
SCA Resistance Analysis of MAC-PHOTON

N. Nalla Anandakumar

Hardware Security Research Group,
Society for Electronic Transactions and Security, India

nallananth@gmail.com

Abstract. PHOTON is a lightweight hash function which was proposed
by Guo et al. in CRYPTO 2011 for low-resource ubiquitous computing
devices such as RFID tags, wireless sensor nodes and smart cards. In
this paper, we analyze Side-Channel Attack (SCA) resistance of FPGA
(Field-Programmable Gate Array) implementations of the PHOTON, when
it is used with a secret key to generate a Message Authentication Code
(MAC). First, we describe three architectures of the MAC-PHOTON based
on the concepts of iterative, folding and unrolling, and we provide their
performance results on the Xilinx Virtex-5 FPGAs. Second, we analysed
security of the MAC-PHOTON against side-channel attack using a SASEBO-
GII development board.

Keywords: SCA, Lightweight Cryptography, Sponge functions, MAC,
PHOTON.

1 Introduction

Hash functions are one of the most important and invaluable primitives in mod-
ern cryptography. Recently, Bertoni et al. [6] proposed a new way of building
hash functions from a fixed permutation which is called sponge functions. A
sponge function H is a one-way function that converts arbitrary-length mes-
sage M into variable-length hash code H(M) (or digest). They can be used
in many applications such as hashing, pseudo-random sequence generation, key
derivation and stream cipher encryption. In practice, cryptographic sponge based
hash functions are very useful for constructing Message Authentication Codes
(MACs) [5]. A MAC algorithm accepts as input a secret key K and a message M
of arbitrary-length and produces a short-tag as output. The purpose of a MAC
is to authenticate both the source of a message and its integrity without the use
of any additional mechanisms.

More recently, a sponge based hash function called PHOTON [14] has been
proposed, especially for lightweight security devices as it requires few resources.
The design structure of PHOTON has an AES like internal permutation which is
especially derived for hardware. In this study, we have implemented the MAC
construction based on PHOTON algorithm on FPGA. As it is attractive for im-
plementing cryptographic algorithms in terms of cost, time-to-market and their
flexibility when compared with ASIC. The proposed construction is suited for

the lightweight cryptographic applications such as FPGA-based RFID tags [13],
FPGA-based wireless sensor nodes [12, 22].

This work deals with security of the FPGA implementation which targets
the MAC construction based on PHOTON hash function against side-channel anal-
ysis such as correlation power analysis (CPA) [10]. In a side-channel attack, an
adversary may attempt to exploit the secret information which is leaking from
a physical implementation, rather than brute force or theoretical weaknesses in
the algorithms. In the MAC-PHOTON construction, obtaining the full secret infor-
mation or even partial disclosure of secret information can lead to a forgery of
the MAC for arbitrary messages. To the best of our knowledge, this is the first
security analysis of the MAC-PHOTON security against first-order CPA attacks.

Recently, Susana et al. [11] presented an analysis of side channel resistance
of HMAC [2] based on fully serialized implementation of PHOTON [14] hash func-
tions. They make strong assumptions on the target implementation to discover
the state information, and they used same key variant for HMAC prefix-suffix
construction. They also mentioned that their implementation is not suitable for
high-speed resource constrained devices. In order to cover this lack, all our pro-
posed implementations of MAC based on the PHOTON hash function are given in
this work which are suited for high-speed, resource constrained devices.

In this paper, we also presents an analysis of side channel resistance of
the sponge based MAC construction for three architectures (iterative, folding
and unrolling) of PHOTON functions. To our knowledge, these are the first non-
serialised implementations of MAC-PHOTON. Moreover, our MAC-PHOTON implemen-
tations achieve better efficiency and provide better security compared to Susana
et al. [11].

Our contributions. The primary goal of this work is to provide a deeper
analysis of the SCA resistance of the sponge based MAC construction that uses
either iterative or folding or unrolling based architecture of PHOTON hash function.
Our contributions are summarized as follows:

1. Our first contribution is to present the iterative, folding and unrolling archi-
tectures of the MAC-PHOTON, and to provide their performance results on the
Xilinx Virtex-5 FPGAs. Our three implementations yield the best through-
put per area ratio when compared with existing FPGA implementation of
HMAC-PHOTON [11].

2. Our second contribution is to present the security analysis of the iterative,
folding and unrolling architectures of the MAC-PHOTON against first-order CPA
attack. As a result, the iterative, folding and unrolling architectures have
resistance against side channel attack up to 10000, 8000, 30000 messages,
respectively.

The rest of this paper is organised as follows. First we provide the several pre-
liminaries on PHOTON, SCA and MAC calculation in Section 2. In Section 3 we
present the hardware architecture of the MAC-PHOTON structure and implementa-
tion results for Xilinx FPGAs. In Section 4 we describe a CPA attack strategy

to analyze its resistance against side-channel attacks. We then furnish its exper-
imental results. The paper concludes in Section 5.

2 Technical Background

In this section, we introduce a brief description of the PHOTON hashing algo-
rithm, followed by an overview of the MAC-PHOTON constructions and also give an
overview of the side channel analysis.

2.1 PHOTON Description

PHOTON is a cryptographic hash function based on the sponge construction with
arbitrary-length input and variable-length output. Each PHOTON hash function is
denoted by PHOTON-n/r/r′, where its input bitrate r, its output bitrate r′, and
its hash output size n. There are five hash function in the PHOTON family: PHOTON-
80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32, and PHOTON-
256/32/32. The size of the internal state (t bits, t = c + r; r input bitrate and
c capacity) depends on the hash output size.

The PHOTON algorithm essentially consists of three phases: initialization phase,
absorption phase and squeezing phase. PHOTON starts with the initialization
phase, where the message is padded and split the message into r-bit chunks.
During the absorption phase, iteratively processes all the r-bit message chunks
by XORing them to the bitrate part of the internal state and then applying the
t-bit permutation P. Once all message chunks have been handled the squeezing
phase starts. During this phase, the extracting r′ bits from the bitrate part of
the internal state and then applying the permutation P on it. The squeezing
process continues until the proper digest size n is reached.

The PHOTON internal permutation P is also AES-like permutations. It also
consists of 12 rounds, each round is composed as the application of the following
four operations:

• AddConstants (AC): first column of the internal state is bitwise XORed with
round and internal constants;

• SubCells (SC): the PRESENT S-box [8] is applied to the internal state;

• ShiftRows (SR): cell row i of the internal state is cyclically shifted by i
positions to the left;

• MixColumnsSerial (MCS): each cell column of the internal state is trans-
formed by multiplying it once with MDS matrix (A)d (or d times with matrix
A).

We focus on PHOTON-80/20/16 in our analysis, because it is the lightest and
the simplest version of the family. It presents an internal state of (5 × 5) cells
and each cell represents a 4-bit nibble. The PHOTON-80/20/16 MDS matrix (A)5

is defined as follows:

A =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 2 9 9 2

 ; (A)5 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 2 9 9 2


5

=


1 2 9 9 2
2 5 3 8 13
13 11 10 12 1
1 15 2 3 14
14 14 8 5 12


2.2 The MAC Construction

For sponge construction, the output is only a small part of the squeezing phase
and hence it is protected from length extension weakness which is mentioned
in [5, 7, 14]. Thus, the HMAC nested construction does not require for sponge
based constructions [4, 5, 7, 14, 23]. Indeed, we simply prepend the key to the
message and then we apply the sponge construction to generate a MAC as recom-
mended by PHOTON [14] designers.

MAC(M,K) = H(K||M) (1)

We will denote the MAC algorithm that uses PHOTON-80/20/16 to instantiate H
by the term “MAC-PHOTON-80/20/16”. We give in Figure 1 the construction of the
sponge based MAC-PHOTON-80/20/16. In the first step, the t-bit internal state Ai is
initialized to initial vector A0 = IV . Then, the secret key and the input message
is split into blocks of r-bits each, which are denoted by key K = (k0, k1, ..., kn−1)
and message M = (m0,m1, ...,mn−1) respectively. The absorbing phase, the r-
bit input blocks are XORed with r leftmost bits of the state, then interleaved
with the permutation function P . During this phase, the key blocks are processed
first and then the message blocks are processed. Once all key and message blocks
have been absorbed, the squeezing phase begins.

Fig. 1. The block diagram of the sponge based MAC-PHOTON-80/20/16 construction

In the squeezing phase, the first r′-bits of the state are returned as output
blocks zi from the internal state, and then interleaved with the permutation
function P . The squeezing process continues until the proper MAC (z0||...||zn−1)
size is reached. In the above MAC construction, obtaining the actual secret key
(K), or recovering the internal state Ai would be enough to forge the MAC for
arbitrary messages.

2.3 Side Channel Analysis

Side channel attacks have become an important field of cryptographic research.
It is a class of attack that exploits information leaking from physical implemen-
tation of cryptosystems. Differential Power Analysis (DPA) [16] and Correlation
Power Analysis (CPA) [10] are most common forms of the side channel analysis.
DPA exploits the relationship between power consumptions and data generated
during execution. CPA is a more advanced DPA technique. In this type of at-
tack, the secret key can be derived by using the Pearson’s correlation coefficient
to correlate the recorded power consumption (so often power trace) with the
hypothetical power consumption model. The hypothetical power consumption
model is computed by using a Hamming Distance (HD) model [10]. The HD
represents the number of bit-flips between two clock cycles. Side channel attack
on MAC based on several hash functions was studied in [21], [9] and [24]. In this
paper, we demonstrate CPA on MAC-PHOTON-80/20/16.

3 FPGA implementation of the MAC-PHOTON-80/20/16

In this section, we present three FPGA implementations of the MAC-PHOTON
based on the concepts of iterative, folding and unrolling, and to provide their
performance results on the Xilinx Virtex-5 FPGAs.

In order to demonstrate the security of the MAC-PHOTON-80/20/16 construc-
tion against CPA attacks, we implemented the MAC-PHOTON-80/20/16 in Ver-
ilogHDL and targeted on a SASEBO-GII Board [19], which contains the Xil-
inx Virtex-5 (xc5vlx50-1ffg324) cryptographic FPGA. We used Mentor Graphics
ModelSimPE for simulation purposes and Xilinx ISE v13.4 for synthesizing and
implementation purposes. In addition, we describe the communication flow of
the modified SASEBO-GII interface in Appendix A. For MAC-PHOTON-80/20/16
analysis, we have selected 256 bits (260 bits with required padding) message
length and 60 bits key length. A 60-bit key provides security for up to 30,000
messages per key [14]. For higher key length, the higher versions of the PHOTON

hash core must be replaced as recommended by PHOTON [14]. We give in Table 2
the detailed results of the iterative, folding and unrolling based implementations
of the MAC-PHOTON. The iterative architecture computes one round of inter-
nal permutation P per clock cycle, while the folding architecture computes one
round of internal permutation P per 2 clock cycles. In the unrolling architecture
performing operations on all rounds (12 rounds) of internal permutation P per
clock cycle.

 Key (K)

 k0 k1 k2

 Message (M)

 m0 mn

 MAC

z0 z1 z2 z3 z4

r’ r r’ r’ r’ r’

P

P

P

P

P

absorbing squeezing

c bits

 r bits

r r r r

P

P

P

P

IV

A0 A1 A2 A3 A 4

P
X00 X01 X02 X03 X04

X10 X11 X12 X13 X14

X20 X21 X22 X23 X24

X30 X31 X32 X33 X34

X40 X41 X42 X43 X44

 A3

t

P

Treg t

AC

Treg

t

r
 A3

r

m0

c

t r
 A3

r

m0

c

t

i. Iterative

t

P

AC

SC

SR

MCS

Treg

t

t

r
r

m0

c

t

 Mux

 Mux

t

t

ii. Folding iii. Unrolling

 A 4

 A 4

 A 4

SC

SR

MCS

 Mux

SC

SR

MCS

AC

1
st ro

u
n

d

SC

SR

MCS

AC

1
2

th ro
u

n
d

Fig. 2. The block diagram of the iterative, folding, unrolling implementations of the
MAC-PHOTON-80/20/16

Table 1. Performance Results of the MAC-PHOTON-80/20/16 on Virtex-5-xc5vlx50.

Max. Total Number of

Design Area LUTs FFs freq Clock Cycles (cycles) T.put T.put/Area

(slices) (MHz) internal whole hash (Mbps) (Mbps/slices)

permutation P function H

iterative 302 508 415 172.7 12 240 287.83 .95

folding 251 505 416 205.7 24 480 171.42 .68

unrolling 1066 3065 411 25.43 1 20 508.6 0.48

HMAC-PHOTON-80 [11] 199 — — 114 59 17,700 38.64 0.19

Iterative: The main goal of the design is moderate throughput and area re-
quirements. We give in Figure 2 the block diagram of the basic iterative (denoted
(i) in Figure 2) FPGA implementation of MAC-PHOTON-80/20/16. Initially, the key

value and input message value split into blocks of r-bits (20-bit). In absorbing
phase, first 3 key blocks are processed, after that 13 message blocks are processed,
where each block consists of 12 rounds. The data register Treg is updated on
every round after processing AC, SC, SR, and MCS operations in one clock
cycle. Hence, it requires 192 clock cycles to process 16 blocks (where, 36 clock
cycles for 3 key blocks and 156 clock cycles for 13 message blocks). In squeez-
ing phase, r′-bit (16-bit) of 5 output blocks are extracted from the internal state
which requires 48 clock cycles. Therefore, 240 clock cycles are required in order to
complete both phases. We obtain 302 slices, while the throughput reaches 287.83
Mbps. In Table 1, One can see that our proposed iterative MAC-PHOTON imple-
mentation outperform the fully serialized design HMAC-PHOTON-80/20/16 [11]
in terms of throughput per area ratio.

Folding: The main goal of the design is reasonable throughput and better area
requirements. In Figure 2, horizontal folding by a factor of two is demonstrated
(denoted (ii) in Figure 2). In this architecture, a half of a round is implemented
as combinational logic, and the entire round is executed using 2 clock cycles. The
data register Treg is updated on every half of a round (either after processing
AC, and SC operations or after processing SR, and MCS operations in one clock
cycle). The datapath width and state size are stays the same as in the basic
iterative architecture. Hence, 384 clock cycles are required to process 16 blocks
in absorbing phase and 96 clock cycles are required to process 5 output blocks
in squeezing phase. Therefore, 480 clock cycles are required in order to complete
both the phases. We obtain 251 slices, while the throughput reaches 171.42 Mbps.
As seen from the Table 1, our folding based MAC-PHOTON implementation yield
the better throughput per area ratio than HMAC-PHOTON-80/20/16 [11].

Unrolling: The main goal of the design is on high throughput and not on
low area requirements. We give in Figure 2 the block diagram of the unrolling
(denoted (iii) in Figure 2) FPGA implementation of MAC-PHOTON-80/20/16. The
combinational logic of a round is replicated, so now 12 rounds are performed per
clock cycle. Thus, the data register Treg is updated when once the each internal
permutation P is computed. Hence, it requires 16 clock cycles to process 16
blocks in absorbing phase and 4 clock cycles are required to process 5 output
blocks in squeezing phase. Therefore, 20 clock cycles are required in order to
complete both the phases. We obtain 1,066 slices, while the throughput reaches
508.6 Mbps. As seen from the Table 1, our work yield the better throughput per
area ratio than HMAC-PHOTON-80/20/16 [11].

4 Side channel attack Resistance of MAC-PHOTON-80/20/16

In this section, we present a DPA attack strategy to analyze the security of
MAC-PHOTON against side-channel attack using our communication interface (see
in Appendix A) on a SASEBO-GII development board, especially CPA with
Hamming Distance model and we furnish experimental results of it.

4.1 Attacking MAC-PHOTON-80/20/16

The attacker needs either to recover the actual secret key K (see Table 2) or the
internal state Ai (t = 100 bits; r = 20 bits and c = 80 bits) to forge MACs for
arbitrary messages. In the MAC-PHOTON-80/20/16 construction (see Figure 2), K
only affects the internal state values A1, A2, A3 before the message is inserted
and also these internal state values are fixed and unknown. In order to perform a
CPA attack, we require fixed unknown data to be combined with variable known
data. This criterion is fulfilled, when the known and variable m is combined with
the secret internal state A3 (combined nibbles are represented as gray cells in
Figure 3). This internal state value A3 (see Table 2) does not change if K is
fixed for any message m. In summary, the goal of our attack is to recover the
secret internal state A3 (marked as red in Figure 2) before the message digesting
phase.

Table 2. Secret values

Secret Key (K) FA4B7 5A4BC 9AB8C

Secret internal state value (A3) 8F4D6 0112A ABADC D0FF7 14971

One can see that the incoming message block M is processed through the P
permutation. First, the permutation P takes as r-bit leftmost of the incoming
internal state A3 is XORed with r-bit known incoming first message block and
storing the result in the first row (denoted m0i in Figure 3) of the matrix rep-
resenting the internal state, while the four other rows (denoted xij in Figure 3)
are filled with the remaining c-bits of the incoming internal state A3. Second,
AddConstants (denoted ci in Figure 3) are XORed to the first column of the
internal state, then the SC and SR operations are performed (denoted sij in
Figure 3). Finally, the MCS operation is performed (denoted zij in Figure 3).

 SR AC

s00 s01 s02 s03 s04

s10 s11 s12 s13 s14

s20 s21 s22 s23 s24

s30 s31 s32 s33 s34

s40 s41 s42 s43 s44

A4

c0+m00+x00 m01+x01 m02+x02 m03+x03 m04+x04

c1 x10 x11 x12 x13 x14

c2 x20 x21 x22 x23 x24

c3 x30 x31 x32 x33 x34

c4 x40 x41 x42 x43 x44

MCS

s00 s01 s02 s03 s04

s11 s12 s13 s14 s10

s22 s23 s24 s20 s21

s33 s34 s30 s31 s32

s44 s40 s41 s42 s43

z00 z01 z02 z03 z04

z10 z11 z12 z13 z14

z20 z21 z22 z23 z24

z30 z31 z32 z33 z34

z40 z41 z42 z43 z44

SC

Fig. 3. One round of the internal permutation P of MAC-PHOTON-80/20/16.

Iterative: In the iterative architecture, we recover the incoming internal secret
data (A3) by correlating the power traces with a hypothetical model at a point
of first round MCS state output during the A4 permutation. In Figure 3, we
can see that known and internal secret data (2-5 rows) are mixed after MCS
operation is performed, where each column will depend on one known value and

five unknown secret values. Overall, at the end of the first round, the first column
(zi0) on the output can be written as in the following matrix

z00
z10
z20
z30
z40

 =


1 2 9 9 2

2 5 3 8 13

13 11 10 12 1

1 15 2 3 14

14 14 8 5 12




s00
s11
s22
s33
s44


If we look at the first output nibble z00, it is given by

z00 = 01 · s00 ⊕ 02 · s11 ⊕ 09 · s22 ⊕ 09 · s33 ⊕ 02 · s44
If we focus on the first round, we can substitute s00, s11, s22, s33 and s44

with SC(x00 ⊕ m00 ⊕ c0), SC(x11), SC(x22), SC(x33) and SC(x44). The output
nibble z00 can then be written as

z00 = 01 · SC(x00 ⊕m00 ⊕ c0) + q00; q00 ∈ [0, ..., 15] (2)

where, known constant c0 is 1; unknown constant q00 can write as follows:
q00 = 02 · SC(x11) + 09 · SC(x22) + 09 · SC(x33) + 02 · SC(x44)

From equation 2, we observe that m00 is variable and known, whereas x00 is
fixed and unknown. q00 is also fixed and unknown constant. Therefore, a CPA at-
tack can be launched by making hypotheses about the unknown values x00, and
computing the corresponding values of the current state z00 (where, hypotheses
for q00 is ignored because it is not related to m00). Hence, 24 hypotheses for x00
are required. Using the Hamming Distance (HD) model, the 24 possibilities for
the previous state x00 (A3), must also be taken into account. In our case same
24 hypotheses for the x00 are used in both the states. Therefore, the attacker
correlates the power traces with the 24 hypotheses for HD(x00, z00). This allows
the attacker to recover x00, and then calculate z00 for any message m. By fol-
lowing the above strategy, the attacker can recover the remaining bitrates part
of the internal state.

Folding: For folding architecture, we divide the attack in two phases. In the first
one, we recover the bitrates part (first row in Figure 3) of the incoming internal
secret data (A3) by correlating the power traces with a hypothetical model at a
point of first round SC state output during the A4 permutation. Once recovering
the bitrates part, we recover the left part of the incoming internal secret data by
correlating the power traces with a hypothetical model at a point in output of
the second round SC state operation during the A4 permutation. The SC state
is denoted by (sij) for first round and by s..ij for second round, respectively.

sij = SC(xij ⊕mij ⊕ 1) (3)

s..ij = SC(zij ⊕ 3) (4)

where zij value is obtained from equation 2
Focusing on equation 3, the attacker correlates the power traces with the

24 hypotheses HD(xij , sij) for each nibble to recover the bitrates part. Using
equation 4, the attacker can launch a CPA attack on s..ij by forming hypotheses
HD(zij , s

..
ij) to recover the remaining state values of A3.

Unrolling: In the unrolling architecture, the data register Treg is updated
when only after processing every internal permutation P and the attacker can
launch a CPA attack at a point of last round MCS state output during the A4

permutation by forming hypotheses HD(A3, A4) to recover the state values of
A3. In this way, hypothesis test involves too many hypothesis for A4 state which
is derived from A3 state. Therefore, an attacker correlating the power traces
with the following two hypothetical model approaches to recovers the internal
state values of A3. First one is computed similarly as iterative architecture, while
second is computed similarly as folding architecture.

4.2 Experimental Results

In order to obtain CPA power traces from the design, the targeted FPGA was
configured with the MAC-PHOTON-80/20/16 circuit through Parallel JTAG Ca-
ble. A USB cable to supply power to the SASEBO-GII board and to act as
an interface between the board and the host PC. In all the experiments the
clock signal is provided by a 24MHz oscillator which is divided by 3 using a
frequency divider, i.e., the targeted FPGA is clocked at a frequency of 8MHz.
Measurements are performed using an Agilent MSO7104B 1GHz oscilloscope at
a sampling rate of 4GS/s and by means of a SMA-BNC cable which captures
the voltage drop over an 1Ω shunt resistor inserted into the 1V VCORE (J2)
line of the targeted FPGA. Therefore, the traces recorded on the oscilloscope
were proportional to the power consumption of the FPGA during the execution
of the MAC-PHOTON-80/20/16 algorithm.

Iterative: In the iterative architecture, using the previously defined set-up and
hypothetical model approaches, a total of 10,000 input random messages and
4,000 points per trace were required to obtain a successful DPA attack, which
recovers that conform the secret internal state A3 of the MAC-PHOTON. Figure 4
shows the result of iterative MAC-PHOTON-80/20/16 against CPA analysis. The
correct first nibble of intermediate state A3 value is 8 (Matlab array index value
minus one) shows up clearly after around 10,000 traces.

Folding: In the folding architecture, using the previously defined set-up and
hypothetical model approaches, a total of 8,000 input random messages and
4,000 points per trace were required to obtain a successful DPA attack, which
recovers that conform the secret internal state A3 of the MAC-PHOTON. Figure 5
shows the result of folding based MAC-PHOTON-80/20/16 against CPA analysis.

Fig. 4. Correlation Co-efficient plot for
Side-channel attack (number of mea-
surements = 10,000) on iterative based
MAC-PHOTON implementation

Fig. 5. Correlation Co-efficient plot for
Side-channel attack (number of mea-
surements = 8,000) on folding based
MAC-PHOTON implementation

The correct first nibble of intermediate state A3 value is 8 (Matlab array index
value minus one) shows up clearly after around 8,000 traces.

Unrolling: Using the previously defined set-up and hypothetical model ap-
proaches, we performed CPA attacks on the unrolling implementation of MAC-
PHOTON with 30,000 power traces. In the unrolling MAC-PHOTON-80/20/16 analy-
sis, without any surprise, we could not reveal correct value of the intermediate
state A3 for our two hypothetical approaches. Hence, our unrolling MAC-PHOTON-
80/20/16 design resist against correlation power analysis on Hamming distance
model.

5 Conclusion

In this paper, we presented an analysis of SCA resistance of PHOTON hash algo-
rithm in MAC construction. The implemented MAC-PHOTON-80/20/16 features are
more efficient for processing short messages when compared to HMAC construc-
tion. Our results show that MAC-PHOTON construction seems to be very well suited
for lightweight applications (even high-speed) when compared to construction of
adhoc designed protocols and HMAC designed based protocols. MAC security
resistance against first-order CPA attacks has been tested. Without compro-
mising the system security, our results show that without any protection and
key refreshment, it is possible to interchange up to 10000, 8000, 30000 mes-
sages for iterative, folding and unrolling implementations, respectively. Future
work we will improve the security of the iterative, folding based implementations
of MAC-PHOTON with effective countermeasures [3, 18, 20], and test their security
thoroughly.

References

1. FT2232D DUAL USB TO SERIAL UART/FIFO IC Datasheet, 2010, Available
at:. 2nd ed., Future Technology Devices International Ltd.

2. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

3. Guido Bertoni, Joan Daemen, Nicolas Debande, Thanh-Ha Le, Michael Peeters,
and Gilles Van Assche. Power analysis of hardware implementations protected
with secret sharing. In 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2012, Workshops Proceedings, Vancouver, BC, Canada,
December 1-5, 2012, pages 9–16. IEEE Computer Society, 2012.

4. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Duplexing
the Sponge: Single-Pass Authenticated Encryption and Other Applications. In Ali
Miri and Serge Vaudenay, editors, Selected Areas in Cryptography, volume 7118 of
Lecture Notes in Computer Science, pages 320–337. Springer, 2011.

5. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the
security of the keyed sponge construction. In G. Leander and S.S. Thomsen editors,
SKEW, 2011.

6. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Cryp-
tographic sponge functions, 2011, Available at:. http://sponge.noekeon.org/

CSF-0.1.pdf.

7. Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. The Keccak
sponge function family, 2011, Available at:. http://keccak.noekeon.org/.

8. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science,
pages 450–466. Springer, 2007.

9. Christina Boura, Sylvain Lévêque, and David Vigilant. Side-Channel Analysis of
Grøstl and Skein. In IEEE Symposium on Security and Privacy Workshops, pages
16–26. IEEE Computer Society, 2012.

10. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In Marc Joye and Jean-Jacques Quisquater, editors, CHES,
volume 3156 of Lecture Notes in Computer Science, pages 16–29. Springer, 2004.

11. Susana Eiroa and Iluminada Baturone. FPGA implementation and DPA resistance
analysis of a lightweight HMAC construction based on photon hash family. In FPL,
pages 1–4. IEEE, 2013.

12. Andreas Engel, Björn Liebig, and Andreas Koch. Feasibility Analysis of Reconfig-
urable Computing in Low-Power Wireless Sensor Applications. In Andreas Koch,
Ram Krishnamurthy, John McAllister, Roger Woods, and Tarek A. El-Ghazawi,
editors, ARC, volume 6578 of Lecture Notes in Computer Science, pages 261–268.
Springer, 2011.

13. Martin Feldhofer, Manfred Josef Aigner, Thomas Baier, Michael Hutter, Thomas
Plos, and Erich Wenger. Semi-passive RFID development platform for implement-
ing and attacking security tags. In ICITST, pages 1–6. IEEE, 2010.

14. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of
Lightweight Hash Functions. In Advances in Cryptology–CRYPTO 2011, pages
222–239. Springer, 2011.

15. Kazuyuki Kobayashi, Jun Ikegami, Kazuo Sakiyama, Kazuo Ohta, Miroslav Kneze-
vic, Ünal Koçabas, Junfeng Fan, Ingrid Verbauwhede, Eric Xu Guo, Shin’ichiro
Matsuo, Sinan Huang, Leyla Nazhandali, and Akashi Satoh. Prototyping Plat-
form for Performance Evaluation of SHA-3 Candidates. In Jim Plusquellic and
Ken Mai, editors, HOST, pages 60–63. IEEE Computer Society, 2010.

16. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

17. Future Technology Devices International Ltd. CodeExamples, Available at:. http:
//www.ftdichip.com/Support/SoftwareExamples/CodeExamples/CSharp.htm.

18. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware implementa-
tion of nonlinear functions in the presence of glitches. J. Cryptology, 24(2):292–321,
2011.

19. National Institute of Advanced Industrial Science Technology (AIST). Side-channel
Attack Standard Evaluation Board SASEBO-GII specification, 2009, Available at:.
http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-ja.html.

20. Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-Channel Resistant Crypto for Less than 2,300 GE.
Journal of Cryptology, 24(2):322–345, 2011.

21. Mostafa M. I. Taha and Patrick Schaumont. Side-Channel Analysis of MAC-
Keccak. In HOST, pages 125–130. IEEE, 2013.

22. Tim Tuan, Arif Rahman, Satyaki Das, Steven Trimberger, and Sean Kao. A 90-
nm Low-Power FPGA for Battery-Powered Applications. IEEE Trans. on CAD
of Integrated Circuits and Systems, 26(2):296–300, 2007.

23. Tolga Yalçin and Elif Bilge Kavun. On the Implementation Aspects of Sponge-
Based Authenticated Encryption for Pervasive Devices. In Stefan Mangard, edi-
tor, CARDIS, volume 7771 of Lecture Notes in Computer Science, pages 141–157.
Springer, 2012.

24. Michael Zohner, Michael Kasper, Marc Stöttinger, and Sorin A. Huss. Side channel
analysis of the SHA-3 finalists. In Wolfgang Rosenstiel and Lothar Thiele, editors,
DATE, pages 1012–1017. IEEE, 2012.

A Our Communication Interface for SASEBO-GII

Our communication interface for SASEBO-GII [19] is derived from the work
proposed in [15] with slight modifications which is suitable and customisable
for cryptographic primitives. Our entire interface control logic was implemented
based on a finite-state machine and also provides the MATLAB solutions in-
stead of SASEBO-Checker [15] to work with the FTDI chip. This choice is
made for accessibility and ease of maintenance. Figure 6 shows the overview
of the SASEBO-GII communication interface. This interface is used to commu-
nicate with the PC and two FPGAs of SASEBO-GII board. They are a cryp-
tographic FPGA (Virtex-5) and control FPGA (Spartan-3A), a cryptographic
FPGA usually implements the cryptographic algorithm and a control FPGA
which communicates the data between the PC and the cryptographic FPGA. In
our case, the MAC-PHOTON-80/20/16 module was ported into the cryptographic
FPGA whereas the control FPGA acted as a bridge between the PC and the
MAC-PHOTON-80/20/16 module.

Fig. 6. SASEBO-GII communication Interface

A.1 The Interface Between the Control and Cryptographic FPGAs

The control FPGA module consists of the following 5 states: initial, receiveusb,
ControlFPGAsend, ControlFPGAreceive and sendusb. During initial state,
the USB module in the control FPGA is initialized through the FT2232D USB
chip [1]. In receiveusb state, the input data is received 8-bits at a time from
the PC (MATLAB) through the USB chip and then the values are stored in
the data registers. During ControlFPGAsend state, a MAC-PHOTON-80/20/16
module in the cryptographic FPGA via init signal is initialized first. Then, the
control FPGA sends the input data 16-bits wide via datain signal from the
input data registers to the cryptographic FPGA. Once the data is processed the
ControlFPGAreceive state receives the output data 16-bits-wide via dataout
signal from the cryptographic FPGA and stores the data into the output data
registers. During sendusb state, the output data (MAC) is sent back (8-bits wide)
to the PC (MATLAB) from output data registers through the FT2232D USB
chip. Hence, it requires 30 clock cycles to process the interface between the
Control and Cryptographic FPGAs.

The cryptographic FPGA module consists of the following 3 states: process,
CryptoFPGAreceive and CryptoFPGAsend. In CryptoFPGAreceive state,
the cryptographic FPGA start to receives the input data from the control FPGA
when the init signal is reached and then the values are stored in the data reg-
isters. The process state, is to execute the MAC-PHOTON-80/20/16 module. The
CryptoFPGAsend state, once the MAC-PHOTON-80/20/16 module is processed,
sends the output data (MAC) 16-bits wide via dataout signal to the control FPGA.

A.2 The Interface Between the PC and Control FPGA

The FT2232D USB chip was permanently mounted with the contol FPGA of
the SASEBO-GII board. This chip acts as the communication interface between
the MATLAB software and the control FPGA. This MATLAB software is run

on the host PC and it is the control center of the whole system. In this work, the
MATLAB is used for 2 purposes: one is to record the traces from the oscilloscope
and the other is to send or receive the data from the PC to the control FPGA
via FT2232D USB chip from FTDI inc. Although MATLAB provides support
to call shared library functions, there is no readily available MATLAB solu-
tions [17] to work with the FTDI chip. In this work, we translate from working
.Net wrapper [17] to MATLAB with call shared library functions.

The translation program is divided into 4 parts: initialization, transfer,
receive and closing. During initialization, the data length is defined, the library
functions are loaded and also handle is defined to specify that the device (USB
port) is opened. Once initialization is complete, the program tells the user that
it is ready to receive data and asks the user to trigger the FPGA. During the
transfer stage, the program continuously write the input data to the control
FPGA until the expected number of data length. During the receive stage, the
program read the output data from the control FPGA. Once receive stage is
complete, handle device (USB port) is closed. Hence, it requires 216 clock cycles
to process the interface between the PC and Control FPGA.

