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Abstract. Evoked by the increasing need to integrate side-channel coun-
termeasures into security-enabled commercial devices, evaluation labs
are seeking a standard approach that enables a fast, reliable and robust
evaluation of the side-channel vulnerability of the given products. To this
end, standardization bodies such as NIST intend to establish a leakage
assessment methodology fulfilling these demands. One of such proposals
is the Welch’s t-test, which is being put forward by Cryptography Re-
search Inc., and is able to relax the dependency between the evaluations
and the device’s underlying architecture. In this work, we deeply study
the theoretical background of the test’s different flavors, and present
a roadmap which can be followed by the evaluation labs to efficiently
and correctly conduct the tests. More precisely, we express a stable, ro-
bust and efficient way to perform the tests at higher orders. Further, we
extend the test to multivariate settings, and provide details on how to
efficiently and rapidly carry out such a multivariate higher-order test. In-
cluding a suggested methodology to collect the traces for these tests, we
present practical case studies where different types of t-tests can exhibit
the leakage of supposedly secure designs.

1 Introduction

The threat of side-channel analysis attacks is well known by the industry sec-
tor. Hence, the necessity to integrate corresponding countermeasures into the
commercial products has become inevitable. Regardless of the type and sound-
ness of the employed countermeasures, the security evaluation of the prototypes
with respect to the effectiveness of the underlying countermeasure in practice is
becoming one of the major concerns of the producers and evaluation labs. For
example, the power of side-channel analysis as devastating attacks motivated the
NIST to hold the “Non-Invasive Attack Testing Workshop” in 2011 to establish
a testing methodology capable of robustly assessing the physical vulnerability of
cryptographic devices.

With respect to common criteria evaluations – defined and used by govern-
ing bodies like ANSSI and BSI – the evaluation labs need to practically exam-
ine the feasibility of the state-of-the-art attacks conducted on the device under
test (DUT). The examples include but not restricted to the classical differential
power analysis (DPA) [13], correlation power analysis (CPA) [6], and mutual in-
formation analysis (MIA) [10]. To cover the most possible cases a large range of
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intermediate values as well as hypothetical (power) models should be examined
to assess the possibility of the key recovery. This methodology is becoming more
challenging as the number and types of known side-channel attacks are steadily
increasing. Trivially, this time-consuming procedure cannot be comprehensive
even if a large number of intermediate values and models in addition to several
know attacks are examined. In fact, the selection of the hypothetical model is not
simple and strongly depends on the expertise of the evaluation labs’ experts. If
the models were poorly chosen and as a result none of the key-recovery attacks
succeeded, the evaluation lab would issue a certificate even though the DUT
might be vulnerable to an attack with a more advanced and complex model.
This strongly motivates the need for an evaluation procedure which avoids be-
ing dependent on attack(s), intermediate value(s), and hypothetical model(s).

On one hand, two information-theoretic tests [7, 8] are known which eval-
uate the leakage distributions either in a continuous or discrete form. These
approaches are based on the mutual information and need to estimate the prob-
ability distribution of the leakages. This adds other parameter(s) to the test
with respect to the type of the employed PDF estimation technique, e.g., kernel
or histogram and their corresponding parameters. Moreover, they cannot yet
focus on a certain statistical order of the leakages. This becomes problematic
when e.g., the first-order security of a masking countermeasure is expected to
be assessed. On the other hand, two leakage assessment methodologies (specific
and non-specific t-tests) based on the Student’s t-distribution have been pro-
posed (at the aforementioned workshop [11]) with the goal to detect any type
of leakage at a certain order. A comparative study of these three test vectors
is presented in [15], where the performance of specific t-tests (only at the first
order) is compared to that of other mutual information-based tests.

In general, the non-specific t-test examines the leakage of the DUT without
performing an actual attack, and is in addition independent of its underlying
architecture. The test gives a level of confidence to conclude that the DUT
has an exploitable leakage. It indeed provides no information about the easi-
ness/hardness of an attack which can exploit the leakage, nor about an appro-
priate intermediate value and the hypothetical model. However, it can easily and
rapidly report that the DUT fails to provide the desired security level, e.g., due
to a mistake in the design engineering or a flaw in the countermeasure [2].

Our Contribution. The Student’s t-test has been used in a couple of re-
search works [2, 5, 14, 19, 29–31, 34] to investigate the efficiency of the proposed
countermeasures, but without extensively expressing the challenges of the test
procedure. This document aims at providing a clear roadmap for e.g., evaluation
labs, on how to examine the leakage of the DUT at any order with minimal effort
and without any dependency to a hypothetical model. Our goal in this work is
to cover the following points:

– We try to explain the underlying statistical concept of such a test by a
(hopefully) more understandable terminology.

– In the seminal paper by Goodwill et al. [11] it has been shown how to conduct
the test at the first order, i.e., how to investigate the first-order leakage of the
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DUT. The authors also shortly stated that the traces can be preprocessed
to run the same test at higher orders. Here we point out the issues one may
face to run such a test at higher orders, and provide appropriate solutions
accordingly. As a motivating point we should refer to [15], where the t-test
is considered to be able to be performed at only the first order.

– More importantly, we extend the test to cover multivariate leakages and
express the necessary formulations in detail allowing us to efficiently conduct
t-tests at any order and any variate.

– In order to evaluate the countermeasures (mainly those based on masking
at high orders) several million traces might be required (e.g., see [5, 14]).
Hence we express the procedures which allow conducting the tests by means
of multi-core CPUs in a parallelized way.

– We give details of how to design appropriate frameworks to host the DUT for
such tests, including both software and hardware platforms. Particularly we
consider a microcontroller as well as an FPGA (SASEBO) for this purpose.

– Depending on the underlying application and platform, the speed of the
measurement is a bottleneck which hinders the collection of several million
measurements. Due to this reason, the evaluation labs are usually restricted
(commonly by common criteria) to measure not more than one million traces
from any DUT. We also demonstrate a procedure to accelerate the measure-
ment process allowing the collection of e.g., millions of traces per hour.

– We also show two practical case studies, where the univariate as well as
bivariate t-tests show the leakage of designs expected to be secure.

2 Statistical Background

A fundamental question in many different scientific fields is whether two sets
of data are significantly different from each other. The most common approach
to answer such a question is Student’s t-test in which the test statistic follows
a Student’s t distribution. It is widely used in medical research to examine the
effectiveness of certain pharmaceuticals, e.g., to reduce the size of tumors. The
aim of a t-test is to provide a quantitative value as a probability that the mean
µ of two sets are different. In other words, a t-test gives a probability to examine
the validity of the null hypothesis as the samples in both sets were drawn from
the same population, i.e., the two sets are not distinguishable.

Hence let Q0 and Q1 indicate two sets which are under the test. Let also µ0

(resp. µ1) and s0
2 (resp. s1

2) stand for the sample mean and sample variance
of the set Q0 (resp. Q1), and n0 and n1 the cardinality of each set. The t-test
statistic and the degree of freedom v are computed as

t =
µ0 − µ1√
s02

n0
+ s12

n1

, v =

(
s0

2

n0
+ s1

2

n1

)2
(

s0
2

n0

)2

n0−1 +

(
s1

2

n1

)2

n1−1

. (1)

In cases, where s0 ≈ s1 and n0 ≈ n1, the degree of freedom can be estimated
by v ≈ n0 + n1 = n. As the final step,we estimate the probability to accept the
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Fig. 1. Student’s t distribution functions and two-tailed Welch’s t-test (examples for
v = 10, 000)

null hypothesis by means of Student’s t distribution density function. In other
words, based on the degree of freedom v the Student’s t distribution function is
drawn

f(t, v) =
Γ ( v+1

2 )
√
πv Γ ( v2 )

(
1 +

t2

v

)− v+1
2

,

where Γ (.) denotes the gamma function. Based on the two-tailed Welch’s t-test
the desired probability is calculated as

p = 2

∫ ∞
|t|

f(t, v) dt.

Figure 1 represents a graphical view of such a test.
As an alternative, we can make use of the corresponding cumulative distri-

bution function

F (t, v) =
1

2
+ t Γ

(
v + 1

2

)
2F1

(
1
2 ,

v+1
2 ; 3

2 ;−x
2

v

)
√
πv Γ

(
v
2

) ,

with 2F1(., .; .; .) the hypergeometric function. Hence the result of the t-test can
be estimated as

p = 2F (−|t|, v).

For a graphical view see Figure 1. Note that such a function is available amongst
the Matlab embedded functions as tcdf(·,·).

Hence, small p values (alternatively big t values) give evidence to reject the
null hypothesis and conclude that the sets were drawn from different populations.
For the sake of simplicity, usually a threshold |t| > 4.5 is defined to reject the null
hypothesis without considering the degree of freedom and the aforementioned
cumulative distribution function. This intuition is based on the fact that p =
2F (−4.5, v > 1000) < 0.00001 which leads to a confidence of > 0.99999 to
reject the null hypothesis.

3 Methodology

Suppose that in a side-channel evaluation process, with respect to n queries with
associated data (e.g., plaintext or ciphertext) Di∈{1,...,n}, n side-channel mea-
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surements (so-called traces) are collected while the secret key is kept constant.

Let us denote each trace by Ti∈{1,...,n} containingm sample points {t(1)i , . . . , t
(m)
i }.

As a straightforward evaluation process, the traces are categorized into two
groups Q0 and Q1 and the test is conducted at each sample point {1, . . . ,m} sep-
arately. In other words, the test is performed in a univariate fashion. At this step
such a categorization is done by means of an intermediate value corresponding to
the associated data D. Since the underlying process is an evaluation procedure,
the secret key is known and all the intermediate values can be computed. Based
on the concept of classical DPA [13], a bit of an intermediate value (e.g., an Sbox
output bit at the first cipher round) is selected to be used in the categorization.

Q0 = {Ti | target bit(Di) = 0}, Q1 = {Ti | target bit(Di) = 1}.

If the corresponding t-test reports that with a high confidence the two trace
groups (at certain sample points) are distinguishable from each other, it is con-
cluded that the corresponding DPA attack is – most likely – able to recover the
secret key.

Such a test (so-called specific t-test) is not restricted to only single-bit inter-
mediate values. For instance, an 8-bit intermediate value (e.g., an Sbox output
byte) can be used to categorize the traces as

Q0 = {Ti | target byte(Di) = x}, Q1 = {Ti | target byte(Di) 6= x}.

In this case, a particular value for x should be selected prior to the test. There-
fore, in case of an 8-bit target intermediate value 256 specific t-tests can be
performed. It should be noted that in such tests, n0 and n1 (as the cardinality of
Q0 and Q1) would be significantly different if the associated data D were drawn
randomly. Hence, the accuracy of the estimated (sample) means (µ0, µ1) as well
as variances (s0

2, s1
2) would not be the same. However, this should not – in

general – cause any issue as the two-tailed Welch’s t-test covers such a case.
Therefore, the evaluation can be performed by many different intermediate

values. For example, in case of an AES-128 encryption engine by considering the
AddRoundKey, SubBytes, ShiftRows, and MixColumns outputs, 4 × 128 bit-
wise tests and 4 × 16 × 256 byte-wise tests (only at the first cipher round) can
be conducted. This already excludes the XOR result between the intermediate
values, which depending on the underlying architecture of the DUT (e.g., a seri-
alized architecture) may lead to potential leaking sources. Therefore, such tests
suffer from the same weakness as state-of-the-art attacks since both require to
examine many intermediate values and models, which prevents a comprehensive
evaluation.

To cope with this imperfection a non-specific t-test can be performed, which
avoids being dependent on any intermediate value or a model. In such a test the
associated data should follow a certain procedure during the trace collection.
More precisely a fixed associated data D is preselected, and the DUT is fed
by D or by a random source in a non-deterministic and randomly-interleaved
fashion. As a more clear explanation suppose that before each measurement a
coin is flipped, and accordingly D or a fresh-randomly selected data is given to
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the DUT. The corresponding t-test is performed by categorizing the traces based
on the associated data (D or random). Hence such a test is also called fixed vs.
random t-test.

The randomly-interleaved procedure is unavoidable; otherwise the test may
issue a false-positive result on the vulnerability of the DUT. It is mainly due to
the fact that the internal state of the DUT at the start of each query should be
also non-deterministic. As an example, if the traces with associated data D are
collected consecutively, the DUT internal state is always the same prior to each
measurement with D. As another example, if the traces with random associated
data and D are collected one after each other (e.g., Di being random for even
i and D for odd i), the DUT internal state is always the same prior to each
measurement with random associated data.

In order to explain the concept behind the non-specific t-test, assume a
specific t-test based on a single-bit intermediate variable w of the underlying
process of the DUT and the corresponding sample point j where the leakage
associated to w is measured. Further, let us denote the estimated means of the
leakage traces at sample point j by µw=0 and µw=1, i.e., those applied in the
specific t-test. If these two means are largely enough different from each other,

each of them is also distinguishable from the overall mean µ (≈ µw=0 + µw=1
2

supposing n0 ≈ n1).
From another perspective, consider two non-specific t-tests with the fixed

associated data Dw=0 and Dw=1, where Dw=0 leads to the intermediate value
w = 0 (respectively for Dw=1). Also, suppose that in each of these two tests
Q0 corresponds to the traces with the fixed associated data and Q1 to those
with random. Hence, in the non-specific test with Dw=0, the estimated mean
µ0 at sample point j is close to µw=0 (respectively to µw=1 in the test with
Dw=1). But in both tests the estimated mean µ1 (of Q1) is close to µ (defined
above). Therefore, in both tests the statistic (tnon−spec.) is smaller than that of
the specific test (tspec.) since µw=0 < µ < µw=1 (or respectively µw=1 < µ <
µw=0). However, even supposing n0 ≈ n1 it cannot be concluded that

|tnon−spec.| = |tspec.|/2

since the estimated overall variance at sample point j (which is that of Q1 in
both non-specific tests) is

s1
2 =

(sw=0)2 + (sw=1)2

2
+
(µw=0 − µw=1

2

)2
6= (sw=0/1)2,

assuming n0 ≈ n1.
As a result if a non-specific t-test reports a detectable leakage, the specific

one results in the same conclusion but with a higher confidence. Although any
intermediate value (either bit-wise or at larger scales) as well as the combination
between different intermediate values are covered by the non-specific t-test, the
negative result (i.e., no detectable leakage) cannot be concluded from a single
non-specific test due to its dependency to the selected fixed associated data D.
In other words, it may happen that a non-specific t-test by a certain D reports
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no exploitable leakage, but the same test using another D leads to the opposite
conclusion. Hence, it is recommended to repeat a non-specific test with a couple
of different D to avoid a false-positive conclusion on resistance of the DUT.

The non-specific t-test can also be performed by a set of particular associated
data D instead of a unique D. The associated data in D are selected in such a
way that all of them lead to a certain intermediate value. For example, a set of
plaintexts which cause half of the cipher state at a particular cipher round to be
constant. In this case Q0 refers to the traces with associated data – randomly
– selected from D (respectively Q1 to the traces with random associated data).
Such a non-specific t-test is also known as the semi-fixed vs. random test [9],
and is particularly useful where the test with a unique D leads to a false-positive
result on the vulnerability of the DUT. We express the use cases of each test in
more details in Section 6.

Order of the test. Recalling the definition of first-order resistance, the esti-
mated means of leakages associated to the intermediate values of the DUT should
not be distinguishable from each other (i.e., the concept behind the Student’s
t-test). Otherwise, if such an intermediate value is sensitive and predictable
knowing the associated data D (e.g., the output of an Sbox at the first cipher
round) a corresponding first-order DPA/CPA attack is expected to be feasible.
It can also be extended to the higher orders by following the definition of uni-
variate higher-order attacks [20]. To do so (as also stated in [11]) the collected
traces need to be preprocessed. For example, for a second-order evaluation each
trace – at each sample point independently – should be mean-free squared prior
to the t-test. Here we formalize this process slightly differently as follows.

Let us first denote the dth-order raw statistical moment of a random variable
X by Md = E(Xd), with µ = M1 the mean and E(.) the expectation operator.

We also denote the dth-order (d > 1) central moment by CMd = E
(

(X − µ)
d
)

,

with s2 = CM2 the variance. Finally, the dth-order (d > 2) standardized mo-

ment is denoted by SMd = E

((
X−µ
s

)d)
, with SM3 the skewness and SM4 the

kurtosis.

In a first-order t-test, for each set (Q0 or Q1) the mean (M1) is estimated.
For a second-order test the mean of the mean-free squared traces Y = (X − µ)2

is actually the variance (CM2) of the original traces. Respectively, in a third and
higher (d > 2) order test the standardized moment SMd is the estimated mean
of the preprocessed traces. Therefore, the higher-order tests can be conducted
by employing the corresponding estimated (central or standardized) moments
instead of the means. The remaining point is how to estimate the variance of the
preprocessed traces for higher-order tests. We deal with this issue in Section 4.2
and explain the corresponding details.

As stated, all the above given expressions are with respect to univariate eval-
uations, where the traces at each sample point are independently processed. For
a bivariate (respectively multivariate) higher-order test different sample points of
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each trace should be first combined prior to the t-test, e.g., by centered product
at the second order. We also deliberate these cases in Section 5.

4 Efficient Computation

As stated in the previous section, the first order t-test requires the estimation
of two parameters (sample mean µ and sample variance s2) for each set Q0 and
Q1. This can lead to problems concerning the efficiency of the computations
and the accuracy of the estimations. In the following we address most of these
problems and propose a reasonable solution for each of them. For simplicity
we omit to mention the sets Q0 and Q1 (and the corresponding indices for
the means and variances). All the following expressions are based on focusing
on one of these sets, which should be repeated on the other set to complete
the required computations of a t-test. Unless otherwise stated, we focus on a
univariate scenario. Hence, the given expressions should be repeated at each
sample point separately.

Using the basic definitions given in Section 3, it is possible to compute the first
raw and second central moments (M1 and CM2) for a first order t-test. However,
the resulting algorithm is inefficient as it requires to process each trace (a single
point) twice to estimate CM2 since it requires M1 during the computation.

An alternative would be to use the first two raw moments to derive CM2 as

CM2 = E(X2)− E(X)2 = M2 −M1
2. (2)

Whereas it results in a one-pass algorithm, it is still not the optimal choice as it
may be numerically unstable [12]. During the computation of the raw moments
the intermediate values tend to become very large which can lead to a loss in
accuracy. Further, M2 and M1

2 can be large values, and the result of M2−M1
2

can also lead to a significant accuracy loss due to the limited fraction significand
of floating point formats (e.g., IEEE 754).

In the following we present a way to compute the two required parameters
for the t-test at any order in one pass and with proper accuracy. This is achieved
by using an incremental algorithm to update the central sums from which the
needed parameters are derived.

4.1 Incremental One-Pass Computation of All Moments

The basic idea of an incremental algorithm is to update the intermediate results
for each new trace. This has the advantage that the computation can be run in
parallel to the measurements. In other words, it is not necessary to collect all the
traces, estimate the mean and then estimate the variance. Since the evaluation
can be stopped as soon as the t-value surpasses the threshold, this helps to
reduce the evaluation time even further. Finding such an algorithm for the raw
moments is trivial. In the following we recall the algorithm of [24] to compute
all central moments iteratively, and further show how to derive the standardized
moments accordingly.
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Suppose that M1,Q denotes the first raw moment (sample mean) of the given
set Q. With y as a new trace to the set, the first raw moment of the enlarged
set Q′ = Q∪ {y} can be updated as

M1,Q′ = M1,Q +
∆

n
,

where ∆ = y −M1,Q, and n the cardinality of Q′. Note that Q and M1,Q are
initialized with ∅ and respectively zero.

This method can be extended to compute the central moments at any arbi-
trary order d > 1. We first introduce the term central sum as

CSd =
∑
i

(xi − µ)d, where CMd =
CSd
n

.

Following the same definitions, the formula to update CSd can be written as [24]

CSd,Q′ = CSd,Q+

d−2∑
k=1

(
k

d

)
CSd−k,Q

(
−∆
n

)k
+

(
n− 1

n
∆

)d [
1−

(
−1

n− 1

)d−1]
,

(3)
where ∆ is still the same as defined above. It is noteworthy that the calculation
of CSd,Q′ requires CSi,Q for 1 < i ≤ d as well as the estimated mean M1,Q.

Based on these formulas the first raw and all central moments can be com-
puted efficiently in one pass. Furthermore, since the intermediate results of the
central sums are mean free, they do not become significantly large that helps
preventing the numerical instabilities. The standardized moments are indeed the
central moments which are normalized by the variance. Hence they can be easily
derived from the central moments as

SMd =
1

n

∑
i

(
xi − µ
s

)d
=

CMd(√
CM2

)d . (4)

Therefore, the first parameter (mean of the preprocessed data) of the t-test at
any order can be efficiently and precisely estimated. Below we express how to
derive the second parameter for such tests at any order.

4.2 Variance of Preprocessed Traces

A t-test at higher orders operates on preprocessed traces. In particular it re-
quires to estimate the variance of the preprocessed traces. Such a variance does
in general not directly correspond to a central or standardized moment of the
original traces. Below we present how to derive such a variance at any order
from the central and standardized moments.

Equation (2) shows how to obtain the variance given only the first two raw
moments. We extend this approach to derive the variance of the preprocessed
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traces. In case of the second order, the traces are mean-free squared, i.e., Y =
(X − µ)2. The variance of Y is estimated as

s
Y

2 =
1

n

∑(
(x− µ)2 − 1

n

∑
(x− µ)2

)2
=

1

n

∑(
(x− µ)2 − CM2

)2
=

1

n

∑
(x− µ)4 − 2

n
CM2

∑
(x− µ)2 + CM2

2

= CM4 − CM2
2. (5)

Therefore, the sample variance of the mean-free squared traces (required for a
second-order t-test) can be efficiently derived from the central moments CM4 and
CM2. For the cases at the third order, the traces are additionally standardized,

i.e., Z =
(
X−µ
s

)3
. The variance of Z can be written as

s
Z

2 =
1

n

∑((x− µ
s

)3 − 1

n

∑(x− µ
s

)3)2
=

1

n

∑((x− µ
s

)3 − SM3

)2
=

1

n

∑(x− µ
s

)6 − 2

n
SM3

∑(x− µ
s

)3
+ SM3

2

= SM6 − SM3
2 =

CM6 − CM3
2

CM2
3 . (6)

Since the tests at third and higher orders use standardized traces, it is possible
to generalize Equation (6) for the variance of the preprocessed traces at any
order d > 2 as

SM2d − SMd
2 =

CM2d − CMd
2

CM2
d

. (7)

Therefore, a t-test at order d requires to estimate the central moments up to
order 2d. With the above given formulas it is now possible to extend the t-test
to any arbitrary order as we can estimate the corresponding required first and
second parameters efficiently. In addition, most of the numerical problems are
eliminated in this approach. The required formulas for all parameters of the tests
up to the fifth order are provided in Appendix A. We also included the formulas
when the first and second parameters of the tests (up to the fifth order) are
derived from raw moments.

In order to give an overview on the accuracy of different ways to compute
the parameters for the t-tests, we ran an experiment with 100 million simulated
traces with ∼ N (100, 25), which fits to a practical case where the traces (ob-
tained from an oscilloscope) are signed 8-bit integers. We computed the second
parameter for t-tests using i) three-pass algorithm, ii) the raw moments, and
iii) our proposed method. Note that in the three-pass algorithm first the mean
µ is estimated. Then, having µ the traces are processed again to estimate all
required centralized and standardized moments, and finally having all moments
the traces are preprocessed (with respect to the desired order) and the variances
(of the preprocessed traces) are estimated. The corresponding results are shown
in Table 1. In terms of accuracy, our method matches the three-pass algorithm.
The raw moments approach suffers from severe numerical instabilities, especially
at higher orders where the variance of the preprocessed traces becomes negative.
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Table 1. Comparison of the accuracy of different methods to compute the second
parameter of the t-tests, 100 million simulated traces ∼ N (100, 25)

1st order 2nd order 3rd order 4th order 5th order

Three Pass 25.08399 1258.18874 15.00039 96.08342 947.25523
Raw Moments 25.08399 1258.14132 14.49282 -1160.83799 -1939218.83401
Our Method 25.08399 1258.18874 15.00039 96.08342 947.25523

4.3 Parallel Computation

Depending on the data complexity of the measurements, it is sometimes favor-
able to parallelize the computation in order to reduce the time complexity. To
this end, a straightforward approach is to utilize a multi-core architecture (a
CPU cluster) which computes the necessary central sums for multiple sample
points in parallel. This can be achieved easily as the computations on different
sample points are completely independent of each other. Consequently, there is
no communication overhead between the threads. This approach is beneficial in
most measurement scenarios and enables an extremely fast evaluation depending
on the number of available CPU cores as well as the number of sample points
in each trace. As an example, we are able to calculate all the necessary param-
eters of five non-specific t-tests (at first to fifth orders) on 100, 000, 000 traces
(each with 3, 000 sample points) in 9 hours using two Intel Xeon X5670 CPUs
@ 2.93 GHz, i.e., 24 hyper-threading cores.

A different approach can be preferred if the number of points of interest is
very low. In this scenario, suppose that the trace collection is already finished
and the t-tests are expected to be performed on a small number of sample points
of a large number of traces. The aforementioned approach for parallel computing
might not be the most efficient way as the degree of parallelization is bounded
by the number of sample points. Instead, it is possible to increase the degree
by splitting up the computation of the central sums for each sample point. For
this, the set of traces of one sample point Q is partitioned into c subsets Q∗i,
i ∈ {1, . . . , c}, and the necessary central sums CSd,Q∗i are computed for each
subset in parallel using the equations introduced in Section 4.1. Afterward all
CSd,Q∗i are combined using the following exemplary equation for c = 2 [24]:

CSd,Q =CSd,Q∗1 + CSd,Q∗2 +

d−2∑
k=1

(
k

d

)[(
−n
∗2

n

)k
CSd−k,Q∗1

+

(
n∗1

n

)k
CSd−k,Q∗2

]
∆2,1

k +

(
n∗1 n∗2

n
∆2,1

)d [
1

(n∗2)
d−1 −

(
−1

n∗1

)d−1 ]
,

with Q = Q∗1 ∪ Q∗2, n∗i = |Q∗i|, n = n∗1 + n∗2, and ∆2,1 = M1,Q∗2 −M1,Q∗1 .
Further, the mean of Q can be trivially obtained as

M1,Q =
n∗1M1,Q∗1 + n∗2M1,Q∗2

n
.
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5 Multivariate

The equations presented in Section 4 only consider univariate settings. This is
typically the case for hardware designs in which the shares are processed in
parallel, and the sum of the leakages appear at a sample point. For software
implementations this is usually not the case as the computations are sequential
and split up over multiple clock cycles.

In this scenario the samples of multiple points in time are first combined
using a combination function, and an attack is conducted on the combination’s
result. If the combination function (e.g., sum or product) does not require the
mean, the extension of the equations to the multivariate case is trivial. It is
enough to combine each set of samples separately and compute the mean and
variance of the result iteratively as shown in the prior section.

However, this approach does not apply to the most optimum combination
function, i.e., the centered product [26,32]. Given d sample point indices
J = {j1, ..., jd} as points of interest and a set of sample vectorsQ = {Vi∈{1,...,n}}
with Vi =

(
t
(j)
i | j ∈ J

)
, the centered product of the i-th trace is defined as∏

j∈J

(
t
(j)
i − µ

(j)
Q

)
, (8)

where µ
(j)
Q denotes the mean at sample point j over set Q. The inclusion of the

means is the reason why it is not easily possible to extend the equations from
Section 4 to compute this value iteratively.

There is an iterative algorithm to compute the covariance similar to the
aforementioned algorithms. This corresponds to the first parameter in a bivariate

second-order scenario, i.e., d = 2. The covariance
C2,Q′

n
is computed as shown

in [24] with

C2,Q′ = C2,Q +
n− 1

n

(
y(1) − µ(1)

Q

)(
y(2) − µ(2)

Q

)
(9)

for Q′ = Q ∪ {
(
y(1), y(2)

)
}, |Q′| = n, and an exemplary index set J = {1, 2}.

Still, even with this formula it is not possible to compute the required second pa-
rameter for the t-test. In the following, we present an extension of this approach
to d sample points and show how this can be used to compute both parameters
for a dth-order d-variate t-test.

First, we define the sum of the centered products which is required to compute
the first parameter. For d sample points and a set of sample vectors Q, we denote
the sum as

Cd,Q,J =
∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)
. (10)

In addition, we define the k-th order power set of J as

Pk = {S | S ∈ P(J ), |S| = k}, (11)

where P(J ) refers to the power set of the indices of the points of interest J .
Using these definitions we derive the following theorem.
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Theorem 1. Let J be a given set of indices (of d points of interest) and Y the
given sample vector with Y = (y(1), ..., y(d)). The sum of the centered products

Cd,Q′,J of the extended set Q′ = Q ∪ Y with ∆(j∈J ) = y(j) − µ(j)
Q and |Q′| = n

can be computed as:

Cd,Q′,J = Cd,Q,J +

d−1∑
k=2

∑
S∈Pk

Ck,Q,S
∏

j∈J\S

(
∆(j)

−n

)
+

 (−1)d(n− 1) + (n− 1)d

nd

∏
j∈J

∆(j)

 . (12)

The proof of Theorem 1 is given in Appendix B. Equation (12) can be also
used to derive the second parameter of the t-tests. To this end, let us first recall
the definition of the second parameter in the dth-order d-variate case:

s2 =
1

n

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)
− Cd,Q,J

n

2

=
1

n

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)2− (Cd,Q,J
n

)2

. (13)

The first term of the above equation can be written as

1

n

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)2
=

1

n

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

) ∏
j∈J

(
t(j) − µ(j)

Q

) =
C2d,Q,J ′

n
.

(14)
Hence, the iterative algorithm (Equation (12)) can be performed with multiset
J ′ = {j1, ..., jd, j1, ..., jd} to derive the first term of Equation (13). It is note-
worthy that at the first glance Equation (13) looks like Equation (2), for which
we addressed low accuray issues. However, data which are processed by Equa-
tion (13) are already centered, that avoids the sums Cd,Q,J being very large
values. Therefore, the accuracy issues which have been pointed out in Section 4
are evaded.

By combining the results of this section with that of Section 4, it is now
possible to perform a t-test with any variate and at any order efficiently and
with sufficient accuracy. As an example, we give all the formulas required by a
second-order bivariate (d = 2) t-test in Appendix C.

6 Case Studies

Security evaluations consist of the two phases measurement and analysis. All
challenges regarding the second part, which in our scenario refers to the com-
putation of the t-test statistics, have been discussed in detail in the previous
sections. However, this alone does not ensure a correct evaluation as malprac-
tice in the measurement phase can lead to faulty results in the analysis. Below,
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we first describe the pitfalls that can occur during the measurement phase and
provide solutions to ensure the correctness of evaluations. After that, two case
studies are discussed that exemplary show the applications of our proposed eval-
uation framework.

6.1 Framework

If the DUT is equipped with countermeasures, the evaluation might require the
collection of many (millions of) traces and, thus, the measurement rate (i.e.,
the number of collected traces per a certain period of time) can become a major
hurdle. Following the technique suggested in [9] we explain how the measurement
phase can be significantly accelerated. The general scenario (cf. Figure 2) is
based on the assumption that the employed acquisition device (e.g., oscilloscope)
includes a feature usually called sequence mode or rapid block mode. In such a
mode – depending on the length of each trace as well as the size of the sampling
memory of the oscilloscope – the acquisition device can record multiple traces.
This is beneficial since the biggest bottleneck in the measurement phase is the low
speed of the communication between e.g., the PC and the DUT (usually realized
by UART). In the scenario shown in Figure 2 it is supposed that Target is the
DUT, and Control a microcontroller (or an FPGA) which communicates with
the DUT as well as with the PC. The terms Target and Control correspond
to the two FPGAs of e.g., a SAKURA (SASEBO) platform [1], but in some
frameworks these two parties are merged, e.g., a microcontroller-based platform.
Further, the PC is already included in modern oscilloscopes.

Profiting from the sequence mode the communication between the PC and
the DUT can be minimized in such a way that the PC sends only a single request
to collect multiple N traces. The measurement rate depends on the size of the
oscilloscope’s sampling memory, the length of each trace as well as the frequency
of operation of the DUT. As an example, by means of an oscilloscope with
64 MByte sampling memory (per channel) we are able to measure N = 10, 000
traces per request when each trace consists of 5, 000 sample points. This results
in being able to collect 100 million traces (for either a specific or non-specific
t-test) in 12 hours.

To assure the correctness of the measurements, the PC should be able to
follow and verify the processes performed by both Control and the DUT. Our
suggestion is to employ a random number generator which can be seeded by the
PC1. This allows the PC to check the consistency of outN as well as the PRNG
state. With respect to Figure 2, f(., ., .) is defined based on the desired evaluation
scheme. For a specific t-test (or any evaluation method where no control over
e.g., plaintexts is necessary) our suggestion is:

ini+1 = f(INPUT, outi, random) = outi ⊕ random.

This allows the PC to verify all N processes of the DUT by examining the
correctness of outN . In case of a non-specific t-test, such a function can be
realized as
1 For example an AES encryption engine in counter mode.
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PC Control Target

(INPUT, N , SEED)

init PRNG(SEED)Oscilloscope
ARM

in1 = f(INPUT, 0, random)
in1

Trigger

Process (in1)

Measurement
out1

in2 = f(INPUT, out1, random)
in2

Trigger

Process (in2)

Measurement
out2

in3 = f(INPUT, out2, random)

inN = f(INPUT, outN−1, random)
inN

Trigger

Process (inN )

Measurement
outN

N leakage traces

msc

(outN , PRNG STATE)

Fig. 2. An optimized measurement process

ini+1 = f(INPUT, outi, random) =

{
INPUT if randombit is 0
random if randombit is 1

.

Note that it should be ensured that randombit is excluded from the random
input. Otherwise, the random inputs become biased at a certain bit which may
potentially lead to false-positive evaluation results. If a semi-fixed vs. random
t-test is conducted, INPUT contains a set of certain fixed inputs (which can be
stored in Control to reduce the communications), and the function can be
implemented as

ini+1 = f(INPUT, outi, random) =

{
INPUTrandom if randombit is 0
random if randombit is 1

.

If the DUT is equipped with masking countermeasures, all communication
between Control and Target (and preferably with the PC as well) should be in
a shared form. This prevents the unshared data, e.g., INPUT, from appearing in
Control and Target. Otherwise, the leakage associated to the input itself would
cause, e.g., a non-specific t-test to report an exploitable leakage regardless of the
robustness of the DUT. In hardware platforms such a shared communication
is essential due to the static leakage as well [17]. For instance, in a second-
order masking scheme (where variables are represented by three shares) INPUT

should be a 3-share value (INPUT1, INPUT2, INPUT3), and respectively ini+1 =
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(in1i+1, in
2
i+1, in

3
i+1). In such a case, a non-specific t-test (including semi-fixed

vs. random) should be handled as

ini+1 =f(INPUT, outi, random)

=

{
(INPUT1 ⊕ r1, INPUT2 ⊕ r2, INPUT3 ⊕ r1 ⊕ r2) if randombit is 0
(r1, r2, r3) if randombit is 1

,

with r1 as a short notation of random1. In other words, the fixed input should
be freshly remasked before being sent to the DUT. Consequently, the last output
(out1N , out

2
N , out

3
N ) is also sent in a shared form to the PC.

In general we suggest to apply the tests with the following settings:

– non-specific t-test (fixed vs. random): with shared communication between
the parties, if the DUT is equipped with masking.

– non-specific t-test (semi-fixed vs. random): without shared communication,
if the DUT is equipped with hiding techniques.

– specific t-tests: with the goal of identifying a suitable intermediate value for
a key-recovery attack, if the DUT is not equipped with any countermeasures
or failed in former non-specific tests. In this case, a shared communication
is preferable if the DUT is equipped with masking.

6.2 Case Study: Microcontroller

As the first case study we consider the publicly-available implementation of the
DPA contest v4.2 [33] for an Atmel microcontroller. The underlying implemen-
tation is a realization of the AES-128 encryption engine equipped with masking
and shuffling. The details of the implementation can be found in [3]; we also
give the pseudo-code in Appendix D. It is noteworthy that it is based on a low-
entropy masking scheme [22] which uses 8-bit masks drawn from a 16-element
set. Further, the shuffling (of the order of the masked Sbox look-ups) is only ap-
plied to the first and last rounds. Indeed, the implementation is a revised version
of the DPA contest v4.1 after the flaws reported in [18].

By means of a PicoScope at the sampling rate of 250 MS/s we collected
100, 000 traces of this implementation running on an ATmega163-based smart-
card. The traces have been measured using the aforementioned framework for a
non-specific t-test, and each trace covers only the first two encryption rounds.
Note that since the underlying implementation receives unmasked plaintext and
performs the masking prior to the encryption (see Appendix D), we were not able
to completely follow the instructions (communication in a shared form) suggested
above. By performing the first- and second-order univariate non-specific t-tests
we obtained the results shown in Figure 3. As expected, the leakage associated
to the unmasked plaintext before being XORed with the masked roundkey can
be identified in the t-test result, i.e., the time period between 0 and 20µs. The
test also shows that the implementation still exhibits first-order leakage even in
the first round, where both masking and shuffling are active. As expected, when
the process is not shuffled (i.e., the second encryption round), the leakage is
detectable with higher confidence. Since our goal is just to assess the leakage of
the implementation, we have not tried to identify a suitable intermediate value
nor a power model for a successful key-recovery attack.



Leakage Assessment Methodology 17

Fig. 3. DPA contest v4.2, non-specific t-test results (top) first-order, (bottom) second-
order univariate using 100, 000 traces

6.3 Case Study: FPGA

For the second case study we focus on a second-order threshold implementa-
tion (TI). The concept of TI has been introduced in [23] and then extended to
higher orders in [5] with the goal of providing security for hardware platforms
utilizing Boolean masking schemes. Designs which follow the TI concepts can
prevent any first-order leakages [4, 5, 16, 21, 25]. However, the higher-order TI
construction considers only univariate leakage. A note given in [27] addresses
the issue that multivariate leakages can still be exploited from a higher-order TI
design. In order to examine this by a multivariate t-test (explained in Section 5)
we implemented the non-linear feedback shift register (NLFSR) which has been
taken as an example in [27]. The NLFSR consists of four cells L[0] to L[3] and
an AND/XOR module as the feedback function

f = f(L[3], L[2], L[1]) = L[3]⊕ L[2]L[1],

which feeds the L[0] cell. We followed the concept of second-order TI and took
the uniform sharing of the AND/XOR module from [5], which needs at least 5
input shares. We implemented the design (cf. Appendix E) on a SAKURA-G [1]
platform with a Spartan-6 FPGA as the target (DUT). The NFLSR is initialized
by a 4-bit input each represented by 5 shares, and it is clocked 32 times till the
4-bit (shared) output is generated.

In order to conduct a non-specific t-test we followed the measurement scenario
presented in Section 6.1, where all the communications are shared. In total we
collected 2, 000, 000 power traces (an exemplary one is shown by Figure 4(a))
at a sampling rate of 500 MS/s. By performing the univariate fixed vs. random
t-test at first up to fifth orders we obtained the curves of the statistics which
are shown in Figure 4(b) to Figure 4(f). As expected, the design exhibits a
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fifth-order leakage as the underlying masking utilizes 5 shares. For a bivariate
second-order t-test we followed the method explained in Section 5 with d = 2
(the formulas to derive both parameters of a bivariate second-order t-test are
given in Appendix C). Since the selection of the points of interest in a bivariate
setting is not trivial (one can also use the scheme introduced in [28]), we have
examined all possible offsets (between two points of interest) from 1 up to 31
clock cycles, and performed the test on all sample points of the collected traces.
The test with respect to 15 clock cycles as the offset between the points of
interest showed the best result as depicted in Figure 4(g). With this experiment
we could practically confirm the issue of higher-order TI addressed in [27] with a
bivariate second-order non-specific t-test (without performing any key-recovery
attack).
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Fig. 4. NLFSR 2nd-order TI, sample trace and univariate and bivariate non-specific
t-test results using 2, 000, 000 traces
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A Necessary Moments for up to 5th-order t-tests

Below we consider ∆ = y −M1,Q, where M1,Q denotes the first raw moment of
Q, and y as the new element to construct Q′ = Q∪ {y} with cardinality of n.

A.1 Central Moments Iterative
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n
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CS6,Q −

56∆3

n3
CS5,Q

+
70∆4

n4
CS4,Q −

56∆5

n5
CS3,Q +

28∆6

n6
CS2,Q

+
∆8(n− 1)((n− 1)7 + 1)

n8
(21)

CS9,Q′ = CS9,Q −
9∆

n
CS8,Q +

36∆2

n2
CS7,Q −

84∆3

n3
CS6,Q

+
126∆4

n4
CS5,Q −

126∆5

n5
CS4,Q +

84∆6

n6
CS3,Q

− 36∆7

n7
CS2,Q +

∆9(n− 1)((n− 1)8 − 1)

n9
(22)



22 Tobias Schneider and Amir Moradi

CS10,Q′ = CS10,Q −
10∆

n
CS9,Q +

45∆2

n2
CS8,Q −

120∆3

n3
CS7,Q

+
210∆4

n4
CS6,Q −

252∆5

n5
CS5,Q +

210∆6

n6
CS4,Q

− 120∆7

n7
CS3,Q +

45∆8

n8
CS2,Q +

∆10(n− 1)((n− 1)9 + 1)

n10
(23)

At any time, central moments can be computed as CMd =
CSd
n

. Note that

if a single variable is used for CSp,Q′ and CSp,Q in the underlying computer-
executable code, the order of executions should be backwards from Equation 23
to Equation 15.

A.2 Central Moments from the Raw Moments

CM2 = M2 −M1
2 (24)

CM3 = M3 − 3M2M1 + 2M1
3 (25)

CM4 = M4 − 4M3M1 + 6M2M1
2 − 3M1

4 (26)

CM5 = M5 − 5M4M1 + 10M3M1
2 − 10M2M1

3

+ 4M1
5 (27)

CM6 = M6 − 6M5M1 + 15M4M1
2 − 20M3M1

3

+ 15M2M1
4 − 5M1

6 (28)

CM7 = M7 − 7M6M1 + 21M5M1
2 − 35M4M1

3

+ 35M3M1
4 − 21M2M1

5 + 6M1
7 (29)

CM8 = M8 − 8M7M1 + 28M6M1
2 − 56M5M1

3

+ 70M4M1
4 − 56M3M1

5 + 28M2M1
6

− 7M1
8 (30)

CM9 = M9 − 9M8M1 + 36M7M1
2 − 84M6M1

3

+ 126M5M1
4 − 126M4M1

5 + 84M3M1
6

− 36M2M1
7 + 8M1

9 (31)

CM10 = M10 − 10M9M1 + 45M8M1
2 − 120M7M1

3

+ 210M6M1
4 − 252M5M1

5 + 210M4M1
6

− 120M3M1
7 + 45M2M1

8 − 9M1
10 (32)
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A.3 Mean and Variance for each t-test

(1st order) µ = M1, s2 = CM2 (33)

(2nd order) µ = CM2, s2 = CM4 − CM2
2 (34)

(3rd order) µ = SM3 =
CM3(√
CM2

)3 , s2 =
CM6 − CM3

2

CM2
3 (35)

(4th order) µ = SM4 =
CM4(√
CM2

)4 , s2 =
CM8 − CM4

2

CM2
4 (36)

(5th order) µ = SM5 =
CM5(√
CM2

)5 , s2 =
CM10 − CM5

2

CM2
5 (37)

B Proof of Theorem 1

Proof. We start with the definition of the sum of the centered products and use
Q′ = Q∪ V to split up the term as

Cd,Q′,J =
∑

V ∈Q′

∏
j∈J

(
t(j) − µ(j)

Q′
)

=

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q′
)+

∏
j∈J

(
y(j) − µ(j)

Q′
) . (38)

Considering only the first term and using the relation µ
(j)
Q′ =

(n− 1)µ
(j)
Q + y(j)

n
,

we can write

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q′
)

=
∑
V ∈Q

∏
j∈J

(
t(j) −

(n− 1)µ
(j)
Q + y(j)

n

)

=
∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q −
∆(j)

n

)

=

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q

)
+

d−1∑
k=1

∑
S∈Pk

∑
V ∈Q

∏
s∈S

(
t(s) − µ(s)

Q

) ∏
j∈J\S

∆(j)

−n


+

∑
V ∈Q

∏
j∈J

∆(j)

−n

 . (39)
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With Equation (10) and the fact that ∀ j ∈ J ,
∑
V ∈Q

(
t(j) − µ(j)

Q

)
= 0, we

can simplify Equation (39) to

∑
V ∈Q

∏
j∈J

(
t(j) − µ(j)

Q′
)

= Cd,Q,J +

d−1∑
k=2

∑
S∈Pk

Ck,Q,S
∏

j∈J\S

∆(j)

−n


+

n− 1

(−n)
d

∏
j∈J

∆(j). (40)

The second term of Equation (38) can be reduced similarly as

∏
j∈J

(
y(j) − µ(j)

Q′
)

=
∏
j∈J

(
y(j) −

(n− 1)µ
(j)
Q + y(j)

n

)

=
∏
j∈J

(
y(j) − y(j) +

(n− 1)∆(j)

n

)

=
∏
j∈J

(
(n− 1)∆(j)

n

)
=

(n− 1)d

nd

∏
j∈J

∆(j). (41)

We can write Equation (38) by combining Equation (40) and Equation (41) as

Cd,Q′,J = Cd,Q,J +

d−1∑
k=2

∑
S∈Pk

Ck,Q,S
∏

J∈J\S

(
∆(j)

−n

)
+

n− 1

(−n)
d

∏
j∈J

∆(j) +
(n− 1)d

nd

∏
j∈J

∆(j), (42)

which is equivalent to Equation (12). ut
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C Necessary Formulas for a bivariate second-order t-tests

In the following we give the necessary formulas to compute a bivariate second-
order t-test for exemplary sample points J = {1, 2}. We denote the two sample
points of the new trace by tuple (y(1), y(2)) to be added to the trace set as Q′ =

Q ∪ {(y(1), y(2))} with cardinality of n. We also consider ∆(j∈J ) = y(j) − µ(j)
Q ,

with µ
(j)
Q as the mean of the set Q at sample point j.

C2,Q′,{1,1} = C2,Q,{1,1} +
∆(1)∆(1)(n− 1)

n
(43)

C2,Q′,{1,2} = C2,Q,{1,2} +
∆(1)∆(2)(n− 1)

n
(44)

C2,Q′,{2,2} = C2,Q,{2,2} +
∆(2)∆(2)(n− 1)

n
(45)

C3,Q′,{1,2,1} = C3,Q,{1,2,1} − 2C2,Q,{1,2}
∆(1)

n
− C2,Q,{1,1}

∆(2)

n

+
∆(1)∆(2)∆(1)

(
n2 − 3n+ 2

)
n2

(46)

C3,Q′,{1,2,2} = C3,Q,{1,2,2} − 2C2,Q,{1,2}
∆(2)

n
− C2,Q,{2,2}

∆(1)

n

+
∆(1)∆(2)∆(2)

(
n2 − 3n+ 2

)
n2

(47)

C4,Q′,{1,2,1,2} = C4,Q,{1,2,1,2} − 2C3,Q,{1,2,1}
∆(2)

n
− 2C3,Q,{1,2,2}

∆(1)

n

+ C2,Q,{1,1}
∆(2)∆(2)

n2
+ 4C2,Q,{1,2}

∆(1)∆(2)

n2
+ C2,Q,{2,2}

∆(1)∆(1)

n2

+
∆(1)∆(2)∆(1)∆(2)

(
n3 − 4n2 + 6n− 3

)
n3

(48)

In this scenario, µ =
C2,Q′,{1,2}

n
corresponds to the first parameter and

s2 =
C4,Q′,{1,2,1,2}

n
− µ2 to the second parameter of a bivariate second-order

t-test.
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D Pseudo-code of the protected AES (DPA contest v4.2)

Algorithm 1: Masked and Shuffled AES-128 encryption

Input : Plaintext X, seen as bytes xi∈{0,...,15},
11 Roundkeys R[r], r ∈ {0, . . . , 10}, each 128-bit constant

Output: Ciphertext X, seen as bytes xi∈{0,...,15}

Draw 16 random offseti∈{0,...,15} uniformly in {0, 1}4
Draw two random bijective table Shuffle0, Shuffle10 : {0, 1}4 → {0, 1}4

R[0] = R[0]⊕ Mask[offset]
for r ∈ {0, 10} do

X = X ⊕R[r]
for i ∈ {0, 15} do

if r = 0 then j = Shuffle0[i]
else if r = 10 then j = Shuffle10[i]
else j = i
xj = MaskedSboxoffsetj (xj)

end
if r 6= 10 then

X = MixColumn
(
ShiftRows(X)

)
X = X ⊕ MaskCompensation(offset)

else
X = ShiftRows(X)
X = X ⊕ MaskCompensationLastRound(offset)

end

end

E NLFSR

Fig. 5. Architecture of the second-order TI of the NLFSR


