas f0 and f1 be s0 and s1: s0 + s1 + 1 = s. Then by induction the branching programs BP0

and BP1 have profiles d
(b)
0 , . . . d

(b)
sb+1 for b = 0, 1 where d

(b)
0 = 1, d

(b)
sb+1 = 2, and 2 ≤ d

(b)
i ≤ wb where

⌈log2(sb + 2)⌉ for i ∈ [1, sb]. Moreover,
∑sb+1

i=0 d
(b)
i ≤ tb where tb = 1 + ⌈(sb + 1)(1 + 1

2 log2(sb + 2))⌉

and
∑sb

i=0 d
(b)
i d

(b)
i+1 ≤ ub where ub = ⌈(s + 1)(3 + log2(s + 2))2/4⌉

For now, suppose s0 ≥ s1. The case s1 > s0 is handled similarly. Then BP has the profile

(1, d
(0)
1 , d

(0)
2 , . . . , d(0)

s0
, 2, d(1)

s1
+ 1, d

(1)
s1−1 + 1, . . . , d

(1)
1 + 1, 2)

If s0 > s1, the total width is at most w0 ≤ ⌈log2(s + 2)⌉, as desired.
Now if s0 = s1, then the total width will be w0 + 1. However, s = 2s0 + 1 and so

w0 + 1 = 1 + ⌈log2(s0 + 2)⌉ = ⌈log2(2s0 + 4)⌉ = ⌈log2(s + 3)⌉

At first, this bound looks worse than what we are trying to prove. However, we know that s is
odd. Suppose ⌈log2(s + 3)⌉ > ⌈log2(s + 2)⌉. Then it must be that s + 2 is a power of 2, and s + 3
is one greater. However, this is impossible since s is odd. Therefore, w ≤ ⌈log2(s + 2)⌉ in this case
as well.

The linear size t satisfies t ≤ t0 + t1 − 2 + s1. We have that

t ≤ ⌈(s0 + 1)(1 +
1

2
log2(s0 + 2))⌉ + ⌈(s1 + 1)(1 +

1

2
log2(s1 + 2))⌉ + s1

We can bound this expression as

t ≤ 1 + ⌈(s0 + 1)(1 +
1

2
log2(s0 + 2)) + (s1 + 1)(1 +

1

2
log2(s1 + 2)) + s1⌉
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Given that s = s0 + s1 + 1 and s0 ≥ s1, it is straightforward but tedious to bound this as

t ≤ 1 + ⌈(s + 1)(1 +
1

2
log2(s + 2))⌉

Next, we observe that

u =

(
s0∑

i=0

d
(0)
i d

(0)
i+1

)
+ 2(d(1)

s1
+ 1) +

(
s1−1∑

i=0

(d
(1)
i + 1)(d

(1)
i+1 + 1)

)

The term
(∑s0

i=0 d
(0)
i d

(0)
i+1

)
is equal to u0. The term

(∑s1−1
i=0 (d

(1)
i + 1)(d

(1)
i+1 + 1)

)
is equal to(∑s1−1

i=0 d
(1)
i d

(1)
i+1

)
+ 2

(∑s1
i=0 d

(1)
i

)
+ s1 − 1− d

(1)
0 − d

(1)
s1 . Using the fact that d

(1)
s1+1 = 2, d

(1)
0 = 1 and

d
(1)
i ≥ 2 for all other i, we can therefore, we can bound

u ≤ u0 + u1 + 2t1 + s1 − 4

We can then bound this as

u ≤ ⌈(s0 +1)(3+log2(s0 +2))2/4+(s1 +1)(3+log2(s1 +2))2/4+2(s1 +1)(1+
1

2
log2(s1 +2))+s1 +1⌉

It is straightforward but tedious to bound this as u ≤ ⌈(s + 1)(3 + log2(s + 2))2/4⌉, as desired.

Making the branching program non-shortcutting. We can make BP ′ non-shortcutting by
increasing the profile by 2 as in Lemma 3.1. However, it turns out in this case it is sufficient to
only increase the profile by 1. This is because the branching program BP ′ always has non-zero
outputs, and we obtain BP ′ from BP by right-multiplying the rightmost matrix. Therefore, any
sub-product of BP ′ that does not contain the rightmost matrix must be a non-zero row vector (so
its one and only row is non-zero). Therefore, BP ′ is part-way to non-shortcutting already. However,
there is still a possibility that sub-products that do contain the right-most matrix will be zero.

We will fix this by augmenting the branching program, and then collapsing it back to a scalar
by modifying the left- and right-most matrices. We do this is such a way that leaving out the
left-most matrix always gives a non-zero product. Our branching program is set to

BP final =
(

1 0
)
· Augment(BP ′) ·

(
1
1

)

Lemma 3.3. BP final, as constructed above, is non-shortcutting. Moreover, it satisfies

w ≤ ⌈1 + log2(s + 2)⌉

t ≤ ⌈(s + 1)(4 + log2(s + 2))/2⌉

u ≤ ⌈(s + 1)(5 + log2(s + 2))2/4⌉

Proof. By a similar analysis to Lemma 3.1 and the discussion above about BP ′ being partially
non-shortcutting, we have that BP final is non-shortcutting.

The augment procedure only increases the profile by one in each coordinate except d0 and ds+1.
Therefore, the bound on w follows from the previous analysis. The linear size increases by exactly
s− 1, so the bound of t follows from the previous analysis. Finally, it is straightforward to see that
the actual size u only increases by less that twice the old linear size, plus 1. Therefore, the bound
on u also follows from the previous analysis.

16



3.4 Extensions

Boolean Formula. Any boolean gate can be seen as a bilinear polynomial when its inputs and
outputs are treated as integers. Therefore, for any boolean formula f , we can use the conversion
above to build a matrix branching program BP such that BParith = f(x). Since f(x) is either 0
or 1, we see that BPbool(x) = BParith(x), and so the resulting matrix branching program is exact.

Arithmetic Formula With Integer Input. Given any arithmetic formula where the input
variables are bounded in some range of size B, we can break each input variable x into ⌈log2(B+1)⌉
input bits xi, which can then be assembled into x using ⌈log2(B + 1)⌉ − 1 gates. Thus we increase
the size of the formula by approximately a factor of log2 B, but can handle large inputs. We note
that while BParith(x) = f(x), BPbool still only reveals if f(x) is 0 or not.

Arithmetic Formula With Bounded Outputs. One limitation of the above constructions is
that for general arithmetic formula, the function BPbool does not reveal f(x), but only a single
bit. When we build our obfuscators, we will see that the function BPbool is what we can actually
obfuscate. Therefore, we would like to build a branching program BP such that BPbool reveals the
entire output f(x). Here we make partial progress towards this goal by solving the case where the
output f(x) is confined to a small range. Let f be an arithmetic formula with the guarantee that
f(x) ∈ [B0, B1] for some integers B0, B1 where B1 − B0 is relatively small. We will construct a
branching program BP such that BPbool (rather than BParith) reveals the entire output of f .

First, construct the branching program BP where BParith(x) =
(

1 f(x)
)

as above. Then

construct the branching program

BP ′ = BP ·

(
B0 B0 + 1 · · · B1 − 1 B1

−1 −1 · · · −1 −1

)

Notice that

BP ′arith(x) =
(

B0 − f(x) (B0 + 1)− f(x) · (B1 − 1)− f(x) B1 − f(x)
)

Then BP ′bool(x) is all 1’s, except for index f(x)− B0 + 2, which will be zero. Therefore, there is a
bijective mapping between BP ′bool(x) and f(x), as desired. Moreover, BP ′arith(x) always contains
a non-zero entry, so we can make the branching program non-shortcutting by only increasing the
profile by 1 instead of 2.

While the above increases the maximum width to at least B1−B0 + 2, it does not increase the
total size of the branching program by much. Indeed, the above modification only increases the
profile in the last position. Therefore, the vertex size increases by an additive B1 − B0, while the
total size increases by at most an additive (B1 − B0)w where w was the maximum width before
the conversion. If we were restricted to using square matrices, the total size would increase by
approximately s(2(B1−B0)w + (B1−B0)2), which is considerably worse for large B1−B0 or large
s.

4 Obfuscator for Low-Rank Branching Programs

We now describe our obfuscator for generalized matrix branching programs. Our obfuscator is
essentially the same as the obfuscator of Ananth et al. [AGIS14]. The differences are as follows:
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• We view branching programs as including the bookends. While the bookends of previous
works did not depend on the input, they can in our obfuscator. However, for [AGIS14], this
distinction is superficial: the bookends of [AGIS14] can be “absorbed” into the branching pro-
gram by merging them with the left-most and right-most matrices of the branching program.
This does not change functionality, since this merging always happens during evaluation, and
it does not change security, since the adversary can perform the merging himself.

• We allow our branching program to have singular and rectangular matrices. We do, how-
ever, require the branching program to be non-shortcutting. Note that a branching program
with square invertible internal matrices and non-zero bookend vectors, such as in [AGIS14],
necessarily is non-shortcutting.

• We allow branching programs to output multiple bits — that is, the function computed by
our obfuscated program will be BPbool, which is a matrix of 0/1 entries. In order to prove
security, we will have to perform additional randomization. However, in the case of single-bit
outputs, this additional randomization is redundant.

Input. The input to our obfuscator is a dual-input matrix branching program sampler BP S of
length ℓ, shape (d0, d1, . . . , dℓ), and bound t. The first step is to choose a large prime q for the
graded encodings. Then sample BP ← BP S(q). Write

BP = (inp0, inp1, {Bi,b0,b1})

We require BP S to output BP satisfying the following properties:

• BP is non-shortcutting.

• For each i, inp0(i) 6= inp1(i)

• For each pair (j, k) ∈ [n]2, there exists an i ∈ [ℓ] such that (inp0(i), inp1(i)) = (j, k) or
(inp1(i), inp0(i)) = (j, k)

For ease of notation in our security proof, we will also assume that each input bit is used exactly
m times, for some integer m. In other words, for each i ∈ [n], the sets ind(i) = {j : inpb(j) =
i for some b ∈ {0, 1}} have the same size. This requirement, however, is not necessary for security.

Step 1: Randomize BP . First, similar to previous works, we use Kilian [Kil88] to randomize
BP , obtaining a randomized branching program BP ′. This is done as follows.

• Let q be a sufficiently large prime of Ω(λ) bits.

• For each i ∈ [ℓ− 1], choose a random matrix Ri ∈ Zdi×di
q . Set R0, Rℓ to be identity matrices

of the appropriate size. Define

B̂i,b0,b1 = Radj
i−1 ·Bi,b0,b1 ·Ri

• For each s ∈ [d0], choose a random βs and set S to be the d0×d0 diagonal matrix with the βs

along the diagonal. For each t ∈ [dℓ], choose a random γt and set T to be the dℓ×dℓ diagonal
matrix with γt along the diagonal. Set

C1,b0,b1 = S · B̂1,b0,b1 Cℓ,b0,b1 = B̂1,b0,b1 ·T Ci,b0,b1 = B̂i,b0,b1 for each i ∈ [2, ℓ − 1]

18



We note that this additional randomization step is not present in previous works, but is
required to handle multi-bit outputs

• For each i ∈ [ℓ], b0, b1 ∈ {0, 1}, choose a random αi,b0,b1 ∈ Zp, and define

Di,b0,b1 = αi,b0,b1Ci,b0,b1

Then define BP ′ = (inp0, inp1, {Di,b0,b1}). Observe that BP ′bool(q)(x) = BPbool(q)(x) for all x.

Step 2: Create set systems. Consider a universe U, and a partition U1, . . . ,Uℓ of U into equal
sized disjoint sets: |Ui| = 2m− 1. Let Sj be a straddling set system over the elements of Uj. Note
that Sj will have m entries, corresponding to the number of times each input bit is used. We now
associate the elements of Sj to the indicies of BP that depend on xj :

Sj = {Sj
k,b : k ∈ ind(j), b ∈ {0, 1}}

Next, we associate a set to each element output by the randomization step. Recall that in a
dual-input relaxed matrix branching program, each step depends on two fixed bits in the input
defined by the evaluation functions inp0 and inp1 . For each step i ∈ [n], b0, b1 ∈ {0, 1}, we define
the set S(i, b0, b1) using the straddling sets for input bits inp1(i) and inp2(i) as follows:

Si,b0,b1 = S
inp0(i)
i,b0

∪ S
inp1(i)
i,b1

Step 3: Initialization. O initializes the oracleM with the ring Zp and the universe U. Then it
asks for the encodings of the following elements:

{(Di,b0,b1 [j, k], Si,b0 ,b1)}i∈[ℓ],b0,b1∈{0,1},j∈[di−1],k∈[di]

O receives a list of handles back from M. Let [β]S denote the handle for (β, S), and for a
matrix M , let [M ]S denote the matrix of handles ([M ]S)[j, k] = [M [j, k]]S . Thus, O receives the
handles: {

[Di,b0,b1]Si,b0,b1

}
i∈[ℓ],b0,b1∈{0,1}

Output. O(BP S) outputs these handles, along with the length ℓ, shape d0, . . . , dℓ, and input
functions inp0, inp1, as the obfuscated program. Denote the resulting obfuscated branching program
as BPO

Evaluation. To evaluate BPO on input x, use the oracle M to add and multiply encodings in
order to compute the product

h =


∏

i∈[ℓ]

Di,xinp0(i),xinp1(i)



U

=
∏

i∈[ℓ]

[
Di,xinp0(i),xinp1(i)

]
Si,xinp0(i),xinp1(i)

h is a d0 × dℓ matrix of encodings relative to U. Next, use M to test each of the components of h
for zero, obtaining a matrix hbool ∈ {0, 1}d0×dℓ . That is, if the zero test on returns a 1 on h[s, t],
hbool[s, t] is 0, and if the zero test returns a 0, hbool[s, t] is 1.
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Correctness of evaluation. The following shows that all calls to the oracle M succeed:

Lemma 4.1 (Adapted from [AGIS14]). All calls made to the oracle M during obfuscation and
evaluation succeed.

It remains to show that the obfuscated program computes the correct function. Fix an input
x, and define bi

c = xinpc(i) for i ∈ [ℓ], c ∈ {0, 1}. From the description above, BPO outputs 0 at
position [s, t] if and only if

0 =


∏

i∈[ℓ]

Di,bi
0,bi

1


 [s, t] = βsγt


∏

i∈[ℓ]

αi,bi
0,bi

1
Radj

i−1 ·Bi,bi
0,bi

1
·Ri


 [s, t]

= βsγt




∏

i∈[ℓ]

αi,bi
0,bi

1




∏

i∈[ℓ]

Bi,bi
0,bi

1




 [s, t] =


βsγt

∏

i∈[ℓ]

αi,bi
0,bi

1


 (BParith(x)[s, t])

With high probability βs, γt, αi,b0,b1 6= 0, meaning BParith(x)[s, t] = 0 mod q if and only if the
zero test procedure on position [s, t] gives 0. Therefore, BPO(x) = BPbool(q)(x) for the branching

program BP sampled from BP S.

5 Polynomials on Kilian-Randomized Matrices

In this section, we prove a theorem about polynomials on the Kilian-randomized matrices from the
previous section. Our high level goal is to show polynomials the adversary tries to construct other
than the correct matrix products will be useless to the adversary. In this section, we focus on a
simpler case where the polynomial is only over matrices corresponding to a single input. In the
following section, we use the results of this section to prove the general case.

Previous works showed the single-input case using Kilian simulation [BR13, BGK+14], or a
variant of it [PST14b, AGIS14]. Namely, these works queried the function oracle to determine
what the result of the matrix product P (x) should be. Then, they tested the polynomial on
random matrices, subject to the requirement that the product equaled P (x), to see what the result
was. Crucially, previous works relied on the fact that the matrices the polynomial is tested on
come from the same distribution as the matrices would in the branching program. Unfortunately,
this step of the analysis requires the branching program to consist of square invertible matrices.
However, we need to be able to handle generalized matrix branching programs with rectangular
and low-rank matrices. Therefore, we need to replace the Kilian randomization theorem with a
new theorem suitable in this setting.

Let d1, . . . , dn−1 be positive integers and d0 = dn = 1. Let Âk for k ∈ [n] be dk−1× dk matrices
of variables.

Definition 5.1. Let dk, Âk be as above. Consider a multilinear polynomial p on the variables in
{Âk}k∈[n]. We call p allowable if each monomial in the expansion of p contains at most one variable

from each of the Âk.

As an example of an allowable polynomial, consider the the matrix product polynomial Â1 · Â2 ·
· · · · Ân.
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Now fix a field F, and let Ak ∈ Fdk−1×dk for k = 1, . . . , n be a collection of matrices over F. Let
Rk be dk × dk matrices of variables for k ∈ [n], and let Radj

k be the adjugate matrix of Rk. Let
R0 = Rn+1 = 1. Now suppose we set

Âk = Rk−1 ·Ak ·R
adj
k

Theorem 5.2. Let F, dk, Ak, Rk, Âk be as above. Consider an allowable polynomial p in the Âk,
and suppose p, after making the substitution Âk = Rk−1 ·Ak ·R

adj
k , is identically 0 as a polynomial

over the Rk. Then the following is true:

• If A1 ·A2 · · · · ·An 6= 0, then p is identically zero as a polynomial over its formal variables,
namely the Âk.

• If A1 ·A2 · · · · ·An = 0 but

A1 ·A2 · · · · ·An−1 6= 01×dn

A2 · · · · ·An−1 ·An 6= 0d2×1

then p, as a polynomial over the Âk, is a constant multiple of the matrix product polynomial
Â1 · Â2 · · · · · Ân.

Proof. If n = 1, there are no Rk matrices, a single A1 matrix of dimension 1 × 1, with entry a.
Then p = p(a) = ca for some constant c. As a polynomial over the (non-existent) Ri matrices, p
is just a constant polynomial, so p = 0 means ca = 0. In the first case above, a 6= 0, so c = 0,
meaning p is identically 0. The second case above is trivially satisfied since the matrix product
polynomial is also a constant.

We will assume that A1 is non-zero in every coordinate. At the end of the proof, we will show
this is without loss of generality.

Now we proceed by induction on n. Assume Theorem 5.2 is proved for n − 1. Consider an
arbitrary allowable polynomial p. We can write p as

p =
∑

j1,i2,j2,...,jn,in+1

αj1,i2,...,jn−1,inÂ1,1,j1Â2,i2,j2 . . . Ân−1,in−1,jn−1Ân,in,1

Where ik+1, jk ∈ [dk], and Âk,i,j is the (i, j) entry of the matrix Âk. From this point forward, for
convenience, we will no longer explicitly refer to the bounds dk on the ik+1, jk.

Now we can expand p in terms of the R1 matrix:

p =
∑

j1,i2,j2,...,jn,in+1,m,ℓ

αj1,i2,...,jn−1,inA1,1,mR1,m,j1Radj
1,i2,ℓ (A2 ·R2)ℓ,j2

Â3,i3,j3 . . . Ân,in,1

=
∑

j,i,ℓ,m

α′j,i,ℓA1,1,mR1,m,j1Radj
1,i2,ℓ

where
α′j,i,ℓ =

∑

j2,...,jn,in+1

αj,i,...,jn−1,in (A2 ·R2)ℓ,j2
Â3,i3,j3 . . . Ân,in,1

Recall that

Radj
1,i,ℓ =

∑

σ:σ(i)=ℓ

sign(σ)


∏

t6=i

R1,σ(t),t
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where the sum is over all permutations satisfying σ(i) = ℓ. Thus we can write p as

p =
∑

j,i,σ,m

sign(σ)α′j,i,σ(i)A1,1,mR1,m,j


∏

t6=i

R1,σ(t),t




Now, since p is identically zero as a polynomial over the Rk matrices, it must be that for

each product R1,m,j

(∏
t6=i R1,σ(t),t

)
, the coefficient of the product (which is a polynomial over the

Rk : k ≥ 2 matrices) must be identically 0. We now determine the coefficients.
First, we examine the types of products of entries in R1 that are possible. Products can be

thought of as arising from the following process. Choose a permutation σ, which corresponds to
selecting d1 entries of R1 such that each row and column of R1 contain exactly one selected entry.
Then, for some i, un-select the selected entry from column i and instead select any entry from R1

(possibly selecting the same entry twice). We observe that the following products are possible:

•
∏

t R1,σ(t),t for a permutation σ. This corresponds to re-selecting the un-selected entry from
column i. The resulting list of entries determines the permutation σ used to select the original
entries (since it is identical to the original list), but allows the column i of the un-selected/re-
selected entry to vary. Thus in the summation above, this fixes σ, j = i and m = σ(i), but
allows i to vary over all values, corresponding to the fact that if we remove any entry and
replace it with itself, the result is independent of which entry we removed. Call such products
well-formed. Well-formed products give the following equation:

∑

i

α′i,i,σ(i)A1,1,σ(i) = 0 for all σ (5.1)

• R1,m,j
∏

t6=i R1,σ(t),t where j 6= i and m 6= σ(i). This corresponds to, after un-selecting the
entry in column i, selecting a another entry that is in both a different row and a different
column. Note that, given final list of selected entries, it is possible to determine the newly
selected entry as the unique selected entry that shares both a column with another selected
entry and a row with another selected entry. It is also possible to determine the un-selected
entry as the only entry that shares no column nor row with another entry. Therefore, the
original entry selection is determined as well. Thus, in the summation above, the selected
entries fix σ, i, j, and m. In other words, there is no other selection process that gives the
same list of entries from R1.

We call such products malformed type 1. Malformed type 1 products have the coefficient

α′j,i,σ(i)A1,1,m

Given any i, j 6= i, m, ℓ 6= m, pick σ so that σ(i) = ℓ. Since A1,1,m 6= 0 for all m, this gives

α′j,i,ℓ = 0 for all i, j 6= i, ℓ (5.2)

• R1,m,i
∏

t6=i R1,σ(t),t where m 6= σ(i). This corresponds to, after un-selecting the entry R1,σ(i),i,
selecting a different entry R1,m,i in the same column. Let i′, m′, σ′ be some other selection
process that leads to the same product.

Given the final selection of entries, it is possible to determine m′ = m as the only row with
two selected entries. It is also possible to determine σ′(i′) = σ(i) as the only row with no
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selected entries (though i′ has not been determined yet). Moreover, i′ must be one of the
two columns selected in row m, call the other i′′. All entries outside of these two rows must
have come from the original selection of entries, so this determines σ′(t) = σ(t) on all inputs
outside of i, i′′. Notice that if i = i′, then σ′ agrees with σ on d1 − 1 entries, and since they
are both permutations, this sets σ′ = σ. In this case, (i′, m′, σ′) = (i, m, σ).

Otherwise i′ 6= i, so i′′ = i, which leaves σ′(i) = σ(i′) = m. At this point, σ′ is fully determined
as σ ◦ (i i′) where (i i′) is the transposition swapping i and i′. Therefore, there are two
possibilities leading to this product, one corresponding to i and the other corresponding to
i′.

We call these products malformed type 2. Notice that σ′ and σ only differ by a transposition
swapping i and i′, and so they have opposite parity, meaning the corresponding terms in p
have the opposite sign. Given i, i′ 6= i, m, ℓ 6= m, choose σ so that σ(i) = ℓ. This gives us
(α′i,i,ℓ−α′i′,i′,ℓ)A1,1,m = 0. Since A1,1,m 6= 0 for all m, we therefore have that α′i,i,ℓ = α′i′,i′,ℓ for
all i, i′. We can thus choose βl such that:

α′i,i,ℓ = βℓ for all i, ℓ (5.3)

• R1,σ(i),j
∏

t6=i R1,σ(t),t where j 6= i. We call such products malformed type 3. the coefficients
of these products are linear combinations of the α′i,j,ℓ for i 6= j, which we already know to be
0. Therefore, these equations are redundant, and we will not need to consider them.

Setting σ(i) = i in Equation 5.1 and combining with Equation 5.3, we have that

∑

ℓ

βℓA1,1,ℓ = 0 (5.4)

Now we can expand α′j,i,ℓ and βi in Equations 5.2 and 5.4, obtaining:

0 = α′i,j,ℓ =
∑

j2,i3,...,jn−1,in

αj,i,j2,i3,...,jn−1,in (A2 ·R2)ℓ,j2
Â3,i3,j3 . . . Ân,in,1 for all ℓ, i, j 6= i

(5.5)

0 =
∑

ℓ

βℓA1,1,ℓ =
∑

ℓ,j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,inA1,1,ℓ (A2 ·R2)ℓ,j2
Â3,i3,j3 . . . Ân,in,1

=
∑

j2,i3,...,jn−1,in

αi,i,j2,i3,...,jn−1,in (A1 ·A2 ·R2)1,j2
Â3,i3,j3 . . . Ân,in,1 for all i (5.6)

Now we invoke the inductive step multiple times. Let A2,ℓ be the ℓth row of A2, and let

Â2,ℓ = A2,ℓ · R2. Since A2 · A3 . . . An 6= 0, there is some ℓ such that A2,ℓ · A3 . . . An 6= 0.
Then the matrices A2,ℓ, A3, . . . , An satisfy the first set of requirements of Theorem 5.2 for n − 1.
Moreover, the right side of Equation 5.5 gives an allowable polynomial that is identically zero as a
polynomial over the Rk, k ≥ 2, and therefore, by induction, it is identically 0 as a polynomial over
Â2,ℓ, Â3, . . . , Ân. This shows us that

αj,i,j2,i3,...,jn−1,in = 0 for all j 6= i (5.7)

Next, Let A′2 = A1 ·A2, and let Â′2 = A′2 ·R2. There are two cases:
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• A1 · A2 · · ·An 6= 0. Then A′2 · A3 · · ·An 6= 0. Therefore, A′2, A3, . . . , An satisfy the first
set of requirements in Theorem 5.2. Moreover, for each i, Equation 5.6 gives an allowable
polynomial that is identically zero as a polynomial over the Rk, k ≥ 2. Therefore, by induction,
the polymomial is identically zero as a polynomial over Â′2, Â3, . . . , Ân. This means

αi,i,j2,i3,...,jn−1,in = 0 for all i

Combining with Equation 5.7, we have that all the α values are 0. Therefore p is identically
zero as a polynomial over the Â1, Â2, . . . , Ân.

• A1 ·A2 · · ·An = 0. Then A′2 ·A3 · · ·An = 0. However, A′2 ·A3 · · ·An−1 = A1 ·A2 · · ·An−1 6= 0
and A3 . . . A4 · · ·An 6= 0 (since otherwise A2 · · ·A3 · · ·An = 0, contradicting the assumptions
of Theorem 5.2). Therefore, A′2, A3, . . . , An satisfy the second set of requirements in Theo-
rem 5.2. By induction, for each i, the polynomial in Equation 5.6 must therefore be a multiple
γiÂ′2 · Â3 · · · Ân of the matrix product polynomial. This is equivalent to

αi,i,j2,i3,...,jn−1,in = 0 if jk 6= ik+1 for any k

αi,i,i3,i3,...,in,in = γi

This means we can write

α′j,i,ℓ = 0 for all j 6= i (by Equation 5.7 and the definition of α′i,j,ℓ)

α′i,i,ℓ = γi

∑

i3,...,in

(A2 ·R2)ℓ,i3
Â3,i3,i4 . . . Ân,in,1 = γi (A2 ·A3 · · ·An)ℓ,1

Since α′i,i,ℓ = βℓ for all i and the product A2 ·A3 · · ·An is non-zero, we have that γi = γ is
the same for all i. Therefore,

αi,i,i3,i3,...,in,in = γ for all i, i3, . . . , in

meaning p is a multiple of the matrix product polynomial, as desired.

It remains to show the case where A1 has zero entries. Since A is non-zero (as a consequence of
our assumptions), and A is a single row vector, it is straightforward to build an invertible matrix
B such that A′1 = A1 ·B is non-zero in every coordinate.

Let A′2 = B−1A2. Let R′1 = B−1 ·R1, Â′1 = A′1 ·R
′
1 = Â1, and Â′2 = (R′1)adj ·A′2 ·R2 = Â2.

Now A′1, A′2, A3, . . . , An satisfy the same conditions of Theorem 5.2 as the original Ak. Moreover, p

is still allowable as a polynomial over Â′1, Â′2, Â3, . . . Ân. Moreover, we can relate p as a polynomial
over Rk to p as a polynomial over R′1, R2, . . . , Rn−1 by a linear transformation on the R1 variables.
Therefore, p is identically zero as a polynomial over the Rk if and only if it is identically zero as
a polynomial over R′1, R2, . . . , Rn. Thus we can invoke Theorem 5.2 on A′1, A′2, . . . , An using the
same polynomial p, and arrive at the desired conclusion. This completes the proof.

6 Sketch of VBB Security Proof

We now explain how to use Theorem 5.2 to prove the VBB security of our obfuscator. The full
security proof appears in Section 7.
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In this sketch, we will pay special attention to the steps in our proof that deviate from previous
works [BGK+14, AGIS14]. The adversary is given an obfuscation of a branching program BP ,
which consists of a list of handles corresponding to elements in the graded encoding. The adversary
can operate on these handles using the graded encoding interface, which allows performing algebraic
operations and zero testing. Our goal is to build a simulator that has oracle access only to the
output of BP , and is yet able to simulate all of the handles and interfaces seen by the adversary.

The simulator will choose random handles for all of the encodings in the obfuscation, leaving
the actual entries of the Di,b0,b1 as formal variables2. Simulating the algebraic operations is straight-
forward; the bulk of the security analysis goes in to answering zero-test queries. Any handle the
adversary queries the zero test oracle on corresponds to some polynomial p on the variables Di,b0,b1,
which the adversary can determine by inspecting the queries made by the adversary so far.

The simulator’s goal is to decide if p evaluates to zero, when the formal variables in the Di,b0,b1

are set to the values in the randomized matrix branching program BP ′. However, the simulator
does not know BP ′, and must instead determine if p gives zero knowing only the outputs of BP .

The analysis of [BGK+14] and [AGIS14] (and some extra analysis of our own to handle multi-bit
outputs) reduces the problem of determining if p evaluates to zero to solving the following problem.

There is an unknown sequence of matrices Ai ∈ Z
di−1×di
q for i ∈ [ℓ], where d0 = dℓ = 1 (the shapes

of the Ai ensure that the product
∏

i∈[ℓ] Ai is valid and results in a scalar). We are also given an

allowable polynomial p′ on matrices of random variables Âi. Our goal is to determine, if the Âi

are set to the Kilian-randomized matrices Âi = Ri−1 ·A ·R
adj
i , whether or not p′ evaluates to zero.

We note that by applying the Schwartz-Zippel lemma, it suffices to decide if p′ is identically zero,
when considered a polynomial over the formal variables Ri.

It is not hard to see that this simpler problem is impossible in general: p′ could be the polynomial
computing the iterated matrix product

∏
k∈[ℓ] Âi, which is equal to

∏
i∈[ℓ] Ai. Therefore, to decide

if p′ is identically zero in this case, we at a minimum need to know if
∏

i∈[ℓ] Ai evaluates to 0.
The analysis shows that the Ai are actually equal to Bi,xinp0(i),xinp1(i)

for some (known) input
x, where Bi,b0,b1 are the matrices in the branching program BP . Therefore, we can determine if∏

i∈[ℓ] Ai = 0 by querying the BP oracle on x. In the case where p′ is the iterated matrix product,
this allows us to determine if p′ is identically 0. What about other, more general, polynomials p′?

In previous works, A1 and Aℓ are bookend vectors, and the Ai for k ∈ [2, ℓ − 1] are square
invertible matrices. In this setting, Kilian’s statistical simulation theorem allows us to sample from
the distribution of Âi knowing only the product of the Ai, but not the individual values. Then
we can apply p′ to the sample, and the Schwartz-Zippel lemma shows that p′ will evaluate to zero,
with high probability, if and only if it is identically zero. This allows deciding if p′ is identically
zero.

In our case, we cannot sample from the correct distribution of Âi. Instead, we observe that
our branching program is non-shortcutting, which means the Ai and p′ satisfy the requirements
of Theorem 5.2. Theorem 5.2 implies something remarkably strong: if p′ is not (a multiple of)
the iterated matrix product, it cannot possibly be identically zero as a polynomial over the formal
variables Rk. Thus, we first decide if p′ is a multiple of the iterated matrix product, which is
possible using the Schwartz-Zippel lemma. If p′ is a multiple, then we know it is identically zero if
and only if the product

∏
i∈[ℓ] Ai is zero, and we know whether this product is zero by using our

BP oracle.

2The simulator does not know the branching program, and so it has no way of actually sampling the Di,b0,b1
.
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7 VBB Security of our Construction

We now argue the virtual black box security of our construction. Security is given by the following
theorem:

Theorem 7.1. If BP S outputs non-shortcuttingbranching programs, then for any PPT adversary
A, there is a PPT simulator Sim such that

∣∣∣∣Pr[AM(OM(BP S)) = 1]− Pr
BP←BP S

[SimBP (ℓ, d0, . . . , dℓ, inp0, inp1)]

∣∣∣∣ < negl

Proof. We construct a simulator Sim that, on input a description of an adversary A, simulates
the view of A on input BPO = O(BP S), given only oracle access to BP . Sim is also given
ℓ, d0, . . . , dℓ, inp0, inp1.

Most steps in the simulator are identical to [AGIS14], which the exception being the simulation
of zero-test queries. First, the simulator emulates the obfuscator O on BP . Since Sim only has
oracle access to BP and thus has no way to determine the matrices Bi,b0,b1, Sim instead initializes
M with formal variables. More precisely, Sim will maintain a table of handles and corresponding
level of encodings that have been initialized so far. Sim initially creates the table with random
handles corresponding to the randomized matrices Ci,b0,b1. Sim then easily emulates all of the
interfaces of M except for zero testing. The simulator also computes the set system used for the
encodings from inp0, inp1.

Simulating Zero-test queries. We now describe how to simulate zero-test queries by the ad-
versary, given only oracle access to BP . Just as in [AGIS14], when the adversary submits a handle
h for zero testing, Sim looks up the corresponding polynomial p in its table. As a first step, we
decompose p into single-input elements:

Definition 7.2. A single-input element for an input x is a polynomial px whose variables are the
Ci,xinp0(i),xinp1(i)

matrices, and px is allowable in the sense of Definition 5.1: each monomial in the
expansion of px contains exactly one variable from each of the Ci,xinp0(i),xinp1(i)

matrices.

Lemma 7.3 (Adapted from [BGK+14, AGIS14]). The polynomial p can be efficiently decomposed
into the sum

p =
∑

x∈D

αxpx

where αx =
∏

i∈[ℓ] αi,xinp0(i),xinp1(i)
, each px is a single-input element for input x, and D is polynomial

in size.

The first part of Lemma 7.3 follows from the decomposition in previous works. The absence
of bookends, the multi-bit outputs, and the singular and rectangular matrices does not affect this
part of the simulation. Further, the strong straddling set systems we use satisfy all the properties
required of the (standard) straddling set systems in [BGK+14, AGIS14]. The fact that px are
allowable is not mentioned or proved in previous works, but follows easily from the graded encoding
structure.

Because we have multi-bit outputs, we will actually need to decompose the polynomials even
further.
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Definition 7.4. A single-input/single-output element for an input x and output position (s, t) ∈

[d0]× [dℓ] is a polynomial px,s,t whose variables are the ̂Bi,xinp0(i),xinp1(i)
matrices, and px is allowable

in the sense, and px,s,t is allowable in the sense of Definition 5.1: each monomial in the expansion of

px contains exactly one variable from each of the ̂Bi,xinp0(i),xinp1(i)
matrices. Moreover, the variable

from the matrix ̂B1,xinp0(1),xinp1(1)
comes from row s, and the variable from the matrix ̂Bℓ,xinp0(ℓ),xinp1(ℓ)

comes from column t.

Lemma 7.5. Each single-input element px can be efficiently decomposed into a sum

px =
∑

s∈[d0],t∈[d1]

βsγtpx,s,t

where px,s,t are single input/single output elements for x, s, t

Proof. Write the C in terms of the B̂ and S, T, where S and T are the diagonal matrices with βs

and γt on the diagonal, respectively. That is,

C1,b1,b2 = S · B̂1,b1,b2 Cℓ,b1,b2 = B̂1,b1,b2 ·T Ci,b1,b2 = B̂i,b1,b2 for each i ∈ [2, ℓ− 1]

For each s ∈ [d0], t ∈ [dℓ], set βs = 1, γt = 1 and βs′ = γt′ = 0 for all s′ 6= s, t′ 6= t. Let px,s,t

be the polynomial remaining. Then px,s,t is exactly a single-input/single-output element for x, s, t.
Moreover, after doing this for all s, t, we have that

px =
∑

s∈[d0],t∈[d1]

βsγtpx,s,t

as desired.

Next, for each x ∈ D, we query the function oracle to learn BP (x), and use BP (x) to determine
an input distribution on which we test the various polynomials px,s,t. Starting at this point, our sim-
ulation and analysis departs from previous works. Existing works rely on Kilian [Kil88] simulation
to argue that the distribution of test inputs matches the distribution in the actual obfuscator. This
allows them to determine whether px should evaluate to zero or not with overwhelming probability.

Unfortunately for us, Kilian simulation only applies to square invertible matrices. Therefore,
we need to modify the simulation and/or analysis to handle this.

Fix x, s, t, and let bi
c = xinpc(i). For i ∈ [0, ℓ − 1], let Âi denote B̂i,bi

0,bi
1

and Ai = Bi,bi
0,bi

1
. Let

Â1 be row s of B̂1,b1
0,b1

1
and Âℓ be row t of B̂ℓ,bℓ

0,bℓ
1

3. Then px,s,t is an allowable polynomial in the

Âi

For each polynomial px,s,t, we determine whether px,s,t evaluates to zero. We do this as follows:

• If BP (x)[s, t] = 1, we choose totally random matrices Âi, and test if px,s,t evaluates to zero
on these matrices. If the result is zero, we say px,s,t evaluates to zero, and if the result is
non-zero, we say px,s,t evaluates to non-zero. There are two cases:

– px,s,t is identically zero. Then our test will give zero with probability 1, and px,s,t evalu-
ates to zero in the actual scheme with probability 1. Therefore, we correctly determine
if px,s,t evaluates to zero.

3The simulator does not actually compute the Ai; we are just using them for the analysis.
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– px,s,t is not identically zero. Then, by Schwartz-Zippel, our test will, with overwhelming
probability, obtain non-zero, and we will report non-zero. In the actual scheme, since
BP (x)[s, t] = 1, the Ai satisfy the first set of requirements of Theorem 5.2. Therefore,
since px,s,t is allowable, Theorem 5.2 shows that px,s,t is also not identically zero as a
polynomial over the randomization matrices Ri. Schwartz-Zippel then shows that in the
actual scheme, with overwhelming probability, px,s,t will evaluate to non-zero. Thus we
correctly guess whether px,s,t evaluates to non-zero with overwhelming probability.

• If BP (x)[s, t] = 0, we choose random matrices Âi subject to the restriction that their product
is zero, and test px,s,t on these matrices. This is done as follows. Choose random Ai for
i ∈ [ℓ − 1]. Let v = (v1, . . . , vdℓ−1

) be the row vector
∏ℓ−1

i=0 Ai. Now we sample values

w2, . . . , wdℓ−1
at random, and let Âℓ be the column vector

Âℓ =




−
∑dℓ−1

i=2 viwi

v1w2

v1w3
...

v1wdℓ−1




(7.1)

Then v · Âℓ = 0. We now make the following claim:

Claim 7.6. If a polynomial p, after making the substitution in Equation 7.1, becomes identi-
cally zero, then p was originally a multiple of the matrix product polynomial.

Proof. p being identically zero in the substitution in Equation 7.1 is equivalent to p being
identically zero after making the substitution

Âℓ,1,1 ←
−
∑dℓ−1

i=2 viÂℓ,i,1

v1

If this substitution gives a zero polynomial, it must be that

Âℓ,1,1 +

∑dℓ−1

i=2 viÂℓ,i,1

v1

divides p. Since p is a polynomial, we can remove the v1 in the denominator and conclude
that, in fact,

v1Âℓ,1,1 +

dℓ−1∑

i=2

viÂℓ,i,1 =

dℓ−1∑

i=1

viÂℓ,i,1

divides p. But the polynomial above is exactly the matrix product polynomial, as desired.

Now we test px,s,t on the samples Âi. If the result is zero, we say px,s,t evaluates to zero, and
if the result is non-zero, we say px,s,t evaluates to non-zero. There are two cases:

– px,s,t is a multiple of the matrix product polynomial. Then our test will give zero
with probability 1, and px,s,t evaluates to zero in the actual scheme with probability 1.
Therefore, we correctly determine if px,s,t evaluates to zero.
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– px,s,t is not a multiple of the matrix product polynomial. Claim 7.6 then shows px,s,t

must be not identically zero after making the substitutions in Equation 7.1. Therefore,
Schwartz-Zippel shows that the polynomial evaluates to non-zero with overwhelming
probability. Therefore, we will say the value is non-zero. In the actual scheme, since
BP (x)[s, t] = 0 and BP is non-shortcutting, the Ai satisfy the second set of requirements
for Theorem 5.2. Since px,s,t is not a multiple of the matrix product polynomial but is
allowable, Theorem 5.2 shows that the polynomial is not identically zero as a polynomial
over the randomization matrices Ri. Schwartz-Zippel then shows that in the actual
scheme, with overwhelming probability, px,s,t will evaluate to non-zero. Thus we correctly
guess whether px,s,t evaluates to non-zero with overwhelming probability.

Therefore, we will correctly determine whether px,s,t evaluates to 0 for each x, s, t with over-
whelming probability. Now recall that

p =
∑

x∈D,s∈[d0],t∈[dℓ]


∏

i∈[ℓ]

αi,xinp0(i),xinp1(i)


βsγtpx,s,t

If any of the px,s,t evaluate to non-zero, we respond to the zero-test with non-zero. If all evaluate
to zero, we respond to the zero-test with zero. Since the number of px,s,t is polynomial (namely
|D|× d0× dℓ), we can test each px,s,t efficiently. In the case where any of the px,s,t are non-zero, we
again appeal to Schwartz-Zippel (this time on the αs, βs, and γs) to see that with overwhelming
probability the polynomial p evaluates to non-zero. If all of the px are zero, then with probability 1
p will evaluate to zero. Therefore, we correctly guess the value of p with overwhelming probability.

8 Obfuscating Evasive Functions with No Zero Encodings

In this section we show that when the obfuscator of Section 4 is applied to an evasive function, any
poly-time adversary will have only negligible probability in constructing an encoding of 0.

Definition 8.1. We say that an adversary A constructs an encoding of 0 if it ever receives a handle
h from M such that (a) h maps to an encoding of 0 in M’s table, and (b) the polynomial that
produced the encoding is not identically zero as a polynomial over its formal variables.

Theorem 8.2. Let O be the obfuscator from Section 4, and let BPS sample an evasive function
family. Then for any PPT adversary A:

Pr
[
AM(OM(BP S)) constructs an encoding of 0

]
< negl(ℓ).

One can never prevent an adversary from constructing a trivial encoding of 0 by computing e−e
for some encoding e that it has. (More generally, any identically zero polynomial will produce a
trivial encoding of 0.) However in all candidate constructions of graded encoding schemes, such an
operation always produces the integer 0, which contains no information. Indeed, it seems unlikely
that a plausible candidate would not have this property.

To prove Theorem 8.2, we first show that any element that is not at the top level U can be
“completed” to the top level by multiplying with other basic elements output by the obfuscator.
This is a consequence of our use of strong straddling sets.
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Definition 8.3. For i ∈ [ℓ] and b ∈ {0, 1}, an element encoded at level Sj,b0,b1 implies xi = b if
either inp0(j) = i and b0 = b or inp1(j) = i and b1 = b.

Lemma 8.4. Let R := {[Di,b0,b1 ]Si,b0,b1
} be the basic elements output by the obfuscator O, and let

[r]S be any valid element created by a polynomial p over R.
Then there exists a set of elements R′ ⊆ R such that [r]S ×

∏
z∈R′ z is a valid element at level

U, and further R′ can be efficiently found.

Proof. We say that p touches layer j ∈ [n] if any leaf of p is a basic element from layer j
(cf. [MSW14, Def. 4.2]). S uniquely determines the layers touched by p and vice versa (though
not necessarily the specific matrices touched in each layer); in particular, p touches every layer iff
S = U. Thus we construct R′ to contain one basic element from each layer that is not touched by
p. If S = U then the lemma holds trivially with R′ := ∅, so assume S 6= U and let J ⊆ [n] be the
set of layers not touched by p. Let I := {inp0(j), inp1(j) | j ∈ J} ⊆ [ℓ] be the set of all indices that
are read in some untouched layer.

We claim that there is a sequence (bi)i∈I ∈ {0, 1}|I| such that for every i ∈ I, p’s leaves do
not contain any basic element that implies xi = 1 − bi. Fix any i ∈ I. Recall that Ui ⊂ U is the
universe set for index i, and note that we must have Ui 6⊆ S because some layer that reads index
i is untouched. If Ui ∩ S = ∅, then p’s leaves do not contain a basic element that implies xi = 0
nor one that implies xi = 1; in this case we can take bi = 0. If instead Ui ∩ S 6∈ {∅,Ui}, then by
Lemma 2.15 there is a unique bi ∈ {0, 1} for which there exists J ′ ⊂ [n] such that

Ui ∩ S =
⋃

j′∈J ′

Si
j′,bi

.

(Recall that each Si
j′,bi

comes from the strong straddling set system over Ui.) Thus p’s leaves do
not contain any basic element that implies xi = 1− bi.

Finally let R′ contain, for each j ∈ J , an arbitrary entry from the (binp0(j), binp1(j))th matrix in
layer j. Formally, R′ := {Dj,binp0(j),binp1(j)

[0, 0] | j ∈ J} which can be efficiently computed given e.
Then [r]S ×

∏
z∈R′ z is valid by construction, and it is at level U because it touches every layer.

We now prove the main theorem of this section. The proof uses the simulator Sim of Theorem 7.1
in a non-black-box way, and specifically relies on properties of the decomposition p =

∑
x αxpx given

by Lemma 7.3. We remark that evasive functions are inherently single-bit output, and thus we will
not need the further decomposition given by Lemma 7.5.

Proof of Theorem 8.2. For any PPT adversary A, denote

P ′(A) := Pr
[
AM(OM(BP S)) constructs a level-U encoding of 0

]
.

We first show that if P ′(A) is a noticeable function of ℓ for some PPT A, then BP S cannot be
evasive, in contradiction to our assumption. Next we use Lemma 8.4 to remove the assumption
that A’s encoding of 0 is at level U.

Let f ← BP S denote the function being obfuscated. Let A be any PPT, and let Sim denote
the corresponding simulator given by Theorem 7.1. We construct a new adversary B, with oracle
access to f , that finds an input x such that f(x) = 0.

Bf
(
1ℓ
)
:
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1. Run Simf , which itself is running A, up until the point where A constructs a level-U encoding.

2. Decompose p =
∑

x∈D αxpx as in Lemma 7.3. Check if f(x) = 0 for any x ∈ D. If so, stop
and output x; otherwise, continue running Sim until A’s next level-U encoding, and repeat.

3. If Sim halts, then output a random x ∈ {0, 1}ℓ.

Note that B’s simulation of A’s view is correct up to statistical distance negl(ℓ), because Sim’s is.
The proof of Theorem 7.1 establishes that for any level-U p constructed by A,

Pr[p is an encoding of 0 but some px is not] < negl(ℓ).

Further, Theorem 5.2 establishes that if px is not identically zero (and some px must not be since
p is not), then px is a multiple of the honest matrix product polynomial corresponding to input x.
Thus px is an encoding of 0 iff f(x) = 0, and we have established ∀ PPT A ∃ PPT B:

Pr
[
f
(
Bf (1ℓ)

)
= 0

]
≥ P ′(A)− negl(ℓ). (8.1)

Finally, let

P(A) := Pr
[
AM(OM(BP S)) constructs an encoding of 0

]

be the probability that we want to bound. We claim that ∀ PPT A ∃ PPT A′: P ′(A′) ≥ P(A).
Namely A′ runs A, and for every encoding [r]S with S 6= U created by A, A′ also creates the level-U
encoding [r′]U := [r]S ×

∏
z∈R′ z guaranteed by Lemma 8.4. Note that if [r]S encodes 0 then [r′]U

must encode 0 as well, so we have P ′(A′) ≥ P(A). Combining this with (8.1), we complete the
proof: if ∃ PPT A such that P(A) is a noticeable function of ℓ, then BP S does not sample an
evasive function family.

8.1 Bootstrapping to P/poly

In this subsection, we show that if there exists a VBB (resp. iO) obfuscator ONC1 for evasive
functions computed by log-depth circuits (or more generally poly-size BPs), then there exists a
VBB (resp. iO) obfuscator OP/poly for evasive functions computed by poly-size circuits (i.e. P/poly).
These proofs follow previous “bootstrapping” proofs, namely from [GGH+13b] in the case of iO
and from [BR14] in the case of VBB. However, we take care to ensure that the proofs go through
even under the assumption that ONC1 is only an obfuscator for evasive functions; indeed, this is the
main reason that we re-prove these theorems here.

We refer the reader to [GGH+13b, App. B] for background material on FHE, statistical simulation-
sound non-interactive zero-knowledge proofs, and low-depth proofs. Briefly, a non-interactive proof
is low-depth if the verifier can be implemented in NC1.

8.1.1 Bootstrapping for VBB obfuscation

Let C be an evasive circuit collection on n-bit inputs, where each C ∈ C has size |C| ≤ p(n) =
poly(n). Let U be a universal circuit evaluating circuits of size p(n) on n-bit inputs; in particular,
U(C, x) = C(x) for every C ∈ C and x ∈ {0, 1}n. Let ONC1 be an VBB obfuscator for all
evasive circuit collections in NC1. We denote an FHE scheme by the tuple of PPT algorithms
(FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval), and we assume that FHE.Dec can be implemented in
NC1. The construction has two algorithms: Obfuscate and Evaluate.
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Given input (m, e, φ), P1(SKFHE,g) proceeds as follows:

• Check if φ is a valid low-depth proof for the NP-statement:

e = FHE.Eval(PKFHE, U(·, m), g).

• If the check fails, output 1. Else, output FHE.Dec(e, SKFHE).

Figure 1

Obfuscate(1n, C ∈ C):

• Generate (PKFHE, SKFHE) ← FHE.KeyGen(1n). If we are using a leveled FHE scheme, the
number of levels should be set to the depth of U .

• Encrypt g = FHE.Enc(PKFHE, C).

• Generate O := ONC1(P1(SKFHE,g)), where P1 is the NC1 circuit described in Figure 1.

• Output the obfuscation σ := (O, PKFHE, g).

Evaluate(σ = (O, PKFHE, g), m): The Evaluate algorithm takes in the obfuscation output σ along
with an input m, and computes C(m) as follows.

• Compute e = FHE.Eval(PKFHE, U(·, m), g).

• Compute a low depth proof φ that e was computed correctly.

• Run O(m, e, φ) and output the result.

Correctness. First, we verify that the size of the circuit evaluating P1 is in NC1. The first
step of the program is in NC1 because we apply a low-depth proof and so the the verifier can be
implemented in NC1. The next step of the program is also in NC1 because we use an FHE scheme
in which decrpytion can be done in NC1. Hence, the whole circuit describing P1 is in NC1.

The correctness of FHE encryption means that g will be an encryption of the circuit C. And
the correctness of FHE evaluation means that e will be an encryption of C(m). The correctness
of ONC1 guarantees that the obfuscation of the program P1(SKFHE, g) will be executed faithfully.
Thus, on a correct execution, step 1 of the program P1 will pass and the output will be C(m).

Security Proof. Before proving security for the scheme described above, we observe that the
function family {P1(SKFHE,g)} defined above is evasive when C is, even in the presence of (PKFHE, g).

Lemma 8.5. Let P1 be the collection of circuits {P1(SKFHE,g)} which is indexed by C ← C and
(PKFHE, SKFHE)← FHE.KeyGen, where g := FHE.Enc(PKFHE, C).

If C is evasive, then P1 is evasive with auxiliary input Aux(P1(SKFHE,g)) := (PKFHE, g).
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Proof. We first show that C is evasive with auxiliary input Aux. Let C ′ be any fixed circuit of
the same size as those in C. By the semantic security of the FHE scheme, for every C ∈ C, no
PPT adversary can distinguish between (PKFHE, g := FHE.Enc(PKFHE, C)) and (PKFHE, g′ :=
FHE.Enc(PKFHE, C ′)) except with negligible probability. This holds even for PPTs that know C
and C ′, and in particular for PPTs with oracle access to C.

Let B(·) be any PPT attacking the evasiveness of C, and let DC be the PPT that, on input x,
runs BC(x) and outputs C(BC(x)). We have

|Pr[DC(PKFHE, g) = 0]− Pr[DC(PKFHE, g′) = 0]| < negl(n)

by semantic security. Because the distribution (PKFHE, g′) is independent of the distribution on
D’s oracle, we have Pr[DC(PKFHE, g′) = 0] < negl(n) by C’s evasiveness. Thus

Pr[C(BC(PKFHE, g)) = 0] = Pr[DC(PKFHE, g) = 0] < negl(n). (8.2)

We now prove the lemma. Let P := P1(SKFHE,g) over a uniform choice of C ← C and (PKFHE, SKFHE)←
FHE.KeyGen. Assume there exists a PPT A(·) such that

Pr
[
P
(
AP (PKFHE, g)

)
= 0

]
≥ ǫ(n)

for a noticeable function ǫ(·). We will show there exists another PPT B that contradicts (8.2).
First, observe that if A outputs (m, e, φ) such that P (m, e, φ) = 0, then the input must pass

the check step (first step inside P1(SKFHE,g)), because the output of the program is 1 if the check
step fails. This is a consequence of the perfect soundness of the interactive proof system we use
(cf. [GGH+13b, App. B]). Further, because our FHE scheme has perfect correctness and g is an
encryption of C, if (m, e, φ) passes the check step and P (m, e, φ) = 0 then C(m) = 0.

Now we describe the PPT BC . On input (PKFHE, g), BC runs A(·)(PKFHE, g). When A makes
an oracle query (m, e, φ), B checks if C(m) = 0. If so B halts and outputs m, otherwise it returns
1 to A and continues the simulation. If A halts with output (m, e, φ), B outputs m.

By the previous observations, B’s simulation of A is perfect until A makes a query (m, e, φ)
such that P (m, e, φ) = 0. As we have shown, this query must satisfy C(m) = 0. Thus we have

Pr
[
C
(
BC(PKFHE, g)

)
= 0

]
≥ Pr

[
P
(
AP (PKFHE, g)

)
= 0

]
≥ ǫ(n)

which contradicts (8.2).

Theorem 8.6. Let ONC1 be an VBB obfuscator for all NC1 evasive circuit collections, and let FHE

be a perfectly correct FHE scheme whose decryption circuit is in NC1. Then the obfuscation scheme
described above is a VBB obfuscator for all poly-size evasive circuit collections.

Proof. The proof follows [BR14, Lemma 4.3]. Let OP/poly denote the Obfuscate algorithm de-
scribed above. Let C be any poly-size evasive circuit collection, and let C ← C be chosen uniformly.
For any adversary A taking inputs of the form (O, PKFHE, g) = OP (C), we define the simulator
SimC

P (1n) with oracle access to C as follows:

• Generate (PKFHE, SKFHE)← FHE.KeyGen(1n).

• Generate g′ as an encryption under PKFHE of a size-p(n) circuit that always outputs 1.
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• Define the program P1′ as follows:

Given input (m, e, φ), P1′ proceeds as follows:

– Check if φ is a valid low-depth proof for the NP-statement:

e = FHE.Eval(PKFHE, U(·, m), g′).

– If the check fails, output 1. Else, output C(m).

Note that the output of P1′ can be computed by SimC
P as it has oracle access to C.

• Let A′ be A but with its second and third inputs hardwired to PKFHE and g′. Let Sim
(·)

NC1

be the corresponding simulator for ONC1 when considered against adversary A′. Execute

SimP1′

NC1(1n) (answering oracle queries by running P1′), and return its output.

To prove that the above simulation succeeds (i.e. that SimC
P (1n) simulates the view ofA(OP (C))),

we use a hybrid argument as described below.

• Hybrid 1 :
In the first hybrid, we just run SimC

P (1n) as described above and give its output.

• Hybrid 2 :
We change g′ to be the actual encryption of C rather than the encryption of a dummy circuit.
The rest of the simulator works in the same manner. This hybrid is indistinguishable from the
previous one because SimC

P does not use SKFHE, and therefore distinguishing this hybrid from
the previous would contradict the semantic security of the homomorphic encryption scheme.

• Hybrid 3 :

We now replace the execution of Sim
(·)

NC1 by answering its oracle queries with P1 rather than
P1′. The verification process done by both programs, along with the correctness of FHE.Eval

and FHE.Dec, guarantee that the output of the simulator in this hybrid is statistically close
to that in the previous hybrid.

• Hybrid 4 :

We now replace the execution of Sim
(·)

NC1 with the actual execution of A′(ONC1(P1)) =
A(ONC1(P1), PKFHE, g) = A(OP (C)). Thus this hybrid is indistinguishable from the pre-
vious by the security of ONC1. Note that here, it is crucial that P1 is an evasive function even
for an adversary that knows PKFHE and g, which is proved in Lemma 8.5.

We conclude that SimC
P (1n) ≡ Hybrid 1 is indistinguishable from A(OP (C)) ≡ Hybrid 4.

8.1.2 Bootstrapping for iO

Let C be an evasive circuit collection on n-bit inputs, where each C ∈ C has size |C| ≤ p(n) =
poly(n). Let U be a universal circuit evaluating circuits of size p(n) on n-bit inputs; in particular,
U(C, x) = C(x) for every C ∈ C and x ∈ {0, 1}n. Let ONC1 be an Indistinguishability obfuscator for
all evasive circuit collections in NC1. We denote an FHE scheme by the tuple of PPT algorithms
(FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval), and we assume that FHE.Dec can be implemented in
NC1. The construction has two algorithms: Obfuscate and Evaluate.

34



Obfuscate(1n, C ∈ C):

• Generate (PK1
FHE, SK1

FHE)← FHE.KeyGen(1n) and (PK2
FHE, SK2

FHE)← FHE.KeyGen(1n). If we
are using a leveled FHE scheme, the number of levels should be set to the depth of U .

• Encrypt g1 = FHE.Enc(PK1
FHE, C) and g2 = FHE.Enc(PK2

FHE, C).

• Generate O := ONC1(P1(SK1
FHE,g1,g2)), where P1 is the NC1 circuit described in Figure 2.

• Output the obfuscation σ := (O, PK1
FHE, PK2

FHE, g1, g2).

Evaluate(σ = (O, PK1
FHE, PK2

FHE, g1, g2), m): The Evaluate algorithm takes in the obfuscation
output σ along with an input m, and computes C(m) as follows.

• Compute e1 = FHE.Eval(PK1
FHE, U(·, m), g1) and e2 = FHE.Eval(PK2

FHE, U(·, m), g2).

• Compute a low depth proof φ that e1 and e2 were computed correctly.

• Run O(m, e1, e2, φ) and output the result.

Correctness: First, we verify that the size of the circuit evaluating P1 is in NC1. The first
step of the program is in NC1 because we apply a low-depth proof and so the the verifier can be
implemented in NC1. The next step of the program is also in NC1 because we use an FHE scheme
in which decrpytion can be done in NC1. Hence, the whole circuit describing P1 is in NC1.

The correctness of FHE encryption means that g1 and g2 will be encryptions of C. The correct-
ness of FHE evaluation means that e1 and e2 will be encryptions of C(m). The correctness of ONC1

guarantees that the obfuscation of the program P1(SK1
FHE

,g1,g2) will be executed faithfully. Thus, on
a correct execution, step 1 of the program P1 will pass and the output will be C(m).

Given input (m, e1, e2, φ), P1(SK1
FHE

,g1,g2) proceeds as follows:

• Check if φ is a valid low-depth proof for the NP-statement:

e1 = FHE.Eval(PK1
FHE, U(·, m), g1)

∧
e2 = FHE.Eval(PK2

FHE, U(·, m), g2).

• If the check fails, output 1. Else, output FHE.Dec(e1, SK1
FHE).

Figure 2

Security proof. We prove that for all C0, C1 ∈ C there can be no polynomial time attacker A
that wins the indistinguishability obfuscation security game (Def. 2.4) with noticeable advantage.
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Given input (m, e1, e2, φ), P2(SK2
FHE,g1,g2) proceeds as follows:

• Check if φ is a valid low-depth proof for the NP-statement:

e1 = FHE.Eval(PK1
FHE, U(·, m), g1)

∧
e2 = FHE.Eval(PK2

FHE, U(·, m), g2)

• If the check fails, output 1. Else, output FHE.Dec(e2, SK2
FHE).

Figure 3

Theorem 8.7. Let ONC1 be an iO obfuscator for all NC1 evasive circuit collections, and let FHE

be a perfectly correct FHE scheme whose decryption circuit is in NC1. Then the obfuscation scheme
described above is an iO obfuscator for all poly-size evasive circuit collections.

We organize our proof into a sequence of hybrids. In the first hybrid, the challenger obfuscates
C0. We then gradually change the obfuscation in multiple hybrids into an obfuscation of C1. We
show that each successive hybrid is indistinguishable from the previous one, thus showing our
obfuscator to have indistinguishability security.

• Hybrid 0:
This hybrid corresponds to an honest execution of the indistinguishability obfuscation game
where C0 is obfuscated.

• Hybrid 1:
Same as hybrid 0 except we now generate g1 = FHE.Enc(PK1

FHE, C0) and g2 = FHE.Enc(PK2
FHE, C1)

Now g1 and g2 encrypt different circuits.

• Hybrid 2:
We still generate g1 = FHE.Enc(PK1

FHE, C0) and g2 = FHE.Enc(PK2
FHE, C1) as in the previous

hybrid. Now, O is generated as ONC1(P2(SK2
FHE,g1,g2)), where P2 is defined in Figure 3.

• Hybrid 3:
We now generate g1 = FHE.Enc(PK1

FHE, C1) and g2 = FHE.Enc(PK2
FHE, C1). O is still gener-

ated as ONC1(P2(SK2
FHE,g1,g2)).

• Hybrid 4:
We still generate g1 = FHE.Enc(PK1

FHE, C1) and g2 = FHE.Enc(PK2
FHE, C1) as in the previous

hybrid. Now, O is generated as ONC1(P1(SK1
FHE

,g1,g2)). Thus this hybrid corresponds to an
honest execution of the indistinguishability obfuscation game where C1 is obfuscated.

We now show that each pair of adjacent hybrids are indistinguishable, which proves Theorem 8.7.

Claim 8.8. If the FHE scheme is IND-CPA secure, then no polynomial time attacker can distin-
guish between Hybrid 0 and Hybrid 1 with non-negligible probability.
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Proof. We show that if there is a polynomial time attacker A that has a non-negligible difference
in advantage between Hybrid 0 and Hybrid 1, then there is a polynomial time algorithm B that
breaks the IND-CPA security of our FHE scheme. B begins by running A and receiving C0,C1.

B first gets PK2
FHE from the IND-CPA challenger. It generates (PK1

FHE, SK1
FHE)← FHE.KeyGen(1n).

Next, it gives the IND-CPA challenger C0, C1 and gets back a ciphertext g. It sets g2 = g. B then
sets g1 = FHE.Enc(PK1

FHE, C0) and O is created as ONC1(P1(SK1
FHE,g1,g2)). Note that only the first

secret key SK1
FHE is needed to create O and B already has this.

If the IND-CPA challenger used the first message C0, then we are exactly in hybrid 0. If it
chose the second message C1, then we are in Hybrid 1. Therefore, if an attacker A can distinguish
between the two hybrids with non-negligible advantage, it will break the IND-CPA property of the
FHE scheme.

Claim 8.9. If the indistinguishability property holds for ONC1, then no polynomial time attacker
can distinguish between Hybrid 1 and Hybrid 2.

Proof. We show that if there is a polynomial time attacker A that has a non-negligible difference
in advantage between Hybrid 1 and Hybrid 2, then there is a polynomial time algorithm B that
breaks the NC1 indistinguishability obfuscator. B begins by running A and receiving C0, C1.

B first generates the two FHE private keys itself, keeping both secret keys. That is, it generates
(PK1

FHE, SK1
FHE) ← FHE.KeyGen(1n) and (PK2

FHE, SK2
FHE) ← FHE.KeyGen(1n). It then creates g1 =

FHE.Enc(PK1
FHE, C0) and g2 = FHE.Enc(PK2

FHE, C1). Next, it submits the circuits P1(SK1
FHE,g1,g2)

and P2(SK2
FHE,g1,g2) to the indistinguishability obfuscator challenger. It receives back a program O′

and sets O = O′.
Suppose that output of C0 is equivalent to the output of C1 on all inputs. Then both programs

P1(SK1
FHE

,g1,g2) and P2(SK2
FHE

,g1,g2) will have the same output on all inputs. Both programs will halt
and output 1 if the check does not pass. If the check does pass, this means that e1 and e2 are
encryptions of the same message. This is due to the perfect correctness of FHE encryption and
evaluation together with the fact that U(C0, m) = U(C1, m) for all m. Since both of the programs
give the same output on all inputs, we are in a valid instance of the assumption.

If the indistinguishability obfuscator used the first circuit P1(SK1
FHE,g1,g2), then we are exactly in

Hybrid 1. If it chose the second circuit P2(SK2
FHE,g1,g2), then we are in Hybrid 2. Therefore, if an

attacker can distinguish between the two hybrids with non-negligible advantage, it will break the
indistinguishability security of ONC1 . To apply ONC1 here, we note that both P1 and P2 are evasive
even given PK1

FHE, PK2
FHE, g1, g2 by the same argument as in Lemma 8.5.

Claim 8.10. If the FHE scheme is IND-CPA secure, then no polynomial time attacker can distin-
guish between Hybrid 2 and Hybrid 3 with non-negligible probability.

Proof. We show that if there is a polynomial time attacker A that has a non-negligible difference
in advantage between Hybrid 2 and Hybrid 3, then there is a polynomial time algorithm B that
breaks the IND-CPA security of our FHE scheme. B begins by running A and receiving C0,C1.

B first gets PK1
FHE from the IND-CPA challenger. It generates (PK2

FHE, SK2
FHE)← FHE.KeyGen(1n).

Next, it gives the IND-CPA challenger C0, C1 and gets back a ciphertext g. It sets g1 = g. B then
sets g2 = FHE.Enc(PK2

FHE, C1) and O is created as ONC1(P2(SK2
FHE

,g1,g2)). Note that only the second
secret key SK2

FHE is needed to create O and B already has this.
If the IND-CPA challenger used the first message C0, then we are exactly in hybrid 2. If it

chose the second message C1, then we are in Hybrid 3. Therefore, if an attacker A can distinguish
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between the two hybrids with non-negligible advantage, it will break the IND-CPA property of the
FHE scheme.

Claim 8.11. If the indistinguishability property holds for ONC1, then no polynomial time attacker
can distinguish between Hybrid 3 and Hybrid 4.

Proof. We show that if there is a polynomial time attacker A that has a non-negligible difference
in advantage between Hybrid 3 and Hybrid 4, then there is a polynomial time algorithm B that
breaks the NC1 indistinguishability obfuscator. B begins by running A and receiving C0, C1.

B first generates the two FHE private keys itself, keeping both secret keys. That is, it generates
(PK1

FHE, SK1
FHE) ← FHE.KeyGen(1n) and (PK2

FHE, SK2
FHE) ← FHE.KeyGen(1n). It then creates g1 =

FHE.Enc(PK1
FHE, C1) and g2 = FHE.Enc(PK2

FHE, C1). Next, it submits the circuits P1(SK1
FHE,g1,g2)

and P2(SK2
FHE

,g1,g2) to the indistinguishability obfuscator challenger. It receives back a program O′

and sets O = O′.
Both programs P1(SK1

FHE
,g1,g2) and P2(SK2

FHE
,g1,g2) will have the same output on all inputs. This is

because both programs will halt and output 1 if the check does not pass and if the check does pass,
since both e1 and e2 are encryptions of the same message, and due to perfect correctness of FHE
encryption and evaluation, both programs will output C1(m)for all m. Since both of the programs
give the same output on all inputs, we are in a valid instance of the assumption.

If the indistinguishability obfuscator used the circuit P2(SK2
FHE,g1,g2), then we are exactly in Hy-

brid 3. If it chose the circuit P1(SK1
FHE,g1,g2), then we are in Hybrid 4. Therefore, if an attacker can

distinguish between the two hybrids with non-negligible advantage, it will break the indistinguisha-
bility security of the ONC1. To apply ONC1 here, we note that both P1 and P2 are evasive even
given PK1

FHE, PK2
FHE, g1, g2 by the same argument as in Lemma 8.5.
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A Efficiency improvements

In all current constructions, applying a core obfuscation method directly to circuits requires over-
head that grows exponentially with depth. This occurs for two reasons. First, and perhaps most
problematically, the level of multilinearity required by known core obfuscators grows exponentially
with the depth of the circuit being obfuscated, and known implementations of graded encoding
schemes have complexity that grows polynomially with the level of multilinearity [GGH13a, CLT13].
Furthermore, the only known method for converting circuits to full-rank matrix branching programs
requires the size of the representation to grow exponentially with the depth of the circuit [Bar86].
The recent construction of Zimmerman [Zim14], which operates directly on circuits, does not suffer
from the latter blowup, but still requires a level of multilinearity that grows exponentially with
circuit depth (using known implementations of graded encoding schemes).

Nevertheless, a core obfuscator can be used to obfuscate general (high-depth) circuits with a
polynomial overhead via bootstrapping as mentioned above. However, attempting such bootstrap-
ping for obfuscation [GGH+13b, GIS+10, App13] based on existing core obfuscators encounters
overheads that are asymptotically polynomial but easily reach above 2100. Such large overheads
primarily arise due to the depth of the circuit that needs to be obfuscated by the core obfuscator
(even though asymptotically, this circuit has depth logarithmic in the security parameter). Indeed,
similarly large overheads arise when attempting to apply the core obfuscator to other programs
represented in circuit form, since few interesting and non-learnable families of circuits have depth
below, say, 50.

This suggests that perhaps representing programs as circuits may not be the best approach to-
ward efficient obfuscation. Indeed, if we can expand the classes of program representations that are
amenable to direct obfuscation by our core obfuscator, then this may allow for alternative methods
of bootstrapping that yield substantially better efficiency (see also [AGIS14] for a speculative dis-
cussion of one such approach). Thus, improving the capabilities of the core obfuscator is a critical
goal in obfuscation research.

Our core obfuscator substantially generalizes the types of branching programs that can be
directly obfuscated. In existing core obfuscators operating on branching programs [GGH+13b,
BR14, BGK+14, PST14a, GLSW14, AGIS14, MSW14], the program is required to consist of square
and invertible matrices. As we elaborate below, this limitation of previous work is quite restrictive.
Our obfuscator does not require this condition, and instead works on any matrix branching program
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Table 1: Comparing the efficiency of obfuscation schemes for keyed formulas over different bases.
We use Õ to suppress the multiplicative polynomial dependence on the security parameter and
other poly-logarithmic terms and Oǫ to suppress multiplicative constants which depend on ǫ. Here
s is the formula size, ǫ > 0 is an arbitrarily small constant, and φ is a constant such that for κ-level
multilinear encodings, the size of each encoding is Õ(κφ). The current best known constructions
have φ = 2. Evaluation time is given in the form a · b, where a denotes the number of multilinear
operations (up to lower order additive terms) and b denotes the time for carrying out one multilinear
operation.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

[AGIS14]
s 4s3 · Õ(sφ)(previous work)

{and, not}-basis

[AGIS14] + [Gie01]
O(s1+ǫ) O(2(21/ǫ)s(1+ǫ)) · Õ(s(1+ǫ)φ)(previous work)

{and, xor, not}-basis

This work (direct)
s 1

4s log2(s)2 · Õ(sφ)
{and, xor, not}-basis

satisfying a mild natural condition called non-shortcutting4. Furthermore, our work achieves two
other advances over previous work:

• Our construction allows for sequences of non-square matrices of arbitrary compatible dimen-
sions. We show that this flexibility yields concrete efficiency gains (see Section 3 for details).

• Our construction allows for a single obfuscation to yield multiple bits of output contained in
different entries in the output matrix M . This is in contrast to previous work that yielded
only one bit of output, and required many parallel obfuscations to obtain multiple bits.

We also show how to exploit our results to yield efficiency improvements over previous obfus-
cations of both Boolean formulas and layered graphical branching programs. These improvements
are summarized in Tables 1 and 2.

Furthermore, our analysis can also be used in settings where obfuscation is not directly used, but
where low-rank matrix branching programs are considered in the context of multilinear maps. In-
deed, subsequent to the initial online publication of this work, our theorems were used by [BLR+14]
to yield substantial efficiency improvements in the context of multi-input functional encryption and
semantically secure order-revealing encryption.

To obtain our results for Boolean formulas, in Section 3, we give a simple conversion from
formulas to (low-rank) matrix branching programs that achieves qualitatively better parameters
than was previously known [Cle91]. This conversion may be of independent interest.

4Non-shortcutting is defined in Section 2.3. Intuitively, this condition requires that no intermediate product of
matrices yields the all-zero matrix.
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Table 2: Comparing the efficiency of obfuscation schemes for keyed layered graphical branching
programs, as defined in Section 2.3. For a layered graphical branching program, ℓ denotes the
length of the branching program, and w is the width. Other notation is as in Table 1.

Work
Levels of Size of Obfuscation/

Multilinearity Evaluation Time

[AGIS14] (previous work) ℓ 4ℓ3w2 · Õ(ℓφ)

This work ℓ ℓw2 · Õ(ℓφ)
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