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This is a short note in supplement to our ObliVM paper [4].

Overview

For problems in iDASH Secure Genome Analysis Competition [1], we implemented them using the
secure computation framework ObliVM [4, 2]. For each question, we provide multiple solutions,
with manually built circuits and automatically built circuits:

1. Task 1a: we provide two solutions, one built manually, one built using compiler. Both of
them achieve exact result with no error.

2. Task 1b: we provide three solutions, two built manually, one built using compiler. The second
manually built circuit can achieve a trade-off between efficiency and accuracy.

3. Tasks 2a and 2b: we provide four solutions, one built manually using oblivious merge, one
built with compiler using oblivious merge, one built manually using bloom filter, and one built
using compiler. The one with bloom filter can be tuned for a trade-off between efficiency and
accuracy.

Detailed instructions on how to run the program can be found in README.md. All the im-
plementations will be open sourced at https://github.com/wangxiao1254/idash_competition

after the deadline of the competition.

Manual vs. compiler-generated code. For optimal speed, please run our manually optimized
code. Our compiler-generated code results in 1% to 2% larger circuit sizes than the manually
optimized code. The difference in actual running time is slightly larger because the compiler
generates longer instruction sequences (in Java) to execute the circuits than our manually optimized
code. Further compiler backend optimizations can be performed to compress our target instruction
sequence – this will be part of our future work.

Nevertheless, we include our compiler-generated implementations to demonstrate the ease-of-use
of ObliVM’s source language.
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1 Task 1: Secure Distributed GWAS

For all tasks, we will briefly repeat the problem statement. For a more detailed description of their
application contexts, we refer the readers to the competition website [1].

Task 1a: Computing Minor Allele Frequencies

Problem statement.
Input for Alice: List of alleles lA = (eA1 , ..., e

A
n ) where each eAi is from {A, T,C,G}.

Input for Bob: List of alleles lB = (eB1 , ..., e
B
n ) where each eBi is from {A, T,C,G}.

The problem is to compute the Minor Allele Frequencies(MAF) over the combined input l =
lA||lB. The definition of MAF is as follows: Let f1 and f2 be the frequency of two types of alleles in
the combined input l (it is guaranteed that only two types of alleles will appear). MAF is defined
to be as min{f1, f2}.

Our solution. The two parties first compute the frequency of two types of alleles of their own
lists and get (fA1 , f

A
2 ) for Alice and (fB1 , f

B
2 ) for Bob, ordered by allele type. Then, over a secure

computation protocol, the two parties first sum up the frequency by

(f1, f2) = (fA1 + fA1 , f
B
2 + fB2 ),

and then report the smaller number between f1 and f2.
The code used for this task is shown in Figure 1.

1 struct Task1aAutomated@m@n{};
2 void Task1aAutomated@m@n.funct(int@m[public n] alice data, int@m[public n] bob data,

3 int@m[public n] ret, public int@m total instances) {
4 int@m total = total instances;

5 int@m half = total instances / 2;

6 for (public int32 i = 0; i < n; i = i + 1) {
7 ret[i] = alice data[i] + bob data[i];

8 if (ret[i] > half)

9 ret[i] = total - ret[i];

10 }
11 }

Figure 1: Code for Task 1a written in ObliVM-lang

Results. For this task, each test case requires only 40 AND gates for both manually generated
circuits and automatically generated circuits.

Task 1b: Computing χ2 statistics

Problem statement.
Input for Alice: two lists of alleles lAcase = (eA1 , ..., e

A
n ), lAcontrol = (e′A1 , ..., e

′A
n ) where each eAi , e

′A
i is

from {A, T,C,G}.
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Input for Bob: two lists of alleles lBcase = (eB1 , ..., e
B
n ), lBcontrol = (e′B1 , ..., e

′B
n ) where each eBi , e

′B
i is

from {A, T,C,G}.

First let us define a, b to be the frequency of two types of alleles in lcase = lAcase||lBcase and let
c, d be the frequency of two types of alleles in lcontrol = lAcontrol||lBcontrol. (it is also guaranteed that
only two types of alleles will appear). The problem is to compute the χ2 statistics over lcase and
lcontrol, defined as:

n× (ad− bc)2

rsgk
,

where r = a+ b, s = c+ d, g = a+ c, k = b+ d, n = r + s;

Our solution. Each party first locally computes the frequency of alleles on their own list:
aA, bA, cA, dA for Alice and aB, bB, cB, dB for Bob. aA, bA are the frequency of two types of alleles in
lAcase and cA, dA are the frequency of two types of alleles in lAcontrol. a

B, bB, cB, dB is defined similarly.
In the secure computation we first compute a = aA + aB, b = bA + bB, c = cA + cB, d = dA + dB,
then we evaluate the equation mentioned above directly using floating point numbers.

The code used for this task is shown in Figure 2.

1 struct Task1bAutomated@n{};
2 float32[public n] Task1bAutomated@n.func(

3 float32[public n][public 3] alice case, float32[public n][public 3] alice control,

4 float32[public n][public 3] bob case, float32[public n][public 3] bob control) {
5 float32[public n] ret;

6 for (public int32 i = 0; i < n; i = i + 1) {
7 float32 a = alice case[i][0] + bob case[i][0];

8 float32 b = alice case[i][1] + bob case[i][1];

9 float32 c = alice control[i][0] + bob control[i][0];

10 float32 d = alice control[i][1] + bob control[i][1];

11 float32 g = a + c, k = b + d;

12 float32 tmp = a*d - b*c;

13 tmp = tmp*tmp;

14 ret[i] = tmp / (g * k);

15 }
16 return ret;

17 }

Figure 2: Code for Task 1b written in ObliVM-lang

Results. Our implementation for this task supports an arbitrary trade-off between precision and
speed. We mention two specific cases here. For each test case, an implementation that requires
7763 AND gates achieves a maximum absolute error of 1.11 × 10−4 and an implementation with
14443 AND gates achieves a maximum absolute error of 5.6× 10−8.
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Algorithm 1 Compute the size of union(d[]: a list of elements)

1: Sort the input array d[] obliviously.
2: cnt = 1
3: for i = 0 : len(d)− 1 do
4: if d[i] 6= d[i+ 1] then
5: cnt = cnt+ 1
6: end if
7: end for
8: return cnt

2 Task 2: Secure comparison between genomic data

2.1 A Building Block: Estimating Set Union Cardinality

Before describing our solution for Task 2, we first present a building block to estimate the size
of union of two sets. Suppose Alice and Bob have sets of elements SA = (eA1 , ..., e

A
n ) and SB =

(eB1 , ..., e
B
n ) respectively. We want to find |SA ∪ SB|. Here, we introduce two algorithms:

Using oblivious merge. A strawman approach of computing cardinality of the union is to use
oblivious sorting, as detailed in Algorithm 1.

Suppose there are totally n elements each of size D bits. This strawman approach involves
an oblivious sorting on the input data, which requires a circuit of size O(Dn log2 n), using bitonic
sorting network [3]. In our implementation, we utilize the local computation: the two parties first
sort their data locally, and then they perform an oblivious merge in secure computation. This
improved approach only requires a circuit of size O(Dn log n). The ObliVM-lang code for this
approach is presented in Figure 3 and Figure 4.

1 struct Task2Automated@m@n{};
2 int@n Task2Automated@m@n.funct(int@m[public n] key) {
3 this.obliviousMerge(key, 0, n);

4 int32 ret = 1;

5 for (public int32 i = 1; i < n; i = i + 1) {
6 if (key[i-1] != key[i])

7 ret = ret + 1;

8 }
9 return ret;

10 }
11 void Task2Automated@m@n.obliviousMerge(int@m[public n] key, public int32 lo, public int32 l) {
12 if (l > 1) {
13 public int32 k = 1;

14 while (k < l) k = k << 1;

Figure 3: Code for oblivious merge written in ObliVM
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15 k = k >> 1;

16 for (public int32 i = lo; i < lo + l - k; i = i + 1)

17 this.compare(key, i, i + k);

18 this.obliviousMerge(key, lo, k);

19 this.obliviousMerge(key, lo + k, l - k);

20 }
21 }
22 void Task2Automated@m@n.compare(int@m[public n] key, public int32 i, public int32 j) {
23 int@m tmp = key[j];

24 int@m tmp2 = key[i];

25 if ( key[i] < key[j] )

26 tmp = key[i];

27 tmp = tmp ∧ key[i];

28 key[i] = tmp ∧ key[j];

29 key[j] = tmp ∧ tmp2;

30 }

Figure 4: Code for oblivious merge written in ObliVM, continued

N M relative error (95% confidence) relative error (99% confidence)

100 to 10000 15000 0.7% to 1.3% 1.5% to 1.7%
1000 to 30000 30000 0.8% to 0.9% 1.1% 1.2%

173851 N 0.40% 0.50%
173851 1.5N 0.31% 0.40%

Table 1: Parameters and accuracy for bloom filter cardinality estimation. N is the
(maximum) number of elements, M is the array size. We choose k = 1 number of hashes in this
table. A relative error of ε with y% confidence means that on a random run giving an estimate N̂
of N , with probability y%, it holds that (N̂ −N)/N < ε.

Using bloom filter. It is known that bloom filters can be used to check the existence of an
element in a set. However, bloom filters can also be used to estimate the capacity of a set. Let
X be the number of bits set, m be the total number of bits used in the bloom filter and k be the
number of hash functions used. Number of elements in the bloom filter can be estimated as

ln(1− X
m)

k ln(1− 1/m)
.

So, in order to compute the union of two sets, each party first builds their own bloom filter locally
using the same set of hash functions. Then, in secure computation, the two parties union the bloom
filter using bitwise OR, and count number of ones in the new bit array (X mentioned above). Note
that after getting X, the remaining part of the computation can be done in cleartext.

The following table gives typical parameter choices (and for values of N given in the example
dataset) and their accuracy guarantees:

The code for this approach is presented in Figure 5.
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1 struct Pair<T1, T2> {
2 T1 left;

3 T2 right;

4 };
5 struct bit {
6 int1 v;

7 };
8 struct Int@n {
9 int@n v;

10 };
11 struct BF circuit{};
12 Pair<bit, Int@n> BF circuit.add@n(int@n x, int@n y) {
13 bit cin;

14 Int@n ret;

15 bit t1, t2;

16 for (public int32 i=0; i<n; i = i+1) {
17 t1.v = x$i$ ∧ cin.v;

18 t2.v = y$i$ ∧ cin.v;

19 ret.v$i$ = x$i$ ∧ t2.v;

20 t1.v = t1.v & t2.v;

21 cin.v = cin.v ∧ t1.v;

22 }
23 return Pair{bit, Int@n}(cin, ret);

24 }
25 int@log(n + 1) BF circuit.countOnes@n(int@n x) {
26 if (n==1) return x;

27 int@log(n− n/2 + 1) first = this.countOnes@(n/2)(x$0~n/2$);

28 int@log(n− n/2 + 1) second = this.countOnes@(n− n/2)(x$n/2~n$);

29 Pair<bit, Int@log(n− n/2)> ret = this.add@log(n− n/2 + 1)(first, second);

30 int@log(n + 1) r = ret.right.v;

31 r$log(n+1)-1$ = ret.left.v;

32 return r;

33 }
34 int@log(n + 1) BF circuit.merge@n(int@n x, int@n y) {
35 int@n tmp;

36 for (public int32 i = 0; i < n; i = i +1 ) {
37 tmp$i$ = x$i$ | y$i$;

38 }
39 return this.countOnes@n(tmp);

40 }

Figure 5: Code for bloom filter approach written in ObliVM
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Failure probability #bits for hashing (N = 8754) #bits for hashing (N = 173851)

2−10 35 44
2−20 45 54
2−30 55 64
2−40 65 74
2−50 75 84
2−60 85 94
2−70 95 104
2−80 105 114

Table 2: Correctness failure probabilities (i.e., hash collision probabilities) for oblivious merge.
Note that even when hash collision happens, we obtain an approximate answer.

2.2 Task 2a, Hamming Distance

Problem statement. In this problem, Alice and Bob each holds a list of records in VCF files,
where each record is of the format (ref, svtype, alt). We want to compute the hamming distance
defined on the competition website [1]:

d = 0;

for all records in the VCF files, which have SVTYPE = SNP or SUB: if given

a chrom and pos, there is only one record in one of the VCF file (e.g., x !=

null), then we set the other record as NULL (e.g., y == null)

if (x == null) || (y == null) || (x.ref == y.ref && x.alt != y.alt)

d += 1;

end for

Our solution. Each party constructs a set containing all the records from their own input: SA

for Alice and SB for Bob. Hamming distance defined above is equivalent to |SA ∪SB| − |SA ∩SB|,
that is the sum of number of elements not shared by two parties. Note that |SA∪SB|−|SA∩SB| =
2 × |SA ∪ SB| − |SA| − |SB|. So we can use the aforementioned algorithms to compute hamming
distance.

Note that in order to do oblivious merge, each record has to be of the same bitlength. Instead
of padding every record to the maximum possible length, we hash each record to a fixed length bit
string. In the code, we hash it to 64-bit numbers, which gives a failure probability of 2−31. The
collision failure probabilities and the corresponding number of bits in the hash function is shown
in Table 2.

2.3 Task 2b, Edit Distance

Problem statement. In this problem, Alice and Bob each hold a list of records in VCF files,
where each record is of the format (ref, svtype, alt). We want to compute the edit distance defined
on the competition website [1]:
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d = 0;

for all records x,y at the same locus in the VCF files:

1. if x == y, continue;

2. if x != y, d += max(D(x), D(y))

end for

where D(x):

if x.svtype == snp, D(x) = 1

if x.svtype == sub, D(x) = len(x)

if x.svtype == ins, D(x) = len(x)

if x.svtype == del, D(x) = len(x)

Our solution. We first compute d1 defined as follows:

d1 = 0;

for every position in VCF files:

if there are two records x, y with same ref,

d1 += max(D(x), D(y))

else if there is only one record at a position,

d1+=D(x)

In order to compute d1, each party constructs a new set as follows: for every record (ref, svtype, alt),
each party inserts (ref, i), i ∈ [1, len(alt)] to a new set and get set SA

1 , S
B
1 for Alice and Bob. Then

we compute d1 = |SA
1 ∪ SB

1 |.
Then we compute d2 defined as follows:

d2 = 0;

for every position in VCF files:

if there are two records x, y at the same position and they are same,

d2 += D(x)

In order to compute d1, each party constructs a new set as follows: for every record (ref, svtype, alt),
each party inserts (ref, svtype, alt, i), i ∈ [1, len(alt)] to a new set and get set SA

2 , S
B
2 for Alice and

Bob. Then we compute d2 = |SA
2 ∪ SB

2 |.
The final result can be computed by d = d2 - d1.
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Supplemental Information

A ObliVM Overview

ObliVM is a programming framework for secure computation, offering the following features:

• Ease-of-use. Non-specialist programmers can easily write programs in our source language
ObliVM-lang, a familiar imperative-style language.

• Efficiency. ObliVM compiles these programs into concise circuit representations suitable
for secure computation. Much as MapReduce is a programming paradigm for parallel com-
putation, ObliVM offers user- and compiler- friendly programming abstractions for secure
computation.

• Formal security. ObliVM offers a security type system to ensure that programs supplied
by nonspecialist developers will be executed securely without leaking information. At a high
level, the security type system guarantees that a program’s execution traces is oblivious to
secret inputs.

Capabilities of ObliVM. ObliVM supports richer and much more sophisticated applications than
the challenges given in this competition. We have developed a variety of demo applications in
machine learning, streaming algorithms, graph algorithms, common data structures, and common
utilities. Using ObliVM, we have demonstrated queries on GB databases where we can compute the
answers in a reasonable amount of time.

For more information about ObliVM and additional resources, please refer to our whitepaper

http://oblivm.com/oblivm.pdf (to appear shortly)

and our website

http://oblivm.com

B Thank You and Suggestions to the Organizers

We think this competition is such a fantastic idea. It definitely helps to bridge communities, and
helps state-of-the-art secure computation technology find its way in high-impact application do-
mains. We are grateful to the organizers for organizing this competition, and for detailed discussions
and feedback throughout.

We really hope that more competitions like this will be held in the future. If a competition
like this is to be repeated, we urge that the organizers increase the difficulty of the challenges —
e.g., consider much more sophisticated tasks and bigger data sizes. We feel that the simple and
small-scale nature of the problems in this competition is insufficient to fully demonstrate the true
power of state-of-the-art secure computation frameworks such as ObliVM.
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