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Abstract. In this paper we introduce an open framework for the benchmarking of lightweight
block ciphers on a multitude of embedded platforms. Our framework is able to evaluate execution
time, RAM footprint, as well as (binary) code size, and allows a user to define a custom “figure
of merit” according to which all evaluated candidates can be ranked. We used the framework to
benchmark various implementations of 13 lightweight ciphers, namely AES, Fantomas, HIGHT,
LBlock, LED, Piccolo, PRESENT, PRINCE, RC5, Robin, Simon, Speck, and TWINE, on three
different platforms: 8-bit ATmega, 16-bit MSP430, and 32-bit ARM. Our results give new insights
to the question of how well these ciphers are suited to secure the Internet of Things (IoT). The
benchmarking framework provides cipher designers with a tool to compare new algorithms with the
state-of-the-art and allows standardization bodies to conduct a fair and comprehensive evaluation
of a large number of candidates.
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1 Introduction

The Internet of Things (IoT) is a frequently-used term to describe the currently ongoing evolution of
the Internet into a network of smart objects (“things”) that have the ability to communicate with each
other and with centralized resources via the IPv6 (resp. 6LoWPAN) protocol [5]. Today, the two most
important and widely noticed exponents of the IoT are RFID technology (which has become a key enabler
of modern supply-chain management and industrial logistics) and Wireless Sensor Networks (WSNs),
which have found widespread adoption in several application domains ranging from home automation
over environmental surveillance and traffic control to medical monitoring. A recent white paper by Cisco
estimates no less than 50 billion devices being connected to the Internet by the year 2020 [25], which
implies that, in the near future, every person in the industrialized world will be surrounded by hundreds
of sensors, actuators, RFID tags, and many other kinds of smart objects yet to be developed. This
evolution from the Internet of people to the Internet of Things will have a profound impact on our
daily life and change the way we interact with the physical world surrounding us [5]. However, it is also
evident that 50 billion smart devices connected to the Internet introduce unprecedented challenges to
the security and privacy of their owners or users.

It is widely accepted that symmetric-key cryptosystems play a major role in the security arena of
the IoT, but they need to be designed and implemented efficiently enough so as to comply with the
scarce resources of typical IoT devices. Gligor defined in [26] lightweight cryptography as cryptographic
primitives, schemes and protocols tailored to extremely constrained environments such as sensor nodes or
RFID tags. A typical sensor node (e.g. the MICAz mote) is equipped with an 8-bit micro-controller (e.g.
the ATmega128) clocked at 7.8 MHz and features 4 kB of RAM. Passive RFID tags do not even have
a (software-programmable) processor, which means that performing cryptography on such tags is only
possible through hardware implementation. The efficient implementation of cryptographic primitives so
that they are applicable in the highly constrained regimes of sensor nodes and RFID tags is a challenging
task since, for example, performance is conflicting with other metrics of interest such as silicon area and
power consumption (when thinking of hardware implementation) or memory footprint and code size
(when implementing in software). In addition, lightweight primitives should withstand all known forms
of cryptanalytic attacks (e.g. linear and differential cryptanalysis in the context of secret-key primitives)
since lightweight cryptography is not meant to be “weak” cryptography, i.e. a lightweight cryptographic
primitive should not be the weakest link in the security of a system [26].
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In this paper we present a survey of lightweight block ciphers along with software benchmarking results
we obtained on 8, 16, and 32-bit processors. We consider three metrics of interest: execution time, run-
time memory (i.e. RAM) requirements, and binary code size. To ensure a fair and consistent evaluation,
we developed a benchmarking toolsuite that we plan to make available to the cryptographic research
community following the spirit of the well-known and widely-used eBACS [9] system. Our benchmarking
tool is “open” in various aspects; first, it will be possible to upload implementations of new ciphers
as well as new (i.e. improved) implementations of ciphers that are already included. Second, the tool
was developed from the ground up with the goal of supporting a wide range of embedded platforms
through both cycle-accurate instruction set simulation and actual measurements on prototyping boards.
Currently, our tool includes cycle-accurate instruction set simulators for AVR ATmega and TI MSP430,
as well as an ARM development board equipped with a Cortex M processor. We use GCC for all
platforms, but other compilers could be supported as well. Third, our tool is also open with respect
to the evaluation metrics. Currently, it can evaluate three basic metrics, namely execution time, RAM
footprint, and binary code size. Other metrics can be derived thereof or are, at least, closely related. For
example, the energy consumption of a block cipher executed on an embedded processor operating in a
certain power mode can be estimated by the product of execution time, supply voltage, and average power
consumption. However, since our framework supports prototyping boards, it can be easily extended to
collect more detailed and precise energy figures by measuring the power consumption.

Our benchmarking toolsuite accepts implementations written in ANSI C, whereby performance-cri-
tical code sections can be accelerated with inlined Assembly code for the three processor architectures
mentioned above. In this way, the toolsuite supports various trade-offs between performance and porta-
bility. At one end of the spectrum are highly-optimized implementations for which the complete encryp-
tion/decryption function consists of hand-crafted Assembly code. Assembly programming allows one to
fully exploit the architectural features of a processor and, in this way, reach peak performance. The speed-
up due to the integration of hand-crafted Assembly code is especially pronounced if a cipher performs a
large number of operations that are significantly less efficient in C than in Assembly language (e.g. multi-
word arithmetic, certain bit manipulations). Benchmarking results obtained from performance optimized
implementations played an important role in the evaluation of candidates for cryptographic standards,
such as the AES [40] and SHA-3 [37], and this will also be the case for potential future standardization
activities in the area of lightweight cryptography for the IoT [36]. However, any implementation of a ci-
pher written in Assembly language is processor-dependent and, therefore, not portable. At the opposite
end of the performance-portability spectrum are “pure” C implementations, which are highly portable
but, in general, less efficient than their hand-crafted Assembly counterparts.

While the importance of benchmarking high-speed Assembly implementations is out of dispute, we
argue in this paper that there is also a need to benchmark portable C implementations of lightweight
ciphers. Our argument is twofold and based on the requirements and constraints of the IoT. First, it
has to be noticed that there is no single dominating hardware platform in the IoT (in contrast to the
“conventional” Internet of commodity computers, where the Intel architecture has a market share of
over 90%). In fact, the IoT is populated by billions of heterogenous devices with largely incompatible
processors and operating systems. Supporting all these processors through optimized Assembly code is
tedious and error-prone since, for each processor architecture, a separate code base needs to be written,
tested, debugged, and maintained. In the light of ever-increasing time-to-market pressure, many crypto-
graphic engineers value the portability of C code higher than the performance of Assembly code1. Even
though we mentioned before that, for some ciphers, Assembly optimizations yield a significant speed-up,
it should be noted that there are also many ciphers for which this does not hold. In particular, if a cipher
mainly performs single-word arithmetic/logical operations, then optimizing compilers generally produce
high-quality code that comes very close to a hand-crafted Assembly implementation. In such a case,
Assembly programming would introduce a significant overhead for a relatively little gain. Our second
argument in favor of portable C implementations is related to the steadily increasing research interest in
lightweight ciphers with new designs being published (almost) every week. Implementations written in C
often serve as proof-of-concept in the design phase of a new primitive to explore e.g. different candidates
for a round function. Our benchmarking toolsuite allows cipher designers to evaluate the impact of vari-
ous design options (e.g. round function, number of rounds) on execution time, RAM footprint and code
size. In this way, designers can already assess in an early phase of the design cycle how a new primitive
may compare with the state-of-the-art.

1 On the other hand, if there is only one single platform to support, as is the case with the “conventional” Internet
where the Intel architecture enjoys an almost monopoly, it makes of course sense to use a performance-optimized
Assembly implementation.



We report detailed benchmarking results for a total of 13 lightweight block ciphers, namely AES, Fan-
tomas, HIGHT, LBlock, LED, Piccolo, PRESENT, PRINCE, RC5, Robin, Simon, Speck, and TWINE.
Our rationale behind selecting exactly the mentioned 13 ciphers is twofold; first, each of these candidates
has a special property or feature that makes it interesting for IoT applications. Second, they cover a wide
range of different design strategies and approaches. Our evaluation considers two applications scenarios
or use cases; the first considers the encryption of messages transmitted in a Wireless Sensor Network
(WSN) and the second is a simple challenge-response authentication protocol with applications in e.g.
object identification or access control. To accommodate the different requirements of these application
scenarios, we implemented at least two versions of most of the 13 ciphers, a memory-optimized variant
and a speed-optimized variant. The former can be seen as a minimalist implementation that favors low
memory footprint and small code size over performance. On the other hand, the second implementation
incorporates certain optimizations that increase code size and/or memory footprint (e.g. partial loop
unrolling, use of small look-up tables) with the goal of improving performance. Almost all our imple-
mentations are written in C language to ensure portability across a wide range of 8, 16, and 32-bit
platforms2. We put a similar effort into optimizing the implementations of all ciphers to ensure a con-
sistent and fair evaluation. Even though our C implementations do not achieve record-setting execution
times, the benchmarks we report in this paper are still practically relevant. On the one hand, they will
be useful for cryptographic engineers who value portability higher than performance. For example, our
results can assist them in choosing the block cipher that best meets the requirements of a target ap-
plication with respect to execution time, RAM footprint and code size. On the other hand, also cipher
designers will profit from our benchmarking results because they allow them to assess how a new design
candidate compares with the state-of-the-art.

Related Work. Several similar projects evaluated the performance of lightweight block ciphers, but
none of them addressed the specific constraints imposed by the context of IoT. We chose to develop a
new framework instead of contributing to an existing one, because none of the existing projects provides
a fair and flexible benchmarking framework capable of extracting comprehensive results using accurate
measurements for the target devices commonly used in IoT context. Nevertheless, understanding the
strengths and weaknesses of previous benchmarking frameworks helped us to design a more flexible and
powerful framework for evaluation of lightweight ciphers on different embedded devices commonly used
in the IoT context.

The authors of [17] analysed 16 lightweight block ciphers on the MSP430 16-bit microcontroller. The
provided C library [16] shows that the project does not use a common interface for evaluating all the
ciphers and it can not easily accommodate new devices. Inspecting the benchmarking code we discovered
that the RAM requirement metric is wrongly computed, because the implementers assume that the
unsigned int data type takes one byte on the target microcontroller instead of two. Although this is
the biggest collection of lightweight ciphers implementations available, some of the implemented ciphers
do not verify the test vectors provided in the cipher specifications. We created a patch that fixes the
identified issues and submitted it to the authors of the project, but the patch is not yet applied to the
public repository since the project is not active for more than ten months. For the ciphers considered
both in our paper and in [17], our results on the same platform are on average three times better.

During the ECRYPT II project, a survey paper [22] concerning the performance evaluation of 12
low-cost block ciphers on AVR ATtiny45 device was published. The set of analysed ciphers includes
lightweight ciphers designed until the paper publication and thus it does not contain recent designs. The
authors described the methodology used and the requirements formulated to ensure a fair comparison
of the lightweight block ciphers. Although the assembly implementations are available [23], there is no
framework provided that can help users to asses the performance of new designs in the same conditions.
The assembly implementation results of this survey on AVR ATtiny45 are on par with our assembly
implementation results on AVR ATmega128, while the assembly implementation in [22] is five times
slower than our C implementation.

The XBX extension [47] to SUPERCOP [9] allowed benchmarking hash functions on embedded de-
vices, adding at the same time two new metrics, namely RAM footprint and ROM consumption. The
framework is not maintained any more, but still worth mentioning because of the consistent evalua-
tion across several embedded devices and the importance of the results in the context of the SHA-3
competition [37].

2 The AES and PRESENT are exceptional cases in the sense that our C implementations are significantly slower
than hand-optimized Assembly code. Therefore, we include the results of Assembly implementations for these
two ciphers (see Subsection 6.3 for further discussion).



Our Contributions. Firstly, we designed and implemented a framework for fair and consistent bench-
marking of lightweight cryptographic primitives on 8, 16, and 32-bit processors. Our work is motivated
by the lack of a well-accepted and widely-used tool that allows the cryptographic research community to
analyze and compare the execution time, RAM requirements and code size of lightweight primitives on a
range of embedded platforms. These three metrics can be extracted at a very detailed level for different
operations (e.g. encryption, decryption, key expansion) through a well-defined API. We make the full
source code of our framework available under GPL to facilitate the establishment of a completely free
and open benchmarking environment.

Secondly, we survey a total of 13 lightweight block ciphers and study, in particular, their suitability
for software implementation on resource-restricted processors. This set of ciphers covers a wide range
of different design principles and includes some recent proposals with very interesting properties, e.g.
Simon/Speck and Robin/Fantomas. We collected between two and up to 24 implementations of each of
cipher to account for different trade-offs between execution time, RAM footprint and code size. In total,
our repository includes over 80 implementations, of which we developed roughly two third from scratch
and the rest we took over (and slightly modified) from other open-source projects or directly from the
designers. The source code of all our implementations is available under GPL.

Thirdly, we report detailed performance, RAM footprint and code size figures of the 13 block ciphers,
which we generated with the help of our benchmarking toolsuite. We also define two typical usage scenar-
ios that resemble security-related operations commonly performed by real-world IoT devices. The results
we obtained shed new light on the relative performance of lightweight block ciphers because (1) some of
our implementations are significantly faster than that of previous survey and benchmarking efforts, and
(2) we include a few designs that have been published only very recently. Since lightweight cryptography
is a rapidly progressing area of research, we also maintain a web page [18] with the most recent results,
which gets automatically updated when users provide new implementations. Our framework allows the
user to define a custom “Figure Of Merit” (FOM) according to which an overall ranking of ciphers can
be assembled. The FOM metric can assign different weights to execution time, RAM footprint, and code
size, and may even consider (cryptanalytic) security aspects.

To the best of our knowledge, this paper is the first to analyze a broad range of lightweight block
ciphers on different processors in a comprehensive and consistent fashion, taking into account the specific
constraints and requirements of the IoT. Our results allow one to infer some interesting relations between
cipher design principles and performance figures, and, in this way, contribute to a better understanding
of how to design and implement lightweight block ciphers.

2 Usage Scenarios & Target Devices

We chose to evaluate the studied block ciphers in two usage scenarios that cover the two main security
requirements of the IoT: communication confidentiality and entity authentication. The target devices
are three widely used microcontrollers having low power consumption. We selected these devices because
they match the IoT resource constraints and are good representatives of the most-widely used 8, 16 and
32-bit platforms.

Scenario 1 – Communication Protocol This scenario covers the need for secure communication in
sensor networks and between IoT devices. It assumes that the sensitive data is encrypted and decrypted
using a lightweight block cipher in CBC mode of operation. Considering the limitations of communication
protocols in sensor networks described in IEEE 802.15.4 [31] and ZigBee [50] standards, the data length
exchanged in a single transmission by IoT constrained devices is 128 bytes. Because the message length
is fixed to 128 bytes, we do not consider a padding scheme since this introduces unnecessary overhead.
The IoT device has the cipher master key stored in RAM and the round keys are computed using the
key schedule and then stored in RAM for later use in the encryption process. The data that has to be
sent as well as the initialization vector are also stored in the device’s RAM. Encryption is performed in
place to reduce the RAM consumption. The key schedule does not modify the master key since it may
be used later.

Scenario 2 – Challenge-Handshake Authentication Protocol Challenge-handshake authentica-
tion covers the need of authentication in the IoT. The scenario assumes an authentication protocol,
where the block cipher is used in CTR mode to encrypt 128 bits of data. The device has the cipher
round keys stored in Flash memory and there is no master key stored into the device and consequently



no key schedule is required. The data that has to be encrypted is stored in RAM, as well as the counter
value. To reduce the RAM usage, the encryption process is done in place. This scenario is suitable for
very constrained environments where binary code size and RAM usage have to be extremely low, while
the execution time should be fast enough to prevent depleting the device’s battery.

Target Devices The three microcontrollers selected for our evaluation are the 8-bit AVR ATmega128 [4],
the 16-bit TI MSP430F1611 [32] and the Arduino Due [2] based on 32-bit ARM Cortex-M3 [3]. They
use RISC microprocessors clocked at 16, 8, respectively 84 MHz. For a brief description of each micro-
controller see Appendix A.

3 Benchmarking Framework

Most papers introducing a new cipher report performance evaluation on different platforms and usually
in different conditions. The results obtained on different devices and in different measurement conditions
are then used to compare the new cipher with previous ones. The conclusions are not accurate and do not
inspire confidence because it is hard to correctly evaluate different ciphers if comparative implementations
are not available. Our benchmarking framework is motivated by the need for a unified evaluation of
lightweight block ciphers’ performances.

We introduce the tool used to collect performance metrics for lightweight ciphers on three different
devices: 8-bit AVR, 16-bit MSP and 32-bit ARM. To increase the level of confidence and transparency
in our results, the framework is available for free together with more than 80 implementations of 13
lightweight block ciphers.

We strived to make our framework both easy to use and flexible, hence our choice to benchmark
C and assembly implementations. Considering that almost all ciphers’ reference implementations are
written in C, the cipher designer simply has to adapt their reference implementation to the framework
requirements to be able to evaluate the new cipher. The C language is widespread and easy to cross
compile for the selected architectures. Therefore, a lightweight block cipher’s performance can be evalu-
ated on three different IoT platforms with limited efforts. If top performance figures are more important
than portability, then highly optimised assembly implementations for the supported target devices can
be evaluated using the same interface.

To ensure a fair evaluation, we formulated a set of constraints that each implementation should follow.
The detailed description of the framework requirements is given in Appendix B.

The benchmarking framework is able to extract three primary metrics: code size, RAM consump-
tion and execution time. We consider these metrics because they describe the cipher’s characteristics
with respect to the IoT device requirements and they can not be inferred from other metrics. We do
not consider derived or secondary metrics such as energy consumption, power consumption, etc. Those
metrics are closely related to the basic metrics and thus would be redundant. For example, the energy
consumption can be computed from the device’s energy model and the execution time.

It is difficult to optimize the three metrics simultaneously. Thus, we tried different trade-offs in
order to better understand the link between each cipher construction and the performance figures. We
introduce the Figure-of-Merit (FOM), which is a weighted sum of each cipher’s performance across
the three metrics. The results extracted by the framework are very detailed and will help embedded
devices programmers to chose between different implementation strategies depending on their particular
constraints.

3.1 Code Size

The code size is measured in bytes and corresponds to the program footprint which is stored in the Flash
memory of the target device. The code size for each cipher implementation is computed using the size

tool on object files generated by the compiler. The tool lists the section sizes for each analyzed binary
file. To get the code size requirement we add the value of the text and data sections of the relevant
object files. The text section of a binary file contains the code, while the data section contains global
initialized variables. The content of the data section is loaded from Flash into RAM at execution time.
Since our framework forbids the use of global uninitialized variables in cipher implementation, we do not
consider the bss section of the binary file, which gives the code size for global uninitialized variables.

The common code parts are considered just once when computing the code size for operations that use
the common code several times to encourage code reuse. For example, it can help implementers to decide



if they should implement only encryption or encryption and decryption operations. The measurements
do not consider the main function’s code size, where all the cipher operations are put together. This
value is the same for all ciphers and is not relevant for the studied scenarios.

3.2 RAM

The RAM consumption is divided into stack consumption and data consumption. The size of the data
stored in RAM is computed using the implementation information file and the size tool. It includes
scenario specific RAM data such as data to encrypt, keys, round keys or initialization vectors. The stack
consumption is measured using gdb. At the beginning of each of the measured operations, immediately
after the function call for that operation the stack is filled with a memory pattern. At the end of the
function execution, the values in the memory are compared with the memory pattern and the number
of modified bytes gives the stack consumption. There are no arguments saved on the stack that have
to be counted, because the measured functions do not use value arguments. The return address is not
considered as stack consumption since it is insignificant and the same for all ciphers on a given target
device.

3.3 Execution Time

The execution time is expressed in number of processor cycles spent executing a set of instructions.
The number of processor cycles is given by the number of cycles of the processor’s clock. The metric is
extracted for the four basic operations performed by a block cipher. To measure the execution time on
AVR we used the cycle accurate simulator Avrora [45,44]. For MSP we used the cycle accurate simulator
MSPDebug [8]. To extract the execution time metric on ARM microprocessor we inserted additional C code
for reading the system timer number of ticks at the beginning and at the end of the measured operations.
The difference between these values gives the number of cycles required for the measured operation. To
extract the values we used the Arduino Due [2] board based on ARM Cortex-M3 [3] microprocessor. The
extracted values for ARM may vary depending on how the C instructions are translated into assembly
instructions by the compiler in different contexts and how the data types are aligned in memory. This is
the reason why we get different cycle count values in different usage scenarios for the same function.

4 Analysed Ciphers

Since our aim is to understand the link between the cipher construction and the performance figures on
the selected devices in the IoT context, we selected ciphers representing a large variety of design decisions
from the two large families of Substitution-Permutation Networks (SPN) and Feistel Networks (FN).

The AES is the canonical example of an SPN, however other designs for the S-box and the linear layer
are of course possible (ex. PRESENT, Robin and Fantomas). The overall structure of the cipher can also
vary while still maintaining a round function consisting in an S-box layer and a linear layer: LED adds
key material every 4 rounds only while PRINCE implements a unique property called α-reflection.

Feistel Networks can be designed using a small SPN as the Feistel function, as in LBlock or Piccolo,
or using simple arithmetic and logical operations as in Simon and in ARX designs like HIGHT, SPECK
and RC5. These operation may be data-dependent as is the case in RC5. A variant of the FN is the
Generalized FN which uses more than two branches. The way the branches are mixed at the end of
each round can consist in a simple rotation (HIGHT) or in a dedicated permutation optimizing diffusion
(TWINE, Piccolo). A high number of branches allows the use of very simple Feistel functions as in
TWINE and HIGHT.

We chose to evaluate a wide variety of lightweight ciphers, both hardware and software oriented,
because in the IoT context it is expected that the hardware and software devices to communicate to each
other. Although we included a similar number of hardware and software oriented designs, we notice that
the trend is moving from hardware only ciphers (Piccolo, PRINCE) to software friendly designs (Simon,
Speck, Fantomas, Robin).

Block sizes of 64-bits are used when available, otherwise 128-bits are used. We use the cipher version
with key length that is greater than or equal to 80 bits, which is considered sufficient in the context of
the IoT. We provide a brief description of each cipher and refer the reader to the original papers for
more details.



Table 1. Studied ciphers. Block, key and round keys sizes are expressed in bits.
Security level is the ratio of the number of rounds broken in a single key setting
to the total number of rounds.

Cipher Year
Block
size

Key
size

Round
keys size

Rounds
Security
level

Type Target

AES 1998 128 128 1408 10 0.70 SPN SW, HW
Fantomas 2014 128 128 0 12 NA SPN SW
HIGHT 2006 64 128 1088 32 0.69 Feistel HW
LBlock 2011 64 80 1024 32 0.72 Feistel HW, SW
LED 2011 64 80 0 48 NA SPN HW, SW
Piccolo 2011 64 80 864 25 0.56 Feistel HW
PRESENT 2007 64 80 2048 31 0.84 SPN HW
PRINCE 2012 64 128 192 12 0.83 SPN HW
RC5∗ 1994 64 128 1344 20 0.90 Feistel SW
Robin 2014 128 128 0 16 NA SPN SW
Simon 2013 64 96 1344 42 0.67 Feistel HW, SW
Speck 2013 64 96 832 26 0.58 Feistel SW, HW
TWINE 2011 64 80 1152 36 0.64 Feistel HW, SW

∗ We use RC5 with increased number of rounds.

AES has been standardized by the American NIST and is widely used. It has a SPN structure with
an internal state of 128-bits represented as 4 × 4 byte matrix. The SubBytes, ShiftRows, MixColumns
and AddRoundKey operations are applied to the cipher state [40,19]. The best single-key cryptanalysis of
AES-128 is a meet-in-the-middle attack on 7 rounds out of 10 [20].

Fantomas is a 128-bits block cipher similar to Robin. It is a LS-design, meaning that the linear layer
consists in the parallel applications of so-called “L-boxes”. The S-box structure simplifies the implemen-
tation of masking. There is no key-schedule: the master key is added at every round [27]. At the time of
writing, there was to the best of our knowledge no attack on this very recently designed block cipher.

HIGHT is a generalized Feistel network with an ARX structure. Indeed, the Feistel functions are built
using only XOR and bitwise rotations. The output of the Feistel functions is combined with the other
branches using either XOR or addition modulo 28 [30]. A saturation attack breaks 22 out of 32 rounds
of this cipher [49].

LBlock is a Feistel Network with 32 rounds. The Feistel function consists of a XOR with the round
subkey, a substitution layer of 8 different S-boxes and a permutation of 8 nibbles. Furthermore, the content
of one of the branches is rotated by 8 bits in each round. The design trade-offs between security and
performance led not only to hardware efficiency but also software efficiency [48]. The best cryptanalysis
of this primitive is an impossible differential attack on 23 out of 32 rounds [14].

LED is an AES-based cipher aiming at very compact hardware implementation while maintaining
reasonable performance in software. The main characteristic of the cipher is the absence of the key
schedule, the round keys being replaced with a part of the master key [28]. To the best of our knowledge,
there are no attacks on LED-80. However, there is a differential attack covering 16/32 rounds of LED-64
and 24/48 rounds of LED-128 [35]. The structural attack breaking 32/48 rounds of LED-128 presented
in [21] is unlikely to be adapted to attack LED-80.

Piccolo is a generalized Feistel structure with four 16-bit branches. To improve diffusion, Piccolo uses
a byte permutation between rounds. The Feistel function consists of two S-box layers separated by a
diffusion matrix [42]. The best attack on Piccolo-80 is a Meet-in-the-Middle attack presented by its
designers in the paper introducing the cipher.

PRESENT is a SPN based block cipher with a bit oriented permutation layer. The non-linear layer is
based on a single 4-bit S-box which was designed with hardware optimizations in mind [12]. A truncated
differential attack on 26 out 31 of rounds of PRESENT is presented in [11].



PRINCE uses a so-called FX construction, where the first two subkeys are used as whitening keys,
while the third subkey is the 64-bit key for the 12 rounds SPN called PRINCEcore . The cipher introduces
the α-reflection property: encryption with one key corresponds to decryption with a related key [13]. The
best attack on this cipher is a multiple differential attack on 10 out of 12 rounds [15].

RC5 is a Feistel network which uses data dependent rotations [41]. Though RC5 was designed before
lightweight cipher design became popular, it is obviously lightweight, which is confirmed by its wide
use in sensor networks. The block and key size as well as the number of rounds can be chosen freely
so we study RC5-32/20/16, i.e. a version of RC5 operating on two 32 bit words, using 20 rounds (40
half-rounds) and a 16 byte key. We have chosen the number of rounds so as to have a security level of
0.90. RC5-32/12/16 can be attacked using a differential cryptanalysis [10] which can be extrapolated to
18 rounds but would require almost the full codebook (264 ciphertexts).

Robin is a 128-bits block cipher similar to Fantomas but, for example, its “L-boxes” are involutions.
The look-up table-based diffusion layers and the structure of the S-boxes makes the family ciphers good
candidates for Boolean masking in bitslice software implementations [27]. There exists a set of weak keys
of density 2−32 for this cipher which, if used, leads to attack on the full primitive [34].

Simon uses a Feistel structure with a simple round function which uses bitwise XOR, bitwise AND
and left circular shifts. It is optimized for performance in hardware implementations, but achieves good
results in software also [6]. A differential attack on 28 out of 42 rounds of Simon-64/96 is presented
in [38].

Speck is designed to provide excellent results in both hardware and software, but is optimized for software
implementation on microcontrollers. It uses a Feistel structure in which both branches are modified at
each round using bitwise XOR, modular addition and circular shifts in both directions [6]. The best
attack against Speck-64/96 is a differential attack on 15 out of 26 rounds [1].

TWINE is a generalized Feistel Network with 16 branches. The Feistel function consists simply in a key
addition and the application of a 4-bit S-box. The linear layer is a nibble permutation with much higher
diffusion than a nibble rotation as used e.g. in HIGHT. The cipher design aims at small footprint in
hardware implementation and small ROM/RAM consumption in software implementation [43]. The best
attack on TWINE-80 is a multi-dimensional zero-correlation linear attack on 23 out of 35 rounds [46].

5 Implementation Aspects

AES Size-optimized implementations of AES put the S-box and the round constants in lookup tables
as they occupy slightly more than 256 bytes. The code of the size-optimized implementation mostly
follows the cipher pseudocode for all three architectures. The speed-optimized implementation for ARM
uses the 32-bit lookup tables that combine the S-boxes with the MixColumns transformation (similarly
to well-known x86-optimizations). As these tables are too large (15 KBytes for either encryption or
decryption) for AVR and MSP, we use only the Galois multiplication table for these architectures. The
C code is based on the CryptoLib implementation [39] and the SUPERCOP implementation by Hongjun
Wu [9]. An assembly implementation for each target device was considered to explore the performance
differences between C and assembly.

Fantomas is implemented to combine lookup-table based linear diffusion layers (so-called L-boxes) with
bit-sliced S-boxes, which are computed using a Feistel structure. Storing the 4×512 KB L-boxes in RAM
improves the execution time with one quarter on AVR and ARM. Our implementations are based on
non-bitsliced C code provided by the designers.

HIGHT is implemented to follow the specifications from [29], which modifies the design from the original
paper [30]. The 128 7-bit δ constants are either computed when the key schedule is called or precomputed
and stored in Flash or RAM. The fully unrolled version with inlined auxiliary round functions F0 and
F1 requires half cycles compared to the reference implementation. The cipher byte level rotations on
MSP waste half of the microprocessor registers, while on AVR they can be done without penalty. While
AVR has 32 general purpose registers, MSP has only 12. For these reasons, the implementation for MSP
requires more than three times more clock cycles than the one for AVR.



LBlock is implemented according to the original specifications [48]. Optimization strategies include
performing operations on 8, 16 or 32 bits when possible, storing the S-boxes in Flash or RAM and
unrolling the loops. The best execution time on ARM is achieved by the fully unrolled implementation
using 32-bit operations, with the S-boxes stored in RAM.

LED is an SPN aimed at very compact hardware implementation. It represents the state by a 4 × 4
nibble matrix and uses very similar round transformations as the AES, except that it is nibble-oriented.
There is no key schedule in LED; the key is simply XORed every 4 rounds. Our implementation of LED
combines the SubSell, ShiftRow, and MixColumn operation into a table look-up to reduce execution
time.

Piccolo implementation follows closely the cipher description [42]. The arithmetic in GF(24) uses only
XORs and 2 small look-up tables for multiplications by 2 and 3. The S-box and the key schedule constants
are stored in look-up tables. No specific loop unrolling is applied.

PRESENT has a small S-box so its lookup table is used in all implementations. However, its combina-
tion with a bit permutation over a 64-bit word is difficult to optimize without using very large (up to 1
MB for decryption) lookup tables. Such tables are affordable only in the speed-optimized implementation
for ARM (as in the implementation provided by the BLOC project [16]), whereas for AVR and MSP we
had to implement the bit permutation also as a look-up table. The size-optimized implementation fol-
lows the cipher’s pseudocode and is also taken from [16]. Overall, the bit-oriented structure of PRESENT
makes all C software implementations very slow unless they can afford very large lookup tables. We added
an assembly implementation which takes advantage of the cipher bit-oriented structure for each target
device. The assembly implementation for AVR is around 12 times faster than the C implementation,
while the MSP assembly implementation is 19 times faster than the C implementation.

PRINCE is implemented after the original paper [13] and [15]. The optimization strategies considered
include using 8, 16, 32 and 64 bit operations were possible and different levels of loop unrolling. The
best execution times are obtained using fully unrolled implementation with 8-bit operations for AVR and
16-bit operations for MSP. For ARM the best execution times are achieved using a partially unrolled
version with 32-bit oriented operations.

RC5 is implemented by adapting the reference implementation provided in [41]. Because of the simple
and efficient design, there are not too many optimization directions. To explore different trade-offs, we
fully unrolled the cipher operations and we precomputed the encryption key schedule array S and stored
it in Flash or RAM.

Robin is implemented in different ways that are based on non-bitsliced C code provided by the designers.
The two L-boxes are stored in Flash or RAM while the S-box layer is computed at each round using the
Feistel structure.

Simon is implemented to optimize for both RAM usage and speed because of Simon’s inherent simplicity.
It follows the pseudo-code from the specification paper [6]. The rounds are processed by pairs and the
rotation functions as well as the Feistel function are inlined. The Z constant used in the key schedule is
the only lookup table. The C code is written with only 32-bit operations.

Speck is implemented in a straightforward fashion using the pseudo-code from the specifications [6]. It is
optimized for both speed and RAM usage. The rounds are processed by pairs and the rotation functions
are inlined. The C code uses only 32-bit operations and no look-up table.

TWINE is a very simple cipher so that even the speed-optimized implementation is marginally larger
than the size-optimized one. It uses 4-bit branches which, in the authors’ implementation [43], reside in
separate bytes (so that the entire state is twice as large). We wrote a size-optimized implementation. Both
implementations are small enough to run on all platforms. We conclude that TWINE is software-friendly
and is one of the easiest ciphers to implement on all platforms.



6 Results

6.1 Methodology

We have gathered and prepared up to 24 implementations for each cipher (more than 80 in total) and
benchmarked all of them on each device in each scenario. It is possible to sort all the implementations
according to their speed, code, or RAM size in any particular scenario on any device and we maintain a
separate interactive web-page [18] where all these orderings can be chosen. Due to space limits for this
paper, we have aggregated the data by the following principles, which seem to be the most interesting
ones:

– In Scenario 1 we made the full encryption and decryption including the key schedule. Then for each
implementation i, and device d we calculate the performance parameter pi,d. The value pi,d aggregates
the three metrics M = { the code size, the RAM size, the cycle count } as follows:

pi,d =
∑
m∈M

wm
vi,d,m

mini(vi,d,m)
, (1)

where vi,d,m is the value of the metric m for the implementation i on the device d; wm is the relative
weight of metric m and mini(vi,d,m) represents the minimum value of the metric m from all considered
implementations of all considered ciphers on the same device d. For each cipher and each device we set
wm = 1 (the framework also allows to choose other weights for the metrics; for example the results in
Appendix C are computed using different weights wm for the metrics) and select the implementation
with smallest pi,d. Finally, for each cipher and the selected set of implementations i1, i2, i3 (one for
each device) we calculate the Figure-of-Merit (FOM) value as the average performance value over
three devices.

FOM(i1, i2, i3) =
pi1,AV R + pi2,MSP + pi3,ARM

3
(2)

Then we sort the ciphers accordingly to FOM (Table 2-I). We also list the encryption and decryption
benchmarks alone for the same implementations (Table 2-II,III).

– In Scenario 2, we also select for each cipher and device the best implementation. First, we select the
most balanced implementation using Equation (1) and wm = 1 (Table 3). In Table 4-I we calculate
pi,d a bit differently:

pi,d =
∑

m∈{code, RAM}

wm
vi,d,m

maxi(vi,d,m)
, (3)

where maxi(vi,d,m) is the maximum value of Flash (for the code size metric) or RAM (for RAM
metric) available on device d (see Section A). Thus we essentially measure the fraction of available
memory occupied by the implementation. Finally, in Table 4-II the best implementation for a cipher
is the one with the smallest cycle count.

Defining a fair Figure of Merit that considers various trade-offs is a challenging task. The Figure
of Adversarial Merit (FOAM) introduced in [33] combines inherent security provided by cryptographic
structures and components with their implementation properties allowing the comparison of security-
time-area trade-offs of hardware implementations. Although it considers security, it is suitable only for
hardware implementations of SPN-based primitives.

6.2 Comparison with other Benchmarks

Many ciphers in our list have been already benchmarked on AVR, MSP, or ARM architectures separately
or within some framework. It is difficult to compare the performance numbers between the frameworks
and separate implementations because the methodology is different, the optimization efforts vary, and
some assembly implementations can be much faster than some of our assembly or C implementations.
We believe that the unified methodology allows for a good overview and insight into the relative per-
formance of the lightweight ciphers. As our framework is open, we expect to receive other optimized
implementations in the future so that eventually we get closer to the absolute performance values for
each cipher.

The most notable differences of our benchmarks with existing implementations on AVR/MSP/ARM
are the following:



Table 2. Results for scenario 1 (encryption of 128 bytes of data using CBC mode). For each
cipher, an optimal implementation on each architecture is selected.

Cipher
AVR MSP ARM

Code
Size

RAM
Execution

Time
Code
Code

RAM
Execution

Time
Code
Size

RAM
Execution

Time
FOM

[Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles]

I: Encryption + Decryption (including key schedule)

Speck 1644 305 59612 1342 300 93239 792 356 19529 3.5
Simon 2304 380 82085 9104 380 176700 896 428 24019 6.6
AES 4356∗ 434∗ 59085∗ 3444∗ 412∗ 84070∗ 3928∗ 500∗ 70905∗ 7.2
Robin 4944 271 146149 3170 238 76878 3684 320 92132 7.3
Fantomas 5892 267 111677 4164 234 57430 4620 324 70197 7.4
RC5 4574 378 252147 1952 378 482894 1144 432 32903 8.4
LBlock 3104 336 207590 2024 328 313349 2208 598 140595 9.1
HIGHT 2624 347 166480 2370 340 363829 2196 416 173762 9.6
PRESENT 2840∗ 458∗ 245853∗ 2230∗ 454∗ 201885∗ 2528∗ 526∗ 270603∗ 11.3
Piccolo 2672 324 407890 1824 318 349423 1604 430 291401 12.5
PRINCE 5358 374 243396 4174 240 405552 4304 548 202445 12.7
TWINE 4236 646 297265 3796 564 393320 2464 442 257039 13.5
LED 5156 574 2221555 7004 252 2505640 3640 678 585216 44.2

II: Encryption (without key schedule)

Speck 628 29 28401 474 36 47991 300 48 6948
Simon 752 40 39313 524 50 86999 328 56 10471
AES 1708∗ 54∗ 24695∗ 1312∗ 44∗ 33484∗ 1544∗ 108∗ 30251∗

Robin 2920 61 69199 1976 44 39350 2236 128 45926
Fantomas 2784 53 51471 1954 42 29038 2232 128 35724
RC5 1614 33 75871 492 32 174253 352 56 13108
LBlock 1336 34 102865 808 36 151463 992 236 69360
HIGHT 1032 36 84081 806 38 183687 764 80 81660
PRESENT 1240∗ 31∗ 121377∗ 948∗ 36∗ 97367∗ 1128∗ 68∗ 130198∗

Piccolo 1250 46 202033 818 48 171143 728 112 140459
PRINCE 4210 174 121137 3354 48 202279 3588 308 100770
TWINE 1872 140 148497 1594 114 191063 936 92 126732
LED 2600 242 1074961 4362 82 1186231 2032 320 279650

III: Decryption (without key schedule)

Speck 770 53 29346 592 48 41618 432 104 11864
Simon 898 64 40274 660 64 83906 456 112 12457
AES 2096∗ 98∗ 32862∗ 1902∗ 76∗ 49404∗ 2224∗ 164∗ 39765∗

Robin 3048 111 76950 2218 78 37528 2472 160 46206
Fantomas 3620 107 60206 2722 74 28392 2900 164 34473
RC5 1774 58 76525 646 50 177244 484 112 14218
LBlock 1442 62 99442 960 54 155426 1124 292 69180
HIGHT 1146 59 79810 938 52 178418 844 128 90605
PRESENT 1388∗ 56∗ 121906∗ 1108∗ 52∗ 100786∗ 1304∗ 124∗ 138947∗

Piccolo 1444 70 204274 1008 64 176946 940 176 149822
PRINCE 4352 198 122082 3496 64 203138 3716 372 101638
TWINE 1900 160 144225 1736 130 195186 1072 152 125841
LED 3068 280 1146226 3022 86 1318658 2232 384 305106

∗ Results for assembly implementations.

– The BLOC [16] project’s MSP implementations of HIGHT, LBlock, Piccolo, and Twine are slightly
worse than ours, whereas the implementations of AES and PRESENT are much slower.

– The AVR assembly implementations of PRESENT and AES from ECRYPT project [23] and [24] are
slightly slower than our assembly implementations, while our C implementation of HIGHT is on par
with the assembly implementation of [24] and five times faster than the assembly implementation
of [23].



Table 3. Results for scenario 2 (encryption of 128 bits of data using CTR mode). For each cipher,
an optimal implementation on each architecture is selected.

Cipher
AVR MSP ARM

Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time
FOM

[Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles]

Balanced (globally efficient)

Speck 666 54 3251 618 58 6054 560 120 925 3.5
Simon 772 62 5343 732 72 10930 648 128 1406 4.7
AES 1410∗ 79∗ 3175∗ 1438∗ 80∗ 4190∗ 1628∗ 196∗ 3763∗ 6.2
RC5 1712 58 8449 700 54 20543 676 128 1751 6.6
Fantomas 2496 108 5919 1920 78 3646 2156 216 4564 8.1
Robin 2530 108 7813 1942 80 4935 2160 216 6195 9.1
LBlock 1440 64 11183 976 58 18988 1268 308 9035 10.3
HIGHT 1202 59 11335 982 60 23016 1056 152 11623 11.0
PRESENT 1416∗ 54∗ 15239∗ 1244∗ 58∗ 12226∗ 1532∗ 140∗ 16919∗ 12.5
Piccolo 1298 70 25745 966 70 21448 988 184 18418 15.0
TWINE 1528 64 21701 1922 136 23938 1228 180 15703 15.1
PRINCE 4420 68 17271 3418 70 25340 3768 380 12727 17.6
LED 2602 91 143317 4422 104 148334 2212 392 35195 52.4

∗ Results for assembly implementations.

– The assembly implementation of TWINE [43] is faster than our C implementation up to the factor
of four.

– The designers’ assembly AVR implementations of Simon and Speck are about two times as small and
five times as fast as ours [7].

6.3 Discussion of Results

In Scenario 1 (“bulk encryption”), the Top-7 ciphers based on the FOM score are Speck, Robin, Fantomas,
Simon, RC5, LBlock and Hight; all other evaluated algorithms have a FOM score that is more than three
times worse than that of Speck. We remind that the FOM score takes into account all three metrics (i.e.
execution time, RAM footprint and code size) and does so across three platforms (AVR, MSP, and ARM).
Of course, when looking at performance, RAM footprint, or code size individually, or when looking at
AVR, MSP, or ARM individually, the specific ranking can differ significantly from the overall ranking
based on the FOM score. Furthermore, it has to be taken into account that several (up to 20) different
implementations exist for each cipher. Since these implementations are based on different optimization
strategies, they can (and usually do) perform differently on the three platforms. Therefore, it happens
that one and the same cipher has a worse execution time on 16-bit MSP than on 8-bit AVR (e.g. LBlock,
HIGHT), which is not a mistake but simply the result of considering RAM equally important as execution
time. On each platform, we collected our benchmarking results using the implementation that achieved
the highest FOM score.

When having a closer look at the results on AVR, it turns out that the top-ranked algorithms are very
similar in terms of RAM footprint, which means the overall rank is primarily determined by execution
time and code size. A somewhat surprising result is that AES is the fastest of all ciphers on AVR, even
though it did not make it into the Top-7 because its high performance comes at the expense of very large
code size. Robin and Fantomas earned their Top-7 position mainly because of their good execution time,
which is only slightly worse than that of AES. The other five ciphers in the Top-7 have the advantage
of small code size, but are significantly slower than AES. The situation is somewhat similar on MSP
in the sense that the Top-7 ciphers are very close in terms of RAM footprint and AES is again the
fastest. Fantomas, Robin, and Speck are the ciphers that come closest to AES in terms of execution
time, whereby Robin is not only fast but also features relatively small code size. The execution time of
all other ciphers is at least four times worse than that of AES. Finally, on ARM, the winners in the
performance competition are Speck, Simon and RC5, which all outperform AES. Interestingly, these
three ciphers also have the top positions in terms of code size. This is due to the ARX design strategy
with an extremely simple function. All other candidates are much slower, much larger, or both.



Table 4. Results for scenario 2 (encryption of 128 bits of data using CTR mode). For each
cipher, an optimal implementation on each architecture is selected.

Cipher
AVR MSP ARM

Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time

[Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles]

I: Small code size & RAM

AES 1410∗ 79∗ 3175∗ 1438∗ 80∗ 4190∗ 1628∗ 196∗ 3763∗

Fantomas 2496 108 5919 1920 78 3646 2156 216 4564
HIGHT 1202 59 11335 982 60 23016 1056 152 11623
LBlock 1388 51 16537 976 58 18988 1240 172 10236
LED 2602 91 143317 4042 96 694812 2260 216 41758
PRESENT 1416∗ 54∗ 15239∗ 1244∗ 58∗ 12226∗ 920 168 175092
PRINCE 4420 68 17271 3418 70 25340 4124 248 14365
Piccolo 1298 70 25745 966 70 21448 988 184 18418
RC5 924 64 22459 700 54 20543 676 128 1751
Robin 2530 108 7813 1942 80 4935 2160 216 6195
Simon 772 62 5343 732 72 10930 636 128 1930
Speck 666 54 3251 618 58 6054 560 120 925
TWINE 1528 64 21701 1570 72 34778 1228 164 20531

II: Best execution time

AES 1410∗ 79∗ 3175∗ 8844 348 2862 7332 216 2420
Fantomas 2496 108 5919 1920 78 3646 2060 1208 3535
HIGHT 5738 58 6365 15090 64 19796 6968 152 5878
LBlock 8456 55 10327 10556 64 15212 7712 304 7374
LED 2548 267 135061 4422 104 148334 2212 392 35195
PRESENT 1416∗ 54∗ 15239∗ 1244∗ 58∗ 12226∗ 3568 2332 16786
PRINCE 11382 94 13469 15728 76 21124 13392 352 11796
Piccolo 1298 70 25745 966 70 21448 988 184 18418
RC5 1712 58 8449 2978 50 14410 1592 124 1425
Robin 2530 108 7813 1942 80 4935 2128 1212 5202
Simon 772 62 5343 878 84 9648 648 128 1406
Speck 666 54 3251 618 58 6054 560 120 925
TWINE 1528 64 21701 1922 168 23938 1228 180 15703

∗ Results for assembly implementations.

The overall ranking in Scenario 2 (“challenge-response authentication”) is similar to that of Scenario
1. The top-7 are held by the same ciphers, even though their individual ranking can be different. All
algorithms outside the Top-7 are at least four times worse with respect to FOM score than the best
algorithm, which is again Speck. RC5 climbed from rank 5 to rank 3, mainly because the round keys
are pre-computed in Scenario 2, i.e. no key schedule has to be performed. On the other hand, Robin
dropped from 2 to 5, mainly because its RAM footprint is the highest on all three platforms, roughly
double than that of Speck. LBlock and HIGHT hold again the last two positions among the Top-7
(similar to Scenario 1) since they are neither particularly fast nor particularly small. The upper part
of Table 4 summarizes the results of the implementations with minimal RAM footprint and code size
for each of the 13 ciphers. Speck is the most lightweight candidate and, therefore, the best choice for
applications where size is the primary constraint. On all three platforms, Speck has a code size of around
600 Bytes and a RAM footprint of less than 100 Bytes. On the other hand, as shown in the lower part
of Table 4, when performance is of primary concern and size does not matter much, then AES is a good
choice. The execution time of AES significantly improves when using look-up tables to perform the round
transformation, which, of course, comes at the expense of increased code size. Also Speck and Fantomas
are performance-wise consistently good on all three platforms.

Caveats. The results of any “survey-and-benchmark” paper in lightweight cryptography, including ours,
always reflect the state of research at a certain time, namely the time when it was written. However, the
efficient implementation of (lightweight) ciphers is an active area of research that is likely to provide new



approaches for speeding up one or more of the 13 candidates considered in this paper. The AES serves
as a good example on how progress in research can yield significantly more efficient implementations.
Similar progress could also make one of our lightweight ciphers much faster than anticipated today. This
is the very reason why we maintain a web page [18] where readers can find up-to-date benchmarking
results and cipher rankings. Furthermore, since we focus on C implementations in this paper, our results
reflect, to a certain degree, the state of compiler technology (i.e. the “quality” of GCC for AVR, MSP430
and ARM) at the time when the benchmarks were collected. Also compilers tend to get “better” over
time by incorporating more and more advanced code optimization techniques, and this progress may
have a certain impact on the execution time of the different ciphers.

Another issue that deservers further elaboration is the “C versus Assembly” question. Even though
our toolsuite is also able to benchmark Assembly implementations, we only consider (with two exceptions
to be noted below) ciphers written in ANSI C in this paper. We have explained our rationale in favour of C
implementations in Section 1. However, there are two exceptions, namely AES and PRESENT, for which
we also developed optimized Assembly implementations. The Assembly implementation of AES serves as
a good reference since AES is the most widely-used block cipher. On the other hand, we decided to write
Assembly code for PRESENT because we were interested in the question of whether a highly-optimized
software implementation of PRESENT can compete with more “software-friendly” ciphers. As stated in
Section 1, the C language is not well suited for ciphers that perform e.g. multi-word operations or certain
bit manipulations. Assembly implementations do not suffer from these limitations and can, therefore,
achieve significantly better execution times, especially if these operations are performance-critical. The
performance gap between C and Assembly is particularly pronounced on processors that provide specific
instructions for such performance-critical operations. For example, the 8-bit AVR platform supports
many advanced bit-manipulation instructions that can be used to speed-up Assembly implementations
of PRESENT and some other “hardware-oriented” ciphers. Indeed, the Assembly implementation of
PRESENT on AVR outperforms its C counterpart by a factor of ten, but is still significantly slower than
the top-ranked ciphers.

7 Conclusions

In this paper, we presented a survey and benchmark of 13 lightweight block ciphers based on two
usage scenarios that are common for secure communication in the IoT. In particular, we studied their
implementation aspects on representative 8-, 16- and 32-bit platforms.

We designed and implemented a benchmarking framework that ensures a fair and consistent eval-
uation of lightweight block ciphers’ performances using the same conditions on the same devices. The
metrics (binary code size, RAM footprint and execution time) are extracted using cycle accurate simu-
lators or development boards. For full transparency, the source code of the framework, together with the
implementations of the evaluated ciphers are available for free. We strongly encourage the community
to use and contribute to our framework, since it allows easy integration and evaluation of new C and
assembly implementations. We are committed to maintaining a web page [18] with results obtained by
each submitted implementation.

Based on the benchmarking results, we inferred interesting information regarding the link between
the design decisions and performance figures. In particular, we confirm that the NSA designs Simon and
Speck are among the smallest and fastest ciphers on all platforms. The LS-designs seem to be a promising
research direction, but a closer analysis of the security of these constructions is necessary.

Further research may include the addition of new ciphers, integration of countermeasures against
physical attacks, extending the framework capabilities to other lightweight symmetric primitives (stream
ciphers, hash functions or authenticated encryption) and the integration of other resource-constrained
devices.
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A Target Devices

8-bit AVR ATmega128 Microcontroller

The ATmega128 [4] microcontroller manufactured by Atmel uses an 8-bit RISC microprocessor which
supports 133 instructions. Most of the instructions are encoded into 16 bits and require a single clock
cycle to execute. The two stages, single level pipeline allows the execution of instructions in each clock
cycle because while one instruction is executed the next one is fetched from the program memory.

The 32 8-bit general purpose registers (R0 – R31) are directly connected to the Arithmetic Logic Unit
(ALU), allowing two independent registers to be accessed in one single instruction executed in one clock
cycle. The ALU operations are divided into three main categories: arithmetic, logic and bit-functions.
Six of the 32 registers can be used as three 16-bit indirect address register pointers (X, Y and Z) for
addressing the data space.

The Harvard memory architecture maximizes performance and parallelism. Memory includes 128
KBytes of Flash, 4 KBytes of SRAM and 4 KBytes of EEPROM for data storage. Each program memory
address contains a 16-bit or 32-bit instruction. The data memory supports five different addressing modes:
direct, indirect, indirect with displacement, indirect with pre-decrement and indirect with post-increment.

The Atmel ATmega128 is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications from building and home automation to medical and
healthcare systems. Among the best microcontrollers when it comes to power consumption, ATmega128
is working at supply voltages between 4.5 and 5.5 volts and has six different software selectable power
modes of operation.
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16-bit MSP430F1611 Microcontroller

The MSP430F1611 [32] microcontroller produced by Texas Instruments uses a 16-bit RISC architecture
with an instruction set consisting of 27 core instructions and 24 emulated instructions. Each instruction
uses an even number of bytes (two, four or six). There are three core instructions formats: dual-operand,
single operand and jump. The number of clock cycles required by an instruction depends on the instruc-
tion format and addressing mode used.

The microprocessor supports seven addressing modes: register, indexed, symbolic (PC relative), ab-
solute, indirect register mode, indirect autoincrement, immediate. It has 16 16-bit registers (R0 - R15)
from which 12 are general purpose registers (R4 - R15). The register operations take one cycle.

The Von Neumann memory consists in 48 KBytes of Flash and 10 KBytes of SRAM. The Flash
memory is bit, byte and word addressable and programmable.

This microcontroller’s typical applications are sensor systems, industrial control and hand-held me-
ters. It supports five power saving operating modes which can be configured by software.

32-bit ARM Cortex-M3 Microcontroller

The Arduino Due [2] microcontroller is based on the Atmel SAM3X8 32-bit ARM Cortex-M3 [3] pro-
cessor. The Thumb-2 instruction set used by the 32-bit RISC processor ensures high code density and
reduced program memory requirements. The high performance processor core uses a three stage pipeline
Harvard architecture. It has 13 32-bit general purpose registers (R0 - R12), which can be used for data
operations.

The microcontroller provides 512 KBytes of Flash organized in two banks of 256 bytes with 1024
pages each and 96 KBytes of SRAM split in two banks of 64 KBytes and 32 KBytes.

ARM Cortex-M3 is the industry-leading 32-bit processor for highly deterministic real time applica-
tions. Characterized by ultra-low power consumption, it is suitable for a wide range of low cost platforms:
microcontrollers, automotive systems, industrial control systems, wireless networking and sensor nodes.

B Requirements

To unify evaluation conditions, our framework imposes some requirements on each block ciphers’ imple-
mentations. Firstly, basic operations must be performed by functions having the following signatures.

void RunEncryptionKeySchedule(uint8 t *key, uint8 t *roundKeys);

void Encrypt(uint8 t *block, uint8 t *roundKeys);

void RunDecryptionKeySchedule(uint8 t *key, uint8 t *roundKeys);

void Decrypt(uint8 t *block, uint8 t *roundKeys);

Each of the above functions should be implemented in its own C file. If the cipher key schedule
is the same for encryption and decryption then only the encryption key schedule function should be
implemented. The framework will take the use of a common key schedule into account when computing
the different metrics. Secondly, all common code sections should be implemented as distinct functions
to reduce the code size. In this case, the implementer has to add the common code files names to
the implementation info file, which is parsed by the framework when extracting the metrics for the
implementation. Thirdly, we give the implementer the possibility to chose where to store the constants
used by the cipher: in Flash/ROM or in RAM. This flexibility has a price: the implementer has to define
and use a dedicated macro to read the respective constant value. Fourthly, the implemented lightweight
cipher’s block size in bits has to be equal to or divide 128. While these requirements are formulated to
guarantee the same evaluation conditions for an accurate assessment of block ciphers’ performances, they
limit the possibility to benchmark highly optimised implementations such as bit sliced versions. Yet our
aim is not to assess extreme optimizations, which are likely to never be used in practice because of the
unreasonable trade-off (i.e. a very fast cipher implementation that uses all available memory has no real
world application since there is no space left for other features).

The framework is able to automatically verify the implementation compliance with the formulated
requirements and check the implementation’s correctness using the provided test vectors. The metrics
extraction process is completely automated and remains easy even for users with little experience. We
are committed to maintaining a web page [18] with results obtained for each submitted implementation
and strongly encourage the community to contribute with implementations to our framework. We think
that a common, open and free environment can create a culture of fair comparison of lightweight block
ciphers.



C Different Weights for the Metrics

Table 5. Results for scenario 1 (encryption of 128 bytes of data using CBC mode) when using
different weights wm for the three metrics in Equation (1) to compute the performance parameter
pi, d. Namely, the code size and the RAM size have the weights wcode = wRAM = 1, while the
cycle count has the weight wcycle = 2. This means that the execution time is twice as important as
the code size or RAM consumption. The Figure-of-Merit (FOM) is computed using Equation (2).
For each cipher, an optimal implementation on each architecture is selected.

Cipher
AVR MSP ARM

Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time
Code
Size

RAM
Execution

Time
FOM

[Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles] [Bytes] [Bytes] [cycles]

I: Encryption + Decryption (including key schedule)

Speck 1644 305 59612 1342 300 93239 792 356 19529 4.7
Simon 2304 380 82085 9398 394 162012 896 428 24019 8.5
AES 4356∗ 434∗ 59085∗ 3444∗ 412∗ 84070∗ 3928∗ 500∗ 70905∗ 9.2
Fantomas 5892 267 111677 4164 234 57430 4620 324 70197 9.6
Robin 4944 271 146149 3170 238 76878 3684 320 92132 10.1
RC5 4574 378 252147 1952 378 482894 1144 432 32903 13.3
LBlock 2954 494 183324 2024 328 313349 2208 598 140595 14.6
HIGHT 2624 347 166480 2370 340 363829 2196 416 173762 15.8
PRESENT 2840∗ 458∗ 245853∗ 2230∗ 454∗ 201885∗ 2528∗ 526∗ 270603∗ 18.5
PRINCE 5358 374 243396 4174 240 405552 4304 548 202445 20.0
Piccolo 2672 324 407890 1824 318 349423 1604 430 291401 21.9
TWINE 4236 646 297265 3796 564 393320 2464 442 257039 22.0
LED 5156 574 2221555 7004 252 2505640 3640 678 585216 82.1

II: Encryption (without key schedule)

Speck 628 29 28401 474 36 47991 300 48 6948
Simon 752 40 39313 670 62 76743 328 56 10471
AES 1708∗ 54∗ 24695∗ 1312∗ 44∗ 33484∗ 1544∗ 108∗ 30251∗

Fantomas 2784 53 51471 1954 42 29038 2232 128 35724
Robin 2920 61 69199 1976 44 39350 2236 128 45926
RC5 1614 33 75871 492 32 174253 352 56 13108
LBlock 1254 161 89361 808 36 151463 992 236 69360
HIGHT 1032 36 84081 806 38 183687 764 80 81660
PRESENT 1240∗ 31∗ 121377∗ 948∗ 36∗ 97367∗ 1128∗ 68∗ 130198∗

PRINCE 4210 174 121137 3354 48 202279 3588 308 100770
Piccolo 1250 46 202033 818 48 171143 728 112 140459
TWINE 1872 140 148497 1594 114 191063 936 92 126732
LED 2600 242 1074961 4362 82 1186231 2032 320 279650

III: Decryption (without key schedule)

Speck 770 53 29346 592 48 41618 432 104 11864
Simon 898 64 40274 808 78 79474 456 112 12457
AES 2096∗ 98∗ 32862∗ 1902∗ 76∗ 49404∗ 2224∗ 164∗ 39765∗

Fantomas 3620 107 60206 2722 74 28392 2900 164 34473
Robin 3048 111 76950 2218 78 37528 2472 160 46206
RC5 1774 58 76525 646 50 177244 484 112 14218
LBlock 1390 188 88786 960 54 155426 1124 292 69180
HIGHT 1146 59 79810 938 52 178418 844 128 90605
PRESENT 1388∗ 56∗ 121906∗ 1108∗ 52∗ 100786∗ 1304∗ 124∗ 138947∗

PRINCE 4352 198 122082 3496 64 203138 3716 372 101638
Piccolo 1444 70 204274 1008 64 176946 940 176 149822
TWINE 1900 160 144225 1736 130 195186 1072 152 125841
LED 3068 280 1146226 3022 86 1318658 2232 384 305106

∗ Results for assembly implementations.


