
Side-Channel Protection by Randomizing
Look-Up Tables on Reconfigurable Hardware

– Pitfalls of Memory Primitives –

Pascal Sasdrich1, Oliver Mischke1,2, Amir Moradi1, Tim Güneysu1

1 Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum, Germany
{pascal.sasdrich,oliver.mischke,amir.moradi,tim.gueneysu}@rub.de

2 Infineon Technologies AG, Chip Card & Security Division, Munich, Germany
oliver.mischke@infineon.com

Abstract. Block Memory Content Scrambling (BMS), presented at CHES
2011, enables an effective way of first-order side-channel protection for
cryptographic primitives at the cost of a significant reconfiguration time
for the mask update. In this work we analyze alternative ways to im-
plement dynamic first-order masking of AES with randomized look-
up tables that can reduce this mask update time. The memory prim-
itives we consider in this work include three distributed RAM compo-
nents (RAM32M, RAM64M, and RAM256X1S) and one BRAM primi-
tive (RAMB8BWER). We provide a detailed study of the area and time
overheads of each implementation technique with respect to the oper-
ation (encryption) as well as reconfiguration (mask update) phase. We
further compare the achieved security of each technique to prevent first-
order side-channel leakages. Our evaluation is based on one of the most
general forms of leakage assessment methodology known as non-specific
t-test. Practical SCA evaluations (using a Spartan-6 FPGA platform)
demonstrate that solely the BRAM primitive but none of the distributed
RAM elements can be used to realize an SCA-protected implementation.

1 Introduction

Side-channel analysis (SCA) exploits information leakage related to the device
internals, for example by inspecting its power consumption [6]. Hence, the secu-
rity provided by a cryptographic primitive can be easily overcome if the device
is not equipped with any SCA countermeasures. Many different countermea-
sures against SCA attacks have been proposed in the past and can typically be
classified as either masking or hiding [7]. With respect to signal-to-noise ratio
hiding countermeasures aim at either increasing the noise by introducing noise
generation resources [4, 7] or reducing the signal by e.g., equalizing the power
consumption [11]. The main concept behind masking is to randomize the pro-
cessed values by adding random masks so that it should become impossible for
an attacker to predict intermediate values. Despite many proposals, most fail to
achieve the desired level of security due to the presence of glitches inside the

2 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

combinatorial masked circuits (for example see [8, 9]). Instead of masking com-
binatorial circuits, critical elements such as S-boxes can be realized as look-up
tables that are dynamically randomized in memory. A realization of such an
approach on FPGAs which randomizes the content of block RAMs (BRAM)
has been presented in [4] and is known as Block Memory Content Scrambling
(BMS).

Contribution: In this work we analyze the suitability of different Xilinx FPGA
memory primitives to prevent first-order side-channel leakage by masked look-up
tables. Besides using larger dual-port BRAM primitives (as used in the original
BMS publication [4]), it is also possible to use smaller single-port BRAMs as well
as distributed RAM elements which are realized in SLICE-M LUTs of modern
Xilinx FPGAs [12]. With the introduction of Xilinx’ Virtex-5 platform SLICE-
M have become capable to hold 256 bits of memory that is a perfect fit for an
8 × 256-bit AES S-box. In particular RAM32M, RAM64M, and RAM256X1S
are the primitives which can be used to build a randomly permuted (masked)
S-box. Although reconfiguration time becomes notably shorter for smaller RAM
module sizes, the total area requirements of each masked S-box increases.

For evaluation we apply the non-specific t-test as a general leakage assessment
methodology [3] to analyze the SCA resistance of each scheme. We show that due
to their intrinsic multi-LUT design, the distributed RAM elements still exhibit a
first-order leakage so that they should not be used to implement masked designs.
We conclude our work with presenting an efficient implementation of a small
single-port BRAM-based design that achieves almost double the throughput of
the original BMS scheme and still prevents first-order leakages.

Outline: This work is organized as follows: Section 2 introduces the underlying
FPGA primitives, explains how they can be employed to realize randomized look-
up tables and recalls the BMS scheme. In Section 3 our masked AES encryption
designs are presented and their reconfiguration time, resource requirements, and
throughput are compared. Practical evaluation of all implementation profiles is
given in Section 4, before we conclude our work in Section 5.

2 Preliminaries

In this section we briefly describe memory primitives provided by Xilinx FPGAs
and their application in order to build randomized look-up tables to protect
cipher implementations against first-order DPA attacks. Afterwards, we restate
the concept of Block Memory Content Scrambling (BMS) initially introduced
in [4].

2.1 Memory Primitives

Modern Xilinx FPGAs provide several different memory primitives, e.g., dis-
tributed memory and general purpose block memory, that can be used to build

SCA Protection by Randomizing Look-Up Tables on FPGAs 3

randomly permuted look-up tables. Distributed memories are enabled only at
special Slices (SLICE-M) by using the configuration registers within the Look-
Up Tables (LUTs) as general purpose memory cells. Since this memory is usually
constrained by the configuration size (between 16 and 64 bits), up to 4 LUTs
of a single SLICE-M can be combined in order to build larger RAMs. For de-
signs requiring even larger amounts of memory, FPGAs provide general purpose
block memory (BRAM) with memory sizes between 8 Kbits and 32 Kbits. In the
following we describe these memory primitives and their modes of operation in
detail, focusing on their application as a randomized look-up table (see [12] for
more information).

RAM32M The RAM32M memory primitive is a multi-port random access
memory with synchronous write but asynchronous read capability imple-
mented in distributed memory using the configuration memory of all LUTs
(and both outputs O6 and O5) of a single SLICE-M. It is organized as an
8-bit wide by 32 deep memory providing 4 individual read ports (each 2-bit
wide) and a single write port (8-bit wide). If all read addresses are tied to
the same value, this memory primitive becomes an 8× 32 single port RAM.

RAM64M In contrast to the RAM32M primitive, the RAM64M module is a
multi-port random access memory with synchronous write and asynchronous
read capability organized as 4-bit by 64 deep memory. This memory primitive
also occupies 4 LUTs of a SLICE-M but only uses the outputs O6 of the
LUTs. If all 6-bit wide address ports are tied to the same value, this memory
becomes a 4× 64 single port RAM.

RAM256X1S Another option for distributed memory is RAM256X1S. This
primitive is a single-port random access memory with synchronous write and
asynchronous read capability placed in a single SLICE-M using all LUTs
(combined by subsequent MUXF7 and MUXF8 multiplexer instances). A
RAM256X1S provides an 8-bit wide address port and a 1-bit wide read and
write port and is organized as a 1× 256 single port RAM.

RAMB8BWER The RAMB8BWER primitive is a true dual-port random ac-
cess memory with synchronous read and write capability. Instead of using
configuration memory of special LUTs as distributed memory, this RAM in-
stance occupies a dedicated block memory primitive and offers 8 Kbits data
storage in addition to a 1 Kbit parity memory. It is possible to define differ-
ent options and widths for the read and write ports changing the memory
configuration from 1×8 Kbits up to 9×1 Kbit. The embedded input register
causes this primitive to always require a clock cycle to read from an address
(synchronous). In addition, the output port can use an additional embedded
register in order to buffer the memory output leading to two clock cycles
latency for a read operation.

2.2 Randomized Look-Up Tables

Many symmetric ciphers use S-boxes, often represented by simple look-up tables,
in order to include non-linearity into the encryption scheme. In FPGAs, this

4 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

S-boxes can efficiently be realized either using LUTs (as well as distributed
memories) or block memories depending on their size as well as the available
resources.

SCA attacks target an intermediate value of a cipher, e.g., a part of the
non-linear layer. The predicted intermediate values, usually the input or output
of a known S-box, in addition to a hypothetical power model contribute in a
statistical analysis of e.g., power consumption traces in order to reveal the asso-
ciated secret. In order to avoid side-channel leakages, hardware designers need
to apply dedicated countermeasures e.g., masking. These countermeasures aim
at randomizing intermediate values of a cipher implementation using uniformly-
distributed random data (masks). In particular, the non-linear layer in terms of
look-up tables such as S-boxes (or T-Tables) has to be adapted depending on
the taken random mask. Usually this is done by scrambling the S-box content
based on an input mask m and adding an output mask n to the content (Boolean
masking), so that the masked S-box S′ is precomputed as:

S′(x⊕m) = S(x)⊕ n

As mentioned before, look-up table based S-boxes can be implemented using
distributed or block memories. Due to their reconfiguration feature, the above-
presented memory primitives can be employed to implement randomized look-up
tables as well. Figure 1 exemplarily shows a part of the structure of an AES S-box
using RAM32M (Figure 1a), RAM64M (Figure 1b), RAM256X1S (Figure 1c)
and RAMB8BWER (Figure 1d) memory primitives.

Each of the distributed memory designs presented in Figure 1 realizes one
bit of the AES S-box. Each of them receives an 8-bit input Sin, and provides
one output bit Sout. Depending on their read/write port width the configuration
to update the look-up table is defined. For example, the content of 8 bits of a
RAM32M can be updated in one clock cycle (Figure 1a) while at most 4 bits of
RAM64M and 1 bit of RAM256X1S can be simultaneously updated. This clearly
affects the efficiency of the update (reconfiguration) process. Respectively, ex-
tra components, i.e., the multiplexers in Figure 1, have to be placed out of the
SLICE-M to build a 1× 256 memory. With respect to this issue RAM256X1S is
the most efficient one while the time required to update its content is consider-
ably higher than the other distributed memory primitives.

2.3 Block Memory Content Scrambling

The main idea of BMS is to store two S-/T-Tables in parallel into a dual-port
block memory where one is called active context and the other one passive.
While the active context is used for the encryption process via one port of the
BRAM, the passive context is scrambled by means of the other port. During
the scrambling process the already masked data is read from the active context,
and updated by a given fresh mask before it is written to the passive context.
After the encryption and the memory content scrambling process finished, the
contexts are swapped i.e., the passive context becomes active and is used for

SCA Protection by Randomizing Look-Up Tables on FPGAs 5

LUT A LUT B LUT C LUT D

Sout

R
A
M
32
M

R
A
M
32
M

R
A
M
32
M

ADDRCFG

Sin

CFG8

5

8

3

5

1

S
L

IC
E

-M

(a) RAM32M

S
L

IC
E

-M

LUT A LUT B LUT C LUT D

Sout

R
A
M
64
M

R
A
M
64
M

R
A
M
64
M

ADDRCFG

Sin

CFG4

6

8

2

6

1

(b) RAM64M
S

L
IC

E
-M

LUT A LUT B LUT C LUT D

Sout

R
A
M
25
6

R
A
M
25
6

R
A
M
25
6

ADDRCFG
Sin

CFG1

8

8

1

(c) RAM256X1S

B
R
A
M

ADDRCFGCFGSin

Sout

PORT A PORT B

8

8 8 8

(d) RAMB8BWER

Fig. 1: Randomized Look-Up Tables using different memory primitives

6 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

the encryption process while the active context becomes passive and is updated
using a new (random) mask. This scrambling scheme exploits the true dual-port
capability of BRAM in order to randomize look-up tables such as S-boxes or
T-Tables without affecting the throughput of the encryption scheme. Despite
many advantages, this scheme comes with

– area overhead, since it doubles the memory requirements because every look-
up table has to be stored twice (active and passive), and

– additional latency for a mask update process, as the scrambling (updating)
process needs 512 clock cycles. Hence it often happens that the consecutive
encryptions share the masks since the scrambling process is not finished
when the second plaintext is given.

3 Design

This section briefly explains the underlying masking scheme of our AES imple-
mentation and its basic hardware architecture. Afterwards, different approaches
using the distributed memory and the block memory primitives are compared.

3.1 Masking Architecture

The architecture of our design of the AES-128 encryption function (for a Spartan-
6 FPGA) is shown in Figure 2. We opted to implement an incremental and round-
based architecture and derive the round keys on the fly. The data path has a
width of 128 bits, and the SubBytes layer consists of 16 parallel reconfigurable
S-boxes. ShiftRows and MixColumns (in parallel on all 4 columns) are applied
jointly at one clock cycle.

In contrast to the originally proposed BMS scheme, our design follows an
approach based on an update-prior-to-encryption fashion. Thus, before each en-
cryption the randomized look-up tables are regenerated. During each encryption
the masks stay constant. In other words, the same masks are used for all cipher
rounds during one encryption. The initial plaintext is masked with (m ⊕ m′)
while all round keys are masked with m′ (m and m′ independent of each other
and each 128-bit). Therefore, after the key addition the SubBytes input mask is
m (see Figure 2). The randomized look-up tables (masked SubBytes) are config-
ured with m as the input mask and SR−1(MC−1(m⊕m′)) as the output mask.
Applying the ShiftRows and MixColumns operations transforms the mask again
to (m + m′) as the mask of the round output. Hence, after each cipher round
the input to the next round is masked with (m ⊕m′) and no mask correction
(see [2] and [10]) is required. For the last round, the MixColumns operation is
omitted and the returned ciphertext is masked with MC−1(m⊕m′)⊕m′.

Reusing the masks for all cipher rounds has a known drawback if the round
register consecutively stores the intermediate values with the same mask. In such
a case, the leakage associated to the register update, e.g., a Hamming distance

SCA Protection by Randomizing Look-Up Tables on FPGAs 7

R
an

d
o

m
iz

ed
L

o
o

k-
U

p
KT

ab
le

s

Configuration
Generator

... S15

MixKColumns

ShiftKRows

p⊕m⊕m'

c⊕MC-1(m⊕m')⊕m'

Configuration
Counter

addr

cfg

S

SR-1(MC-1(m⊕m'))

m

S0

KeyKSchedule

Key
Expansion

0 1

m'

Key

k⊕m'

0 1

SB(p⊕k)⊕SR-1(MC-1(m⊕m'))

SR(SB(p⊕k))⊕MC-1(m⊕m')

MC(SR(SB(p⊕k)))⊕(m⊕m')

(p⊕k⊕m)

01

last

first

first

Fig. 2: Round-based AES implementation with randomized look-up tables

(HD) model, is easily extractable. If x ⊕m and y ⊕m are consecutively stored
in a register,

HD(x⊕m, y ⊕m) = HW (x⊕ y)

is independent of the mask. Hence, we avoid such an issue by surrounding each
S-box with two register stages, one before and one after the SubBytes operation
(see Figure 2). At power-up both registers are precharged with 0, and at only
one clock cycle the input multiplexer passes the masked plaintext (p⊕m⊕m′).
Since one of the register stages therefore holds some value depending on a random
mask of a previous encryption, the correct encryption rounds are interleaved with
random (dummy) operations.

Employing this technique leads to reduced throughput due to the prior look-
up table update phase as well as the fact that each cipher round requires two
clock cycles. However, compared to BMS [4] our design reduces the area overhead
as well as the amount of required randomness to 256-bit per encryption (m and
m′). Further, this scheme is suitable for the distributed memory primitives as
well as for the block memory which allows a fair comparison. In case the block
memory is used, the registers (before and after the SubBytes) are removed.
Instead, the input and output registers of the block memory are employed as
the two-stage state registers.

3.2 Comparison of S-box designs

Table 1 provides a comparison of area and time requirements of the randomized
look-up tables using different memory primitives and the associated configura-
tion logic and in Table 2 we give an overview of the resource requirements of
the entire AES encryption as well as an estimation of the maximum frequency

8 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

Table 1: Comparison of S-boxes for different memory primitives

Memory SubBytes Configuration
Primitive Logic Dist. Mem. Block Mem. Logic Memory

(LUT) (LUT) (BRAM16) (LUT) (FF)

BRAM (BMS) none none 16 1706* 1169*

RAMB8BWER none none 8 298 8

RAM256X1S 128 512 none 298 8
RAM64M 768 512 none 727 6
RAM32M 1920 512 none 1222 5

* These values are based on a Virtex-II Pro implementation and taken from [4]. For a Spartan-6
the resulting design would be slightly smaller.

Table 2: Time and resource requirements of entire AES (encryption only)

Memory AES (Encryption only) Reconfig. Maximum Maximum
Primitive Logic Memory Time Frequency Throughput

(LUT) (FF) (BRAM) (Cycles) (MHz) (MBit/s)

BRAM (BMS) 2888 2351 16 512* 147.0 35.4

RAMB8BWER 1284 415 8 256 148.0 68.6

RAM256X1S 1796 543 0 256 166.1 77.0
RAM64M 2849 541 0 64 162.3 247.3
RAM32M 4512 540 0 32 147.6 363.3

* Reconfiguration can be done in parallel when reusing the mask for multiple encryptions without
affecting the throughput. For a fair comparison we avoid the mask reuse in BMS as well.

and throughput. Compared to the originally proposed BMS scheme, our masked
design based on the block memory (RAMB8BWER) halves the reconfiguration
time, hence nearly doubling the maximum throughput. In case the distributed
memory primitives are employed, the maximum frequency can even be increased
except for the RAM32M due to its more complex reconfiguration circuit. Besides,
the RAM32M leads to the highest throughput as its reconfiguration time is ex-
tremely shorter than the others. Note that in the reported performance figures
we omitted the area required for the generation of the random masks.

4 Evaluation

We employed a SAKURA-G platform [5], i.e., a Spartan-6 FPGA, for practical
side-channel evaluations. The power consumption traces have been measured
by means of a LeCroy WaveRunner HRO 66Zi oscilloscope with a 1 Ω resistor
in the Vdd path capturing the embedded amplifier output of the SAKURA-G.
We recorded the traces at a sampling rate of 1 GS/s and the bandwidth limit
of 20 MHz while the design was running at a low clock frequency of 3 MHz to
reduce the noise caused by the overlap of the power traces.

SCA Protection by Randomizing Look-Up Tables on FPGAs 9

4.1 Non-Specific Statistical t-test

In order to examine the resistance of our designs we applied the leakage assess-
ment methodology (t-test) of [3]. The most general form of such a test – known
as non-specific t-test – investigates the existence of a first-order leakage inde-
pendent of any power model as well as any intermediate value. In such a test a
certain plaintext is selected, and during the measurements the chosen plaintext
or a random one is given to the encryption module in a randomly-interleaved
fashion. For all the measurements the key is kept constant. Therefore, this test
is also called fix vs. random t-test. As the next step the traces are categorized
into two groups G1 and G2 based on their associated (fix or random) plaintext.
By comparing the means of these groups, we can examine the dependency of the
traces (leakages) to the processed values related to the given plaintexts. Such a
comparison can be fairly performed by means of a Welch’s (two-tailed) t-test as

t =
µ(T ∈ G1)− µ(T ∈ G2)√

δ2(T∈G1)
|G1| + δ2(T∈G2)

|G2|

,

where µ and δ2 denote the sample mean and the sample variance respectively,
and |.| the cardinality.

As the final step the obtained t with the corresponding degree of freedom3 is
given to the cumulative Student’s t distribution function to achieve a quantita-
tive value as the probability of the null hypothesis being valid. Such a hypothesis
is the assumption that the samples in the groups G1 and G2 were drawn from the
same population, i.e., the two groups are not distinguishable. However, for sim-
plicity a threshold for the t-test result as |t| > 4.5 is usually selected to reject the
null hypothesis and conclude that the means of the groups are distinguishable,
hence there exists a leakage.

It is noteworthy that the scenario explained above should be repeated at each
sample point of the power traces independently, hence a first-order univariate
evaluation. On one hand, when the result of a test is positive, the value of the
t statistic gives the level of confidence that there exist a first-order leakage,
but it does not provide any information about the difficulty or easiness of an
attack exploiting such a leakage. On the other hand, in case a non-specific t-test
reports no leakage, such a conclusion is only correct with respect to the selected
fix plaintext as well as the number of used traces. Changing the fix plaintext
and increasing the number of traces can change the result of the test. The same
evaluation scheme has also been applied in [1].

4.2 Results

In the following we present the results of the security evaluation concerning side-
channel resistance of randomized look-up tables using the introduced memory
primitives by applying the above-explained non-specific t-test. Since we identified

3 see [1] and [3]

10 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

1 3 5 7
0

30

Time [µs]

V
ol

ta
ge

 [m
V

]

Fig. 3: Sample trace

four potential memory elements (see Section 2.1), the evaluations are grouped
into four different profiles respectively.

A sample trace of the profile built from RAM64M modules is shown in Fig-
ure 3. Note that all our measurements cover only the time period related to
the encryption, and we ignored to measure the power consumption when the
reconfiguration of the look-up tables is in process (prior to each encryption). As
explained in Section 3, we kept the design architecture of all profiles the same.
Hence the power traces of other profiles look like the same, but for the design
profile with RAM32M the traces show slightly higher peak-to-peak amplitude
due to its more complex architecture regarding the extra multiplexers out of the
RAM slices.

For each profile we collected at least 1 million traces for a non-specific t-test.
During all the measurements fresh masks are randomly generated by means of
an AES engine running in counter mode prior to each encryption, i.e., no mask
is reused. The masked plaintext in addition to the corresponding masks are sent
from the control FPGA to the target FPGA (SAKURA-G). After finishing the
look-up table reconfiguration followed by the encryption process on the target
FPGA, the masked ciphertext is sent back to the control FPGA, where it is
unmasked for a consistency check.

Profile A: Tiny RAM (RAM32M) By means of this profile we evaluate the
leakage of the randomized look-up table realized by RAM32M memory primi-
tives. Although this variant has the highest resource consumption, it offers the
best throughput. Figure 4a shows the result of the corresponding non-specific
t-test using 1 million traces (i.e., about 500 000 traces of encrypting the fix plain-
text and the rest for the random ones). Unexpectedly the test exhibits first-order
leakages. Indeed, the t statistics are much higher than the threshold, that con-
fidently argue the vulnerability of the design.

Profile B: Small RAM (RAM64M) The result of the same test on the
second profile, i.e., the one where the randomized look-up tables are implemented
by RAM64M instances, is shown in Figure 4b. We observed the same issue, i.e.,

SCA Protection by Randomizing Look-Up Tables on FPGAs 11

1 3 5 7
−27

0

27

Time [µs]

t

(a) Profile A, 1 million traces

1 3 5 7
−60

0

60

Time [µs]

t

(b) Profile B, 1 million traces

1 3 5 7
−18

0

18

Time [µs]

t

(c) Profile C, 1 million traces

1 3 5 7

−4.5

0

4.5

Time [µs]

t

(d) Profile D, 10 million traces

Fig. 4: First-order non-specific t-test results

12 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

unexpected first-order leakages. Interestingly, the amount of leakage is higher
compared to that of Profile A, although its S-box design is more compact.

Profile C: Large RAM (RAM256X1S) The most compact and dense imple-
mentation for a randomized look-up table using Distributed Memory (i.e., the
RAM256X1S memory primitives) on a Spartan-6 FPGA, places the a complete
single AES S-box and the subsequent registers into only 8 slices. However, the
same as the two former design profiles a first-order leakage is still detectable
which can be seen in Figure 4c.

Profile D: Block RAM (RAMB8BWER) As the last profile we evaluated
the application of block RAMs instead of the Distributed Memory. Since each
block RAM internally has a register stage for the input and an optional one
for the output, by employing a RAMB8BWER instance for each S-box we used
also both internal registers of the block RAM and avoided the external registers
used in the other profiles (see Figure 2). Since we did not observe any first-
order leakage using the same number of traces as used for the other profiles, we
performed the evaluation using 10 million traces. The corresponding result is
shown in Figure 4d indicating the ability of the design to prevent any first-order
leakage.

In fact, the results we presented above infer the pitfall of using distributed
memories (of FPGAs) to realize randomized (masked) look-up tables. While the
internal architecture of such memory primitives is not completely clear to us,
we are confident that the observed leakage is due to the internal multiplexers of
such memory modules. We should highlight that the randomized look-up tables
(in our designs) receive only the masked inputs and provide the masked outputs.
Neither the input mask nor the output mask is given to the memory module.
Further, the input masks and output masks are independent of each other. As
a result – also confirmed by the evaluation result of Profile D – the exhibited
leakage is purely related to the internal architecture of the distributed memory
modules.

5 Conclusion

In this work we have given a comparative study on the suitability of Xilinx FPGA
memory primitives to implement a side-channel countermeasure based on ran-
domized (masked) look-up tables. We have shown that the use of distributed
RAM primitives like RAM32M, RAM64M, and RAM256X1S causes an other-
wise secure scheme to exhibit first-order side-channel leakage. Such unexpected
leakage is due the internal architecture of the distributed memory primitives
(SLICE-M). Since except [12] there is no other public document on the details
of such modules, we cannot localize the source of such leakage. When keeping
the very same design but only replacing the distributed RAMs by small BRAMs
to store the masked tables, no leakages were detected applying the general non-
specific leakage assessment methodology on 10 million captured power traces.

SCA Protection by Randomizing Look-Up Tables on FPGAs 13

Our design solution using block memory (RAMB8BWER) achieves almost
double the throughput compared to the original BMS mainly because of the
reduced reconfiguration time of the masked S-boxes. It also requires less ran-
domness. The BMS scheme is a T-table implementation which requires 16× 32
random bits to mask the T-tables output while we only require 2 × 128 bits of
randomness. The reason for this difference is that we are only implementing the
8×8 AES S-box as masked tables (compared to 8×32 T-tables) while the other
parts (all linear) of the encryption are implemented by combinatorial logic.

References

1. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-Order Thresh-
old Implementations. In ASIACRYPT 2014, volume 8874 of LNCS, pages 326–343.
Springer, 2014.

2. J. Bringer, H. Chabanne, and T. Le. Protecting AES against side-channel analysis
using wire-tap codes. J. Cryptographic Engineering, 2(2):129–141, 2012.

3. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-
channel resistance validation. In NIST Non-Invasive Attack Testing Workshop,
Nara, 2011.

4. T. Güneysu and A. Moradi. Generic Side-Channel Countermeasures for Recon-
figurable Devices. In B. Preneel and T. Takagi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2011, Nara, Japan, September 28 - October 1,
2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 33–
48. Springer, 2011.

5. H. Guntur, J. Ishii, and A. Satoh. Side-channel AttacK User Reference Architecture
SAKURA-G. In GCCE 2014. IEEE Computer Society, 2014. Further information
are available via http://satoh.cs.uec.ac.jp/SAKURA/index.html.

6. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. J. Wiener,
editor, Advances in Cryptology - CRYPTO ’99, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Sci-
ence, pages 388–397. Springer, 1999.

7. S. Mangard, E. Oswald, and T. Popp. Power analysis attacks - revealing the secrets
of smart cards. Springer, 2007.

8. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In J. R. Rao and B. Sunar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2005, Edinburgh, UK, August 29 -
September 1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Sci-
ence, pages 157–171. Springer, 2005.

9. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-Enhanced Power Analysis
Collision Attack. In S. Mangard and F. Standaert, editors, Cryptographic Hardware
and Embedded Systems, CHES 2010, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, volume 6225 of Lecture Notes in Computer Science, pages 125–
139. Springer, 2010.

10. M. Nassar, Y. Souissi, S. Guilley, and J. Danger. RSM: A small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In DATE
2012, pages 1173–1178. IEEE, 2012.

11. K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure DPA
Resistant ASIC or FPGA Implementation. In 2004 Design, Automation and Test

14 P. Sasdrich, O. Mischke, A. Moradi, T. Güneysu

in Europe Conference and Exposition (DATE 2004), 16-20 February 2004, Paris,
France, pages 246–251. IEEE Computer Society, 2004.

12. Xilinx. Spartan-6 Libraries Guide for HDL Designs (UG615 v 14.1). Available
via http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/

spartan6_hdl.pdf, April 2012.

