More $\mathcal{P S}$ and \mathcal{H}-like bent functions

Claude Carlet*

Abstract

Two general classes (constructions) of bent functions are derived from the notion of spread. The first class, $\mathcal{P S}$, gives a useful framework for designing bent functions which are constant (except maybe at 0) on each of the m-dimensional subspaces of $\mathbb{F}_{2^{2 m}}$ belonging to a partial spread. Explicit expressions (which may be used for applications) of bent functions by means of the trace can be derived for subclasses corresponding to some partial spreads, for instance the $\mathcal{P} \mathcal{S}_{a p}$ class. Many more can be. The second general class, H, later slightly modified into a class called \mathcal{H} so as to relate it to the so-called Niho bent functions, is (up to addition of affine functions) the set of bent functions whose restrictions to the subspaces of the Desarguesian spread (the spread of all multiplicative cosets of \mathbb{F}_{2}^{*}, added with 0 , in $\mathbb{F}_{22 m}^{*}$) are linear. It has been observed that the functions in \mathcal{H} are related to o-polynomials, and this has led to several classes of bent functions in bivariate trace form. In this paper, after briefly looking at the $\mathcal{P S}$ functions related to the André spreads, and giving the trace representation of the $\mathcal{P S}$ corresponding bent functions and of their duals, we show that it is easy to characterize those bent functions whose restrictions to the subspaces of a spread are linear, but that it leads to a notion extending that of o-polynomial, for which it seems a hard task to find examples. We illustrate this with the André spreads and also study three other cases of \mathcal{H}-like functions (related to other spreads).

1 Introduction

Bent functions $[5,11]$ are the indicators of difference sets in elementary Abelian 2-groups. They play roles in cryptography, coding theory, designs, sequences and probably other applications. Bent functions are those functions f from \mathbb{F}_{2}^{n} to \mathbb{F}_{2} whose derivatives $f(x)+f(x+a), a \neq 0$, are balanced. Equivalently, their Hamming distance to the set of affine functions (i.e. their nonlinearity) takes the maximal possible value $2^{n-1}-2^{n / 2-1}$, and equivalently again, their Walsh transform $W_{f}(a)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{f(x)+a \cdot x}$ (where "." denotes an inner product in \mathbb{F}_{2}^{n}), takes values $\pm 2^{m}$ only (this characterization is independent of the choice of the inner product in \mathbb{F}_{2}^{n}). They exist for every n even. We shall denote $n=2 m$

[^0]in the sequel.
If f is bent, then the dual function \tilde{f} of f, defined on \mathbb{F}_{2}^{n} by:
$$
W_{f}(u)=2^{m}(-1)^{\tilde{f}(u)}
$$
is also bent and its own dual is f itself.
As any Boolean functions, bent functions can be represented in a unique way by their algebraic normal form (ANF)
\[

$$
\begin{equation*}
f(x)=\sum_{I \subseteq\{1, \ldots, n\}} a_{I} \prod_{i \in I} x_{i} ; a_{I} \in \mathbb{F}_{2} \tag{1}
\end{equation*}
$$

\]

(whose global degree $\max \left\{|I|, a_{I} \neq 0\right\}$, called the algebraic degree of f, is then at most m, as proved in [11]), but are often better viewed either in univariate or in bivariate representations: we identify \mathbb{F}_{2}^{n} with $\mathbb{F}_{2^{n}}$ (which is an n-dimensional vector space over \mathbb{F}_{2}) and we consider then the input to f as an element of $\mathbb{F}_{2^{n}}$. An inner product in $\mathbb{F}_{2^{n}}$ is $x \cdot y=\operatorname{Tr}_{1}^{n}(x y)$ where $\operatorname{Tr}_{1}^{n}(x)=\sum_{i=0}^{n-1} x^{2^{i}}$ is the trace function from $\mathbb{F}_{2^{n}}$ to \mathbb{F}_{2}. There exists a unique univariate polynomial $\sum_{i=0}^{2^{n}-1} a_{i} x^{i}$ over $\mathbb{F}_{2^{n}}$ such that f is the polynomial function over $\mathbb{F}_{2^{n}}$ associated to it (this is true for every function from $\mathbb{F}_{2^{n}}$ to $\mathbb{F}_{2^{n}}$). Then the algebraic degree of f equals the maximum 2-weight of the exponents with nonzero coefficients, where the 2 -weight $w_{2}(i)$ of an integer i is the number of 1's in its binary expansion, and f being Boolean, $f(x)$ can be written under the (non-unique) form $\operatorname{Tr}_{1}^{n}(P(x))$ where $P(x)$ is a polynomial over $\mathbb{F}_{2^{n}}$. A unique form exists that we shall not use in this paper. We also identify \mathbb{F}_{2}^{n} with $\mathbb{F}_{2^{m}} \times \mathbb{F}_{2^{m}}$ and we consider then the input to f as an ordered pair (x, y) of elements of $\mathbb{F}_{2^{m}}$. There exists a unique bivariate polynomial $\sum_{0 \leq i, j \leq 2^{m}-1} a_{i, j} x^{i} y^{j}$ over $\mathbb{F}_{2^{m}}$ such that f is the bivariate polynomial function over $\mathbb{F}_{2^{m}}$ associated to it. Then the algebraic degree of f equals $\max _{(i, j) \mid a_{i, j} \neq 0}\left(w_{2}(i)+w_{2}(j)\right)$. And f being Boolean, its bivariate representation can be written in the form $f(x, y)=\operatorname{tr}_{1}^{m}(P(x, y))$ where $P(x, y)$ is some polynomial over $\mathbb{F}_{2^{m}}$, and $t r_{1}^{m}$ is the trace function from $\mathbb{F}_{2^{m}}$ to \mathbb{F}_{2}.
The set of bent functions is invariant under composition on the right by any affine automorphism. The corresponding notion of equivalence between functions is called affine equivalence. Also, if f is bent and ℓ is affine, then $f+\ell$ is bent. A class of bent functions is called a complete class if it is globally invariant under the action of the general affine group and under the addition of affine functions. The corresponding notion of equivalence is called extended affine equivalence, in brief, EA-equivalence.

Determining all bent functions (or more practically, classifying them under the action of the general affine group) being out of reach, several constructions of bent functions have been investigated, which lead to infinite classes. Class \mathcal{H} (a slight modification of the original class H of Dillon) is the set of bent functions whose restrictions to the multiplicative cosets of $\mathbb{F}_{2^{m}}^{\star}$ (added with $\{0\}$) are linear. The set of these m-dimensional subspaces of $\mathbb{F}_{2^{n}}$, which have trivial pairwise
intersection and cover the whole space, is a spread, called the Desarguesian spread. In univariate form, the functions of this class are often called Niho bent. The general Partial Spreads class $\mathcal{P S}$, introduced by Dillon in [5], equals the union of $\mathcal{P S}{ }^{-}$and $\mathcal{P S}{ }^{+}$, where $\mathcal{P S} \mathcal{S}^{-}$(respectively, $\mathcal{P S}{ }^{+}$) is the set of all the sums (modulo 2) of the indicators of 2^{m-1} (respectively, $2^{m-1}+1$) pairwise supplementary m-dimensional subspaces of \mathbb{F}_{2}^{n}. All the elements of $\mathcal{P} \mathcal{S}^{-}$, and all those elements of $\mathcal{P} \mathcal{S}^{+}$which correspond to partial spreads extendable to larger size partial spreads, have algebraic degree m exactly. But some other elements of $\mathcal{P} \mathcal{S}^{+}$have smaller degrees (see below). J. Dillon applies the construction to the Desarguesian spread and deduces the subclass of $\mathcal{P} \mathcal{S}^{-}$denoted by $\mathcal{P} \mathcal{S}_{a p}$, whose elements are the functions of the form $f(x, y)=g\left(x y^{2^{m}-2}\right)$, where $x, y \in$ $\mathbb{F}_{2^{m}}$, i.e. $f(x, y)=g\left(\frac{x}{y}\right)$ with the convention $\frac{1}{0}=0$, where g is any balanced Boolean function on \mathbb{F}_{2}^{m} which vanishes at 0 . The complements $g\left(\frac{x}{y}\right)+1$ of these functions are the functions $g\left(\frac{x}{y}\right)$ where g is balanced and does not vanish at 0 ; they belong to the class $\mathcal{P} \mathcal{S}^{+}$. In both cases, the dual of $g\left(\frac{x}{y}\right)$ is $g\left(\frac{y}{x}\right)$. See more in [1].
Applying the $\mathcal{P} \mathcal{S}$ construction to the larger class of spreads introduced by André gives more numerous $\mathcal{P} \mathcal{S}_{a p}$-like bent functions in a form which may be useful for applications. We give the expression of their duals as well. We then characterize, in general, those bent functions whose restrictions to the subspaces of a spread are linear. We apply this characterization to the André spreads. This leads to a notion on polynomials which includes the notion of o-polynomial as a particular case. Finally, we apply it also to three other spreads. In each case, this leads to a new notion on polynomials. Probably many other cases could be investigated, since many more spreads exist, see $[3,7]$. But the interesting question is to find explicit examples of such o-like-polynomials.

2 André's spreads

Recall that partial spreads are sets of at least 2^{m-1} supplementary m-dimensional vector subspaces of $\mathbb{F}_{2^{n}}$. Two partial spreads are well known in the Boolean functions community and have been used to build bent functions:

1. The Desarguesian spread, constituted of the $2^{m}+1$ multiplicative cosets of $\mathbb{F}_{2^{m}}^{*}$ in $\mathbb{F}_{2^{n}}^{*}$ (to each of which is of course adjoined 0); these $2^{m}+1$ pairwise supplementary vector subspaces completely cover $\mathbb{F}_{2^{n}}$; their set is then a full spread. The elements of this spread can be viewed in bivariate form. The subspaces are then:

$$
\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\} \text { and }\left\{(x, x z), x \in \mathbb{F}_{2^{m}}\right\}, z \in \mathbb{F}_{2^{m}} .
$$

2. For m even, a set of $2^{m-1}+1$ pairwise supplementary m-dimensional \mathbb{F}_{2}-vector subspaces introduced by Dillon [5] (and reported in [1]) whose corresponding $\mathcal{P S}{ }^{+}$function is quadratic (hence, up to EA-equivalence, every quadratic function belongs to $\mathcal{P} \mathcal{S}^{+}$for $\left.n \equiv 0[\bmod 4]\right)$.

But many other full or partial spreads exist, see [3, 7]. One example which generalizes the Desarguesian spread has been introduced by J. André in the fifties and independently by Bruck later. Let k be any divisor of m. Let N_{k}^{m} be the norm map from $\mathbb{F}_{2^{m}}$ to $\mathbb{F}_{2^{k}}$:

$$
N_{k}^{m}(x)=x^{\frac{2^{m}-1}{2^{k}-1}} .
$$

Let ϕ be any function from $\mathbb{F}_{2^{k}}$ to $\mathbb{Z} /(m / k) \mathbb{Z}$. Then, denoting $\phi \circ N_{k}^{m}$ by φ (it can be any function from $\mathbb{F}_{2^{m}}$ to $\mathbb{Z} /(m / k) \mathbb{Z}$ which is constant on any coset of the subgroup U of order $\frac{2^{m}-1}{2^{k}-1}$ of $\left.\mathbb{F}_{2^{m}}^{*}\right)$, the $\mathbb{F}_{2^{2}}$-vector subspaces:

$$
\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\} \text { and }\left\{\left(x, x^{2^{k \varphi(z)}} z\right), x \in \mathbb{F}_{2^{m}}\right\}, \text { where } z \in \mathbb{F}_{2^{m}}
$$

form together a spread of $\mathbb{F}_{2^{m}}^{2}$. Indeed, these subspaces have trivial pairwise intersection: suppose that $x^{2^{k \varphi(y)}} y=x^{2^{k \varphi(z)}} z$ for some nonzero elements x, y, z of $\mathbb{F}_{2^{m}}$, then we have $N_{k}^{m}\left(x^{2^{k \varphi(y)}} y\right)=N_{k}^{m}\left(x^{2^{k \varphi(z)}} z\right)$, that is, $N_{k}^{m}\left(x^{2^{k \varphi(y)}}\right) N_{k}^{m}(y)=$ $N_{k}^{m}\left(x^{2^{k \varphi(z)}}\right) N_{k}^{m}(z)$; equivalently, since $x \mapsto x^{2^{k \varphi(z)}}$ is in the Galois group of $\mathbb{F}_{2^{m}}^{2}$ over $\mathbb{F}_{2^{k}}, N_{k}^{m}(x) N_{k}^{m}(y)=N_{k}^{m}(x) N_{k}^{m}(z)$ and hence $N_{k}^{m}(y)=N_{k}^{m}(z)$ and $\varphi(y)=\varphi(z)$, which together with $x^{2^{k \varphi(y)}} y=x^{2^{k \varphi(z)}} z$ implies then $y=z$.
Other examples of spreads are studied in Section 4.2.

3 The $\mathcal{P S}$ bent functions associated to Andre's spreads and their duals

The trace representation of these functions is easily obtained. A pair $(x, y) \in$ $\mathbb{F}_{2^{m}}^{*} \times \mathbb{F}_{2^{m}}$ belongs to $\left\{\left(x, x^{2^{k \varphi(z)}} z\right), x \in \mathbb{F}_{2^{m}}\right\}$ if and only if

$$
\begin{equation*}
y=x^{2^{k \varphi(z)}} z=x^{2^{k \phi\left(\frac{N_{k}^{m}(y)}{N_{k}^{m}(x)}\right)}} z=x^{2^{k \varphi(y / x)}} z . \tag{2}
\end{equation*}
$$

Then $z=\frac{y}{x^{2^{k \varphi}(y / x)}}$ and if g is any balanced Boolean function on $\mathbb{F}_{2^{m}}$ vanishing at 0 , the function

$$
\begin{equation*}
f(x, y)=g\left(\frac{y}{x^{2^{k \varphi(y / x)}}}\right) \tag{3}
\end{equation*}
$$

(with the usual convention $\frac{y}{0}=0$) belongs to the $\mathcal{P S}$ class of bent functions and is potentially inequivalent to $\mathcal{P} \mathcal{S}_{a p}$ functions (this needs to be further studied, though).
Let us study now the dual of f. If S is the support of g, then since $0 \notin$ S, the support of f is equal to the union $\bigcup_{z \in S}\left\{\left(x, x^{2^{k \varphi(z)}} z\right), x \in \mathbb{F}_{2^{m}}\right\}$, less $\{0\}$. The support of the dual of f is the union of the orthogonals of these subspaces, less $\{0\}$ as well. The orthogonal of $\left\{\left(x, x^{2^{k \varphi(z)}} z\right), x \in \mathbb{F}_{2^{m}}\right\}$ is $\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{F}_{2^{m}}^{2} ; \forall x \in \mathbb{F}_{2^{m}}, \operatorname{tr}_{1}^{m}\left(x x^{\prime}+x^{2^{k \varphi(z)}} z y^{\prime}\right)=0\right\}=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{F}_{2^{m}}^{2} ; \forall x \in\right.$
$\left.\mathbb{F}_{2^{m}}, \operatorname{tr}_{1}^{m}\left(\left(x^{\prime}+\left(z y^{\prime}\right)^{2^{m-k \varphi(z)}}\right) x\right)=0\right\}=\left\{\left(x^{\prime}, y^{\prime}\right) \in \mathbb{F}_{2^{m}}^{2} ; x^{\prime}+\left(z y^{\prime}\right)^{2^{m-k \varphi(z)}}=\right.$ $0\}=\left\{\left(\left(z y^{\prime}\right)^{2^{m-k \varphi(z)}}, y^{\prime}\right) ; y^{\prime} \in \mathbb{F}_{2^{m}}^{2}\right\}$; hence we have:

$$
\begin{equation*}
\widetilde{f}(x, y)=g\left(\frac{x^{2^{k \varphi(x / y)}}}{y}\right) \tag{4}
\end{equation*}
$$

Of course, if g does not vanish at 0 , the function defined by (3) is bent as well. We can see this by changing g into its complement $g+1$ (which changes f and its dual into their complements as well).

Theorem 1 Let m be any positive integer and k any divisor of m. Let φ be an integer-valued function over $\mathbb{F}_{2^{m}}$, constant on each multiplicative coset of the subgroup U of order $\frac{2^{m}-1}{2^{k}-1}$ of $\mathbb{F}_{2^{m}}^{*}$. Let g be any balanced Boolean function over $\mathbb{F}_{2^{m}}$ and let f be defined by (3) with the convention $\frac{1}{0}=0$. Then f is bent and it dual is given by (4).

Note that the $\mathcal{P} \mathcal{S}_{a p}$ class corresponds to the case where ϕ is the null function. Note that it also corresponds to the case $k=m$ since we have then $f(x, y)=$ $g\left(\frac{y}{x}\right)$, because $x^{2^{m}}=x$. Note finally that if $k=1$ then $N_{k}^{m}(x)=1$ for every $x \neq$ 0 and the groups of the spread are $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and $\left\{(x, 0), x \in \mathbb{F}_{2^{m}}\right\}$ and $\left\{\left(x, x^{2^{j}} z\right), x \in \mathbb{F}_{2^{m}}\right\}, z \in \mathbb{F}_{2^{m}}^{*}$ for some j and $f(x, y)=g\left(\frac{y}{x^{2^{j}}}\right)$; the functions are in the $\mathcal{P} \mathcal{S}_{a p}$ class up to linear equivalence.

4 A generalization of class \mathcal{H} of bent functions to other spreads

Consider a spread whose elements are the subspace $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and 2^{m} subspaces of the form $\left\{\left(x, L_{z}(x)\right), x \in \mathbb{F}_{2^{m}}\right\}$, where, for every $z \in \mathbb{F}_{2^{m}}$, function L_{z} is linear. The property of being a spread corresponds to the fact that, for every nonzero $x \in \mathbb{F}_{2^{m}}$, the mapping $z \mapsto L_{z}(x)$ is a permutation of $\mathbb{F}_{2^{m}}$. Let us denote by Γ_{x} the compositional inverse of this bijection. A Boolean function over $\mathbb{F}_{2^{m}}^{2}$ is linear over each element of the spread if and only if there exists a mapping $G: \mathbb{F}_{2^{m}} \mapsto \mathbb{F}_{2^{m}}$ and an element μ of $\mathbb{F}_{2^{m}}$ such that, for every $y \in \mathbb{F}_{2^{m}}$, $f(0, y)=\operatorname{tr}_{1}^{m}(\mu y)$ and, for every $x, z \in \mathbb{F}_{2^{m}}$:

$$
\begin{equation*}
f\left(x, L_{z}(x)\right)=\operatorname{tr}_{1}^{m}(G(z) x) \tag{5}
\end{equation*}
$$

where $t r_{1}^{m}$ is the trace function from $\mathbb{F}_{2^{m}}$ to \mathbb{F}_{2}. Note that, up to EA-equivalence, we can assume that $\mu=0$. Indeed, we can add the linear n-variable function $(x, y) \mapsto \operatorname{tr}_{1}^{m}(\mu y)$ to $f ;$ this changes μ into 0 and $G(z)$ into $G(z)+L_{z}^{*}(\mu)$, where L_{z}^{*} is the adjoint operator of L_{z}, since for $y=L_{z}(x)$, we have $\operatorname{tr}_{1}^{m}(\mu y)=$ $\operatorname{tr}_{1}^{m}\left(x L_{z}^{*}(\mu)\right)$. Taking $\mu=0$, Relation (5) is satisfied for every $z \in \mathbb{F}_{2^{m}}$ if and only if:

$$
\begin{equation*}
\forall x, y \in \mathbb{F}_{2^{m}}, f(x, y)=\operatorname{tr}_{1}^{m}\left(G\left(\Gamma_{x}(y)\right) x\right) \tag{6}
\end{equation*}
$$

Denoting by δ_{0} the Kronecker symbol, the value of the Walsh transform $W_{f}(a, b)=$ $\sum_{x, y \in \mathbb{F}_{2^{m}}}(-1)^{f(x, y)+t r_{1}^{m}(a x+b y)}$ equals then, for, for every $(a, b) \in \mathbb{F}_{2^{m}}^{2}$:

$$
\begin{aligned}
& \quad \sum_{(x, y) \in \mathbb{F}_{2}^{2}}(-1)^{t r_{1}^{m}}\left(G\left(\Gamma_{x}(y)\right) x+a x+b y\right)= \\
& 2^{m} \delta_{0}(b)+\sum_{x \in \mathbb{F}_{2}^{*},}, z \in \mathbb{F}_{2^{m}} \\
& \\
& 2^{m}(-1)^{t r_{1}^{m}\left(G(z) x+a x+b L_{z}(x)\right)}= \\
& \left.2^{m}(b)-1\right)+\sum_{z \in \mathbb{F}_{2^{m}}} \sum_{x \in \mathbb{F}_{2} m}(-1)^{t r_{1}^{m}\left(\left(G(z)+a+L_{z}^{*}(b)\right) x\right)}= \\
& \left.\delta_{0}(b)-1+\left|\left\{z \in \mathbb{F}_{2^{m}} ; G(z)+a+L_{z}^{*}(b)=0\right\}\right|\right) .
\end{aligned}
$$

Hence f is bent if and only if, for every $a, b \in \mathbb{F}_{2^{m}}$, the size $\mid\left\{z \in \mathbb{F}_{2^{m}} ; G(z)+\right.$ $\left.a+L_{z}^{*}(b)=0\right\} \mid$ equals 1 if $b=0$ and equals 0 or 2 if $b \neq 0$, and we deduce:

Theorem 2 Consider a spread of $\mathbb{F}_{2^{m}}^{2}$ whose elements are 2^{m} subspaces of the form $\left\{\left(x, L_{z}(x)\right), x \in \mathbb{F}_{2^{m}}\right\}$, where, for every $z \in \mathbb{F}_{2^{m}}$, function L_{z} is linear, and the subspace $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$. For every $x \in \mathbb{F}_{2^{m}}^{*}$, let us denote by Γ_{x} the compositional inverse of the permutation $z \mapsto L_{z}(x)$. A Boolean function f defined by (6) is bent if and only if G is a permutation and, for every $b \neq 0$ and every a in $\mathbb{F}_{2^{m}}$, the equation $G(z)+L_{z}^{*}(b)=a$ has 0 or 2 solutions in $\mathbb{F}_{2^{m}}$, where L_{z}^{*} is the adjoint operator of L_{z}.

The condition on $G(z)$ in Theorem 2 has a similar form as that of being an opolynomial. We shall see in the next section that, in the case of André's spreads, it is a generalization of the notion of o-polynomial. Finding a few classes of opolynomials has been a hard work of 40 years and we can expect that finding such o-like-polynomials will be also difficult.

4.1 André's spreads

In the case of André's spreads, we have $L_{z}(x)=x^{2^{k \varphi(z)}} z$. According to (2), we have then $\Gamma_{x}(y)=\frac{y}{x^{2^{k \varphi(y / x)}}}$ and $L_{z}^{*}(b)=(b z)^{2^{m-k \varphi(y / x)}}$. Relation (6) becomes:

$$
\begin{equation*}
\forall x, y \in \mathbb{F}_{2^{m}}, f(x, y)=\operatorname{tr}_{1}^{m}\left(G\left(\frac{y}{x^{2^{k \varphi(y / x)}}}\right) x\right) \tag{7}
\end{equation*}
$$

This leads to the following definition and corollary:
Definition 1 Let m be any positive integer and k any divisor of m. Let φ be an integer-valued function over $\mathbb{F}_{2^{m}}$, constant on each multiplicative coset of the subgroup U of order $\frac{2^{m}-1}{2^{k}-1}$ of $\mathbb{F}_{2^{m}}^{*}$. A permutation polynomial $G(z)$ is a φ-polynomial if, for every $b \in \mathbb{F}_{2^{m}}^{*}$ and every $a \in \mathbb{F}_{2^{m}}$, their exist two values of z or none such that

$$
G(z)+(b z)^{2^{m-k \varphi(z)}}=a
$$

If φ is null, this notion corresponds to that of o-polynomial (see e.g. [2]); in other words, a 0-polynomial is an o-polynomial.

Corollary 1 Let m be any positive integer and k any divisor of m. Let φ be an integer-valued function over $\mathbb{F}_{2^{m}}$, constant on each multiplicative coset of the subgroup U of order $\frac{2^{m}-1}{2^{k}-1}$ of $\mathbb{F}_{2^{m}}^{*}$. Let G be any mapping from $\mathbb{F}_{2^{m}}$ to $\mathbb{F}_{2^{m}}$ and let f be defined by (7) with the convention $\frac{1}{0}=0$. Then f is bent if and only if G is a φ-polynomial.

Remark 1 Under the hypotheses of Definition 1 and Theorem 1, the mapping $\psi: z \mapsto z^{2^{m-k \varphi(z)}}$ is bijective (and in general not linear). Indeed, each multiplicative coset of U is globally invariant under ψ since it is globally invariant under $z \mapsto z^{2^{k}}$, and the restriction of ψ to any such coset is clearly injective since φ is constant on it. Note that $\psi^{m / k}$ (that is, ψ composed m / k times with itself) is identity.

By the bijective change of variable $z \mapsto \psi^{-1}(z)=z^{2^{k \varphi(z)}}$, the equation $G(z)+$ $(b z)^{2^{m-k \varphi(z)}}=a$ is then equivalent to

$$
\begin{equation*}
H(z)+b^{2^{m-k \varphi(z)}} z=a \tag{8}
\end{equation*}
$$

where $H(z)=G\left(z^{2^{k \varphi(z)}}\right)=G \circ \psi^{-1}(z)$, is a permutation.
Remark 2 By raising the equation $G(z)+(b z)^{2^{m-k \varphi(z)}}=a$ to the power $2^{m-k \varphi(z)}$, this equation is also equivalent to $H^{\prime}(z)+b z=a^{2^{k \varphi(z)}}$, where $H^{\prime}(z)=(G(z))^{2^{k \varphi(z)}}$, but H^{\prime} is in general not equal to $\psi^{-1} \circ G$ (nor to $G \circ \psi^{-1}$) and the bijectivity of G does not imply the bijectivity of H^{\prime}.

4.1.1 Case where φ is constant

If $\varphi(z)=0$ for every z, then the construction has been addressed in [2]. If $\varphi(z)=i \neq 0$ for every z, then the condition of Theorem 1 is equivalent to saying that $H(z)=(G(z))^{2^{k i}}$ is an o-polynomial (see the list in [2]). If the coefficients of H are all in \mathbb{F}_{2} (this is the case of all polynomials in the list, except the two last ones, called Subiaco and Adelaide o-polynomials, see more in [6]), the function corresponding to $i=0$ is $f(x, y)=\operatorname{tr}_{1}^{m}\left(H\left(\frac{y}{x}\right) x\right)$ and the function (7) corresponding to $i \neq 0$ is $f(x, y)=\operatorname{tr}_{1}^{m}\left(H\left(\frac{y^{2^{m-k i}}}{x}\right) x\right)$, which is linearly equivalent. Hence no new bent function (up to EA-equivalence) arises.

Open question: Do Subiaco and Adelaide o-polynomials give new bent functions up to EA-equivalence, when used as above with $i \neq 0$?

4.1.2 Case where φ is not constant

This case can potentially lead to new bent functions but is more complex. To see how complex it is, we can choose an example of permutation H and try to determine what are those functions φ, constant on each coset of U, for which Equation (8) has 0 or 2 solutions for every $b \neq 0$. Let us study the simplest
possible function $H(z)=z^{2}$ (for which we know that $\varphi=0$ works). For such choice of H, Equation (8) is equivalent to $\left(\frac{z}{b^{2^{m-k \varphi(z)}}}\right)^{2}+\frac{z}{b^{2^{m-k \varphi(z)}}}=\frac{a}{b^{2^{m-k \varphi(z)+1}}}$. A necessary condition for such equality to hold is that $\operatorname{tr}_{1}^{m}\left(\frac{a}{b^{2^{m-k \varphi(z)+1}}}\right)=0$. Imposing such condition, choosing $u \in \mathbb{F}_{2^{m}}$ such that $\operatorname{tr}_{1}^{m}(u)=1$, and defining $c=\sum_{j=1}^{m-1}\left(\frac{a}{b^{2^{m-k \varphi(z)+1}}}\right)^{2^{j}}\left(\sum_{k=0}^{j-1} u^{2^{k}}\right)$, we have $c+c^{2}=(c+1)+(c+1)^{2}=$ $u \operatorname{tr}_{1}^{m}\left(\frac{a}{b^{2^{m-k \varphi(z)+1}}}\right)+\left(\frac{a}{b^{2^{m-k \varphi(z)+1}}}\right) \operatorname{tr}_{1}^{m}(u)=\frac{a}{b^{2^{m-k \varphi(z)+1}}}$. The choice of u such that $t_{1}^{m}(u)=1$ being done, the equation $\left(\frac{z}{b^{2 m-k \varphi(z)}}\right)^{2}+\frac{z}{b^{2^{m-k \varphi(z)}}}=\frac{a}{b^{2^{m-k \varphi(z)+1}}}$ is then equivalent to:

$$
\left\{\begin{array}{l}
z=b^{2^{m-k \varphi(z)}}\left(\sum_{j=1}^{m-1}\left(\frac{a}{b^{2 m-k \varphi(z)+1}}\right)^{2^{j}}\left(\sum_{k=0}^{j-1} u^{2^{k}}\right)+\epsilon\right), \epsilon \in \mathbb{F}_{2} \tag{9}\\
\operatorname{tr}_{1}^{m}\left(\frac{a}{b^{2^{m-k \varphi(z)+1}}}\right)=0
\end{array}\right.
$$

We would need then to see what are the functions φ constant on each coset of U such that, for every $b \neq 0$, there are 0 or 2 values satisfying (9).

Remark 3 By the bijective change of variable $z \mapsto \frac{z^{2^{k \varphi(z)}}}{b}$, the equation $G(z)+$ $(b z)^{2^{m-k \varphi(z)}}=a$ is equivalent to

$$
G\left(\frac{z^{2^{k \varphi(z)}}}{b}\right)+z=a
$$

Hence if G is a power function, this equation is equivalent to $\frac{G\left(z^{k \varphi(z)}\right)}{G(b)}+z=a$ and we deduce that G is then a φ-polynomial if and only if $G\left(z^{2^{k \varphi(z)}}\right)=G \circ$ $\psi^{-1}(z)$ is an o-polynomial.
Denoting the o-polynomial $G \circ \psi^{-1}(z)$ by $P(z)$, the corresponding bent function given by (7) is then $f(x, y)=\operatorname{tr}_{1}^{m}\left(\frac{G(y)}{G\left(x^{\left.2^{k \varphi(y / x)}\right)}\right.} x\right)=\operatorname{tr}_{1}^{m}\left(\frac{P\left(y^{2^{m-k \varphi(y / x)}}\right)}{P(x)} x\right)$.
Since five among the nine known classes of o-polynomials are power functions, it is interesting to see whether G and P can both be power functions without that φ be constant. Note that m is then odd since all examples of power opolynomials are with m odd. Let us suppose that $G(z)=z^{d}$ and $P(z)=z^{e}$, where d and e are both co-prime with $2^{m}-1$. Suppose that $\frac{m}{k}$ is co-prime with $2^{k}-1$, then every element $z \in \mathbb{F}_{2^{m}}^{*}$ is the product of an element t of $\mathbb{F}_{2^{k}}^{*}$ and of an element u of norm 1 (since the norm of any element z of $\mathbb{F}_{2^{k}}^{*}$ equals $z^{\frac{m}{k}}$ and can then take any value in $\mathbb{F}_{2^{k}}^{*}$), that is, an element of U. The condition that $G\left(z^{2^{k \varphi(z)}}\right)=P(z)$ for all $z=t u$ in $\mathbb{F}_{2^{m}}^{*}\left(t \in \mathbb{F}_{2^{k}}^{*}, u \in U\right)$ is equivalent to $t u^{2^{k \varphi(t)}}=(t u)^{\frac{e}{d}}$ and then to $\left\{\begin{array}{l}\frac{e}{d} \equiv 1\left[\bmod 2^{k}-1\right] \\ \frac{e}{d} \equiv 2^{k \varphi(t)}\left[\bmod \frac{2^{m}-1}{2^{k}-1}\right] . \text { Unfortunately, this }\end{array}\right.$ implies that φ is constant since $\varphi(t) \leq \frac{m}{k}-1$ and $\frac{2^{m}-1}{2^{k}-1}=\sum_{i=0}^{m / k-1} 2^{k i}$.

The case $k=m / 2$ (m even) In this case, $\varphi(z)=\phi\left(z^{2^{m / 2}+1}\right)$, where ϕ is a Boolean function on $\mathbb{F}_{2^{m / 2}}$ and $z^{2^{m-k \varphi(z)}}=\left\{\begin{array}{l}z \text { if } \phi\left(z^{2^{m / 2}+1}\right)=0 \\ z^{2^{m / 2}} \text { if } \phi\left(z^{2^{m / 2}+1}\right)=1\end{array}\right.$.

The case $k=m / 3$ (m divisible by 3) In this case, $\varphi(z)=\phi\left(z^{2^{2 m / 3}+2^{m / 3}+1}\right)$, where ϕ is a Boolean function on $\mathbb{F}_{2^{m / 2}}$ and $z^{2^{m-k \varphi(z)}}=\left\{\begin{array}{l}z \text { if } \phi\left(z^{2^{2 m / 3}+2^{m / 3}+1}\right)=0 \\ z^{2^{2 m / 3}} \text { if } \phi\left(z^{2^{2 m / 3}+2^{m / 3}+1}\right)=1 \\ z^{2^{m / 3}} \text { if } \phi\left(z^{2^{2 m / 3}+2^{m / 3}+1}\right)=2\end{array}\right.$.

The case $k=2$ (m even) In this case, $\varphi(z)=\phi\left(z^{\frac{2^{m}-1}{3}}\right)$, where ϕ is a function from \mathbb{F}_{4} to $\mathbb{Z} /(m / 2) \mathbb{Z}$ and $z^{2^{m-k \varphi(z)}}$ equals $z^{4^{m / 2-\phi(z)}}$.

4.2 Further generalizations of class \mathcal{H} based on pre-quasifields

Kantor has shown in [9] how a spread can be derived from any pre-quasifield, that is, any Abelian finite group having a second law $*$ which is left-distributive with respect to the first law and is such that the right and left multiplications by a nonzero element are bijective, and that the left-multiplication by 0 is absorbent. The elements of this spread are the \mathbb{F}_{2}-vector subspaces $\{(0, y), y \in$ $\left.\mathbb{F}_{2^{m}}\right\}$ and $\left\{(x, z \star x), x \in \mathbb{F}_{2^{m}}\right\}, z \in \mathbb{F}_{2^{m}}$. Wu [12] has studied three particular examples (many others could have been studied) and determined explicitely the related functions Γ_{x}.

4.2.1 \mathcal{H}-like bent functions from the Dempwolff-Müller pre-quasifield

Assume k and m are odd integers with $(k, m)=1$. Let $e=2^{m-1}-2^{k-1}-1$, $L(x)=\sum_{i=0}^{k-1} x^{2^{i}}$, and define $x \star y=x^{e} L(x y)$. Then $\left(\mathbb{F}_{2^{m}},+, \star\right)$ is a prequasifield [4], leading to the spread of the \mathbb{F}_{2}-vector subspaces $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and $\left\{(x, z \star x), x \in \mathbb{F}_{2^{m}}\right\}=\left\{\left(x, z^{e} L(x z)\right), x \in \mathbb{F}_{2^{m}}\right\}, z \in \mathbb{F}_{2^{m}}$.
Then $\Gamma_{x}(y)=\frac{1}{x D_{d}\left(\frac{y^{2}}{x^{k}+1}\right)}$, where D_{d} is the Dickson polynomial of index the inverse d of $2^{k}-1$ modulo $2^{n}-1$, and $L_{z}^{*}(b)=\sum_{i=0}^{k-1}\left(b z^{e}\right)^{2^{-i}} z$. Relation (6) becomes:

$$
\begin{equation*}
\forall x, y \in \mathbb{F}_{2^{m}}, f(x, y)=\operatorname{tr}_{1}^{m}\left(G\left(\frac{1}{x D_{d}\left(\frac{y^{2}}{x^{2^{k}+1}}\right)}\right) x\right) \tag{10}
\end{equation*}
$$

and we have:
Corollary 2 A Boolean function f defined by (10) is bent if and only if G is a permutation and the equation $G(z)+\sum_{i=0}^{k-1}\left(b z^{e}\right)^{2^{-i}} z=a$ has 0 or 2 solutions for every $b \neq 0$ and every a.

4.2.2 \mathcal{H}-like bent functions from the Knuth pre-semifield

Assume m is an odd integer and $\beta \in \mathbb{F}_{2 m}^{*}$. Then $x \star y=x y+x^{2} t_{1}^{m}(\beta y)+$ $y^{2} \operatorname{tr}_{1}^{m}(\beta x)$ defines a pre-semifield (a pre-quasifield which remains one when $a * b$ is replaced by $b * a$) [10], leading to the spread of the \mathbb{F}_{2}-vector subspaces $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and $\left\{(x, z \star x), x \in \mathbb{F}_{2^{m}}\right\}=\left\{\left(x, z x+x^{2} \operatorname{tr}_{1}^{m}(\beta z)+\right.\right.$ $\left.\left.z^{2} \operatorname{tr}_{1}^{m}(\beta x)\right), x \in \mathbb{F}_{2^{m}}\right\}, z \in \mathbb{F}_{2^{m}}$.

Then $\Gamma_{x}(y)=\left(1+\operatorname{tr}_{1}^{m}(\beta x)\right) \frac{y}{x}+x \operatorname{tr}_{1}^{m}\left(\beta \frac{y}{x}\right)+x \operatorname{tr}_{1}^{m}(\beta x) C_{\frac{1}{\beta x}}\left(\frac{y}{x^{2}}\right)$, where $C_{a}(x)=\sum_{i=0}^{m-1} c_{i} x^{2^{i}}$, where $c_{0}=\frac{1}{a^{2^{i}}}+\frac{1}{a^{3 \cdot 2^{i}}}+\cdots+\frac{1}{a^{(m-3) \cdot 2^{i}}}, c_{i}=1+\frac{1}{a^{2^{i}}}+$ $\frac{1}{a^{3 \cdot 2^{i}}}+\cdots+\frac{1}{a^{(i-2) \cdot 2^{i}}}+\frac{1}{a^{(i+1) \cdot 2^{i}}}+\cdots+\frac{1}{a^{(m-1) \cdot 2^{i}}}$ if i is odd and $c_{i}=1+\frac{1}{a^{2 \cdot \cdot 2^{i}}}+$ $\frac{1}{a^{4 \cdot 2^{i}}}+\cdots+\frac{1}{a^{(i-2) \cdot 2^{i}}}+\frac{1}{a^{(i+1) \cdot 2^{i}}}+\cdots+\frac{1}{a^{(m-2) \cdot 2^{i}}}$ if i is even. We have $L_{z}^{*}(b)=$ $b z+b^{2^{m-1}} \operatorname{tr}_{1}^{m}(\beta z)+\beta \operatorname{tr}_{1}^{m}\left(b^{2^{m-1}} z\right)$. Relation (6) becomes:

$$
\begin{equation*}
\operatorname{tr}_{1}^{m}\left(G\left(\left(1+\operatorname{tr}_{1}^{m}(\beta x)\right) \frac{y}{x}+x \operatorname{tr}_{1}^{m}\left(\beta \frac{y}{x}\right)+x \operatorname{tr}_{1}^{m}(\beta x) C_{\frac{1}{\beta x}}\left(\frac{y}{x^{2}}\right)\right) x\right) \tag{11}
\end{equation*}
$$

and we have:
Corollary 3 A Boolean function f defined by (11) is bent if and only if G is a permutation and the equation $G(z)+b z+b^{2^{m-1}} \operatorname{tr}_{1}^{m}(\beta z)+\beta \operatorname{tr}_{1}^{m}\left(b^{2^{m-1}} z\right)=a$ has 0 or 2 solutions for every $b \neq 0$ and every a.

4.2.3 \mathcal{H}-like bent functions from the Kantor pre-semifield

Assume m is an odd integer. Then $x \star y=x^{2} y+\operatorname{tr}_{1}^{m}(x y)+x t r_{1}^{m}(y)$ defines a pre-semifield [8], leading to two spreads:

- the spread of the \mathbb{F}_{2}-vector subspaces $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and $\{(x, z \star x), x \in$ $\left.\mathbb{F}_{2^{m}}\right\}=\left\{\left(x, z^{2} x+\operatorname{tr}_{1}^{m}(z x)+z t r_{1}^{m}(x)\right), x \in \mathbb{F}_{2^{m}}\right\} ;$
- the spread of the $\mathbb{F}_{2^{2}}$-vector subspaces $\left\{(0, y), y \in \mathbb{F}_{2^{m}}\right\}$ and $\{(x, x \star z), x \in$ $\left.\left.\mathbb{F}_{2^{m}}\right\}=\left\{\left(x, x^{2} z+\operatorname{tr}_{1}^{m}(x z)+x \operatorname{tr}_{1}^{m}(z)\right), x \in \mathbb{F}_{2^{m}}\right\}\right)$, where $z \in \mathbb{F}_{2^{m}}$.

In the first case, the corresponding function Γ_{x} has been determined in [12] (see below) and $L_{z}^{*}(b)=b z^{2}+z t r_{1}^{m}(b)+t r_{1}^{m}(b z)$. Then $f(x, y)$ equals:

$$
\begin{array}{r}
\operatorname{tr}_{1}^{m}\left(G \left(\left[(x y)^{2^{m-1}}+\sum_{i=0}^{\frac{m-1}{2}}(x y)^{2^{2 i}-1}+\sum_{i=0}^{\frac{m-3}{2}} x^{2^{2 i}} \operatorname{tr}_{1}^{m}(x y)\right] \frac{\operatorname{tr}_{1}^{m}(x)}{x}\right.\right. \\
\left.\left.+x^{2^{m-1}-1} y^{2^{m-1}}+x^{2^{m-1}-1} \operatorname{tr}_{1}^{m}(x y)\right) x\right) \tag{12}
\end{array}
$$

and we have:
Corollary 4 A Boolean function f defined by (12) is bent if and only if G is a permutation and the equation $G(z)+b z^{2}+z \operatorname{tr}_{1}^{m}(b)+t r_{1}^{m}(b z)=a$ has 0 or 2 solutions for every $b \neq 0$ and every a.
In the second case, the relation $y=x^{2} z+\operatorname{tr}_{1}^{m}(x z)+x \operatorname{tr}_{1}^{m}(z)$ implies for $x \neq 0$ that $\left\{\begin{array}{l}z=\frac{y}{x^{2}}+\frac{t r_{1}^{m}(x z)}{x^{2}}+\frac{t r_{1}^{m}(z)}{x} \\ \operatorname{tr}_{1}^{m}(x z)=t r_{1}^{m}\left(\frac{y}{x}\right)+\operatorname{tr}_{1}^{m}(x z) t r_{1}^{m}\left(\frac{1}{x}\right)+t r_{1}^{m}(z) \\ t r_{1}^{m}(z)=t r_{1}^{m}\left(\frac{y}{x^{2}}\right)+\left(\operatorname{tr}_{1}^{m}(x z)+t r_{1}^{m}(z)\right) \operatorname{tr}_{1}^{m}\left(\frac{1}{x}\right)\end{array} \quad\right.$ and is equivalent to
$z=\frac{y}{x^{2}}+t r_{1}^{m}\left(\frac{1}{x}\right)\left(\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)}{x^{2}}+\frac{t r_{1}^{m}\left(\frac{y}{x}\right)}{x}\right)+\left(\operatorname{tr}_{1}^{m}\left(\frac{1}{x}\right)+1\right)\left(\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)+t r_{1}^{m}\left(\frac{y}{x}\right)}{x^{2}}+\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)}{x}\right)$, which gives $\Gamma_{x}(y)$. We have $L_{z}^{*}(b)=(b z)^{2^{m-1}}+z \operatorname{tr}_{1}^{m}(b)+b t r_{1}^{m}(z)$. Then $f(x, y)$ equals:

$$
\begin{array}{r}
t r_{1}^{m}\left(G \left(\frac{y}{x^{2}}+t r_{1}^{m}\left(\frac{1}{x}\right)\left(\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)}{x^{2}}+\frac{t r_{1}^{m}\left(\frac{y}{x}\right)}{x}\right)+\left(t r_{1}^{m}\left(\frac{1}{x}\right)+1\right)\right.\right. \\
\left.\left.\left(\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)+t r_{1}^{m}\left(\frac{y}{x}\right)}{x^{2}}+\frac{t r_{1}^{m}\left(\frac{y}{x^{2}}\right)}{x}\right)\right) x\right) \tag{13}
\end{array}
$$

and we have:
Corollary 5 A Boolean function f defined by (13) is bent if and only if G is a permutation and the equation $G(z)+(b z)^{2^{m-1}}+z \operatorname{tr}_{1}^{m}(b)+b t r_{1}^{m}(z)=a$ has 0 or 2 solutions for every $b \neq 0$ and every a.

5 Conclusion

After giving the bivariate trace representations of the $\mathcal{P S}$ bent functions related to the André spreads and of their duals, we have characterized 4 classes of \mathcal{H}-like bent functions related to this same André spreads and to three other spreads, by relating for each of these 4 classes the bentness of the functions to notions similar to that of o-polynomial, but sufficiently different for needing to be studied for themselves. Many more spreads could be studied similarly. The notion of o-polynomial is very simple in its definition but very difficult to be handled; it has given huge work to mathematicians, who came up with 9 classes only, in a period of 40 years. These four similar notions are slightly more complex and it seems that it is not possible to relate them to that of o-polynomial in a way allowing deriving such polynomials from known o-polynomials. The work to obtain examples of such polynomials seems difficult; we propose this as future work.

Acknowledgement We are indebted to William Kantor who gave us very useful informations on spreads.

References

[1] C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the monography Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Y. Crama and P. Hammer eds, Cambridge University Press, pp. 257-397, 2010. Preliminary version available at http://www-rocq.inria.fr/codes/Claude.Carlet/pubs.html
[2] C. Carlet and S. Mesnager. On Dillon's class H of bent functions, Niho bent functions and o-polynomials. Journal of Combinatorial Theory-JCT-serie A 118, pages 2392-2410, 2011.
[3] P. Dembowski. Finite Geometries, Springer, Berlin-Göttingen-Heidelberg, 1968.
[4] U. Dempwolff and P. Müller. Permutation polynomials and translation planes of even order. Adv. Geom., vol. 13, pp. 293-313, 2013.
[5] Dillon J.: Elementary Hadamard difference sets. PhD dissertation. Univ. of Maryland, 1974.
[6] T.Helleseth, A. Kholosha and S. Mesnager. Niho Bent Functions and Subiaco Hyperovals. Proceedings of the 10-th International Conference on Fi nite Fields and Their Applications (Fq'10), Contemporary Math., AMS, Vol 579, pp. 91-101, 2012.
[7] Johnson N, Jha V, Biliotti M. Handbook of finite translation planes. Pure and Applied Mathematics, vol. 289. London: Chapman \& Hall/CRC, 2007.
[8] W. Kantor. Spreads, translation planes and Kerdock sets. II. SIAM J. Alg. Discr. Methods, vol. 3, pp. 308-318, 1982.
[9] W. Kantor. Bent functions generalizing Dillon's partial spread functions. arXiv:1211.2600
[10] D. Knuth. A class of projective planes. Trans. Amer. Math. Soc., vol. 115, pp. 541-549, 1965.
[11] Rothaus O. S.: On bent functions, J. Combin. Theory, Ser. A 20, 300-305 (1976).
[12] B. Wu. $\mathcal{P S}$ bent functions constructed from finite pre-quasifield spreads. http://arxiv.org/abs/1308.3355

[^0]: ${ }^{*}$ C. Carlet is with the LAGA, Universities of Paris 8 and Paris 13; CNRS, UMR 7539; Address: University of Paris 8, Department of Mathematics, 2 rue de la liberté, 93526 SaintDenis cedex 02, France. Email: claude.carlet@univ-paris8.fr.

