
Indistinguishability Obfuscation

from Compact Functional Encryption

Prabhanjan Ananth
UCLA

prabhanjan@cs.ucla.edu

Abhishek Jain
John Hopkins University
abhishek@cs.jhu.edu

Abstract

The arrival of indistinguishability obfuscation (iO) has transformed the cryptographic land-
scape by enabling several security goals that were previously beyond our reach. Consequently,
one of the pressing goals currently is to construct iO from well-studied standard cryptographic
assumptions.

In this work, we make progress in this direction by presenting a reduction from iO to a
natural form of public-key functional encryption (FE). Specifically, we construct iO for general
functions from any single-key FE scheme for NC1 that achieves selective, indistinguishability
security against sub-exponential time adversaries. Further, the FE scheme should be compact,
namely, the running time of the encryption algorithm must only be a polynomial in the security
parameter and the input message length and not depend on the function description size or its
output length.

We achieve this result by developing a novel arity amplification technique to transform FE
for single-ary functions into FE for multi-ary functions (aka multi-input FE). Instantiating our
approach with known, non-compact FE schemes, we obtain the first constructions of multi-input
FE for constant-ary functions based on standard assumptions.

Finally, as a result of independent interest, we construct a compact FE scheme from ran-
domized encodings for Turing machines and learning with errors assumption.

1 Introduction

The ability to cryptographically obfuscate computer programs holds great prospects for securing
the future digital world. While general-purpose program obfuscation remained an elusive goal for
several decades, this changed recently with the seminal work of Garg et al. [GGH+13b] who gave
the first candidate construction of indistinguishability obfuscation [BGI+01] (iO) for P/poly. Since
then, iO has been used to realize several advanced cryptographic primitives that were previously
beyond our reach, including deniable encryption [SW14], collusion-resistant functional encryption
[GGH+13b], round-optimal multiparty computation [GGHR14], and so on. Indeed, by now, iO has
been established as a central hub of cryptography.

The tremendous appeal of iO motivates the goal of constructing it from well-studied, standard
cryptographic assumptions. However, not much is known in this direction. The security of candi-
date iO constructions in the works of [GGH+13b, BGK+14, BR14, AGIS14] is proven in the“generic
graded encoding model” and lacks a reduction in the standard model. The recent works of Pass
et al. [PST14] and Gentry et al. [GLSW14] seek to rectify this situation by constructing iO from
various assumptions on multilinear maps [GGH13a]. In particular, Pass et al. [PST14] reduce the

1

security of their construction to on “uber assumption” on multilinear maps while Gentry et al.
[GLSW14] provide a reduction to the “multilinear subgroup elimination assumption” (defined in
their paper) on composite-order multilinear maps [CLT13].

Till date, these remain the only known constructions of general-purpose iO. Further, all of them
rely on a common cryptographic primitive, namely, multilinear maps. This is an unsatisfactory
situation, especially in light of several recent attacks on multilinear maps [CHL+15, GHMS14,
BWZ14, CLT14]. This calls for new constructions of iO from other, more familiar cryptographic
primitives.

1.1 This Work

In this work, we make progress in this direction by providing a new construction of iO based
on a natural form of functional encryption (FE). Along the way, we also obtain new results on
multi-input FE [GGG+14] that significantly improve upon the prior results.

I. Indistinguishability Obfuscation from Compact FE. Our main result is a reduction
from iO to any public-key functional encryption scheme that satisfies a natural “compactness”
requirement on the encryption algorithm. Specifically, we give a construction of iO for P/poly from
any public-key FE scheme for NC1 that satisfies the following requirements:

• Security: It supports one key query and achieves selective, indistinguishability security against
sub-exponential time adversaries.

• Compactness: For any input message x, the running time of the encryption algorithm is
polynomial in the security parameter and the size of x. In particular, it is independent of the
circuit description size or the output length of any function f supported by the scheme. We
call such an FE scheme compact.

We stress that we do not require function hiding property [BRS13, AAB+13] from the underlying
FE. Indeed, function-hiding public-key FE already implies iO.

On the use of sub-exponential hardness. Our reliance on sub-exponential hardness of the underlying
FE scheme is similar in spirit to the use of sub-exponential hardness assumptions in the work of
Gentry et al. [GLSW14]. Indeed, as discussed in their paper, the use of sub-exponential hardness
assumptions “seems” inherent to realizing iO. We note, however, that to the best of our knowledge,
no formal proof supporting this intuition is known.

On the existence of compact FE. While public-key FE is an extremely well-studied notion, somewhat
surprisingly, compact FE has remained largely unexplored. Previously, Goldwasser et al. [GKP+13]
studied the notion of “succinct” FE which, informally speaking, requires that the size of any
ciphertext must be independent of the function description size. We note, however, that this
notion does not preclude dependence on the function output length. Indeed, [GKP+13] focuses on
functions with single bit output, and their construction does not achieve our desired compactness
property for the case of functions with long output.

De Caro et al. [CIJ+13] proved the impossibility of compact FE for the case of simulation-based,
adaptive security.1 However, we stress that for our main result, we only require the underlying

1A related notion of reusable garbled circuits with output-size independence was recently studied by Gentry et al.
[GHRW14]. They proved an analogous impossibility result for this notion in the case of simulation security.

2

compact FE scheme to satisfy indistinguishability security in the selective model. Indeed, in the
selective model, even simulation-secure compact FE is possible.

Presently, the only known construction of compact FE for general functions relies on iO
[GGH+13b].2 It contrast, non-compact FE can be based on LWE [GKP+13], or even semantically-
secure public-key encryption [SS10, GVW12].

We hope that this work will bring attention to the natural goal of compactness in FE and that
it will be realized from standard complexity assumptions in the future. With this view, we believe
that the results in this work open new doors to the eventual goal of realizing iO from well-studied
cryptographic assumptions, possibly avoiding multilinear maps altogether.

II. A Technique for Arity Amplification. At the heart of our results is a novel technique for
arity amplification in secret-key multi-input functional encryption (MiFE), a notion introduced by
Goldwasser et al. [GGG+14]. Specifically, we show how to transform a selectively-secure secret-
key MiFE scheme for i-ary functions into another selectively-secure3 secret-key MiFE scheme for
(i+ 1)-ary functions. Interestingly, we achieve this by “knitting together” a secret-key FE scheme
for i-ary functions with a public-key FE scheme for 1-ary functions. In order to prove the security
of our transformation, we build on program puncturing techniques that were first introduced by
Sahai and Waters [SW14] in the context of iO and recently developed in the context of secret-key
FE by Brakerski and Segev [BS15] and Komargodski et al. [KSY15].

Starting from a secret key FE scheme for single-ary functions (aka single-input FE) and applying
our transformation iteratively, we obtain a secret-key MiFE scheme for multi-ary functions. This
iterated procedure is sensitive to the efficiency of the underlying single-input FE and yields different
end results depending upon whether the underlying FE scheme is compact or not.

More concretely, given a compact single-key FE scheme for NC1, we first convert it into a
compact FE scheme for general functions that supports an a priori bounded polynomial number
of key queries. This process involves multiple steps, including the key query amplification step of
Gorbunov et al [GVW12] and the generic transformation from [GHRW14, ABSV14] for boosting
the function family from NC1 to general functions. As we discuss in Appendix C, this process
preserves the compactness of the underlying FE scheme.

Then, instantiating our iterated approach with a sub-exponentially secure compact FE scheme
that supports (say) q number of key queries, we obtain a secret-key MiFE scheme for polynomial-
arity functions that supports q key queries and q message queries. Instantiating this result for the
case of q = 2 and combining it with the MiFE to iO transformation of Goldwasser et al. [GGG+14],
we obtain iO for general functions.

III. MiFE for Functions with Small Arity from Standard Assumptions. We also analyze
our transformation for the case when the underlying FE scheme is non-compact. Recall that in such
a scheme, the running time of the encryption algorithm may depend upon the function description
size [SS10, GVW12] or its output length [GKP+13].

Bounded-message security from standard assumptions. Starting with a non-compact FE scheme
that supports an a priori bounded polynomial (say) q number of key queries, we obtain a secret-key
MiFE scheme for constant-ary functions that supports q message and q key queries. Instantiating

2The compact FE construction of [GGH+13b], in fact, achieves stronger security than what we require. Specifically,
they achieve security against unbounded key queries, while we only require security against a single key query.

3Unless stated otherwise, we only consider selectively-secure (Mi)FE schemes in the subsequent discussion.

3

the underlying FE scheme with [SS10, GVW12], we obtain the above result based on semantically
secure public-key encryption.4 This significantly improves over the state of the art in this area in
terms of security assumptions. In particular, prior constructions of such an MiFE scheme either
rely upon iO [GGG+14] or lack a security proof in the standard model [BLR+15].

Unbounded-message security from iO. Starting with a non-compact FE scheme that achieves secu-
rity against unbounded key queries, we obtain a secret-key MiFE scheme for constant-ary functions
that supports unbounded message and key queries.

Presently, known constructions of public-key FE with security against unbounded collusions
rely upon iO and one-way functions [GGH+13b, Wat14] or specific assumptions on composite-order
multilinear maps [GGHZ14]. Then, instantiating the underlying FE scheme in our construction with
[GGH+13b], we obtain a secret-key MiFE scheme for functions with constant arity that supports
unbounded number of message and key queries based on iO and one-way functions. Previously,
such an MiFE scheme [GGG+14] was only known based on differing-inputs obfuscation [BGI+01,
BCP14, ABG+13].

Order-revealing and Property-revealing encryption. Restricting our attention to the specific case of
2-ary functions and a single-key, the above results yield the first constructions of order-revealing
(and more generally, property-revealing) encryption [BCLO09, PR12, GGG+14, BLR+15] with
polynomially bounded (resp., unbounded) message security based on any public-key encryption
(resp., iO and one-way functions). We refer the reader to [BLR+15] for further discussion on
order-revealing and property-revealing encryption schemes.

On the optimality of our results. It is easy to see that a secret-key MiFE scheme for 2-ary functions
that supports a single key query and unbounded message queries already implies a secret-key single-
input FE scheme that supports unbounded key and message queries. This observation is already
implicit in [GGG+14].

In light of the above, we note that our results on secret-key MiFE with bounded message queries
are essentially optimal.

IV. Compact FE from Randomized Encodings for Turing Machines. Our final contri-
bution is a construction of a single-key, compact FE scheme from the learning with errors (LWE)
assumption and randomized encodings (RE) [IK00, AIK06] for Turing machines where the size
of the encoding only depends on the size of the Turing machine (TM) and not on its running
time or the output length. Combining this with our reduction from iO to compact FE, we get a
construction of iO for general circuits from sub-exponentially secure RE for Turing machines and
LWE.

Randomized encodings for circuits are known to exist from only one-way functions [Yao86].
In contrast, the problem of RE for TMs has received far less attention. Recently, a few works
[LO13, GHL+14, GLOS15] construct RE for RAM programs from only one-way functions; however,
the size of the garbled RAM program in these schemes is proportional to the (worst-case) running
time of the underlying RAM program. Even more recently, [BGL+15, CHJV15, KLW15] give
constructions of RE for TMs where the encoding size is independent of the running time of TM.
However, all of these results are based on iO.

4At the cost of further decreasing the efficiency of encryption and restricting our attention to a single key query, we
can, in fact, obtain this result based on only one-way functions. This requires a slight modification in our construction
and proof. We defer the details to the full version of the paper.

4

We hope that our work will bring more attention to this natural goal, and that it can be realized
from standard cryptographic assumptions in the future.

1.2 Our Techniques

Main goal: Arity Amplification. The starting point of our iO construction is the recent work of
Goldwasser et al. [GGG+14] who showed a transformation from secret-key MiFE to iO. Concretely,
[GGG+14] proved that secret-key MiFE for (n+ 1)-ary functions that supports a single key query
and 2 message queries implies iO for all functions with input length n. Very roughly, in order to
obfuscate a function f with input length n, their idea is to use the first MiFE ciphertext to hide the
function and use the remaining n positions to encode f ’s input domain à la Yao’s garbled circuits
[Yao86]. This, coupled with a secret key for the universal circuit yields an indistinguishability
obfuscation of f .

Given their result, our goal of constructing general-purpose iO from public-key single-input
FE reduces to the task of constructing secret-key MiFE scheme for polynomial-ary functions from
a public-key FE for single-ary functions. To help the presentation, we ignore the succinctness
requirements on the underlying FE for now, and revisit it later.

At a first glance, it is not clear at all how to proceed towards realizing the above goal.

Knitting together two FE instances. Towards that end, let us first consider a weaker goal
of constructing secret-key MiFE for 2-ary functions. Roughly speaking, our main idea is to “knit”
together an instance of a secret-key single-input FE scheme with an instance of public-key single-
input FE to obtain a secret-key MiFE for 2-ary functions. Here, the importance of using both a
secret-key FE and a public-key FE will become clear once we explain our approach.

More concretely, the 2-ary MiFE scheme is constructed as follows:

• The master secret key of the 2-ary scheme consists of a key pair (pk,msk) of the underlying
public-key FE scheme as well as a master secret key msk′ of the underlying secret-key FE
scheme. Further, a key for a function f is computed as a key Kf of the underlying public-key
FE scheme for f .

• In order to encrypt a message m1 corresponding to the first position, we generate (using msk′)
a function key of the underlying secret-key FE scheme for the following function Genc[m1,K,pk]

: it

contains the message m1, a key for a pseudorandom function (PRF) K, and the public key pk
hardwired in its description. On input a message (m2, tag), Genc[m1,K,pk]

outputs an encryption

(using pk) of the combined message m1‖m2 w.r.t. the underlying public-key FE. Here, the
randomness r for encryption is derived as r ← PRFK(tag).

A message m2 corresponding to the second position is encrypted (along with a random tag)
using the encryption algorithm of the underlying secret-key FE scheme.

• In order to decrypt a pair of ciphertexts (c1, c2) using a function key Kf , we first decrypt
c2 using c1 (recall that c1 corresponds to a function key of the secret key FE scheme) to
produce a new ciphertext c̃ corresponding to the underlying public-key FE scheme. Finally,
we decrypt c̃ using Kf to get the desired output.

The correctness of the above construction is easy to verify. A careful reader, however, may
immediately notice a security problem. Note that in order to prove security, we must ensure that
the first ciphertext hides the message m1 and the PRF key K. However, this is not necessarily
guaranteed by the above construction.

5

We solve this problem by building upon the recent elegant result of Brakerski and Segev [BS15]
who give a generic transformation from any single-input secret-key FE scheme into another secret-
key FE scheme that satisfies function hiding. Specifically, instead of using a standard secret-key
FE, we will use a function-hiding secret-key FE in the above construction. We then rely upon the
function-hiding property of the function key to argue that m1 and K remain hidden. As we will
see later, this technique, when generalized to the MiFE setting, is vital to our overall approach.

We highlight another subtle point in the above construction: suppose that we want the 2-ary
MiFE scheme to support q ≥ 2 message queries. Then, since the function keys of the underlying
secret-key FE scheme act as ciphertexts in the 2-ary MiFE scheme, we need the underlying secret-
key FE scheme to, in fact, support q key queries. To obtain such an FE scheme, we leverage
[GVW12] to transform a single-key FE scheme into a q-key FE scheme. We refer the reader to
Appendix C for more details.

Overview of proof strategy. Proving the security of the above construction turns out to be
quite non-trivial. Suppose that we wish to prove security for q message queries (for each position),
say {x0i , y0i }

q
i=1, {x1i , y1i }

q
i=1. Further, for simplicity, let us restrict our attention to a single function

key query f . One plausible proof strategy would be construct a sequence of roughly q hybrids where
at any step i ∈ [q], we switch from (x0i , y

0
i) to (x1i , y

1
i). However, note that in the case of MiFE, an

adversary can compute “cross-terms” from the challenge message pairs. That is, the adversary is
allowed to compute (xbi , y

b
i) for any i, j ∈ [q]. Indeed, this is why the security definition of MiFE

requires that f(x0i , yj) = f(x1i , yj) for all i, j ∈ [q]. However, note that in the above proof strategy,
the adversary might end up computing f(x1i , y

0
j) which will allow him to distinguish between two

successive hybrids.
A plausible solution to overcome the above problem is to argue indistinguishability in one

shot. That is, instead of arguing indistinguishability one message-pair at a time, we instead switch
all the challenge message pairs corresponding to challenge bit 0 with the ones corresponding to
challenge bit 1. Implementing this strategy successfully, however, will require “hardwiring” and
“unhardwiring” of the (public-key) encryption of all the q2 message pairs (xbi , y

b
j) (each of which

corresponds to a different output) in the challenge ciphertexts for the first position that correspond
to function keys of the underlying secret-key FE scheme. While this is tolerable for the case of
arity 2, it quickly becomes prohibitive for large arity. Indeed, for arity n = poly(λ), the number of
possible outputs (and therefore the message pair combinations) is exponential.

We solve the above problems by carefully employing a “one-input-at-a-time” strategy where we
consider roughly q2 intermediate hybrids (and qn in the case of arity n; see below). Very briefly,
our proof involves careful hardwiring and un-hardwiring of the (public-key) encryption of each of
the q2 message pairs (xbi , y

b
j), one at a time, in the challenge ciphertexts for the first position that

correspond to function keys of the underlying secret-key FE scheme. Furthermore, we crucially
ensure that the adversary cannot learn an output of the form f(x0i , y

1
j) at any point in the hybrids.

In order to implement these ideas, we rely upon program puncturing techniques that were originally
introduced in the context of iO [SW14] and recently developed in the secret-key FE setting by
[BS15, KSY15]. In particular, as in the work of [KSY15], we rely on function hiding property of
the underlying secret-key FE scheme to argue indistinguishability of these core hybrids. We finally
note that our proof strategy bears resemblance to the proof methodology in several recent works
[GLW14, GLSW14, CLTV15, BGL+15, CHJV15, KLW15].

Note that in the above proof strategy, it was crucial that we use a public-key FE in our construc-

6

(q)-FE
(q, q)-FH
MIFE1

(1)-FE

[BS15]

(q, q)-MIFE2

(q, q)-FH
MIFE2

(1)-FE

(q, q)-MIFE3

· · · (q, q)-FH
MIFEn−1

(1)-FE

(q, q)-MIFEn

Figure 1 The Iterated Construction. (q)-FE denotes a single-input public-key FE scheme that supports q key queries.
(q1, q2)-MIFEi denotes a secret-key MiFE scheme for i-ary functions that supports q1 key and q2 message queries.
Finally, FH refers to function hiding.

tion. To see this, suppose we were to replace the public-key FE with an instance of a secret-key FE,
referred to as FE (while the other secret-key FE instance used in the construction is referred to as
FE ′). Note that now, the challenge ciphertexts corresponding to the first position would contain
the master secret key (say) msk of FE . Then, in order to execute the aforementioned proof strategy,
it would seem that we need to somehow “puncture” msk such that it allows encryption all messages
except a select message (say) xbi‖ybj . Furthermore, the punctured msk should not allow generation
of any function keys, except Kf . However, it is not clear how to realize such a notion of secret-key
FE. By using public-key FE, we are able to bypass the above difficulties since by definition, the
public key does not need to be hidden.

Climbing the arity ladder. The above approach can be generalized to transform a secret-key
MiFE scheme for i-ary functions into a secret-key MiFE scheme for (i+1)-ary functions. Concretely,
this transformation consists of two steps: first, by using ideas from[BS15], we add function privacy
property to the i-ary MiFE scheme. Next, we combine the resultant scheme with a “fresh” instance
of a public-key single-input FE scheme to obtain an (i+ 1)-ary MiFE scheme.

In more detail, as in the 2-ary case, the ciphertext corresponding to the first position will
consist of a function key of the underlying (function private) c-ary MiFE scheme for the function
Genc[m1,K,pk]

which is defined similarly to the 2-ary case, except that here it takes as input messages

m2, . . . ,mi+1 (along with random tags) and outputs an encryption (using pk) of the combined
message m1‖ . . . ‖mi+1 w.r.t. the underlying public-key FE. The ciphertexts corresponding to
remaining i positions will correspond to ciphertexts of the underlying c-ary MiFE scheme. The
function key for a function f in the c + 1-ary scheme will correspond to a key Kf for the same
function f of the underlying public-key single-input FE scheme.

By applying the above ideas iteratively, we can transform a secret-key single-input FE into a
secret-key multi-input FE. Our iterated construction is depicted in Figure 1.

The security proof of this construction involves roughly qi+1 hybrids (where q = 2 when we
restrict our attention to obtaining iO) which is exponential when i is linear in the security parame-
ter. This is a consequence of our proof strategy and necessitates the use of subexponential security
assumptions on the underlying primitives. We note that the same phenonmenon is exhibited in the
proofs of [GLSW14, CLTV15, BGL+15, CHJV15, KLW15].

7

The role of compactness. Upon “unrolling” our construction of n-ary MiFE scheme, one can
observe that it involves n instances of a single-input FE scheme. Specifically, in the n-ary MiFE
scheme, each of the ciphertexts corresponding to the first n− 1 positions corresponds to a function
key of (a different instance of) a single-input FE, while the ciphertext corresponding to the nth
position corresponds to a ciphertext of a single-input FE scheme. The function key at position
n − 1 computes an encryption corresponding to the function key at position n − 2 which in turn
computes an encryption corresponding to the function key at position n− 3, and so on.

With the above view, it is easy to see that the complexity of the above construction becomes
prohibitive for n = ω(1) when it is instantiated with a non-succinct FE scheme. On the other hand,
instantiating the construction with a succinct FE scheme allows us to go all the way to n = poly(λ).

We remark that the above discussion is oversimplified. The actual efficiency analysis of our
scheme is somewhat complex and involves other subtleties. We refer the reader to the remainder
of the paper for more details.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. We assume that the reader is
familiar with basic cryptographic concepts [Gol09].

Given a PPT sampling algorithm A, we use x
$←− A to denote that x is the output of A when

the randomness is sampled from the uniform distribution.

2.1 Indistinguishability Obfuscation

Here we recall the notion of indistinguishability obfuscation (iO) that was defined by Barak et
al. [BGI+01].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT algorithm iO is called an
indistinguishability obfuscator for a circuit class {Cλ}, where Cλ consists of circuits C of the form
C : {0, 1}λ → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}λ (i.e., it belongs to
the input space of C), we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈
Cλ such that C0(x) = C1(x) for all inputs x, we have:∣∣∣Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

2.2 Puncturable Pseudorandom Functions

A pseudorandom function family F consisting of functions of the form PRFK(·), that is defined over
input space {0, 1}η(λ), output space {0, 1}χ(λ) and key K in the key space K, is said to be a µ-
secure puncturable PRF family if there exists a PPT algorithm Puncture that satisfies the following
properties:

8

• Functionality preserved under puncturing. Puncture takes as input a PRF key K,
sampled from K, and an input x ∈ {0, 1}η(λ) and outputs Kx such that for all x′ 6= x,
PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that

A1(1
λ) outputs an input x ∈ {0, 1}η(λ), consider an experiment where K

$←− K and Kx ←
Puncture(K,x). Then for all sufficiently large λ ∈ N,∣∣Pr[A2(Kx, x,PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14, KPTZ13], the GGM construction [GGM86] of PRFs from one-way
functions yields puncturable PRFs.

Theorem 1 ([GGM86, BW13, BGI14, KPTZ13]). If µ-secure one-way functions5 exist, then for
all polynomials η(λ) and χ(λ), there exists a µ-secure puncturable PRF family that maps η(λ) bits
to χ(λ) bits.

Remark 1. Note that we do not insist on µ to be a neglible function in the security parameter.
When µ = negl(λ), then we omit it from the notation and simply refer to puncturable PRF families.

Remark 2. In this work, we consider pseudorandom function families where the key space is
{0, 1}λ. Such a PRF family can be obtained from any PRF family F with arbitrary key space K as
follows: the key sampling algorithm first draws a random key K from {0, 1}λ and then uses K as
randomness to sample a PRF key from the key space K.6

2.3 Public-Key Functional Encryption

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ are sets of size,
functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collection of functions.
Each function f ∈ Fλ takes as input a string x ∈ Xλ and outputs f(x) ∈ Yλ.

A public-key functional encryption (FE) scheme FE for F consists of four algorithms (FE.Setup,
FE.KeyGen, FE.Enc, FE.Dec):

• Setup. FE.Setup(1λ) is a PPT algorithm that takes as input a security parameter λ and
outputs a public key, (master) secret key pair (FE.pk,FE.msk).

• Key Generation. FE.KeyGen(FE.msk, f) is a PPT algorithm that takes as input a master
secret key FE.msk and a function f ∈ Fλ and outputs a functional key FE.skf .

• Encryption. FE.Enc(FE.pk, x) is a PPT algorithm that takes as input a public key FE.pk
and a message x ∈ Xλ and outputs a ciphertext ct.

• Decryption. FE.Dec(FE.skf , ct) is a deterministic algorithm that takes as input a functional
key FE.skf and a ciphertext ct and outputs a string y ∈ Yλ.

5We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is
sampled from the family, is at most µ(λ).

6Here, without loss of generality, we assume that the length of the randomness required by the sampling algorithm
of F is λ.

9

Correctness. There exists a negligible function negl(·) such that for all sufficiently large λ ∈ N,
for every message x ∈ Xλ, and for every function f ∈ Fλ,

Pr
[
f(m)← FE.Dec

(
FE.KeyGen(FE.msk, f),FE.Enc(FE.pk,m)

)]
≥ 1− negl(λ)

where (FE.pk,FE.msk) ← FE.Setup(1λ), and the probability is taken over the random coins of all
algorithms.

Selective Security. We recall indistinguishability-based selective security for FE. This security
notion is modeled as a game between the challenger and the adversary where the adversary can
request functional keys and ciphertexts from the challenger. Specifically, the adversary can submit
function queries f to the challenger and receive corresponding functional keys. It can also submit
a message query of the form (x0, x1) and in response, the challenger encrypts message xb and
sends the ciphertext back to the adversary. The adversary wins the game if she can guess b with
probability significantly greater than 1/2 and if f(x0) = f(x1) for all function queries f . The only
constraint here is that the adversary has to declare the challenge messages at the beginning of the
game itself.

Definition 2 (IND-secure FE). A public-key functional encryption scheme FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) for a function family F is said to be (qkey, µ)-selectively secure if for any PPT ad-
versary A there exists a function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of
A is

AdvFEA =
∣∣∣Pr[ExptFEA (1λ, 0) = 1]− Pr[ExptFEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptFEA (1λ, b) is defined as follows:

1. Challenge message query: A submits a message pair (x0, x1) to C.

2. The challenger C computes (FE.pk,FE.msk) ← FE.Setup(1λ) and sends FE.pk to the adver-
sary. It then computes ct = FE.Enc(FE.msk, xb) and sends ct to A.

3. Function queries: The following is repeated up to qkey times: A submits a function query
f ∈ Fλ to C. The challenger C computes the function key FE.skf ← FE.KeyGen(FE.msk, f)
and sends it to A.

4. If there exists a function query f such that f(x0) 6= f(x1), then the output of the experiment
is ⊥. Otherwise, the output of the experiment is b′, where b′ is the output of A.

Remark 3 (Unbounded IND-secure FE). One can consider a strengthening of the above definition
where the adversary is allowed to make any unbounded polynomial number of function queries. We
refer to this as (poly, µ)-selective security.

Remark 4. Note that we do not insist on µ to be a negligible function in the security parameter.
However, in the case when µ = negl(λ), then we simply omit it from the notation and refer to
qkey-selective security of FE.

10

Adaptive security. One can consider a stronger notion of security, called (qkey, µ)-adaptive se-
curity, where the adversary can make the challenge message query and the function queries in
any arbitrary order, as long as the total number of function queries is qkey. Further, when µ is a
negligible function in the security parameter, then we omit it from our notation and simply refer
to qkey-selective security.

Recently, Ananth et al. [ABSV14] gave a general transformation from selectively secure FE to
adaptively secure FE.

2.3.1 Compactness

We now define the notion of compact FE that will play a central role in our main result on iO. In
a compact FE scheme, the running time of the encryption algorithm only depends on the security
parameter and the input message length. In particular, it is independent of the complexity of the
function family supported by the FE scheme. Note that a direct consequence of this is that the
size of the public key must also be independent of the complexity of the function family.

Definition 3 (Compact FE). Let p(·) be a polynomial. A (qkey, µ)-selectively secure public-key
FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec), defined for an input space X = {Xλ} and
function space F = {Fλ} is said to be compact if for all λ ∈ N, the size of any public key FE.pk
is p(λ), where (FE.msk,FE.pk) ← FE.Setup(1λ), and the running time of the encryption algorithm
FE.Enc, on input 1λ, FE.pk and a message x ∈ Xλ, is p(λ, qkey, |x|).

Remark 5. We can define the notion of unbounded compact FE in the same manner as above
except that we now allow the number of key queries made by the adversary in the security game to
be an arbitrary polynomial.

We also consider a weaker version of compact FE that we refer to as semi-compact FE. In a semi-
compact FE scheme, the run time of the encryption algorithm depends on the output length of
the functions. Equivalently, a semi-compact FE scheme is simply a compact FE scheme when we
restrict our attention to functions with single-bit outputs.

Definition 4 (Semi-compact FE). A compact FE scheme for input space X = {Xλ} and function
space F = {Fλ}, where Fλ consists of functions with single-bit output, is referred to as a semi-
compact FE scheme.

2.4 Secret-Key Multi-Input Functional Encryption

The notion of multi-input functional encryption was proposed by Goldwasser et al. [GGG+14].
Standard FE only allows for computing on a single ciphertext, i.e., it only supports single-ary
functions. In contrast, multi-input functional encryption (MiFE) allows for (joint) computation
over multiple ciphertexts. In other words, it supports multi-ary functions.

Analogous to standard FE, one can consider MiFE in two settings, namely, public-key and
secret-key setting.7 In this work, we will restrict our attention to the secret-key setting.

7Goldwasser et al. [GGG+14] also define a more general notion of MiFE where there is different encryption key
for each input position. When the adversary knows all (resp., none of) the encryption keys, then this notion captures
the public-key (resp., secret-key) setting.

11

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where each Xλ, Yλ are sets of size,
functions in λ. Let F = {Fλ}λ∈N be an ensemble where each Fλ is a finite collection of n-ary
functions. Each function f ∈ Fλ takes as input strings x1, . . . , xn, where each xi ∈ Xλ, and outputs
f(x1, . . . , xn) ∈ Yλ.

An MiFE scheme MIFEn for n-ary functions F consists of four algorithms (MIFEn.Setup,MIFEn.KeyGen,
MIFEn.Enc,MIFEn.Dec) described below:

• Setup. MIFEn.Setup(1λ) is a PPT algorithm that takes as input a security parameter λ and
outputs the master secret key MIFEn.msk.

• Key Generation. MIFEn.KeyGen(MIFEn.msk, f) is a PPT algorithm that takes as input the
master secret key MIFEn.msk and a function f ∈ Fλ. It outputs a functional key MIFEn.skf .

• Encryption. MIFEn.Enc(MIFEn.msk,m, i) is a PPT algorithm that takes as input the master
secret key MIFEn.msk, a message x ∈ Xλ and an index i ∈ [n]. It outputs a ciphertext
MIFEn.ct.

Here index i signals to the encryption algorithm that message x corresponds to the ith input
of functions f ∈ Fλ.

• Decryption. MIFEn.Dec(MIFEn.skf ,MIFEn.ct) is a deterministic algorithm that takes as
input a functional key MIFEn.skf and a ciphertext MIFEn.ct. It outputs a value y ∈ Yλ.

Remark 6. From now on, we use the phrase “encryption of m in the ith position” to refer to the
process of executing MIFEn.Enc on the input (MIFEn.msk,m, i).

Correctness. There exists a negligible function negl(·) such that for all sufficiently large λ ∈ N,
every n-ary function f ∈ Fλ and input tuple (x1, . . . , xn) ∈ X nλ ,

Pr

[
MIFEn.msk← MIFEn.Setup

(
1λ
)

; MIFEn.skf ← MIFEn.KeyGen (MIFEn.msk, f) ;
MIFEn.Dec (MIFEn.skf , {MIFEn.Enc (MIFEn.msk, xi, i)}ni=1) 6= f (x1, . . . , xn)

]
≤ negl(λ)

the probability is taken over the random coins of all the algorithms.

Selective Security. We recall indistinguishability-based selective security for MiFE. This secu-
rity notion is modeled as a game between a challenger C and an adversary A where the adversary
can request for functional keys and ciphertexts from C. Specifically, A can submit n-ary function
queries f and respond with the corresponding functional keys. It can also submit message queries
of the form

(
(x1,0, . . . , xn,0), (x1,1, . . . , xn,1)

)
and receive encryptions of messages xi,b, for i ∈ [n],

and for some bit b ∈ {0, 1}. The adversary A wins the game if she can guess b with probability
significantly more than one 1/2 and if f(x1,0, . . . , xn,0) = f(x1,1, . . . , xn,1) for all function queries
f and message queries

(
(x1,0, . . . , xn,0), (x1,1, . . . , xn,1)

)
. As before, the constraint here is that the

adversary has to declare the messages at the beginning of the game itself.

Definition 5 (IND-secure MiFE). A secret-key MiFE scheme MIFEn for n-ary functions F =
{Fλ}λ∈[N] and message space X = {Xλ}λ∈[N] is (qkey, qmsg, µ)-selectively secure if for any PPT
adversary A, there exists a function µ(λ) such that for all sufficiently large λ ∈ N, the advantage
of A is

AdvMIFEn
A =

∣∣∣Pr[ExptMIFEn
A (1λ, 0) = 1]− Pr[ExptMIFEn

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptMIFEn
A (1λ, b) is defined below:

12

1. Challenge message queries: A submits qmsg queries,
{(

(xj1,0, x
j
1,1), . . . , (x

j
n,0, x

j
n,1)
)}

j∈[qmsg]
,

with xji,0 ∈ Xλ, to the challenger C.

2. C computes MIFEn.msk ← MIFEn.Setup(1λ). It then computes MIFEn.ct
j
i ← MIFEn.Enc(

MIFEn.msk, xji,b) for all i ∈ [n] for all j ∈ [qmsg]. The challenger C then sends
{

(MIFEn.ct
j
1, . . . ,

MIFEn.ct
j
n)
}
j∈[qmsg]

to the adversary A.

3. Function queries: The following is repeated up to qkey times: A submits a function query
f ∈ Fλ to C. The challenger C computes MIFEn.skf ← MIFEn.KeyGen(MIFEn.msk, f) and
sends it to A.

4. If there exists a function query f and a challenge message query
(
(x1,0, . . . , xn,0), (x1,1, . . . , xn,1)

)
such that f(x1,0, . . . , xn,0) 6= f(x1,1, . . . , xn,1), then the output of the experiment is set to ⊥.
Otherwise, the output of the experiment is set to b′, where b′ is the output of A.

Remark 7 (Unbounded IND-secure MiFE). One can also consider a stronger security notion,
namely, (poly, poly, µ)-selective security, where the adversary can make any unbounded polynomial
number of function and challenge message queries.

Remark 8. Note that we do not insist on µ to be a negligible function in the security parameter.
However, in the case when µ = negl(λ), then we simply omit it from the notation and refer to
(qkey, qmsg)-selective security of MiFE.

Adaptive security. One can consider a stronger notion of security, called adaptive security,
where the adversary can interleave the challenge message and the function queries in any arbitrary
order. Analogous to Definition 5, we can define (qkey, qmsg, µ)-adaptive secure MiFE. Further, when
µ is a negligible function in the security parameter, then we omit it from the notation and refer to
(qkey, qmsg)-adaptive secure MiFE.

3 Function Privacy in MiFE

The notion of function privacy in secret-key FE for single-ary functions was recently formalized
by Brakerski-Segev [BS15]. They also give a generic transformation from any non function-private
FE scheme to a function-private one. We observe that their ideas can be generalized to the MiFE
setting.

Below, we first present the definition of function private secret-key MiFE and then give a generic
transformation from any (non-function private) MiFE for n-ary functions into a function-private
MiFE for n-ary functions.

Definition 6 (Selective Function Private MiFE). A secret-key MiFE scheme MIFEn for n-ary
functions F is (qkey, qmsg, µ)-selective function private if for any PPT adversary A, there exists a
function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is

AdvMIFEn
A =

∣∣∣Pr[ExptMIFEn
A (1λ, 0) = 1]− Pr[ExptMIFEn

A (1λ, 1) = 1]
∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment ExptMIFEn
A (1λ, b) is defined below:

13

1. Message queries: A submits qmsg queries,
{(

(xj1,0, x
j
1,1), . . . , (x

j
n,0, x

j
n,1)
)}

j∈[qmsg]
, with xji,0 ∈

Xλ, to the challenger C.

2. C computes MIFEn.msk ← MIFEn.Setup(1λ). It then computes MIFEn.ct
j
i ← MIFEn.Enc(

MIFEn.msk, xji,b) for all i ∈ [n] for all j ∈ [qmsg]. The challenger C then sends
{

(MIFEn.ct
j
1, . . . ,

MIFEn.ct
j
n)
}
j∈[qmsg]

to the adversary A.

3. Function queries: The following is repeated up to qkey times: A submits a function query
(f0, f1) ∈ F2

λ to C. The challenger C computes MIFEn.skf ← MIFEn.KeyGen(MIFEn.msk, fb)
and sends it to A.

4. If there exists a function query (f0, f1) and a challenge message query
(
(x1,0, . . . , xn,0), (x1,1, . . . , xn,1)

)
such that f0(x1,0, . . . , xn,0) 6= f1(x1,1, . . . , xn,1), then the output of the experiment is set to ⊥.
Otherwise, the output of the experiment is set to b′, where b′ is the output of A.

Remark 9. When µ is a negligible function in the security parameter, then we omit it from the
notation and simply refer to (qkey, qmsg)-function privacy of MiFE.

Adaptive Function Privacy. One can consider a stronger notion of security, called adaptive
function privacy, where the adversary can interleave the function and the message queries. Anal-
ogous to Definition 6, we can define (qkey, qmsg, µ)-adaptive function private MiFE. Further, when
µ is a negligible function in the security parameter, then we omit it from the notation and refer to
(qkey, qmsg)-adaptive function private MiFE.

3.1 Constructing Function Private MiFE

We now show how to generically transform a (non function-private) MiFE scheme for c-ary functions
into a function-private MiFE scheme for c-ary functions. The transformation is a direct adaptation
of the elegant function-privacy transformation of Brakerski and Segev [BS15] in the single input
setting.

We stress that this transformation preserves the function arity. This is in contrast to [GGG+14]
who give a transformation from an MiFE scheme for (n+ 1) ary functions into a function-private
MiFE scheme for n-ary functions.

Notation. Let NFP = (NFP.Setup,NFP.KeyGen,NFP.Enc,NFP.Dec) be any non function-private
MiFE scheme for all c-ary functions. We denote the associated function space to Fc and the
message space to be X c. Let Sym = (Sym.Setup,Sym.Enc,Sym.Dec) be a standard symmetric
encryption scheme. We construct a function-private MiFE scheme FP = (FP.Setup,FP.KeyGen,
FP.Enc,FP.Dec) for all c-ary functions, where the function space is F fp,c and the message space is
X fp,c.

Setup FP.Setup(1λ): On input a security parameter λ, compute NFP.msk← NFP.Setup(1λ) and
sample two symmetric keys Sym.K ← Sym.Setup(1λ) and Sym.K ′ ← Sym.Setup(1λ). Output
FP.msk = (NFP.msk, Sym.K,Sym.K ′).

14

Key Generation FP.KeyGen(FP.msk, f): On input the master secret key FP.msk and function

f ∈ F fp,c
λ , first parse FP.msk = (NFP.msk,Sym.K,Sym.K ′). Next, compute Sym.ct← Sym.Enc(Sym.K,

f) and Sym.ct′ ← Sym.Enc(Sym.K ′, f). Finally, compute NFP.skU ← NFP.KeyGen(NFP.msk, U[Sym.ct,Sym.ct′]),
where U[Sym.ct,Sym.ct′] ∈ Fc is defined in Figure 2. Output FP.skf = NFP.skU .

U[Sym.ct,Sym.ct′]

(
(x1, x

′
1,Sym.K,Sym.K

′), x2, . . . , xc

)
1. If Sym.K 6= ⊥, compute f ← Sym.Dec(Sym.K,Sym.ct). Output f(x1, x2, . . . , xc).

2. Else, if Sym.K ′ 6= ⊥, compute f ′ ← Sym.Dec(Sym.K ′,Sym.ct′) and output f ′(x′1, x2, . . . , xc).

3. Else, output ⊥.

Figure 2

Encryption FP.Enc(FP.msk, x, i): On input master secret key FP.msk and a message x ∈ X fp,c
λ ,

parse FP.msk = (NFP.msk,Sym.K,Sym.K ′).

1. If i = 1 then compute NFP.ct← NFP.Enc(NFP.msk, (x,⊥,Sym.K,⊥), 1). Output NFP.ct.

2. Else if i 6= 1 then compute NFP.ct← NFP.Enc(NFP.msk, x, i). Output NFP.ct.

Decryption FP.Dec(FP.skf ,FP.ct1, . . . ,FP.ctc): On input a functional key FP.skf = NFP.skU ,
and ciphertexts FP.cti = NFP.cti for i ∈ [c], compute y ← NFP.Dec(NFP.skU ,NFP.ct1, . . .,NFP.ctc).
Output y.

This completes the description of the scheme.

Correctness. We argue the correctness of the above scheme. From the correctness of the non
function-private MiFE scheme NFP, we have that NFP.Dec(NFP.skU ,NFP.ct1, . . . , NFP.ctc) yields
the output y = U[Sym.ct,Sym.ct′]((x1,⊥, Sym.K,⊥), x2, . . . , xc), where NFP.skU ← NFP.KeyGen (NFP.msk,
U[Sym.ct,Sym.ct′]), NFP.ct1 ← NFP.Enc(NFP.msk, (x1,⊥,Sym.K,⊥), 1) and NFP.cti ← NFP.Enc(NFP.msk, xi, i)
for i ∈ {2, . . . , c}. From the description of U , we have that y = f(x1, . . . , xc), as desired.

Theorem 2. Assuming (qkey, qmsg, ε)-selective (resp., adaptive) security of NFP, pseudorandom
function family F, and symmetric encryption scheme Sym, the proposed scheme FP is a (qkey, qmsg,

ε
4)-

selective (resp., adaptive) function-private MiFE scheme for all c-ary functions.

The proof of the above theorem follows along the lines of [BS15]. We give a proof sketch in
Appendix A.

4 Our Transformation: From c-ary to (c + 1)-ary MiFE

In this section, we show how to transform a secret-key MiFE scheme for c-ary functions into an
MiFE scheme for (c+ 1)-ary functions, for c ≥ 1.

Our transformation proceeds in two steps:

1. Starting with an MiFE scheme for c-ary functions, we first apply the function privacy transfor-
mation from Section 3.1 to obtain a function private MiFE scheme MIFEc for c-ary functions.

15

2. Next, we convert MIFEc into an MiFE scheme MIFEc+1 for c + 1-ary functions. We refer to
this step as the arity amplification step.

We now describe the arity amplification step. We construct an MiFE scheme for c + 1-ary
functions MIFEc+1 with function space Fc+1 and message space X c+1.

Notation. We use the following tools in our transformation: (a) A function private MIFE scheme
for c-ary functions, denoted as MIFEc = (MIFEc.Setup, MIFEc.KeyGen,MIFEc.Enc,MIFEc.Dec). Let
F fp,c and X fp,c be the associated function space and message space, respectively. (b) A public-key
FE scheme for single-ary functions, denoted as FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec). Let
F fe and X fe be the associated function space and message space, respectively. (c) A puncturable
pseudorandom function family, denoted as F = PRFK(·).

Setup MIFEc+1.Setup(1λ): On input a security parameter λ, sample a master secret key MIFEc.msk←
MIFEc.Setup(1λ) of MIFEc and a key pair (FE.pk,FE.msk)← FE.Setup(1λ) of FE. Output MIFEc+1.msk =
(MIFEc.msk,FE.pk,FE.msk).

Key Generation MIFEc+1.KeyGen(MIFEc+1.msk, f): On input master secret key MIFEc+1.msk
and a function f ∈ Fc+1, parse MIFEc+1.msk = (MIFEc.msk,FE.pk,FE.msk). Sample a functional
key FE.skf ← FE.KeyGen(FE.msk, f) of FE for function f . Output MIFEc+1.skf = FE.skf .

Encryption MIFEc+1.Enc(MIFEc+1.msk, x, i): On input master secret key MIFEc+1.msk, message
x ∈ X c+1 and index i, parse MIFEc+1.msk = (MIFEc.msk,FE.pk,FE.msk).

1. If i = 1, then draw a PRF key K ∈ {0, 1}λ at random. Initialize the index vector I =
(0, . . . , 0). Compute MIFEc.skG ← MIFEc.KeyGen(MIFEc.msk, G) where the circuit G =

GenCT
(c)
[x,1,K,FE.pk,I] ∈ F

fp,c is described in Figure 3. Output the ciphertext MIFEc+1.ct =
MIFEc.skG.

2. Else, if 2 ≤ i ≤ c+ 1, then perform the following steps:

• If the input message x is of the form (x1, x2, 1, τ, i − 1) then compute MIFEc+1.ct ←
MIFEc.Enc(MIFEc.msk, (x1, x2, 1, τ, i), i)

• Else, choose a tag τ ∈ {0, 1}λ at random. Compute MIFEc+1.ct← MIFEc.Enc(MIFEc.msk, (x,
x, 1, τ, i), i).

Output the ciphertext MIFEc+1.ct.

Decryption MIFEc+1.Dec(MIFEc+1.skf ,MIFEc+1.ct1, . . . ,MIFEc+1.ctc+1): On input (MIFEc+1.skf ,
MIFEc+1.ct1, . . .,MIFEc+1.ctc+1), perform the following steps:

1. Parse: (a) MIFEc+1.skf = FE.skf , (b) MIFEc+1.ct1 = MIFEc.skG, and (c) MIFEc+1.cti =
MIFEc.cti−1 for all i 6= 1, where MIFEc.cti−1 denotes the ciphertext corresponding to (i− 1)th

position in MIFEc.

2. Next, compute FE.ct∗ ← MIFEc.Dec(MIFEc.skG,MIFEc.ct1, . . . ,MIFEc.ctc).

16

GenCT
(c)
[x1,j1,K,FE.pk,I]

Input:
(

(x2, x
′
2, j2, τ2, i2), . . . , (xc+1, x

′
c+1, jc+1, τc+1, ic+1)

)
.

• ∀k ∈ {2, . . . , c+ 1}, if ik 6= k, then output ⊥.

• FE.ct← FE.Enc(FE.pk, (x1, . . . , xc+1);PRF(K, τ2|| · · · ||τc+1)).

• Output FE.ct.

Figure 3

3. Finally, compute y ← FE.Dec(FE.skf ,FE.ct
∗). Output y.

This completes the description of the scheme.

Remark 10. The circuits GenCT(c), HybGenCT(c,1) (described later in Figure 4), HybGenCT(c,2)

(Figure 5), HybGenCT(c,3) (Figure 6), HybGenCT(c,4) (Figure 7) are all suitably padded so that their
sizes are the same.

Correctness. We now argue the correctness of MIFEc+1. Let MIFEc.sk be a valid functional key
for the function GenCT[x1, j1,K,FE.pk, I] w.r.t. MIFEc. For i ∈ [c], let MIFEc.cti be a valid
encryption of xi+1 w.r.t. MIFEc. By the correctness of MIFEc.Enc, we have that the output of
MIFEc.Dec(MIFEc.skGenCT,MIFEc.ct1, . . . ,MIFEc.ctc) is FE.ct∗, where FE.ct∗ is a valid encryption
of (x1, . . . , xc+1) w.r.t. FE. Further, from the correctness of FE, it follows that the output of
FE.Dec(FE.skf ,FE.ct

∗) is f(x1, . . . , xc+1), where FE.skf is a valid functional key of f w.r.t. FE.

5 Security of c+ 1-ary MiFE

We prove the security of the c+ 1-ary MiFE construction presented in Section 4.

Theorem 3. The proposed scheme MIFEc+1 is (q, q, δ)-selective secure assuming
(
q, δ

8+5qc

)
-selective

security of FE,
(

δ
8+5qc

)
-selective security of F and

(
δ

8+5qc

)
-selective security of the function-private

scheme MIFEc.

Proof. We prove the theorem by considering a sequence of hybrids. The first hybrid Hybrid0 cor-
responds to the real experiment where the challenger chooses the challenge bit b to be 0. In the
final hybrid Hybrid4, the challenger chooses the challenge bit b to be 1. We then argue the indis-
tinguishability of the intermediate hybrids using the primitives in the theorem statement which
proves that Hybrid4 is computationally indistinguishable from Hybrid1, which proves the theorem.

We define the advantage of an adversary A (with single-bit output) in the ith hybrid, denoted
by AdviA, to be the probability that A outputs 1 in the ith hybrid.

We introduce some notation that will be make the hybrids easier to describe. Consider the
group (Zmq ,+), where q,m ∈ N\{0}. The operation ‘+’ associated to this group, maps two vectors

(u,v) ∈
(
Zmq
)2

and outputs w, where w is the sum of u and v when they are represented as
numbers in base-q notation. We define the predicate LessThan as follows. It takes an input of the

17

form (I, I ′,m, q), where I = (j1, . . . , jm), I ′ = (j′1, . . . , j
′
m) ∈ Zmq and outputs 1 if there exists ζ

with 1 ≤ ζ ≤ m such that jζ < j′ζ
8 and for all 1 ≤ k < ζ, jk = j′k and outputs 0, otherwise.

We now proceed to describe the hybrids. We highlight the main changes in every hybrid by
underlining them in red .

Hybrid1: This corresponds to the real experiment of MIFEc+1 where the challenger uses the challenge
bit b = 0.

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) If i = 1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It initializes I to be (0, . . . , 0).

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =
GenCT(c)

[xj1,0,1,K,FE.pk,I]
is defined in Figure 3.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) Else if 2 ≤ i ≤ c+ 1:

• It picks τ at random.

• If xji,0 is of the form (x1, x2, 1, τ, i − 1) then it executes MIFEc.Enc(MIFEc.msk,
(x1, x2, 1, τ, i), i) to obtain MIFEc+1.ct

∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk,
(xji,0, x

j
i,0, 1, τ, i), i) to obtain MIFEc+1.ct

∗.

• The ciphertext MIFEc+1.ct
∗ is then sent to the adversary.

4. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf , which is set to be FE.skf , to the
adversary.

5. Adversary outputs b′.

Hybrid2: For every position i, the challenge ciphertexts will now also carry along with them their
corresponding query number. That is, for every position i, the encrypted message in the challenge
ciphertext corresponding to the jth message query contains j in it. In addition, the challenge
ciphertext corresponding to a message query (x0, x1) contains both x0 and x1 in it instead of just
x0 as in Hybrid0. Finally, the function HybGenCT(c,1) is used instead of GenCT(c) while encrypting
messages corresponding to the first position.

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

8We emphasize that jζ has to be strictly less than j′ζ .

18

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) If i = 1 then,

• It draws the PRF key K ∈ {0, 1}λ at random.

• It initializes I to be (0, . . . , 0) ∈ Zc+1
q , where q is the number of message queries

made by the adversary.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skHybGenCT(c,1) to the adver-

sary.

(b) Else if 2 ≤ i ≤ c+ 1 then,

• It picks τ at random.

• If xji,0 is of the form (x1, x2, j, τ, i − 1) then it executes MIFEc.Enc(MIFEc.msk,
(x1, x2, j, τ, i), i) to obtain MIFEc+1.ct

∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk,
(xji,0, x

j
i,1, j, τ, i), i) to obtain the ciphertext MIFEc+1.ct

∗, which is sent to the adver-
sary.

4. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

5. Adversary outputs b′.

HybGenCT
(c,1)
[x1,x′1,j1,K,FE.pk,I]

Input:
(

(x2, x
′
2, j2, τ2, i2), . . . , (xc+1, x

′
c+1, jc+1, τc+1, ic+1)

)
.

• ∀k ∈ {2, . . . , c+ 1}, if ik 6= k, then output ⊥

• I ′ = (j1 − 1, . . . , jc+1 − 1)

• If LessThan(I ′, I, c+ 1, q) = 1 then // I ′ is strictly less than I

– FE.ct← FE.Enc(FE.pk, (x′1, . . . , x
′
c+1);PRF(K, τ2|| · · · ||τc+1))

• Else,

– FE.ct← FE.Enc(FE.pk, (x1, . . . , xc+1);PRF(K, τ2|| · · · ||τc+1))

• Output FE.ct.

Figure 4

Lemma 1. For any PPT adversary A, we have |Adv1A−Adv2A| ≤ ε assuming the ε-selective function
privacy of MIFEc.

19

Proof. We design a reduction B that internally executes A and breaks the security of MIFEc with
advantage δ = |Adv1A − Adv2A|. The reduction interacts with A by simulating the role of the
challenger of MIFEc+1.

The reduction B executes FE.Setup(1λ) to obtain (FE.pk∗,FE.msk∗). It then receives message
queries (xji,0, x

j
i,1), for i ∈ [c+1], j ∈ [q], from the adversary A. The reduction B answers the message

query of the form (xji,0, x
j
i,1) as follows. We note that B first generates ciphertexts corresponding

to the position i 6= 1 and only after that it generates the ciphertexts corresponding to the position
i = 1. The reason is that B makes the message queries to the challenger first and only then it
makes the functional queries.

1. If i 6= 1 then: The reduction first picks τi,j at random. It then prepares the messages

xi,j0 = (xji,0, x
j
i,0, 1, τi,j , i) and xi,j1 = (xji,0, x

j
i,1, j, τi,j , i). It then sends all the message pairs

(xi,j0 , x
i,j
1), for every i 6= 1, j ∈ [q], to the challenger of MIFEc. Upon receiving the ciphertexts

MIFEc.ct
∗
i,j , it sets MIFEc+1.ct

∗
i,j = MIFEc.ct

∗
i,j . The reduction then sends the ciphertexts

MIFEc+1.ct
∗
i,j , for i 6= 1, j ∈ [q] to the adversary.

2. Else if i = 1 then: The reduction first draws PRF key K at random. It then initial-
izes I = (0, . . . , 0). It then initializes I ′ = (0, . . . , 0) ∈ Zc+1

q , where the length of the
elements (by suitable padding) in each component is λ. It then constructs the circuits

Cj = GenCT
(c)

[xj1,0,1,K,FE.pk
∗,I]

and C ′j = HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk

∗,I′]
. It then submits the

function query (Cj , C
′
j), for every j ∈ [q], to the challenger of the security game of MIFEc.

Upon receiving the functional key MIFEc.sk, it sets MIFEc+1.ct
∗ = MIFEc.sk and sends

MIFEc+1.ct
∗ to the adversary.

For every function query f submitted by the adversary, the reduction B executes FE.KeyGen(
FE.msk∗, f) to obtain FE.skf , which it sends to the adversary A. Finally, the reduction outputs b′,
where b′ is the output of A.

We first claim that B is a valid adversary in the function privacy game of MIFEc. Firstly, B
declares all message queries at the beginning of the game itself. Secondly, for every j1, . . . , jc+1 ∈ [q],
we have

C0

(
(xj22,0, x

j2
2,0, 1, τ2,j2 , 2), . . . , (x

jc+1

c+1,0, x
jc+1

c+1,0, 1, τc+1,jc+1 , c+ 1)
)

= C1

(
(xj22,0, x

j2
2,1, j2, τ2,j2 , 2), . . . , (x

jc+1

c+1,0, x
jc+1

c+1,1, jc+1, τc+1,jc+1 , c+ 1)
)
,

where C0 = GenCT
(c)

[x
j1
1,0,1,K,FE.pk

∗,I]
and C1 = HybGenCT

(c,1)

[x
j1
1,0,x

j1
1,1,j1,K,FE.pk

∗,I′]
. In both the cases,

encryption of (xj11,0, . . . , x
jc+1

c+1,0) with respect to FE.pk∗ and randomness PRF(K, τ j22 || · · · ||τ
jc+1

c+1) is
produced. This shows that B is a valid adversary.

Suppose the challenger of MIFEc uses the challenge bit 0 to generate the functional keys and the
challenge ciphertexts then we are in Hybrid0. By this, we mean that the challenger upon receiving a
function query (resp., message query) of the form (f0, f1) (resp., (x0, x1)), generates the functional
key of f0 (resp., x0). Otherwise if the challenger uses the challenge bit 1 then we are in Hybrid1.
This proves our claim.

Hybrid3: The challenge ciphertext corresponding to each message query (x0, x1) is now an encryption
of x1 and it does not contain any information about x0. The ciphertexts are computed according
to Hybrid2.

20

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) If i = 1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It initializes I to be (0, . . . , 0) ∈ Zc+1
q , where q is the number of message queries

made by the adversary.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,1,x
j
1,1,j,K,FE.pk,I]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skHybGenCT(c,1) to the adver-

sary.

(b) Else if 2 ≤ i ≤ c+ 1:

• It picks τ at random.

• If xji,1 is of the form (x1, x2, j, τ, i − 1) then it executes MIFEc.Enc(MIFEc.msk,
(x1, x2, j, τ, i), i) to obtain MIFEc+1.ct

∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk,
(xji,1, x

j
i,1, j, τ, i), i) to obtain the ciphertext MIFEc+1.ct

∗, which is sent to the adver-
sary.

4. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

5. Adversary outputs b′.

Lemma 2. For any PPT adversary A, we have |Adv2A−Adv3A| ≤ (6+5qc)ε assuming the ε-selective
function privacy of MIFEc, ε-selective security of FE and ε-security of F.

This lemma forms the crux of our overall proof. We prove it later in Section 5.1.

Hybrid4: This corresponds to the real experiment where the challenger uses the challenge bit 1.

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It initializes I to be (0, . . . , 0).

21

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =
GenCT(c)

[xj1,1,1,K,FE.pk,I]
is defined in Figure 3.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skHybGenCT to the adversary.

(b) 2 ≤ i ≤ c+ 1:

• It picks τ at random.

• If xji,1 is of the form (x1, x2, 1, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x1, x2, 1, τ, i),

i) to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,1, x

j
i,1, 1, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

4. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

5. Adversary outputs b′.

Lemma 3. For any PPT adversary A, we have |Adv3A−Adv4A| ≤ ε assuming the ε-selective function
privacy game of MIFEc.

The proof of the above lemma is similar to the proof of the Lemma 1. We omit the details.
Assuming ε-security of FE, ε-security of puncturable pseudorandom functions, ε-security of MIFEc,
in Lemmas 1,2, and 3 we have that for any PPT adversary A,

|Adv1A − Adv4A| ≤ (8 + 5qc+1)ε

By setting ε = δ
8+5qc+1 , we have the proof of the theorem.

5.1 Proof of Lemma 2

We first give a sequence of intermediate hybrids between Hybrid2 and Hybrid3. Then we establish
computational indistinguishability of every two consecutive intermediate hybrids which establishes
the indistinguishability of Hybrid2 and Hybrid3. In more detail, we define the hybrids Hybrid

2,
−→
j .i

,

for all
−→
j ∈ [q]c+1, i ∈ [5]. We also define a sequence of hybrids Hybrid2+.i, for i ∈ [5]. We then

prove that the following equations are true, assuming the existence of ε-selective function privacy
of MIFEc, ε-security of FE and ε-security of F.

1. |Adv2A − Adv
2.(1,...,1).1
A | ≤ ε.

2. |Adv2.
−→
j .i

A − Adv2.
−→
j .i+1

A | ≤ ε, for all
−→
j ∈ [q]c+1 and i ∈ [4].

3. |Adv2.
−→
j .5

A − Adv2.
−→
j +1.1

A | ≤ ε, for all
−→
j ∈ [q]c+1 and

−→
j 6= (q, . . . , q).

4. |Adv2.(q,...,q).5A − Adv2
+.1
A | ≤ ε.

5. |Adv2+.iA − Adv2
+.i+1
A | ≤ ε, for all i ∈ [4].

6. |Adv2+.5A − Adv3A| ≤ ε.

22

From the above equations, we have that |Adv2A − Adv3A| ≤ (6 + 5qc+1)ε, as desired.

We now proceed with the formal description of the intermediate hybrids.

Hybrid
2.
−→
j .1

for
−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. Let
−→
j = (j1, . . . , jc+1). It initializes I∗ to be (j1 − 1, . . . , jc+1 − 1) .

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) If i = 1 and j 6= j1 :

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain

MIFEc.skG, where G = HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

as defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) Else if i = 1 and j = j1 :

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,0, . . . , x
jc+1

c+1,0);PRF(K, τ∗2 || · · · ||τ∗c+1)).

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain

MIFEc.skG, where G = HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
) is defined in Figure 5.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) Else if 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random9.

• If xji,0 is of the form (x1, x2, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x1, x2,

j, τ, i), i) to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1,

j, τ, i), i) to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) Else if 2 ≤ i ≤ c+ 1 and j = ji :

• If xji,0 is of the form (x1, x2, 1, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x1, x2,
1, τ, i), i) to obtain MIFEc+1.ct

∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk,
(xji,0, x

j
i,1, j, τ

∗
i , i), i) to obtain the ciphertext MIFEc+1.ct

∗, which is sent to the ad-
versary.

9The space from which τ is picked is {0, 1}λ\τ∗i . Henceforth, we will not mention this explicitly.

23

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

HybGenCT
(c,2)
[x1,x′1,i1,K

∗,FE.pk∗,I,ct∗]

Input:
(

(x2, x
′
2, j2, τ2, i2), . . . , (xc+1, x

′
c+1, jc+1, τc+1, ic+1)

)
.

• ∀k ∈ {2, . . . , c+ 1}, if ik 6= k, then output ⊥

• I ′ = (j1 − 1, . . . , jc+1 − 1)

• If LessThan(I ′, I, c+ 1, q) = 1 then // I ′ is strictly less than I

– FE.ct← FE.Enc(FE.pk, (x′1, . . . , x
′
c+1);PRF(K∗, τ2|| · · · ||τc+1))

• Else if LessThan(I, I ′, c+ 1, q) = 1 then // I ′ is strictly greater than I

– FE.ct← FE.Enc(FE.pk, (x1, . . . , xc+1);PRF(K∗, τ2|| · · · ||τc+1))

• Else,

– FE.ct = ct∗.

• Output FE.ct.

Figure 5

We use
−→
1 to denote a vector (1, . . . , 1) of length c+ 1 .

Lemma 4. For any PPT adversary A, we have |Adv2A − Adv2.
−→
1 .1

A | ≤ ε assuming the ε-selective
function privacy of MIFEc.

Proof. We describe a reduction B that internally uses A to break the function privacy property of

MIFEc. Further, we argue that advantage of B is |Adv2A − Adv2.
−→
1 .1

A |.
The reduction B first executes FE.Setup(1λ) to obtain (FE.pk,FE.msk). It also picks (τ∗1 , . . . , τ

∗
c+1)

at random with τ∗i ∈ {0, 1}λ. It initializes I∗ to be (0, . . . , 0). It initializes (j1, . . . , jc+1) to be
(0, . . . , 0)

Upon receiving the message queries, (xji,0, x
j
i,1), for i ∈ [c+ 1], j ∈ [q], from the adversary A, the

reduction B generates the challenge ciphertexts depending on the following cases. We note that B
makes all the queries to the challenger with respect to i 6= 1 (which are challenge message queries)
in the beginning and only after that it makes the queries with respect to i = 1 (which are function
queries).

• If 2 ≤ i ≤ c+ 1 then: It first picks τi,j at random. It then sends the message pairs (xi,j0 , x
i,j
1)

to the challenger, for all 2 ≤ i ≤ c + 1, j ∈ [q], where
(
xi,j0 = (xji,0, x

j
i,1, j, τi,j , i), x

i,j
1 =

(xji,0, x
j
i,1, j, τi,j , i)

)
if j 6= ji and

(
xi,j0 = (xji,0, x

j
i,1, j, τ

∗
i , i), x

i,j
1 = (xji,0, x

j
i,1, j, τ

∗
i , i)

)
if j = ji.

In return it receives MIFEc.ct
∗
i,j . It then sends MIFEc+1.ct

∗
i,j is set to be MIFEc.ct

∗
i,j to the

adversary.

24

• Else if i = 1 and j1 6= 1 then: It draws the PRF key K ∈ {0, 1}λ at random. It then

sends the function pair query (HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

,HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

)

to the challenger of the security game of MIFEc. In return it receives MIFEc.sk. It sends
MIFEc+1.ct

∗ = MIFEc.sk to the adversary A.

• Else if i = 1 and j = j1 then: It draws the PRF key K ∈ {0, 1}λ at random. It then

computes ct∗ to be FE.Enc(FE.pk, (xj11,0, . . . , x
jc+1

c+1,0);PRF(K, τ∗2 || · · · ||τ∗c+1)). Further, it punc-
tures the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗. It then submits the function

query (HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

,HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk,I∗,ct∗]
) to the challenger of

MIFEc. In return it receives MIFEc.sk. It sends the challenge ciphertext MIFEc+1.ct
∗ =

MIFEc.skHybGenCT(c,2) to the adversary.

The function queries made by the adversary are handled by the challenger as in Hybrid2.
We claim that B is a valid adversary in the function privacy game of MIFEc. To show this, note

that it suffices to show the following. We denote C0 to be HybGenCT
(c,1)

[xj1,0,x
j1
1,1,j1,K,FE.pk,I∗]

and C1 to

be HybGenCT
(c,2)

[xj1,0,x
j
1,1,j1,K

∗,FE.pk,I∗,ct∗]
, where j1 ∈ [q]. We claim that, for all j2, . . . , jc+1 ∈ [q],

C0

(
(xj22,0, x

j2
2,1, j2, τ

j2
2 , 2), . . . , (x

jc+1

c+1,0, x
jc+1

c+1,1, 1, τ
jc+1

c+1 , c+ 1)
)

= C1

(
(xj22,0, x

j2
2,1, j2, τ

j2
2 , 2), . . . , (x

jc+1

c+1,0, x
jc+1

c+1,1, 1, τ
jc+1

c+1 , c+ 1)
)
,

where τ jii is the random string (which is τ∗i , when ji = 1) when generating the challenge ciphertext
for the jth ciphertext in the ith position. To show this, it suffices to just consider the input
M =

(
(x12,0, x

1
2,1, 1, τ

∗
1 , 2), . . . , (x1c+1,0, x

1
c+1,1, 1, τ

∗
c+1, c + 1)

)
– on all other inputs both the circuits

behave identically. On this input M , note that (i) when j1 = 1, C0 behaves identically as C1 and,
(ii) when j1 = 1, the output of C0 is FE.Enc(FE.pk, (x11,0, . . . , x

1
c+1,0)) which is the same as FE.ct∗,

which is the output of C1. This shows that B is a valid adversary.
On receiving the function query (C0, C1), if the challenger sent back a functional key of C0 then

we are in Hybrid2, else if it sent a key of C1 then we are in Hybrid
2.
−→
1 .1

. This completes the proof
of the lemma.

Hybrid
2.
−→
j .2

for
−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. Let
−→
j = (j1, . . . , jc+1). It initializes I∗ to be (j1 − 1, . . . , jc+1 − 1).

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

25

(a) If i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) Else if i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,0, . . . , x
jc+1

c+1,0);R
∗), where R∗ is picked at random.

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 5.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) Else if 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1,

j, τ, i), i) to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1,

j, τ, i), i) to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) Else if 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1,

j, τ, i), i) to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1,

j, τ∗i , i), i) to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 5. For any PPT adversary A, we have |Adv2.
−→
j .1

A − Adv2.
−→
j .2

A | ≤ ε assuming the ε-security
of F.

Proof. We describe a reduction B that internally uses A to break the security of puncturable

pseudorandom function family F. Further, we argue that advantage of B is |Adv2A − Adv2.
−→
1 .1

A |.
The reduction B picks (τ∗2 , . . . , τ

∗
c+1) at random. It then queries the PRF oracle with (τ∗2 , . . . , τ

∗
c+1)

to get R∗ and a punctured PRF key K∗ that is punctured at the point (τ∗2 , . . . , τ
∗
c+1). The reduction

algorithm, B then proceeds as in Hybrid
2.
−→
j .2

, where it uses the randomness R∗ in the generation of

the ciphertext FE.ct∗.
If the PRF oracle generates R∗ to be the output of PRF evaluation on the point (τ∗2 , . . . , τ

∗
c+1),

then we are in Hybrid
2.
−→
j .1

, else if R∗ is picked at random then we are in Hybrid
2.
−→
j .2

. This completes

the proof of the lemma.

Hybrid
2.
−→
j .3

for
−→
j ∈ [q]c+1:

26

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. Let
−→
j = (j1, . . . , jc+1). It initializes I∗ to be (j1 − 1, . . . , jc+1 − 1).

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,1, . . . , x
jc+1

c+1,1);R
∗), where R∗ is picked at ran-

dom.

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 5.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 6. For any PPT adversary A, we have |Adv2.
−→
j .2

A − Adv2.
−→
j .3

A | ≤ ε assuming the ε-selective
security of FE.

27

Proof. We design a reduction, that uses A, to break the security of FE with advantage ε, where

ε = |Adv2.
−→
j .2

A − Adv2.
−→
j .3

A |.
The reduction B answers the message queries made by the adversary A as in Hybrid

2.
−→
j .2

.

The only difference is that, the ciphertext FE.ct∗, which is hardwired in HybGenCT(c,2), is not
generated by B but instead is obtained from the challenger of FE by submitting the message query(
(xj11,0, . . . , x

jc+1

c+1,0), (x
j1
1,1, . . . , x

jc+1

c+1,1)
)
. The challenger also sends the public key FE.pk which is used

by the reduction to generate the challenge ciphertexts.
Upon receiving any function query f from the adversary A, the reduction B forwards the

function f to the challenger of FE. In return it receives FE.skf . B then sends MIFEc+1.sk = FE.skf
to A.

We argue that B is a valid adversary in the security game of FE. To see this it suffices to argue
that for every function query f made by B, f(xj11,0, . . . , x

jc+1

c+1,0) = f(xj11,1, . . . , x
jc+1

c+1,1), This can be
asserted from the fact that A is a valid attacker in the security game of MIFEc+1.

If the challenger of FE encrypts the message (xj11,0, . . . , x
jc+1

c+1,0) then we are in Hybrid
2.
−→
j .2

and if

it encrypts the message (xj11,1, . . . , x
jc+1

c+1,1) then we are in Hybrid
2.
−→
j .3

. This completes the proof of

the lemma.

Hybrid
2.
−→
j .4

for
−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. Let
−→
j = (j1, . . . , jc+1). It initializes I∗ to be (j1 − 1, . . . , jc+1 − 1).

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,1, . . . , x
jc+1

c+1,1);PRF(K, τ∗2 || · · · ||τ∗c+1)).

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 5.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

28

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 7. For any PPT adversary A, we have |Adv2.
−→
j .3

A − Adv2.
−→
j .4

A | ≤ ε assuming the ε-security
of puncturable pseudorandom functions F.

The proof of the above lemma is similar to the proof of Lemma 5.

Hybrid
2.
−→
j .5

for
−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. Let
−→
j = (j1, . . . , jc+1). Let I = (j1 − 1, . . . , jc+1 − 1). It initializes I∗ to be I + (0, . . . , 0, 1)

(here the addition operation is performed in Zc+1
q).

4. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) 2 ≤ i ≤ c+ 1:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

29

5. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

6. Adversary outputs b′.

Lemma 8. For any PPT adversary A, we have |Adv2.
−→
j .4

A − Adv2.
−→
j .5

A | ≤ ε assuming the ε-selective
function privacy of MIFEc.

Proof. We design a reduction that uses A to break the selective function privacy game of MIFEc.
The reduction B interacts with the adversary A by simulating the role of the challenger in the

game of MIFEc. Upon receiving the message queries, (xji,0, x
j
i,1), for all i ∈ [c + 1], j ∈ [q], from

the adversary A, the B does the following. The reduction first executes FE.Setup(1λ) to obtain

(FE.pk,FE.msk). Suppose
−→
j = (j1, . . . , jc+1) and let I = (j1 − 1, . . . , jc+1 − 1). B then initializes

I∗ to be I + 1 (here the addition operation is performed in Zc+1
q). The reduction B then generates

the challenge ciphertexts according to the following cases. We note that the reduction B makes all
the queries to the challenger with respect to i 6= 1 in the beginning (which are message queries)
and only after that it makes all the queries to the challenger with respect to = 1 (function queries).

1. i = 1 and j 6= j1: The reduction B first draws the PRF key K ∈ {0, 1}λ at random. It then

submits the query (C,C) to the challenger of the MIFEc game, where C = HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

.

In return it receives MIFEc.sk. The reduction then sends MIFEc+1.ct
∗ = MIFEc.sk to A.

2. i = 1 and j = j1: The reduction B draws the PRF key K ∈ {0, 1}λ at random. It then

computes ct∗ to be FE.Enc(FE.pk, (xj11,1, . . . , x
jc+1

c+1,1);R), where R = PRF(K, τ∗2 || · · · ||τ∗c+1. It
then punctures the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗. It then submits

the function query (C0, C1) to the challenger, where C0 = HybGenCT
(c,2)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]

and C1 = HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

. In return it receives MIFEc.sk. It then sends

MIFEc+1.ct
∗ = MIFEc.sk to the adversary A.

3. 2 ≤ i ≤ c + 1 and j 6= ji: The reduction B picks τ at random. It then submits the
message query (M,M) to the challenger, where M = (xji,0, x

j
i,1, j, τ, i). In response, it obtains

MIFEc.ct
∗. The reduction B then sends MIFEc+1.ct

∗ = MIFEc.ct
∗ to the adversary.

4. 2 ≤ i ≤ c + 1 and j = ji: The reduction B submits the message query (M,M) to the
challenger, where M = (xji,0, x

j
i,1, j, τ, i). In response, it obtains MIFEc.ct

∗. The reduction B
then sends MIFEc+1.ct

∗ = MIFEc.ct
∗ to the adversary.

B then answers the function queries as in Hybrid
2.
−→
j .4

(or Hybrid
2.
−→
j .5

).

We claim that B is a valid adversary in the function privacy game of MIFEc. To see this, note
that it suffices for us to show the following, where C0 and C1 are as defined above.

C0

(
(xj11,0, x

j1
1,1, j1, τ

∗
1 , 1), . . . , (xj11,0, x

j1
1,1, j1, τ

∗
1 , 1)

)
= C1

(
(xj11,0, x

j1
1,1, j1, τ

∗
1 , 1), . . . , (xj11,0, x

j1
1,1, j1, τ

∗
1 , 1)

)
The output of C0 is essentially FE.ct∗ which is defined to be FE.Enc(FE.pk, xj11,1|| · · · ||x

jc+1

c+1,1;R).

Further note that the output of C1 is also FE.Enc(FE.pk, xj11,1|| · · · ||x
jc+1

c+1,1;R). In addition, B makes

30

all the message queries at the beginning of the game and only it makes all the function queries.
Hence, B is a valid adversary in the security game of MIFEc.

If the challenger sends a functional key of C0 then we are in Hybrid
2.
−→
j .4

and if it sends a

functional key of C1 then we are in Hybrid
2.
−→
j .5

. And so, B breaks the function privacy property of

MIFEc with advantage |Adv2.
−→
j .4

A − Adv2.
−→
j .5

A |.

Lemma 9. For any PPT adversary A, for all
−→
j ∈ [q]c+1 and

−→
j 6= (q, . . . , q), we have |Adv2.

−→
j .5

A −
Adv2.

−→
j +1.1

A | ≤ ε assuming the ε-selective function privacy game of MIFEc.

The proof of the above lemma is similar to the proof of Lemma 4.
Hybrid2+.1 for

−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. It sets
−→
j = (j1, . . . , jc+1), with ji = q − 1 for all i ∈ [c+ 1]. It initializes I∗ to be (j1 − 1, . . . , jc+1 − 1)

.

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1 :

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1 :

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,0, . . . , x
jc+1

c+1,0);PRF(K, τ∗2 || · · · ||τ∗c+1)).

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain

MIFEc.skG, where G = HybGenCT
(c,3)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 6.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

31

(d) 2 ≤ i ≤ c+ 1 and j = ji :

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i−1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

HybGenCT
(c,3)
[x1,x′1,i1,K

∗,FE.pk∗,I,ct∗]

Input:
(

(x2, x
′
2, j2, τ2, i2), . . . , (xc+1, x

′
c+1, jc+1, τc+1, ic+1)

)
.

• ∀k ∈ {2, . . . , c+ 1}, if ik 6= k, then output ⊥

• I ′ = (j1 − 1, . . . , jn − 1)

• If LessThan(I ′, I, c+ 1, q) = 1 then

– FE.ct← FE.Enc(FE.pk, (x′1, . . . , x
′
c+1);PRF(K∗, τ2|| · · · ||τc+1))

• Else if LessThan(I, I ′, c+ 1, q) = 1 and I 6= (q − 1, . . . , q − 1) then

– FE.ct← FE.Enc(FE.pk, (x1, . . . , xc+1);PRF(K∗, τ2|| · · · ||τc+1))

• Else,

– FE.ct = ct∗.

• Output FE.ct.

Figure 6

Lemma 10. For any PPT adversary A, we have |Adv2.(q,...,q).5A − Adv2
+.1
A | ≤ ε assuming the ε-

selective function privacy of MIFEc.

The proof of the above lemma follows along the same lines as the proof of Lemma 4.
Hybrid2+.2 for

−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. It sets
−→
j = (j1, . . . , jc+1), with ji = q for all i ∈ [c+1]. It initializes I∗ to be (j1−1, . . . , jc+1−

1).

32

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,0, . . . , x
jc+1

c+1,0);R
∗), where R∗ is picked at random

.

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,3)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 6.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 11. For any PPT adversary A, we have |Adv2+.2A − Adv2
+.1
A | ≤ ε assuming the ε-selective

security game of F.

The proof of the above lemma follows along the same lines as the proof of Lemma 5.
Hybrid2+.3 for

−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

33

3. It sets
−→
j = (j1, . . . , jc+1), with ji = q − 1 for all i ∈ [c + 1]. It initializes I∗ to be (j1 −

1, . . . , jc+1 − 1).

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,1, . . . , x
jc+1

c+1,1);R
∗), where R∗ is picked at ran-

dom.

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,3)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 6.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 12. For any PPT adversary A, we have |Adv2+.3A − Adv2
+.2
A | ≤ ε assuming the ε-selective

security of FE.

The proof of the above lemma is similar to the proof of Lemma 6.
Hybrid2+.4 for

−→
j ∈ [q]c+1:

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

34

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. It sets
−→
j = (j1, . . . , jc+1), with ji = q − 1 for all i ∈ [c + 1]. It initializes I∗ to be (j1 −

1, . . . , jc+1 − 1).

4. It picks τ∗2 , . . . , τ
∗
c+1 at random with τ∗i ∈ {0, 1}λ.

5. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1 and j 6= j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain MIFEc.skG, where G =

HybGenCT
(c,1)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 4.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) i = 1 and j = j1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• Compute ct∗ to be FE.Enc(FE.pk, (xj11,1, . . . , x
jc+1

c+1,1);PRF(K, τ∗2 || · · · ||τ∗c+1)).

• Puncture the PRF key K at the point (τ∗2 || · · · ||τ∗c+1) to obtain K∗.

• Execute MIFEc.KeyGen(MIFEc.msk, G) to obtain MIFEc.skG, where

G = HybGenCT
(c,3)

[xj1,0,x
j
1,1,j,K

∗,FE.pk∗,I∗,ct∗]
is defined in Figure 6.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(c) 2 ≤ i ≤ c+ 1 and j 6= ji:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

(d) 2 ≤ i ≤ c+ 1 and j = ji:

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ

∗
i , i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

6. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

7. Adversary outputs b′.

Lemma 13. For any PPT adversary A, we have |Adv2+.5A − Adv2
+.4
A | ≤ ε assuming the ε-selective

security of F.

The proof of the above lemma is similar to the proof of Lemma 4.
Hybrid2+.5 for

−→
j ∈ [q]c+1:

35

1. Adversary submits q number of message queries to the challenger. Denote (xji,0, x
j
i,1) to be

the jth message query corresponding to the ith position, where j ∈ [q], i ∈ [c+ 1].

2. Challenger executes MIFEc.Setup(1λ) to obtain MIFEc.msk. It then executes FE.Setup(1λ) to
obtain (FE.pk,FE.msk). Finally, the challenger sets MIFEc+1.msk to be (MIFEc.msk,FE.pk,FE.msk).

3. It sets
−→
j = (j1, . . . , jc+1), with ji = q − 1 for all i ∈ [c + 1]. It initializes I∗ to be (j1 −

1, . . . , jc+1 − 1).

4. The challenger then generates the challenge ciphertexts as follows. For every i ∈ [c+1], j ∈ [q],

(a) i = 1:

• It draws the PRF key K ∈ {0, 1}λ at random.

• It then executes MIFEc.KeyGen
(
MIFEc.msk, G

)
to obtain MIFEc.skG, where G =

HybGenCT
(c,4)

[xj1,0,x
j
1,1,j,K,FE.pk,I∗]

is defined in Figure 7.

• It sends the challenge ciphertext MIFEc+1.ct
∗ = MIFEc.skG to the adversary.

(b) 2 ≤ i ≤ c+ 1:

• It picks τ at random.

• If xji,0 is of the form (x∗0, x
∗
1, j, τ, i− 1) then it executes MIFEc.Enc(MIFEc.msk, (x∗0, x

∗
1, j, τ, i), i)

to obtain MIFEc+1.ct
∗. Otherwise, it executes MIFEc.Enc(MIFEc.msk, (xji,0, x

j
i,1, j, τ, i), i)

to obtain the ciphertext MIFEc+1.ct
∗, which is sent to the adversary.

5. For every function query f , the challenger first executes FE.KeyGen(FE.msk, f) to obtain
FE.skf . It then sends the functional key MIFEc+1.skf = FE.skf to the adversary.

6. Adversary outputs b′.

HybGenCT
(c,4)
[x1,x′1,i1,K

∗,FE.pk,I]

Input:
(

(x2, x
′
2, j2, τ2, i2), . . . , (xc+1, x

′
c+1, jc+1, τc+1, ic+1)

)
.

• ∀k ∈ {2, . . . , c+ 1}, if ik 6= k, then output ⊥

• I ′ = (j1 − 1, . . . , jn − 1)

• If LessThan(I ′, I, c+ 1, q) = 1 or I = (q − 1, . . . , q − 1) then

– FE.ct← FE.Enc(FE.pk, (x′1, . . . , x
′
c+1);PRF(K∗, τ2|| · · · ||τc+1))

• Else,

– FE.ct← FE.Enc(FE.pk, (x1, . . . , xc+1);PRF(K∗, τ2|| · · · ||τc+1))

• Output FE.ct.

Figure 7

Lemma 14. For any PPT adversary A, we have |Adv2+.5A − Adv3A| ≤ ε assuming the ε-security of
F.

36

6 Multi-Input FE from Single-Input FE

In Section 4, we gave a general transformation from a secret-key MiFE scheme for c-ary functions
to another secret-key MiFE scheme for c+ 1-ary functions. Using this transformation, we now give
a construction of a secret-key MiFE scheme for functions with n = poly(λ) arity. Later, in Section
7, we will use this construction to obtain our main result on iO. We will also consider different
instantiations of this construction which yield new results on constant-ary MiFE from standard
assumptions.

More concretely, starting from a single-ary FE scheme, we apply our transformation repeatedly,
in an iterative manner, to obtain an n-ary MiFE scheme. Recall that our transformation consists
of two steps: the first step, described in 3.1, adds function hiding property to the underlying c-ary
MiFE scheme. The second step, described in Section 4, amplifies the arity by 1 by “knitting” the
function-hiding c-ary MiFE scheme with a single-ary public key FE scheme. By relying on the
correctness and the security of each of these steps, we can prove the correctness and security of the
overall construction.

However, there is a possible cause for concern: efficiency. We need to argue that every iteration
does not add a multiplicative overhead to the size of the parameters in the MiFE scheme. Indeed,
if the converse were to happen, then we would only be able to achieve a constant-ary MiFE scheme
starting from a single-ary FE scheme. As we show later, by carefully choosing the instantiation of
the public-key FE scheme we can avoid the overhead in every iteration.

We now give more details.

6.1 (Iterated) Construction of MIFEn

We now construct a n-ary (q, q)-secure MiFE scheme MIFEn with the message space X n = {X nλ }λ∈N
and function space Fn = {Fnλ }λ∈N. For simplicity, we consider Xλ = {0, 1}λ. To obtain this
construction we start with a q-secure10 public-key FE scheme. This implies a single-ary (q, q)-
secure secret-key MiFE scheme, MIFE1 with X 1 and F1 to be, respectively, the associated input
and the function spaces. We discuss below what X 1 and F1 should correspond to.

We then repeat the following two steps for c = 1, . . . , n:

1. Function privacy transformation: Using the function-privacy transformation presented in
Section 3.1, convert the (q, q)-secure MiFE scheme MIFEc, obtained in the previous iteration,
into a function-private (q, q)-secure MiFE scheme MIFEfp

c , also supporting c-arity functions.
The associated function spaces and the message spaces of MIFEfp

c , denoted by F fp,c and X fp,c,
are defined below in the next step.

2. Arity amplification: The function-private c-ary (q, q)-secure MiFE scheme MIFEfp
c obtained

in the previous step is then transformed into a c+1-ary (q, q)-secure MiFE scheme for function
space Fc+1 and message space X c+1, using the transformation presented in Section 4. In this
step, we additionally use a q-secure public-key FE scheme FE. The instantiation of FE in
the cth step would essentially be the same as the function space of MIFEc+1 and the message
space is X FE,c =

{(
X cλ
)c}

λ∈N

10Throughout this section, we only consider selectively secure public-key FE and secret key MiFE schemes. For
simplicity of notation, we omit the use of the word “selective” in the rest of this section and assume that it is implicit.

37

We now define the input message and the function spaces.
Input message spaces: It follows from the description of the constructions in Sections 3.1 and
4, that:

X c = X fp,c = X c+1 = {Xλ}λ∈N,
where Xλ = X ′λ ∪ X

′′
λ ∪ X

′′′
λ , and

• X ′λ = {0, 1}λ,

• X ′′λ contains strings of the form (x0, x1, j, τ, i), where x0, x1 ∈ X
′
λ, j, τ ∈ {0, 1}λ and

i ∈ {0, 1}log(n),
• X ′′′λ contains strings of the form (X0, X1,Sym.K,Sym.K

′), whereX0, X1 ∈ X
′′
λ , Sym.K,Sym.K ′ ∈

{0, 1}λ.

Function spaces: Again, it follows from the description of the constructions in Sections 3.1
and 4, that:

F fp,c =
{
GenCT(c),HybGenCT(c,1),HybGenCT(c,2),HybGenCT(c,3),HybGenCT(c,4)

}
,

where GenCT(c), HybGenCT(c,1), HybGenCT(c,2), HybGenCT(c,3) and HybGenCT(c,4) are de-
scribed in Figures 3, 4, 5, 6 and 7.

Fc =
{
U
}
,

where U is as described in Figure 2. (For simplicity of exposition, we omit the constants for
each of the above functions from their respective notations.)

As discussed earlier, the efficiency properties of the underlying public-key FE scheme determines
the value of n that we can achieve in the above construction. Consequently, we consider two different
instantiations of the underlying public-key FE scheme that yield different results. We discuss these
instantiations in the following two subsections.

6.2 MiFE for Poly-arity Functions from Compact FE

We start by stating our main result for secret-key MiFE for polynomial-arity functions.

Theorem 4. For all n = poly(λ), the proposed scheme MIFEn in Section 6.1 is (q, q)-secure for

any polynomial q, assuming that FE is
(

1, 1

(64q)(n+1)2 ·2λ

)
-selectively secure compact public-key FE

scheme.

In order to prove the above theorem, we start with the following observation: Gorbunov et
al. [GVW12] show how to transform a (1)-secure public-key FE scheme into a (q)-secure public key
FE scheme for any polynomial q. This transformation preserves the compactness of the underlying
encryption scheme. See Appendix C for more details on this transformation.

Given the above observation, we only need to prove the following theorem:

Theorem 5. For all n = poly(λ), the proposed scheme MIFEn in Section 6.1 is (q, q)-secure

assuming that FE is
(
q, 1

(64q)(n+1)2 ·2λ

)
-selectively secure compact public-key FE scheme.

Proof. The proof of Theorem 5 consists of three steps. First, the correctness of MIFEn follows
from the correctness of the function privacy transformation (Section 3.1) and the correctness of the
arity amplification transformation (Section 4). Next, we argue that all the algorithms in MIFEn
are probabilistic polynomial time. And finally, we will discuss the security of MIFEn.

38

Efficiency Analysis. We start by establishing some notation.

1. MaxSize: We define the notation MaxSize for a function family G to be the maximum size of
all the circuits, implementing the functions in G. That is,

MaxSize(G) = max
C implements g; g∈G

{
size(g)

}
,

where size(g) denotes the size of the polynomial sized circuit representing g assuming g is
indeed efficiently computable.

2. RunTime: We define the notation RunTime to denote the size of a circuit corresponding to a
particular input length. Suppose A is a circuit and it receives inputs of lengths z1, . . . , zm.
Then, RunTime(A, z1, . . . , zm) denotes the size of the circuit A on input length

∑m
i=1 zi.

We now analyze the run times of the algorithms of (q, q)-secure scheme, MIFEn. To do this, we
need to first estimate the run times of the algorithms11 of MIFEc, for 1 ≤ c ≤ n − 1. We do this
recursively. First, the size of the parameters in MIFEc+1 is expressed as the size of the parameters in
MIFEc – this is done by looking at the function privacy transformation and the arity amplification
steps. Then, we recursively apply this to obtain the run times in MIFEn expressed in terms of the
run times in the q-secure compact public-key functional encryption scheme FE.

We denote the non-function hiding c-ary MiFE in step c as MIFEc = (MIFEc.Setup,MIFEc.KeyGen,
MIFEc.Enc,MIFEc.Dec) for function space Fc and message space X c. Further, the function hid-
ing c-ary MiFE is denoted as MIFEfp

c = (MIFEfp
c .Setup,MIFEfp

c .KeyGen,MIFEfp
c .Enc,MIFEfp

c .Dec) for
function space F fp,c and message space X fp,c.
Before we perform the analysis of the running times of the setup and the encryption algorithms,
we first determine the complexity of the function spaces we obtain at every step. This quantity has
an effect on the run times of the encryption as well as the key generation algorithms.

Since the message spaces X c, X fp,c, for 1 ≤ c < n, are all equal to each other, we use `x to
denote the maximum length of all the strings in X c = X fp,c. For 1 ≤ c ≤ n, we have:

MaxSize(F fp,c) = RunTime
(
FE.Enc, λ, c, q, (`x)c+1

)
+ p1(λ),

where p1 is a polynomial. Further, we have

MaxSize(Fc) = p2(λ, c,MaxSize(F fp,c)) + p3(λ),

where p2 and p3 are polynomials. Combining the above quantities, we get MaxSize(Fc) to be a
polynomial in (λ, c, q), for every 1 ≤ c ≤ n.

1. Run time of Setup algorithm MIFEn.Setup: We first focus our attention on the run time of
the setup algorithm MIFEc+1.Setup. We express this in terms of MIFEc.Setup. This is done by first
expressing MIFEc+1.Setup in terms of MIFEfp

c .Setup and then we express MIFEfp
c .Setup in terms of

MIFEc.Setup.
For n > c ≥ 1, we have:

11Here, we abuse the notation and use the terminology ‘runtime’ (in place of ‘size’) even though we are referring
to circuits.

39

1. Arity amplification step: The setup algorithm of a the c+1-ary scheme internally executes the
setup algorithm of the function-private c-ary scheme and the setup algorithm of the compact
public-key FE scheme. Thus the run time of this step is

RunTime(MIFEc+1.Setup, λ, c+1, q) = RunTime(MIFEfp
c .Setup, λ, c, q)+RunTime(FE.Setup, λ, q)+p4(λ)

2. Function privacy transformation step: The setup algorithm of the function-private c-ary MiFE
scheme runs the setup algorithm of (non-function private) setup. The run time of this step
is RunTime(MIFEfp

c .Setup, λ, c, q) = RunTime(MIFEc.Setup, λ, c, q) + p5(λ),

where p4, p5 are polynomials. Here, p4(λ) subsumes the running time of the setup algorithm of the
compact public-key FE scheme and p5(λ) subsumes the running time of the setup algorithm of the
symmetric encryption scheme.

If we recursively apply both the above equations, we get RunTime(MIFEn.Setup, n, λ, q) to be
just a polynomial in λ, since n is also a polynomial in λ.

2. Run time of Key Generation algorithm MIFEn.KeyGen: The run time of the key generation
procedure in step c + 1 depends mainly on the complexity of the function classes in step c. We
break this analysis into two steps, by looking first at the arity amplification step and then looking
at the function privacy transformation step.

For n− 1 > c ≥ 1; we have the following:

1. Arity amplification step: The key generation algorithm MIFEc+1.KeyGen internally invokes
the key generation algorithm MIFEfp

c .KeyGen. The complexity of this step is hence, RunTime(
FE.KeyGen, λ, c, q,MaxSize(F fp,c)), where F is defined below.

2. Function privacy transformation step: The key generation algorithm MIFEfp
c .KeyGen internally

invokes the key generation algorithm MIFEc.KeyGen. So, the run time is RunTime(MIFEc.KeyGen,
λ, c, q, |G|) ≤ RunTime(MIFEc.KeyGen, λ, c, q,MaxSize(Fc)),

where F ∈ Fc+1 and G ∈ F fp,c. Further, we denote `f to be maxg∈Fn{size(g)} From this, we can
show the following.

RunTime(MIFEn.KeyGen, λ, n, q, |f |) ≤ max
1≤c≤n

{
RunTime(FE.KeyGen, λ, c, q,MaxSize(F fp,c),

RunTime(FE.KeyGen, λ, c, q,MaxSize(Fc))
}

where f ∈ Fn. Since, MaxSize(Fc), for all c, is already a polynomial in the security parameter λ,
we have the run time of MIFEc+1.KeyGen to be at most a polynomial in (λ, c, q, `f).

3. Run time of Encryption algorithm MIFEn.Enc: The analysis of the run time of encryption
algorithm can be done by first expressing the run time of the encryption algorithm MIFEc+1.Enc,
for 1 ≤ c < n, in terms of the run time of key generation algorithm MIFEfp

c .KeyGen and encryption
algorithm MIFEfp

c .Enc. We then express the run time of MIFEfp
c .Enc in terms of the run time of

(non-function private) encryption MIFEc.Enc. The analysis of these two steps can be further broken
down into two steps, depending on the position with respect to which we encrypt the messages.

40

1. Arity amplification step: We analyze the run time of the algorithm MIFEc+1.Enc. Consider
the following two cases:

• i = 1: In this case, a functional key of MIFEfp
c is generated. Thus, the complexity

of encrypting the message in this case would essentially be the run time of the key
generation algorithm, MIFEfp

c .KeyGen on input functions in the space F fp,c. Thus run
time of this step is RunTime(MIFEfp

c .KeyGen, λ, c, q,MaxSize(Fc)).
• i > 1: In this case, the encryption is computed by invoking the encryption of c-ary MiFE

scheme. Thus, the run time of this step is RunTime(MIFEfp
c .Enc, λ, c, q, `x).

Thus, total run time of this step is

RunTime(MIFEfp
c .KeyGen, λ, c, q,MaxSize(Fc)) + RunTime(MIFEfp

c .Enc, λ, c, q, `x) + p6(λ),

where p6 is a polynomial.

2. Function privacy transformation step: We analyze the run time of MIFEfp
c .Enc. Note that

in this step, the encryption w.r.t position 1 and any other position is done by invoking the
encryption MIFEc.Enc. The only difference is between the messages that are encrypted w.r.t
position 1 and those encrypted w.r.t any other position. In both the cases, the length of the
messages is at most `x. Thus, the run time of this step is RunTime(MIFEfp

c .Enc, c, λ, q, `x) +
p7(λ), where p7 is a polynomial.

We are now ready to express the run time of MIFEc+1.Enc in terms of MIFEc.Enc. Moreover, we
have calculated the run time of MIFEfp

c .KeyGen to be a polynomial in (λ, c), call it p8. We have for
m ∈ X c+1,

RunTime(MIFEc+1.Enc, λ, c, q, |m|) ≤ RunTime(MIFEc.Enc, λ, c, q, `x) + p6(λ) + p7(λ) + p8(λ)

Hence, we have RunTime(MIFEn.Enc, λ, q, c, |m|), where m ∈ X n, to be a polynomial in RunTime(
FE.Enc, λ, q, c, `x), n, and λ which is a polynomial in (λ, c, q, `x).

4. Run time of Decryption algorithm MIFEn.Dec: To analyze the run time of MIFEn.Dec, we
consider the following two steps. For n ≥ c > 1, we have

1. Arity amplification step: The decryption algorithm, MIFEc+1.Dec executes the decryption
MIFEfp

c .Dec and FE decryption FE.Dec. Thus, the run time of this step is at most RunTime(MIFEfp
c .Dec,

t1, t2), where t1 = RunTime(MIFEfp
c .Enc, λ, c, q, `x) and t2 = RunTime(MIFEfp

c .KeyGen, λ, c, q,MaxSize(
F fp,c)).

2. Function privacy transformation step: The decryption algorithm, MIFEfp
c .Dec internally exe-

cutes MIFEc.Dec and so, the run time of this step is at most RunTime(MIFEc.Dec,RunTime(
MIFEc.Enc, λ, c, q, `x),RunTime(MIFEc.KeyGen, λ, c, q,Fc))

This is nothing but a polynomial in (λ, c, q, `x, `f) since the size of the ciphertexts and the func-
tional keys are, respectively, polynomials in (λ, c, q, `x) and (λ, c, q, `f).

The above four bullets prove that all the four algorithms of MIFEn run in probabilistic polynomial
time.

41

Security Analysis. We argue the security of MIFEn by invoking the security of the arity ampli-
fication and the function privacy steps. We set δ1 = ε, where FE is (q, ε)-secure. From Theorem 2,
we have that for 1 ≤ c < n, the scheme MIFEfp

c yielded by the cth function privacy step in the
construction of Section 6.1 is (q, q, δfpc)-secure, where δfpc = δc

4 . From Theorem 3, we have that for
1 ≤ c < n, the scheme MIFEc+1 yielded by the cth arity amplification step is (q, q, δc+1)-secure,

where δc+1 = (8 + 5qc+1)δfpc -secure. Thus, we have,

δn = (8 + 5qn)δfpn−1
= (8 + 5qn)4δn−1

≤ (64q)nδn−1

≤
n−1∏
c=1

(64q)c+1δ1

≤ (64q)2+...+n
1

(64q)(n+1)22λ

≤ negl(λ)

where negl is a negligible function. This proves that MIFEn is (q, q)-secure.

From the efficiency analysis argument presented above we have that the algorithms in the scheme
MIFEn run in probabilistic polynomial time. Further, from the security analysis, we have that
MIFEn is (q, q)-secure. This completes the proof of Theorem 5.

6.2.1 MiFE for Constant-arity Functions from Standard Assumptions

In the previous subsection, we showed that applying the iterated construction, presented in Sec-
tion 6.1, on a compact FE scheme yields a n-ary MiFE scheme, where n is a polynomial in λ. We
now turn to applying the same construction but on a non compact FE scheme. In this case the
iterated construction yields a n-ary MiFE scheme, where n is a constant. The main reason why we
only get constant arity is because the size of the parameters grow at an exponential rate.

Formally, we prove the following theorem.

Theorem 6. For any constant n, the proposed scheme MIFEn in Section 6.1 is (q, q)-selectively
secure assuming that FE is a q-selectively secure (not necessarily compact) public-key FE scheme.

Combining Theorem 6 with [SS10, GVW12], we obtain the following result.

Corollary 1. For any polynomial q = q(λ), there exists a (q, q)-selectively secure secret-key MiFE
scheme for constant-arity functions, assuming the existence of semantically-secure public-key en-
cryption.

Further, combining Theorem 6 with the public-key FE scheme of [GGH+13b], we obtain the
following result.

Corollary 2. Assuming the existence of indistinguishability obfuscation and one-way functions,
there exists an unbounded selectively-secure secret-key MiFE scheme for constant-arity functions.

We now give the proof of Theorem 6.

42

Proof. As before, the proof of the theorem consists of three steps. The first step, which is the cor-
rectness of MIFEn follows from the correctness of the function privacy transformation (Section 3.1)
and the correctness of the arity amplification transformation (Section 4). The next two steps are,
respectively, the efficiency and security analysis of MIFEn.

Efficiency Analysis. As before, we first perform the analysis of the complexity of function
space at each step. Once we do this, we can refer back to the analysis of setup, key generation,
encryption and decryption as done when we instantiated with the compact scheme since the exact
same analysis will hold even in this case. We borrow the notation of MaxSize and RunTime as
defined in Section 6.2. Further, as before, we use `x to denote the maximum length of all the
strings in X c = X fp,c, for every 1 ≤ c ≤ n.

For 1 ≤ c ≤ n, we have:

MaxSize(F fp,c) = RunTime
(
FE.Enc, λ, q,MaxSize(Fc+1), (`x)c+1

)
+ p1(λ),

where p1 is a polynomial. Note that in the above expression, unlike the compact FE case,
MaxSize(F fp,c) has dependence on MaxSize(Fc+1). Further, we have

MaxSize(Fc) = p2(λ,MaxSize(F fp,c)) + p3(λ),

where p2 and p3 are polynomials. Combining the above quantities, we get

MaxSize(Fc) = p9(λ,MaxSize(Fc+1), c, `x),

where p9 is a polynomial. We have MaxSize(F1) to be exponential in n, where the iterated construc-
tion yields a n-ary MiFE scheme. When n is a constant, MaxSize(F1) is polynomial in (λ, c, `x).

Security Analysis. The security argument in this case is exactly the same as the security argu-
ment presented in the proof of Theorem 5. That is, we can show that the construction in Section 6.1
yields a (q, q, δn)-secure scheme, where δn is at most (64q)n

2
ε and ε is a negligible function in λ

such that FE is (q, ε)-selectively secure. Since n is a constant, we have that δn is negligible in λ.

From the above arguments, we have that the algorithms in MIFEn run in probabilistic polynomial
time and further, MIFEn is q-secure. This completes the proof of Theorem 6

7 Indistinguishability Obfuscation from Compact FE

In this Section, we establish our main result on iO from compact public-key FE. To obtain this
result, we rely on following theorem of Goldwasser et al. [GGG+14]:

Theorem 7 ([GGG+14]). Assuming the existence of a (1, 2)-secure secret-key MiFE scheme for
general functions with arity (n+ 1), there exists an indistinguishability obfuscator for all functions
with input length n.

Very briefly, their construction can be described as follows: suppose we wish to obfuscate
any circuit with input length n. Then, start with a n + 1-ary secret-key MiFE scheme. The
obfuscation of a circuit C consists of (MIFEn+1.skU ,MIFEn+1.ct1,C , MIFEn+1.ct1,0,MIFEn+1.ct1,1,

43

. . .,MIFEn+1.ctn,0,MIFEn+1.ctn,1), where MIFE2.skU is the functional key of the universal function
that takes as input (C, x1, . . . , xn) and outputs C(x) with the binary representation of x being
x1|| · · · ||xn, and MIFEn+1.cti,b is the encryption of b corresponding to the (i− 1)th input of C. To
evaluate the obfuscation on an input x, the evaluator first considers the bit representation of x, de-
note this by x1, . . . , xn. It then executes MIFEn+1.Dec(MIFEn+1.msk,MIFEn+1.ct1,f ,MIFEn+1.ct2,x1 , . . . ,
MIFEn+1.ctn+1,xn) and the result is C(x).

iO from compact public-key FE. Combining Theorem 7 with Theorem 4 for the case of q = 2,
we obtain an indistinguishability obfuscation scheme, denoted by iO, for P/poly. Formally, we state
the theorem below.

Theorem 8. Assuming the (2, 1

(128)n22λ
)-security of compact public-key selectively secure FE public

key FE scheme for polynomial time computable functions, the scheme iO is an indistinguishability
obfuscation scheme for P/poly.

8 Compact FE from RE for Turing Machines

In this Section, we construct a compact bounded-query public-key FE scheme for randomized
encodings [IK00, AIK06] for turing machines. Our construction proceeds in two steps: first, we
show how to obtain a compact bounded-query FE for NC1 functionalities. In the next step, we
apply the general bootstrapping theorem to convert FE forNC1 to general functonalities [GHRW14,
ABSV14]. This step preserves the compactness of the underlying FE.

We start with the definition of randomized encoding for TMs that we need for our construction.
We then describe the first step of our construction.

8.1 Randomized Encoding for TMs

A randomized encoding (RE) of a function is a simplified representation of the computation of
the function on a particular input such that (i) computing this representation must be much
simpler than actually carrying out the computation and (ii) the only information revealed by the
representation is the output of computation and nothing else. Traditionally, circuit implementation
of the functions, over which RE is computed, was considered. Recently, the works of [BGL+15,
CHJV15, KLW15] considered the scenario where the functions are implemented by Turing machines.
We define this notion, termed as RE for TMs, below. We associate the Turing machine with this
RE to be M.

1. Encoding. RETM .Encode(1
λ,M, x, T): On input security parameter λ, Turing machine M ∈

M, input x ∈ {0, 1}∗, and time bounded T output the encoding M̃(x).

2. Decoding. RETM .Decode(M̃(x)): On input encoding M̃(x), output the decoded value y.

There are three important properties that any RE for TMs need to satisfy.

Correctness. This property states that the output of RETM .Decode(M̃(x)) is M(x) if the ma-

chine M on input x runs for at most T steps, where M̃(x) ← RETM .Encode(1
λ,M, x, T) and

M ∈M.

44

Efficiency. This property intuitively says that the run time of the encode procedure depends
on the size of the Turing machine and the input length and in particular, is independent of the
computation time of the TM. Formally, the run time of RETM .Encode on input (1λ,M ∈M, x, T) is

a polynomial in (λ, |M |, |x|, log(T)). Furthermore, the run time of RETM .Decode on input (M̃(x))

is a polynomial in (λ, |M |, |x|, t), where M̃(x)← RETM .Encode(1
λ,M ∈ M, x, T) and t ≤ T is the

time taken by M to execute on x.

Indistinguishability security. The security requirement states that given a machine M ∈ M
and two inputs x0 and x1, the corresponding encodings M̃(x0) is computationally indistinguishable

from the encoding M̃(x1). Of course this itself is insufficient since the adversary could look at the
sizes of the encodings, outputs of the decode procedure or even its run time to distinguish the two
encodings. Hence, we place the additional constraint that |x0| = |x1| and further M(x0) = M(x1),
with the run time of M on x0 being the same as the run time of M on x1. Formally, for any
sufficiently large security parameter λ ∈ N, PPT adversary A, the following holds for any negligible
function negl.

Pr
[
b′ = b : (M,x0, x1, T, st)← A(1λ); b

$←− {0, 1}; M̃(xb)← RETM .Encode(1
λ,M, xb, T);

b′ ← A(st, M̃(xb))
]
≤ negl(λ)

This completes the description of RE for TMs.

8.2 Construction

Our construction makes use of RE for TMs as well as a q-query semi-compact (see Definition 4)
public-key FE scheme for NC1 functions. We note that a semi-compact single-key FE scheme was
constructed by Goldwasser et al. [GKP+13]. Using the result of Gorbunov [GVW12], we can amplify
the number of key queries to any bounded polynomial. We note that the GVW transformation
preserves the semi-compactness property of Goldwasser et al. See Appendix C for more details.

We now proceed to describe our construction.

Notation. The randomized encoding for TMs scheme is denoted by RETM = (RETM .Encode,
RETM .Decode). We denote the semi-compact FE scheme to be SCFE = (SCFE.Setup, SCFE.KeyGen,
SCFE.Enc,SCFE.Dec) for NC1 functionalities. The compact scheme we construct is denoted by
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec). The function space is denoted by F . We denote by
`f by the maximum length of the function in F (as a function of security parameter) and we denote
outf to be the output length of all the functions in F .

The formal description of the algorithms are given below.
FE.Setup(1λ): On input security parameter λ, first sample a PRF key K ∈ {0, 1}λ at random.
Then execute RETM .Encode(1

λ, SetupFunc,K), where SetupFunc is as described in Figure 8, to

obtain ˜SetupFunc Then execute SCFE.Setup(1λ;PRF(K, i)), to obtain (SCFE.mpki,SCFE.mski), for

i ∈ outf . Output (mpk = ˜SetupFunc,FE.msk = (SCFE.msk1, . . . ,SCFE.mskoutf)).

45

SetupFunc

Input: puncturable PRF key K.

1. For i = 1 to outf ; execute SCFE.Setup(1λ) to obtain (SCFE.mpki,SCFE.mski).

2. Output (SCFE.mpk1, . . . ,SCFE.mpkoutf).

Figure 8

FE.KeyGen(FE.msk, f): On input FE.msk and a function f , parse FE.msk as (SCFE.msk1, . . . ,SCFE.msk`f).
For every i ∈ outf , where outf denotes the output length of f , execute SCFE.KeyGen(SCFE.mski, Gf,i)
to obtain SCFE.skG,i, where Gf,i takes as input m and outputs the ith bit of f(m). Output
FE.skf = (SCFE.skG,1, . . . ,SCFE.skG,outf).

FE.Enc(mpk,m): On input public key mpk and message m, first sample a puncturable PRF key
K ∈ {0, 1}λ. Then, executes the encode algorithm RETM .Encode(1

λ,EncFunc, (mpk,K, (m,⊥))),

where EncFunc is as described in Figure 10, to obtain ˜EncFunc. Output FE.ct = ˜EncFunc.

EncFunc

Input: Public key mpk, puncturable PRF key K, message pair (m,m′).

1. Parse the public key mpk as ˜SetupFunc. Run the decode algorithm RETM .Decode on input ˜SetupFunc
to obtain the tuple of public keys (SCFE.mpk1, . . . ,SCFE.mpkoutf).

2. Generate the ciphertexts SCFE.cti by executing SCFE.Enc(SCFE.mpki,m;PRF(K, i)).

3. Output the ciphertext FE.ct = (SCFE.ct1, . . . ,SCFE.ctoutf)

Figure 9

FE.Dec(FE.skf ,FE.ct): On input functional key FE.skf and ciphertext FE.ct, first parse FE.skf as

(SCFE.skG,1, . . . ,SCFE.skG,outf). Then parse FE.ct as ˜EncFunc. First, execute the decode algorithm

RETM .Decode on input (˜EncFunc) to obtain FE.ct = (SCFE.ct1, . . . ,SCFE.ctoutf). Then execute the
decryption algorithm SCFE.Dec on input (SCFE.skG,i,SCFE.cti), for i ∈ [outf], to obtain bi. Output
b1 · · · boutf .

This completes the description of the scheme.

Correctness. The correctness of the above scheme is easy to verify.

Efficiency. We need to argue that the encryption algorithm runs in time polynomial in (λ, |m|),
where m is the message to be encrypted. Here, the polynomial should be chosen even before the
function space is designed. To analyze this quantity, we first look at the public key output by
the setup algorithm. The public key is an encoding of the TM, represented in Figure 8. The size
of this TM is a polynomial in (λ, log(outf)), which is just another polynomial in λ. And hence,
the size of the encoding is also a polynomial in λ. Thus, the size of the public key mpk is a

46

polynomial in λ. We now analyze the running time of the encryption algorithm. It is a polynomial
in (λ, |mpk|, |EncFunc|, |m|), where EncFunc is represented in Figure 10. We have argued that |mpk|
just depends on λ. We further observe that |EncFunc| is a polynomial in (λ, |m|, log(outf)), which
shows that the complexity of the encryption algorithm is a polynomial (λ, |m|).

Theorem 9. If RETM is a secure RE for TMs and SCFE is a semi-compact (q)-secure public-key
FE, then FE is a compact (q)-secure public key FE scheme.

We prove Theorem 9 in Appendix B.

Acknowledgements

The authors thank Amit Sahai for useful discussions.

References

[AAB+13] Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumara-
subramanian, Manoj Prabhakaran, and Amit Sahai. Function private functional en-
cryption and property preserving encryption: New definitions and positive results.
IACR Cryptology ePrint Archive, 2013:744, 2013.

[ABG+13] Prabhanjan Ananth, Dan Boneh, Sanjam Garg, Amit Sahai, and Mark Zhandry.
Differing-inputs obfuscation and applications. IACR Cryptology ePrint Archive,
2013:689, 2013.

[ABSV14] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. The tro-
jan method in functional encryption: From selective to adaptive security, generically.
IACR Cryptology ePrint Archive, 2014:917, 2014.

[AGIS14] Prabhanjan Ananth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing obfus-
cation: Avoiding barrington’s theorem. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 646–658. ACM, 2014.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. Order-
preserving symmetric encryption. In Advances in Cryptology - EUROCRYPT 2009,
28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, pages 224–
241, 2009.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, Theory of Cryptography - 11th Theory of Cryptography Con-
ference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, volume
8349 of Lecture Notes in Computer Science, pages 52–73. Springer, 2014.

47

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings, volume
2139 of Lecture Notes in Computer Science, pages 1–18. Springer, 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography–PKC 2014, pages 501–519. Springer,
2014.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. In Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
pages 221–238, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input functional
encryption without obfuscation. In EUROCRYPT, 2015.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In TCC, pages 1–25, 2014.

[BRS13] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based
encryption: Hiding the function in functional encryption. In Advances in Cryptology
- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II, pages 461–478, 2013.

[BS15] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. In TCC, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

[BWZ14] Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against
zeroizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistin-
guishability obfuscation of iterated circuits and RAM programs. In STOC, 2015.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé.
Cryptanalysis of the multilinear map over the integers. In EUROCRYPT, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology

48

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in Computer
Science, pages 519–535. Springer, 2013.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, pages 476–493, 2013.

[CLT14] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Cryptanalysis of two
candidate fixes of multilinear maps over the integers. IACR Cryptology ePrint Archive,
2014:975, 2014.

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of
probabilistic circuits and applications. In TCC, 2015.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
- EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Pro-
ceedings, volume 8441 of Lecture Notes in Computer Science, pages 578–602. Springer,
2014.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 1–17. Springer, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

[GGHZ14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure functional
encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666, 2014.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Advances in Cryptology - EUROCRYPT 2014

49

- 33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, pages
405–422, 2014.

[GHMS14] Craig Gentry, Shai Halevi, Hemanta K. Maji, and Amit Sahai. Zeroizing without
zeroes: Cryptanalyzing multilinear maps without encodings of zero. IACR Cryptology
ePrint Archive, 2014:929, 2014.

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. IACR Cryptology ePrint Archive, 2014:148, 2014.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
555–564. ACM, 2013.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In STOC, 2015.

[GLSW14] Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. IACR Cryptology
ePrint Archive, 2014:309, 2014.

[GLW14] Craig Gentry, Allison Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In Advances in Cryptology–CRYPTO 2014, pages 426–443.
Springer, 2014.

[Gol09] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, vol-
ume 2. Cambridge university press, 2009.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 162–179, 2012.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st Annual Symposium
on Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo
Beach, California, USA, pages 294–304, 2000.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability ob-
fuscation for turing machines with unbounded memory. In STOC, 2015.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 669–684.
ACM, 2013.

50

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized
functionalities in the private-key setting from minimal assumptions. In TCC, 2015.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Advances in Cryp-
tology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pages 719–734, 2013.

[PR12] Omkant Pandey and Yannis Rouselakis. Property preserving symmetric encryption. In
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April
15-19, 2012. Proceedings, pages 375–391, 2012.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I, pages 500–517, 2014.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM Conference on Computer and Communi-
cations Security, CCS 2010, Chicago, Illinois, USA, October 4-8, 2010, pages 463–472,
2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484.
ACM, 2014.

[Wat14] Brent Waters. A punctured programming approach to adaptively secure functional
encryption. Cryptology ePrint Archive, Report 2014/588, 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

A MiFE Function Privacy Transformation: Proof of Theorem 2

The first hybrid, Hybrid1, corresponds to the real experiment when the challenger uses the challenge
bit 0 to encrypt the messages and generate the functional keys. The last hybrid, Hybrid5, corre-
sponds to the real experiment when the challenger uses the challenge bit 1 to encrypt the messages
and generate the functional keys. We then prove the indistinguishability of Hybridi and Hybridi+1.
This further proves that the hybrids Hybrid1 and Hybrid5 are computationally indistinguishable
which completes the proof.
Hybrid1: This corresponds to the function privacy game of the MiFE scheme, where the challenger
uses bit 0 to encrypt the messages and generate the functional keys.

The challenger first executes FP.Setup(1λ) to obtain FP.msk. It also obtains Sym.K ← Sym.Setup(1λ)

and Sym.K ′ ← Sym.Setup(1λ). Upon receiving a challenge message query of the form (m
(i)
0 ,m

(i)
1),

for all i ∈ [c], the challenger does the following. It encrypts the message m1,0 by executing
FP.Enc(FP.msk, (m1,0,⊥, Sym.K,⊥), 1) and encrypts mi,0, for i ∈ [c] and i 6= 1, by executing

51

FP.Enc(FP.msk,mi,0, i). Further, the challenger on receiving function pair queries of the form
(f0, f1), generates the functional key of f0. The output of the adversary is the output of the hybrid.

Hybrid2: In this hybrid, the challenger computes the symmetric encryption ciphertexts Sym.ct,Sym.ct′

in the functional key to be the encryptions of f0 and f1 respectively, where (f0, f1) is the function
query submitted by the adversary. More formally, the hybrid is described as follows.

Upon receiving a function pair query (f0, f1), the challenger first generates the master se-
cret key by executing FP.Setup(1λ) to obtain FP.msk. Sym.K ← Sym.Setup(1λ) and Sym.K ′ ←
Sym.Setup(1λ). It also obtains Sym.ct← Sym.Enc(Sym.K, f0) and Sym.ct′ ← Sym.Enc(Sym.K, f1).
Finally, the challenger generates the functional key FP.sk∗f , by executing FP.KeyGen(FP.msk, U[Sym.ct,Sym.ct′]),
where U[Sym.ct,Sym.ct′] is as defined in Figure 2. The rest of the hybrid (for instance, handling message
queries) are as in the previous hybrid.

The computational indistinguishability of Hybrid1 and Hybrid2 follows from the security of sym-
metric encryption scheme.

Hybrid3: In this hybrid, the challenge ciphertexts are computed as follows. Upon receiving a

challenge message query of the form
(
(m1,0,m1,1), . . . , (mc,0,mc,1)

)
, the challenger generates the

ciphertexts FP.ct∗i to be the output of FP.Enc(FP.msk, (⊥,m1,1,⊥,Sym.K ′), 1), if i = 1, or to be
the output of FP.Enc(FP.msk,mi,1, i) if i 6= 1. Here, FP.msk, Sym.K and Sym.K ′ are generated as
in the previous hybrid. The rest of the hybrid (for instance, handling function queries) are as in
Hybrid2.

The computational indistinguishability of Hybrid2 and Hybrid3 follows from the adaptive (resp.,
selective security) of the c-ary MiFE scheme.

Hybrid4: In this hybrid, the challenger generates the functional keys as follows. Upon receiving
a function pair query (f0, f1), the challenger first generates the master secret key by executing
FP.Setup(1λ) to obtain FP.msk. Sym.K ← Sym.Setup(1λ) and Sym.K ′ ← Sym.Setup(1λ). It also
obtains Sym.ct ← Sym.Enc(Sym.K, f1) and Sym.ct′ ← Sym.Enc(Sym.K, f1). Finally, the chal-
lenger generates the functional key FP.sk∗f , by executing FP.KeyGen(FP.msk, U[Sym.ct,Sym.ct′]), where
U[Sym.ct,Sym.ct′] is as defined in Figure 2. The rest of the hybrid (for instance, handling message
queries) are as in the previous hybrid.

Note that the only difference between Hybrid2 and Hybrid4 is that in Hybrid4, both Sym.ct
and Sym.ct′ are generated to be the encryptions of the function f1, whereas in Hybrid2, Sym.ct is
generated to be the encryption of f0 and Sym.ct′ is generated to be the encryption of f1.

The computational indistinguishability of Hybrid3 and Hybrid4 follows from the security of the
symmetric encryption scheme.

Hybrid5: This hybrid corresponds to the real function privacy game, where the challenger uses bit
1 to generate the challenge ciphertexts and the functional keys.

The challenger first executes FP.Setup(1λ) to obtain FP.msk. It also obtains Sym.K ← Sym.Setup(1λ)

and Sym.K ′ ← Sym.Setup(1λ). Upon receiving a challenge message query of the form (m
(i)
0 ,m

(i)
1),

for all i ∈ [c], the challenger does the following. It encrypts the message m
(1)
1 by executing

FP.Enc(FP.msk, (m1,1,⊥, Sym.K,⊥), 1) and encrypts m(i), for i ∈ [c] and i 6= 1, by executing

FP.Enc(FP.msk,m
(i)
1 , i). The rest of the hybrid is as in Hybrid4.

The computational indistinguishability of Hybrid4 and Hybrid5 follows from the selective security

52

of the c-ary MiFE scheme.

Further note that if the scheme NFP is (qkey, qmsg, ε)-secure then the resulting FP is (qkey, qmsg,
ε
4)-

secure.

B Proof of Theorem 9

We first describe the hybrids and then informally sketch the proof of the indistinguishability of
hybrids. The first hybrid corresponds to the real experiment where the challenge bit is 0. The last
hybrid corresponds to the real experiment where the challenge bit is 1. To argue indistinguishability,
we use the security of the RE for TMs primitive, (semi-succinct) FE scheme, and the puncturable
PRF scheme.

We formally present the hybrids below.

Hybrid1: This corresponds to the real experiment where the challenge bit 0 is used by the chal-
lenger. That is, upon receiving a message pair query (m0,m1) from the adversary, the challenger
will compose the challenge ciphertext by encrypting the message m0.

Hybrid2: In this hybrid, the challenger upon receiving the message pair query (m0,m1) from the

adversary, composes the challenge ciphertext by executing the encode algorithm RETM .Encode(1
λ,

EncFunc, (mpk,K, (m0,m1))), where EncFunc is as described in Figure 10, to obtain ˜EncFunc.The

challenger then sends the challenge ciphertext FE.ct∗ = ˜EncFunc to the adversary. The rest of the
hybrid is the same as Hybrid1.

The indistinguishability of Hybrid1 and Hybrid2 follows from the security of randomized encod-
ings. This follows from the observation that the output EncFunc(mpk, (m0,⊥)) is the same as the
output EncFunc(mpk, (m0,m1)), because the program EncFunc essentially ignores the message m1.

Before describe Hybrid3, we describe a set of intermediate hybrids, for all j ∈ [outf + 1].

Hybrid2.j.1: In this hybrid, the challenger upon receiving the message pair query (m0,m1), composes

the challenge ciphertext as follows. It executes the encode algorithm RETM .Encode(1
λ,EncFunc[j],

(mpk,K, (m0,m1))), where EncFunc is as described in Figure 12, to obtain ˜EncFunc[j].
The hybrids Hybrid2 and Hybrid2.1.1 are computationally indistinguishable assuming the security

of randomized encodings. This again follows from the observation that the output EncFunc(mpk, (m0,m1))
is the same as the output EncFunc[1](mpk, (m0,m1)).

Hybrid2.j.2: In this hybrid, the challenger upon receiving the message pair query (m0,m1) does the

following. It picks two puncturable keys K1,K2 ∈ {0, 1}λ. It then punctures the key at the point
j. It then samples the key SCFE.Setup(1λ;PRF(K1, j)) to obtain SCFE.mpkj . It further generates
the ciphertext SCFE.ctj by executing SCFE.Enc(SCFE.mpkj ,m0;PRF(K2, j)). It then punctures
both the keys K1 and K2 at the point j to respectively obtain the PRF keys K∗1 and K∗2 . It
then constructs the functions SetupFunc∗[j,SCFE.mpkj] and EncFunc∗[j,SCFE.ctj] as described in
Figure 11 and Figure 12 respectively. The challenger then generates the public key by executing
RETM .Encode(1

λ,SetupFunc∗[j,SCFE.mpkj],K
∗
1) to obtain mpk and then it generates the ciphertext

53

EncFunc[j]

Input: Public key mpk, puncturable PRF key K, message pair (m,m′).

1. Parse the public key mpk as ˜SetupFunc. Run the decode algorithm RETM .Decode on input ˜SetupFunc
to obtain the tuple of public keys (SCFE.mpk1, . . . ,SCFE.mpkoutf).

2. For i = 1 to outf , do the following:

(a) If i < j, generate the ciphertext SCFE.cti by executing SCFE.Enc(SCFE.mpki,m
′;PRF(K, i)).

(b) If i ≥ j, generate the ciphertext SCFE.cti by executing SCFE.Enc(SCFE.mpki,m0;PRF(K, i)).

3. Output the ciphertext FE.ct = (SCFE.ct1, . . . ,SCFE.ctoutf)

Figure 10

by executing the encode algorithm RETM .Encode(1
λ,EncFunc∗[j,SCFE.ctj], (mpk,K∗2 , (m0,m1))) to

obtain FE.ct∗. The challenger then sends both mpk and FE.ct∗ across to the adversary. The rest of
the hybrid is the same as before.

To argue indistinguishability of Hybrid2.j.1 and Hybrid2.j.2, we need to introduce one more inter-

mediate hybrid Hybrid0.52.j.1 which is the same as Hybrid2.j.2 except that the puncturing of the PRF
key is only done for the setup algorithm and the PRF key for the encryption algorithm remains
intact. The indistinguishability of Hybrid2.j.1 and Hybrid0.52.j.1, and similarly, that of Hybrid0.52.j.1 and
Hybrid2.j.2, follows from the security of randomized encodings for Turing machines.

SetupFunc[j,SCFE.mpkj]
∗

Input: punctured PRF key K∗.

1. For i = 1 to outf ; execute SCFE.Setup(1λ) to obtain (SCFE.mpki,SCFE.mski).

2. Output (SCFE.mpk1, . . . ,SCFE.mpkoutf).

Figure 11

Hybrid2.j.3: This hybrid is the same as in the previous hybrid, except that the public key SCFE.mpkj
and the challenge ciphertext FE.ct∗ are computed by using uniformly chosen randomness and not
pseudorandom values as before.

The indistinguishability of Hybrid2.j.2 and Hybrid2.j.3 follows from the security of puncturable
PRFs. However this cannot be directly argued and like before, we need to consider an intermediate
hybrid, where we first compute SCFE.mpkj using uniformly chosen randomness but still compute
FE.ct∗ using pseudorandom values.

Hybrid2.j.4: This hybrid is the same as in the previous hybrid, upon receiving message query of the

form (m0,m1), the challenger does the following. It computes the challenge ciphertext FE.ct∗ to be
a FE.Enc encryption of m1, instead of m0 as in the previous hybrid.

The indistinguishability of Hybrid2.j.3 and Hybrid2.j.4 follows from the semantic security of the

54

EncFunc[j,SCFE.ctj]
∗

Input: Public key mpk, puncture PRF key K∗, message pair (m,m′).

1. Parse the public key mpk as ˜SetupFunc. Run the decode algorithm RETM .Decode on input ˜SetupFunc
to obtain the tuple of public keys (SCFE.mpk1, . . . ,SCFE.mpkoutf).

2. For i = 1 to outf , do the following:

(a) If i < j, generate the ciphertext SCFE.cti by executing SCFE.Enc(SCFE.mpki,m
′;PRF(K, i)).

(b) If i > j, generate the ciphertext SCFE.cti by executing SCFE.Enc(SCFE.mpki,m0;PRF(K, i)).

3. Output the ciphertext FE.ct = (SCFE.ct1, . . . ,SCFE.ctoutf)

Figure 12

semi-succinct functional encryption scheme. This is because, the adversary is only handed over
keys for functions f such that f(m0) = f(m1).

Hybrid2.j.5: This hybrid is the same as in the previous hybrid, except that the public key SCFE.mpkj
and ciphertext FE.ct∗ are computed using pseudorandom values instead of uniformly chosen ran-
domness. That is, upon receiving a message query of the form (m0,m1), the challenger does the
following: it generates SCFE.mpkj to be the output of SCFE.Setup(1λ;PRF(K1, j)) and it generates
SCFE.Enc(SCFE.mpkj ,m1;PRF(K2, j)) to obtain FE.ct∗.

The indistinguishability of Hybrid2.j.4 and Hybrid2.j.5 follows from the security of puncturable
PRFs. As before, this will require one intermediate hybrid where only SCFE.mpkj is switched from
being computed using uniformly chosen randomness to pseudorandomness.

Hybrid2.j.6: In this hybrid, the challenger upon receiving a message query (m0,m1) does the fol-

lowing. It essentially “unpunctures” the values SCFE.mpkj and SCFE.ctj respectively from the
programs SetupFunc∗[j,SCFE.mpkj] and EncFunc∗[j,SCFE.ctj]. That is, the public key mpk will

now be just a execution of RETM .Encode(1
λ,SetupFunc,K1) and FE.ct∗ will now be an execution of

RETM .Encode(1
λ,EncFunc[j+ 1], (mpk,K2, (m0,m1))), where K1 and K2 are punctured PRF keys.

The challenger then sends mpk and FE.ct∗ to the adversary. The rest of the hybrid is the same as
before.

The indistinguishability of Hybrid2.j.5 and Hybrid2.j.6, via an intermediate hybrid, can be argued
using the security of randomized encodings for Turing machines. Further, the hybrids Hybrid2.j.6
and Hybrid2.j+1.1 are identical to each other.

Hybrid3: This hybrid corresponds to the real experiment where the challenger uses the bit 1 to
compute the challenge ciphertexts.

The indistinguishability of Hybrid2.outf+1.1 and Hybrid3 follows from the security of randomized
encodings for Turing machines.

This shows that the output distributions of Hybrid2 and Hybrid3 are computationally indistinguish-
able which proves the security of our construction.

55

C The GVW Transformation: Efficiency Analysis

We recall that the GVW construction [GVW12] transforms a 1-query public key FE scheme into
a qkey-query public-key FE scheme, where qkey is a polynomial in the security parameter. We note
that if the starting scheme is simulation secure then the scheme resulting from the transformation
is also simulation secure. Since simulation security implies indistinguishability security, this yields
us a qkey-query public-key FE scheme w.r.t indistinguishability security assuming the existence of
a 1-query public-key FE scheme that is simulation secure.

However, there is one issue: compactness. We first show, below, that the GVW transformation
is compactness preserving. That is, if we start with a 1-query FE scheme that is compact then
GVW transformation yields us a compact qkey-query FE scheme, where qkey is a polynomial. To
demonstrate this, we show that we can express the runtime of the qkey-query encryption algorithm
BDFE.Enc, resulting from GVW, in terms of the runtime of the 1-query encryption algorithm,
OneQFE.Enc and the number of queries qkey alone. More specifically, the transformation does not
add dependence on the function size to the encryption algorithm.

Suppose the encryption takes as input m. Then,

RunTime(BDFE.Enc, λ, qkey, |m|) = N · RunTime(OneQFE.Enc, λ, |m| × S),

where N = θ(D2q2keyt), S = θ(λq2key), with D being the degree of the circuits representing the

function space of the 1-query public-key FE scheme and t = θ(λq2key).

Thus, it suffices to assume the existence of a simulation-secure compact 1-query FE scheme in the
public key setting in order to obtain a qkey-query FE scheme w.r.t indistinguishability security. We
note that in general, the simulation secure compact FE schemes do not exist (example: adaptive
setting). But since we are only interested in selective security, it is not clear whether the existence
of simulation-secure 1-query FE schemes can be ruled out.

56

	Introduction
	This Work
	Our Techniques

	Preliminaries
	Indistinguishability Obfuscation
	Puncturable Pseudorandom Functions
	Public-Key Functional Encryption
	Compactness

	Secret-Key Multi-Input Functional Encryption

	Function Privacy in MiFE
	Constructing Function Private MiFE

	Our Transformation: From c-ary to (c+1)-ary MiFE
	Security of c+1-ary MiFE
	Proof of Lemma 2

	Multi-Input FE from Single-Input FE
	(Iterated) Construction of MIFEn
	MiFE for Poly-arity Functions from Compact FE
	MiFE for Constant-arity Functions from Standard Assumptions

	Indistinguishability Obfuscation from Compact FE
	Compact FE from RE for Turing Machines
	Randomized Encoding for TMs
	Construction

	MiFE Function Privacy Transformation: Proof of Theorem 2
	Proof of Theorem 9
	The GVW Transformation: Efficiency Analysis

