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Abstract

Two general classes (constructions) of bent functions are derived from
the notion of spread. The first class, PS, gives a useful framework for
designing bent functions which are constant (except maybe at 0) on each
of the m-dimensional subspaces of F22m belonging to a partial spread.
Explicit expressions (which may be used for applications) of bent functions
by means of the trace can be derived for subclasses corresponding to some
partial spreads, for instance the PSap class. Many more can be. The
second general class, H, later slightly modified into a class called H so as
to relate it to the so-called Niho bent functions, is (up to addition of affine
functions) the set of bent functions whose restrictions to the subspaces of
the Desarguesian spread (the spread of all multiplicative cosets of F∗

2m ,
added with 0, in F∗

22m) are linear. It has been observed that the functions
in H are related to o-polynomials, and this has led to several classes
of bent functions in bivariate trace form. In this paper, after briefly
looking at the PS functions related to the André spreads, and giving the
trace representation of the PS corresponding bent functions and of their
duals, we show that it is easy to characterize those bent functions whose
restrictions to the subspaces of a spread are linear, but that it leads to a
notion extending that of o-polynomial, for which it seems a hard task to
find examples. We illustrate this with the André spreads and also study
three other cases of H-like functions (related to other spreads).

1 Introduction

Bent functions [5, 11] are the indicators of difference sets in elementary Abelian
2-groups. They play roles in cryptography, coding theory, designs, sequences
and probably other applications. Bent functions are those functions f from Fn

2

to F2 whose derivatives f(x)+f(x+a), a 6= 0, are balanced. Equivalently, their
Hamming distance to the set of affine functions (i.e. their nonlinearity) takes
the maximal possible value 2n−1 − 2n/2−1, and equivalently again, their Walsh
transform Wf (a) =

∑
x∈Fn2

(−1)f(x)+a·x (where “·” denotes an inner product in
Fn

2 ), takes values ±2m only (this characterization is independent of the choice of
the inner product in Fn

2 ). They exist for every n even. We shall denote n = 2m
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in the sequel.
If f is bent, then the dual function f̃ of f , defined on Fn

2 by:

Wf (u) = 2m(−1) ef(u)

is also bent and its own dual is f itself.
As any Boolean functions, bent functions can be represented in a unique way
by their algebraic normal form (ANF)

f(x) =
∑

I⊆{1,...,n}

aI

∏
i∈I

xi ; aI ∈ F2, (1)

(whose global degree max{|I|, aI 6= 0}, called the algebraic degree of f , is then
at most m, as proved in [11]), but are often better viewed either in univariate or
in bivariate representations: we identify Fn

2 with F2n (which is an n-dimensional
vector space over F2) and we consider then the input to f as an element of F2n .
An inner product in F2n is x · y = Trn

1 (xy) where Trn
1 (x) =

∑n−1
i=0 x

2i is the
trace function from F2n to F2. There exists a unique univariate polynomial∑2n−1

i=0 aix
i over F2n such that f is the polynomial function over F2n associated

to it (this is true for every function from F2n to F2n). Then the algebraic degree
of f equals the maximum 2-weight of the exponents with nonzero coefficients,
where the 2-weight w2(i) of an integer i is the number of 1’s in its binary expan-
sion, and f being Boolean, f(x) can be written under the (non-unique) form
Trn

1 (P (x)) where P (x) is a polynomial over F2n . A unique form exists that
we shall not use in this paper. We also identify Fn

2 with F2m × F2m and we
consider then the input to f as an ordered pair (x, y) of elements of F2m . There
exists a unique bivariate polynomial

∑
0≤i,j≤2m−1 ai,jx

iyj over F2m such that
f is the bivariate polynomial function over F2m associated to it. Then the alge-
braic degree of f equals max(i,j) | ai,j 6=0(w2(i) + w2(j)). And f being Boolean,
its bivariate representation can be written in the form f(x, y) = trm

1 (P (x, y))
where P (x, y) is some polynomial over F2m , and trm

1 is the trace function from
F2m to F2.
The set of bent functions is invariant under composition on the right by any
affine automorphism. The corresponding notion of equivalence between func-
tions is called affine equivalence. Also, if f is bent and ` is affine, then f + `
is bent. A class of bent functions is called a complete class if it is globally
invariant under the action of the general affine group and under the addition
of affine functions. The corresponding notion of equivalence is called extended
affine equivalence, in brief, EA-equivalence.

Determining all bent functions (or more practically, classifying them under
the action of the general affine group) being out of reach, several constructions of
bent functions have been investigated, which lead to infinite classes. Class H (a
slight modification of the original class H of Dillon) is the set of bent functions
whose restrictions to the multiplicative cosets of F?

2m (added with {0}) are linear.
The set of these m-dimensional subspaces of F2n , which have trivial pairwise
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intersection and cover the whole space, is a spread, called the Desarguesian
spread. In univariate form, the functions of this class are often called Niho
bent. The general Partial Spreads class PS, introduced by Dillon in [5], equals
the union of PS− and PS+, where PS− (respectively, PS+) is the set of all
the sums (modulo 2) of the indicators of 2m−1 (respectively, 2m−1 + 1) pairwise
supplementary m-dimensional subspaces of Fn

2 . All the elements of PS−, and all
those elements of PS+ which correspond to partial spreads extendable to larger
size partial spreads, have algebraic degree m exactly. But some other elements
of PS+ have smaller degrees (see below). J. Dillon applies the construction to
the Desarguesian spread and deduces the subclass of PS− denoted by PSap,
whose elements are the functions of the form f(x, y) = g

(
x y2m−2

)
, where x, y ∈

F2m , i.e. f(x, y) = g
(

x
y

)
with the convention 1

0 = 0, where g is any balanced

Boolean function on Fm
2 which vanishes at 0. The complements g

(
x
y

)
+ 1 of

these functions are the functions g(x
y ) where g is balanced and does not vanish

at 0; they belong to the class PS+. In both cases, the dual of g(x
y ) is g( y

x ). See
more in [1].
Applying the PS construction to the larger class of spreads introduced by André
gives more numerous PSap-like bent functions in a form which may be useful for
applications. We give the expression of their duals as well. We then characterize,
in general, those bent functions whose restrictions to the subspaces of a spread
are linear. We apply this characterization to the André spreads. This leads to a
notion on polynomials which includes the notion of o-polynomial as a particular
case. Finally, we apply it also to three other spreads. In each case, this leads to
a new notion on polynomials. Probably many other cases could be investigated,
since many more spreads exist, see [3, 7]. But the interesting question is to find
explicit examples of such o-like-polynomials.

2 André’s spreads

Recall that partial spreads are sets of at least 2m−1 supplementary m-dimen-
sional vector subspaces of F2n . Two partial spreads are well known in the
Boolean functions community and have been used to build bent functions:

1. The Desarguesian spread, constituted of the 2m+1 multiplicative cosets of
F∗2m in F∗2n (to each of which is of course adjoined 0); these 2m +1 pairwise
supplementary vector subspaces completely cover F2n ; their set is then a
full spread. The elements of this spread can be viewed in bivariate form.
The subspaces are then:

{(0, y), y ∈ F2m} and {(x, xz), x ∈ F2m}, z ∈ F2m .

2. For m even, a set of 2m−1 + 1 pairwise supplementary m-dimensional
F2-vector subspaces introduced by Dillon [5] (and reported in [1]) whose
corresponding PS+ function is quadratic (hence, up to EA-equivalence,
every quadratic function belongs to PS+ for n ≡ 0 [mod 4]).
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But many other full or partial spreads exist, see [3, 7]. One example which
generalizes the Desarguesian spread has been introduced by J. André in the
fifties and independently by Bruck later. Let k be any divisor of m. Let Nm

k be
the norm map from F2m to F2k :

Nm
k (x) = x

2m−1
2k−1 .

Let φ be any function from F2k to Z/(m/k)Z. Then, denoting φ ◦Nm
k by ϕ (it

can be any function from F2m to Z/(m/k)Z which is constant on any coset of
the subgroup U of order 2m−1

2k−1
of F∗2m), the F2-vector subspaces:

{(0, y), y ∈ F2m} and {(x, x2kϕ(z)
z), x ∈ F2m}, where z ∈ F2m

form together a spread of F2
2m . Indeed, these subspaces have trivial pairwise in-

tersection: suppose that x2kϕ(y)
y = x2kϕ(z)

z for some nonzero elements x, y, z of
F2m , then we have Nm

k (x2kϕ(y)
y) = Nm

k (x2kϕ(z)
z), that is, Nm

k (x2kϕ(y)
)Nm

k (y) =
Nm

k (x2kϕ(z)
)Nm

k (z); equivalently, since x 7→ x2kϕ(z)
is in the Galois group of

F2
2m over F2k , Nm

k (x)Nm
k (y) = Nm

k (x)Nm
k (z) and hence Nm

k (y) = Nm
k (z) and

ϕ(y) = ϕ(z), which together with x2kϕ(y)
y = x2kϕ(z)

z implies then y = z.
Other examples of spreads are studied in Section 4.2.

3 The PS bent functions associated to André’s
spreads and their duals

The trace representation of these functions is easily obtained. A pair (x, y) ∈
F∗2m × F2m belongs to {(x, x2kϕ(z)

z), x ∈ F2m} if and only if

y = x2kϕ(z)
z = x2

kφ

 
Nmk (y)
Nm
k

(x)

!
z = x2kϕ(y/x)

z. (2)

Then z = y

x2kϕ(y/x) and if g is any balanced Boolean function on F2m vanishing
at 0, the function

f(x, y) = g

(
y

x2kϕ(y/x)

)
(3)

(with the usual convention y
0 = 0) belongs to the PS class of bent functions and

is potentially inequivalent to PSap functions (this needs to be further studied,
though).
Let us study now the dual of f . If S is the support of g, then since 0 6∈
S, the support of f is equal to the union

⋃
z∈S{(x, x2kϕ(z)

z), x ∈ F2m}, less
{0}. The support of the dual of f is the union of the orthogonals of these
subspaces, less {0} as well. The orthogonal of {(x, x2kϕ(z)

z), x ∈ F2m} is
{(x′, y′) ∈ F2

2m ; ∀x ∈ F2m , tr
m
1 (xx′ + x2kϕ(z)

zy′) = 0} = {(x′, y′) ∈ F2
2m ; ∀x ∈
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F2m , tr
m
1 ((x′ + (zy′)2m−kϕ(z)

)x) = 0} = {(x′, y′) ∈ F2
2m ; x′ + (zy′)2m−kϕ(z)

=
0} = {((zy′)2m−kϕ(z)

, y′); y′ ∈ F2
2m}; hence we have:

f̃(x, y) = g

(
x2kϕ(x/y)

y

)
. (4)

Of course, if g does not vanish at 0, the function defined by (3) is bent as
well. We can see this by changing g into its complement g + 1 (which changes
f and its dual into their complements as well).

Theorem 1 Let m be any positive integer and k any divisor of m. Let ϕ be an
integer-valued function over F2m , constant on each multiplicative coset of the
subgroup U of order 2m−1

2k−1
of F∗2m . Let g be any balanced Boolean function over

F2m and let f be defined by (3) with the convention 1
0 = 0. Then f is bent and

it dual is given by (4).

Note that the PSap class corresponds to the case where φ is the null function.
Note that it also corresponds to the case k = m since we have then f(x, y) =
g
(

y
x

)
, because x2m = x. Note finally that if k = 1 then Nm

k (x) = 1 for every x 6=
0 and the groups of the spread are {(0, y), y ∈ F2m} and {(x, 0), x ∈ F2m} and
{(x, x2jz), x ∈ F2m}, z ∈ F∗2m for some j and f(x, y) = g

(
y

x2j

)
; the functions

are in the PSap class up to linear equivalence.

4 A generalization of class H of bent functions
to other spreads

Consider a spread whose elements are the subspace {(0, y), y ∈ F2m} and 2m

subspaces of the form {(x, Lz(x)), x ∈ F2m}, where, for every z ∈ F2m , function
Lz is linear. The property of being a spread corresponds to the fact that, for
every nonzero x ∈ F2m , the mapping z 7→ Lz(x) is a permutation of F2m . Let
us denote by Γx the compositional inverse of this bijection. A Boolean function
over F2

2m is linear over each element of the spread if and only if there exists a
mapping G : F2m 7→ F2m and an element µ of F2m such that, for every y ∈ F2m ,
f(0, y) = trm

1 (µy) and, for every x, z ∈ F2m :

f(x, Lz(x)) = trm
1 (G(z)x) (5)

where trm
1 is the trace function from F2m to F2. Note that, up to EA-equivalence,

we can assume that µ = 0. Indeed, we can add the linear n-variable function
(x, y) 7→ trm

1 (µy) to f ; this changes µ into 0 and G(z) into G(z) + L∗z(µ),
where L∗z is the adjoint operator of Lz, since for y = Lz(x), we have trm

1 (µy) =
trm

1 (xL∗z(µ)). Taking µ = 0, Relation (5) is satisfied for every z ∈ F2m if and
only if:

∀x, y ∈ F2m , f(x, y) = trm
1 (G (Γx(y))x) . (6)
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Denoting by δ0 the Kronecker symbol, the value of the Walsh transformWf (a, b) =∑
x,y∈F2m

(−1)f(x,y)+trm1 (ax+by) equals then, for , for every (a, b) ∈ F2
2m :∑

(x,y)∈F2
2m

(−1)trm1 (G(Γx(y))x+ax+by) =

2mδ0(b) +
∑

x∈F∗2m ,z∈F2m

(−1)trm1 (G(z)x+ax+bLz(x)) =

2m(δ0(b)− 1) +
∑

z∈F2m

∑
x∈F2m

(−1)trm1 ((G(z)+a+L∗z(b))x) =

2m (δ0(b)− 1 + |{z ∈ F2m ; G(z) + a+ L∗z(b) = 0}|) .

Hence f is bent if and only if, for every a, b ∈ F2m , the size |{z ∈ F2m ; G(z) +
a+ L∗z(b) = 0}| equals 1 if b = 0 and equals 0 or 2 if b 6= 0, and we deduce:

Theorem 2 Consider a spread of F2
2m whose elements are 2m subspaces of the

form {(x, Lz(x)), x ∈ F2m}, where, for every z ∈ F2m , function Lz is linear,
and the subspace {(0, y), y ∈ F2m}. For every x ∈ F∗2m , let us denote by Γx

the compositional inverse of the permutation z 7→ Lz(x). A Boolean function
f defined by (6) is bent if and only if G is a permutation and, for every b 6= 0
and every a in F2m , the equation G(z) +L∗z(b) = a has 0 or 2 solutions in F2m ,
where L∗z is the adjoint operator of Lz.

The condition on G(z) in Theorem 2 has a similar form as that of being an o-
polynomial. We shall see in the next section that, in the case of André’s spreads,
it is a generalization of the notion of o-polynomial. Finding a few classes of o-
polynomials has been a hard work of 40 years and we can expect that finding
such o-like-polynomials will be also difficult.

4.1 André’s spreads

In the case of André’s spreads, we have Lz(x) = x2kϕ(z)
z. According to (2), we

have then Γx(y) = y

x2kϕ(y/x) and L∗z(b) = (bz)2m−kϕ(y/x)
. Relation (6) becomes:

∀x, y ∈ F2m , f(x, y) = trm
1

(
G

(
y

x2kϕ(y/x)

)
x

)
. (7)

This leads to the following definition and corollary:

Definition 1 Let m be any positive integer and k any divisor of m. Let ϕ be
an integer-valued function over F2m , constant on each multiplicative coset of
the subgroup U of order 2m−1

2k−1
of F∗2m . A permutation polynomial G(z) is a

ϕ-polynomial if, for every b ∈ F∗2m and every a ∈ F2m , their exist two values of
z or none such that

G(z) + (bz)2m−kϕ(z)
= a.

If ϕ is null, this notion corresponds to that of o-polynomial (see e.g. [2]); in
other words, a 0-polynomial is an o-polynomial.
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Corollary 1 Let m be any positive integer and k any divisor of m. Let ϕ be
an integer-valued function over F2m , constant on each multiplicative coset of the
subgroup U of order 2m−1

2k−1
of F∗2m . Let G be any mapping from F2m to F2m and

let f be defined by (7) with the convention 1
0 = 0. Then f is bent if and only if

G is a ϕ-polynomial.

Remark 1 Under the hypotheses of Definition 1 and Theorem 1, the mapping
ψ : z 7→ z2m−kϕ(z)

is bijective (and in general not linear). Indeed, each multi-
plicative coset of U is globally invariant under ψ since it is globally invariant
under z 7→ z2k , and the restriction of ψ to any such coset is clearly injective
since ϕ is constant on it. Note that ψm/k (that is, ψ composed m/k times with
itself) is identity.

By the bijective change of variable z 7→ ψ−1(z) = z2kϕ(z)
, the equation G(z) +

(bz)2m−kϕ(z)
= a is then equivalent to

H(z) + b2
m−kϕ(z)

z = a, (8)

where H(z) = G(z2kϕ(z)
) = G ◦ ψ−1(z), is a permutation.

Remark 2 By raising the equation G(z)+(bz)2m−kϕ(z)
= a to the power 2m−kϕ(z),

this equation is also equivalent to H ′(z)+bz = a2kϕ(z)
, where H ′(z) = (G(z))2kϕ(z)

,
but H ′ is in general not equal to ψ−1 ◦G (nor to G ◦ψ−1) and the bijectivity of
G does not imply the bijectivity of H ′.

4.1.1 Case where ϕ is constant

If ϕ(z) = 0 for every z, then the construction has been addressed in [2]. If
ϕ(z) = i 6= 0 for every z, then the condition of Theorem 1 is equivalent to
saying that H(z) = (G(z))2ki is an o-polynomial (see the list in [2]). If the
coefficients of H are all in F2 (this is the case of all polynomials in the list,
except the two last ones, called Subiaco and Adelaide o-polynomials, see more
in [6]), the function corresponding to i = 0 is f(x, y) = trm

1

(
H
(

y
x

)
x
)

and the

function (7) corresponding to i 6= 0 is f(x, y) = trm
1

(
H

(
y2m−ki

x

)
x

)
, which

is linearly equivalent. Hence no new bent function (up to EA-equivalence) arises.

Open question: Do Subiaco and Adelaide o-polynomials give new bent functions
up to EA-equivalence, when used as above with i 6= 0?

4.1.2 Case where ϕ is not constant

This case can potentially lead to new bent functions but is more complex. To
see how complex it is, we can choose an example of permutation H and try to
determine what are those functions ϕ, constant on each coset of U , for which
Equation (8) has 0 or 2 solutions for every b 6= 0. Let us study the simplest
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possible function H(z) = z2 (for which we know that ϕ = 0 works). For such

choice of H, Equation (8) is equivalent to
(

z

b2
m−kϕ(z)

)2

+ z

b2
m−kϕ(z) = a

b2
m−kϕ(z)+1 .

A necessary condition for such equality to hold is that trm
1

(
a

b2
m−kϕ(z)+1

)
= 0.

Imposing such condition, choosing u ∈ F2m such that trm
1 (u) = 1, and defining

c =
∑m−1

j=1

(
a

b2
m−kϕ(z)+1

)2j (∑j−1
k=0 u

2k
)

, we have c + c2 = (c + 1) + (c + 1)2 =

u trm
1

(
a

b2
m−kϕ(z)+1

)
+
(

a

b2
m−kϕ(z)+1

)
trm

1 (u) = a

b2
m−kϕ(z)+1 . The choice of u such

that trm
1 (u) = 1 being done, the equation

(
z

b2
m−kϕ(z)

)2

+ z

b2
m−kϕ(z) = a

b2
m−kϕ(z)+1

is then equivalent to: z = b2
m−kϕ(z)

(∑m−1
j=1

(
a

b2
m−kϕ(z)+1

)2j (∑j−1
k=0 u

2k
)

+ ε

)
, ε ∈ F2

trm
1

(
a

b2
m−kϕ(z)+1

)
= 0

. (9)

We would need then to see what are the functions ϕ constant on each coset of
U such that, for every b 6= 0, there are 0 or 2 values satisfying (9).

Remark 3 By the bijective change of variable z 7→ z2kϕ(z)

b , the equation G(z)+
(bz)2m−kϕ(z)

= a is equivalent to

G

(
z2kϕ(z)

b

)
+ z = a.

Hence if G is a power function, this equation is equivalent to G(z2kϕ(z)
)

G(b) + z = a

and we deduce that G is then a ϕ-polynomial if and only if G(z2kϕ(z)
) = G ◦

ψ−1(z) is an o-polynomial.
Denoting the o-polynomial G ◦ψ−1(z) by P (z), the corresponding bent function

given by (7) is then f(x, y) = trm
1

(
G(y)

G(x2kϕ(y/x)
)
x
)

= trm
1

P

„
y2m−kϕ(y/x)

«
P (x) x

.

Since five among the nine known classes of o-polynomials are power functions,
it is interesting to see whether G and P can both be power functions without
that ϕ be constant. Note that m is then odd since all examples of power o-
polynomials are with m odd. Let us suppose that G(z) = zd and P (z) = ze,
where d and e are both co-prime with 2m − 1. Suppose that m

k is co-prime with
2k − 1, then every element z ∈ F∗2m is the product of an element t of F∗2k and
of an element u of norm 1 (since the norm of any element z of F∗2k equals z

m
k

and can then take any value in F∗2k), that is, an element of U . The condition
that G(z2kϕ(z)

) = P (z) for all z = tu in F∗2m (t ∈ F∗2k , u ∈ U) is equivalent

to tu2kϕ(t)
= (tu)

e
d and then to

{ e
d ≡ 1 [mod 2k − 1]
e
d ≡ 2kϕ(t) [mod 2m−1

2k−1
] . Unfortunately, this

implies that ϕ is constant since ϕ(t) ≤ m
k − 1 and 2m−1

2k−1
=
∑m/k−1

i=0 2ki.
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The case k = m/2 (m even) In this case, ϕ(z) = φ(z2m/2+1), where φ is a

Boolean function on F2m/2 and z2m−kϕ(z)
=

{
z if φ(z2m/2+1) = 0
z2m/2 if φ(z2m/2+1) = 1

.

The case k = m/3 (m divisible by 3) In this case, ϕ(z) = φ(z22m/3+2m/3+1),

where φ is a Boolean function on F2m/2 and z2m−kϕ(z)
=


z if φ(z22m/3+2m/3+1) = 0
z22m/3

if φ(z22m/3+2m/3+1) = 1
z2m/3 if φ(z22m/3+2m/3+1) = 2

.

The case k = 2 (m even) In this case, ϕ(z) = φ(z
2m−1

3 ), where φ is a
function from F4 to Z/(m/2)Z and z2m−kϕ(z)

equals z4m/2−φ(z)
.

4.2 Further generalizations of classH based on pre-quasifields

Kantor has shown in [9] how a spread can be derived from any pre-quasifield,
that is, any Abelian finite group having a second law ∗ which is left-distributive
with respect to the first law and is such that the right and left multiplications
by a nonzero element are bijective, and that the left-multiplication by 0 is
absorbent. The elements of this spread are the F2-vector subspaces {(0, y), y ∈
F2m} and {(x, z ? x), x ∈ F2m}, z ∈ F2m . Wu [12] has studied three particular
examples (many others could have been studied) and determined explicitely the
related functions Γx.

4.2.1 H-like bent functions from the Dempwolff-Müller pre-quasifield

Assume k and m are odd integers with (k,m) = 1. Let e = 2m−1 − 2k−1 − 1,
L(x) =

∑k−1
i=0 x

2i , and define x ? y = xeL(xy). Then (F2m ,+, ?) is a pre-
quasifield [4], leading to the spread of the F2-vector subspaces {(0, y), y ∈ F2m}
and {(x, z ? x), x ∈ F2m} = {(x, zeL(xz)), x ∈ F2m}, z ∈ F2m .
Then Γx(y) = 1

xDd

“
y2

x2k+1

” , where Dd is the Dickson polynomial of index the

inverse d of 2k − 1 modulo 2n − 1, and L∗z(b) =
∑k−1

i=0 (bze)2−iz. Relation (6)
becomes:

∀x, y ∈ F2m , f(x, y) = trm
1

G
 1

xDd

(
y2

x2k+1

)
x

 , (10)

and we have:

Corollary 2 A Boolean function f defined by (10) is bent if and only if G is a
permutation and the equation G(z) +

∑k−1
i=0 (bze)2−iz = a has 0 or 2 solutions

for every b 6= 0 and every a.
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4.2.2 H-like bent functions from the Knuth pre-semifield

Assume m is an odd integer and β ∈ F∗2m . Then x ? y = xy + x2trm
1 (βy) +

y2trm
1 (βx) defines a pre-semifield (a pre-quasifield which remains one when

a ∗ b is replaced by b ∗ a) [10], leading to the spread of the F2-vector sub-
spaces {(0, y), y ∈ F2m} and {(x, z ? x), x ∈ F2m} = {(x, zx + x2trm

1 (βz) +
z2trm

1 (βx)), x ∈ F2m}, z ∈ F2m .
Then Γx(y) = (1 + trm

1 (βx)) y
x + xtrm

1

(
β y

x

)
+ xtrm

1 (βx)C 1
βx

(
y
x2

)
, where

Ca(x) =
∑m−1

i=0 cix
2i , where c0 = 1

a2i + 1

a3·2i + · · · + 1

a(m−3)·2i , ci = 1 + 1

a2i +
1

a3·2i + · · ·+ 1

a(i−2)·2i + 1

a(i+1)·2i + · · ·+ 1

a(m−1)·2i if i is odd and ci = 1 + 1

a2·2i +
1

a4·2i + · · · + 1

a(i−2)·2i + 1

a(i+1)·2i + · · · + 1

a(m−2)·2i if i is even. We have L∗z(b) =

bz + b2
m−1

trm
1 (βz) + βtrm

1 (b2
m−1

z). Relation (6) becomes:

trm
1

(
G
(

(1 + trm
1 (βx))

y

x
+ xtrm

1

(
β
y

x

)
+ xtrm

1 (βx)C 1
βx

( y
x2

))
x
)
, (11)

and we have:

Corollary 3 A Boolean function f defined by (11) is bent if and only if G is
a permutation and the equation G(z) + bz + b2

m−1
trm

1 (βz) + βtrm
1 (b2

m−1
z) = a

has 0 or 2 solutions for every b 6= 0 and every a.

4.2.3 H-like bent functions from the Kantor pre-semifield

Assume m is an odd integer. Then x ? y = x2y + trm
1 (xy) + xtrm

1 (y) defines a
pre-semifield [8], leading to two spreads:
- the spread of the F2-vector subspaces {(0, y), y ∈ F2m} and {(x, z ? x), x ∈
F2m} = {(x, z2x+ trm

1 (zx) + ztrm
1 (x)), x ∈ F2m};

- the spread of the F2-vector subspaces {(0, y), y ∈ F2m} and {(x, x ? z), x ∈
F2m} = {(x, x2z + trm

1 (xz) + xtrm
1 (z)), x ∈ F2m}), where z ∈ F2m .

In the first case, the corresponding function Γx has been determined in [12]
(see below) and L∗z(b) = bz2 + ztrm

1 (b) + trm
1 (bz). Then f(x, y) equals:

trm
1

G
(xy)2m−1

+

m−1
2∑

i=0

(xy)22i−1 +

m−3
2∑

i=0

x22i
trm

1 (xy)

 trm
1 (x)
x

+x2m−1−1y2m−1
+ x2m−1−1trm

1 (xy)
)
x
)
, (12)

and we have:

Corollary 4 A Boolean function f defined by (12) is bent if and only if G is
a permutation and the equation G(z) + bz2 + ztrm

1 (b) + trm
1 (bz) = a has 0 or 2

solutions for every b 6= 0 and every a.

In the second case, the relation y = x2z + trm
1 (xz) + xtrm

1 (z) implies for x 6= 0

that

 z = y
x2 + trm1 (xz)

x2 + trm1 (z)
x

trm
1 (xz) = trm

1

(
y
x

)
+ trm

1 (xz)trm
1

(
1
x

)
+ trm

1 (z)
trm

1 (z) = trm
1

(
y
x2

)
+ (trm

1 (xz) + trm
1 (z)) trm

1

(
1
x

) and is equivalent to

10



z = y
x2 +trm

1

(
1
x

)( trm1 ( y

x2 )
x2 +

trm1 ( yx )
x

)
+
(
trm

1

(
1
x

)
+ 1
)( trm1 ( y

x2 )+trm1 ( yx )
x2 +

trm1 ( y

x2 )
x

)
,

which gives Γx(y). We have L∗z(b) = (bz)2m−1
+ztrm

1 (b)+btrm
1 (z). Then f(x, y)

equals:

trm
1

(
G

(
y

x2
+ trm

1

(
1
x

)(
trm

1

(
y
x2

)
x2

+
trm

1

(
y
x

)
x

)
+
(
trm

1

(
1
x

)
+ 1
)

(
trm

1

(
y
x2

)
+ trm

1

(
y
x

)
x2

+
trm

1

(
y
x2

)
x

))
x

)
, (13)

and we have:

Corollary 5 A Boolean function f defined by (13) is bent if and only if G is
a permutation and the equation G(z) + (bz)2m−1

+ ztrm
1 (b) + btrm

1 (z) = a has 0
or 2 solutions for every b 6= 0 and every a.

5 Conclusion

After giving the bivariate trace representations of the PS bent functions related
to the André spreads and of their duals, we have characterized 4 classes ofH-like
bent functions related to this same André spreads and to three other spreads,
by relating for each of these 4 classes the bentness of the functions to notions
similar to that of o-polynomial, but sufficiently different for needing to be stud-
ied for themselves. Many more spreads could be studied similarly. The notion
of o-polynomial is very simple in its definition but very difficult to be handled;
it has given huge work to mathematicians, who came up with 9 classes only, in
a period of 40 years. These four similar notions are slightly more complex and
it seems that it is not possible to relate them to that of o-polynomial in a way
allowing deriving such polynomials from known o-polynomials. The work to
obtain examples of such polynomials seems difficult; we propose this as future
work.

Acknowledgement We are indebted to William Kantor who gave us very
useful informations on spreads.
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