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Abstract. Recently, it was shown that angular locality-sensitive hashing (LSH) can be used
to significantly speed up lattice sieving, leading to heuristic time and space complexities
for solving the shortest vector problem (SVP) of 20.3366n+o(n). We study the possibility of
applying other LSH methods to sieving, and show that with the recent spherical LSH method
of Andoni et al. we can heuristically solve SVP in time and space 20.2972n+o(n). We further
show that a practical variant of the resulting SphereSieve is very similar to Wang et al.’s
two-level sieve, with the key difference that we impose an order on the outer list of centers.
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1 Introduction

Lattice cryptography. Lattice-based cryptography has recently received wide attention
from the cryptographic community, due to e.g. its presumed resistance against quantum
attacks [8], the existence of lattice-based fully homomorphic encryption schemes [16], and
efficient cryptographic primitives like NTRU [18] and LWE [39]. An important problem in
the study of lattices is the shortest vector problem (SVP): given a basis of a lattice, find
a shortest non-zero lattice vector. Although SVP is well-known to be NP-hard [2,29], the
computational complexity of finding short(est) vectors is still not very well understood,
even though it is crucial for applications in lattice-based cryptography [25,37].

Finding shortest vectors. Currently the four main methodologies for solving SVP are
enumeration [13,21,36], sieving [3], constructing the Voronoi cell of the lattice [30], and a
recent method based on discrete Gaussian sampling [1]. Enumeration has a low space com-
plexity, but a time complexity superexponential in the dimension n, which is suboptimal
as the other methods all run in single exponential (2Θ(n)) time. Drawbacks of the latter
methods are that their space complexities are 2Θ(n) as well, and that the hidden constants
in the exponents are relatively big. As a result, enumeration (with extreme pruning [15])
is commonly still considered the most practical method for finding shortest vectors in high
dimensions [32].

Sieving algorithms. On the other hand, these other SVP methods are less explored than
enumeration, and recent improvements in sieving have considerably narrowed the gap
with enumeration. Whereas the original work of Ajtai et al. [3] showed only that sieving
can solve SVP in time and space 2Θ(n), it was later shown that with sieving one can
provably solve SVP in arbitrary lattices in time 22.465n+o(n) and space 21.233n+o(n) [17,
34, 38]. Heuristic analyses further suggest that with sieving one can solve SVP in time
20.415n+o(n) and space 20.208n+o(n) [7, 31, 34], or optimizing for time, in time 20.378n+o(n)

and space 20.293n+o(n) [7, 45, 46]. Various papers have further studied how to speed up
sieving in practice [9, 14, 20, 24, 26, 27, 33, 40, 41], and currently the highest dimension in
which sieving was used to solve SVP is 116 for arbitrary lattices [44], and 128 for ideal
lattices [9, 20,35] (exploiting the additional structure).
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Fig. 1. The space/time trade-offs of various heuristic sieve algorithms from the literature (red), the es-
timated trade-off for spherical LSH (dashed, cf. Estimate 1), and the actual trade-off for spherical LSH
(blue, cf. Theorem 1). The referenced papers are: NV’08: [34], MV’10: [31], WLTB’11: [45], ZPH’13: [46],
BGJ’14: [7], Laa’14: [23].

Locality-sensitive hashing. Since sieving algorithms commonly store long lists of high-
dimensional vectors in memory, and the main procedure of sieving is to go through this
list to find vectors nearby a target vector, one might ask whether this can be done faster
than with a naive linear search. This problem is closely related to the nearest neighbor
problem [19], and a well-known method for solving this problem faster is based on locality-
sensitive hashing (LSH). Recently, it was shown that the efficient angular LSH technique
of Charikar [10] can be used to significantly speed up sieving, both in theory and in
practice [23,28], with heuristic time and space complexities bounded by 20.3366n+o(n) [23].
An open problem of [23] was whether using other LSH techniques would lead to even
better results.

Contributions. In this work we answer the latter question in the affirmative. With the
spherical LSH method of Andoni et al. [5,6] we obtain heuristic time and space complexities
for solving SVP of 20.2972n+o(n), which is the best asymptotic time complexity for SVP to
date, and we obtain the asymptotic space/time trade-off depicted in Figure 1. We further
show that a practical variant of our algorithm appears to be very similar to the two-level
sieve of Wang et al. [45], with the key difference that the outer list of centers is ordered.

Outline. In Section 2 we first provide some background on (spherical) LSH. Section 3
describes how to apply spherical LSH to the NV-sieve [34], and Section 4 states the main
result. In Section 5 we describe a practical variant of our algorithm, and we discuss its re-
lation with Wang et al.’s two-level sieve [45]. In Section 6 we discuss practical implications
of our results, and remaining open problems for future work.
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2 Locality-sensitive hashing

2.1 Locality-sensitive hash families

The nearest neighbor problem is the following [19]: Given a list of n-dimensional vectors
of cardinality N , e.g., L = {w1,w2, . . . ,wN} ⊂ Rn, preprocess L in such a way that given
a target vector v /∈ L, we can efficiently find an element w ∈ L closest to v. A common
variant of this problem is the approximate nearest neighbor problem, where an acceptable
solution is a vector “nearby” the target vector (and a solution is unacceptable if it is
“far away”). While for low dimensions n there exist ways to answer these queries in time
sub-linear or even logarithmic in the list size N , for high dimensions it generally seems
hard to do better than with a naive brute-force list search of time O(N). This inability to
efficiently store and query lists of high-dimensional data is sometimes referred to as the
“curse of dimensionality” [19].

Fortunately, if we know that the list L has a certain structure, or if there is a sig-
nificant gap between what is meant by “nearby” and “far away,” then there are ways to
preprocess L such that queries can be answered in time sub-linear in N . One of the most
well-known methods for this is locality-sensitive hashing (LSH), introduced by Indyk and
Motwani [19]. Locality-sensitive hash functions are functions h which map n-dimensional
vectors w to low-dimensional sketches h(w), such that vectors which are nearby in Rn
have a high probability of having the same sketch and vectors which are far apart have a
low probability of having the same image under h. Formalizing this property leads to the
following definition of a locality-sensitive hash family H. Here D is a similarity measure1

on Rn, and U is commonly a finite subset of N.

Definition 1. [19] A family H = {h : Rn → U} is called (r1, r2, p1, p2)-sensitive for
similarity measure D if for any v,w ∈ Rn:

– if D(v,w) < r1 then Ph∈H[h(v) = h(w)] ≥ p1;

– if D(v,w) > r2 then Ph∈H[h(v) = h(w)] ≤ p2.

Note that if there exists an LSH familyH which is (r1, r2, p1, p2)-sensitive with p1 � p2,
then (without computing D(v, ·)) we can use H to distinguish between vectors which are
at most r1 away from v, and vectors which are at least r2 away from v with non-negligible
probability.

2.2 Amplification

In general it is not known whether efficiently computable (r1, r2, p1, p2)-sensitive hash
families even exist for the ideal setting of r1 ≈ r2 and p1 ≈ 1 and p2 ≈ 0. Instead, one
commonly first constructs an (r1, r2, p1, p2)-sensitive hash family H with p1 ≈ p2, and then
uses several AND- and OR-compositions to turn it into an (r1, r2, p

′
1, p
′
2)-sensitive hash

family H′ with p′2 < p2 < p1 < p′1, thereby amplifying the gap between p1 and p2.

AND-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can construct
an (r1, r2, p

k
1, p

k
2)-sensitive hash family H′ by taking a bijective function α : Uk → U

and k functions h1, . . . , hk ∈ H and defining h ∈ H′ as h(v) = α(h1(v), . . . , hk(v)).
This increases the relative gap between p1 and p2 but decreases their absolute values.

1 A similarity measure D may informally be thought of as a “slightly relaxed” metric, which may not
satisfy all properties associated to metrics; see e.g. [19] for details.
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OR-composition. Given an (r1, r2, p1, p2)-sensitive hash family H, we can construct an
(r1, r2, 1−(1−p1)t, 1−(1−p2)t)-sensitive hash family H′ by taking h1, . . . , ht ∈ H, and
defining h ∈ H′ by the relation h(v) = h(w) iff hi(v) = hi(w) for some i ∈ {1, . . . , t}.
This compensates the decrease of the absolute values of the probabilities.

Combining a k-wise AND- with a t-wise OR-composition, we can turn an (r1, r2, p1, p2)-

sensitive hash family H into an (r1, r2, p
∗
1, p
∗
2)-sensitive hash family H′ with p∗

def
= 1− (1−

pk)t for p = p1, p2. Note that for p1 > p2 we can always find values k and t such that
p∗1 ≈ 1 and p∗2 ≈ 0.

2.3 Finding nearest neighbors

To use these hash families to find nearest neighbors, we can use the following method first
described in [19]. First, choose t · k random hash functions hi,j ∈ H, and use the AND-
composition to combine k of them at a time to build t different hash functions h1, . . . , ht.
Then, given the list L, build t different hash tables T1, . . . , Tt, where for each hash table
Ti we insert w into the bucket labeled hi(w). Finally, given the target vector v, compute
its t images hi(v), gather all the candidate vectors that collide with v in at least one of
these hash tables (an OR-composition), and search this list of candidates for the nearest
neighbor.

Clearly, the quality of this algorithm for finding nearest neighbors depends on the
quality of the underlying hash family and on the parameters k and t. Larger k and t amplify
the gap between the probabilities of finding nearby and faraway vectors as candidates, but
this comes at the cost of having to compute many hashes (both during the preprocessing
phase and in the querying phase) and having to store many hash tables, each containing
all vectors from L. The following lemma shows how to balance k and t such that the overall
query time complexity of finding near(est) neighbors is minimized.

Lemma 1. [19] Suppose there exists a (r1, r2, p1, p2)-sensitive hash family H. Then, with

ρ =
log(1/p1)

log(1/p2)
, k =

log(N)

log(1/p2)
, t = O(Nρ), (1)

with high probability we can find an element w∗ ∈ L with D(v,w∗) ≤ r2 or (correctly)
conclude that no element w∗ ∈ L with D(v,w∗) ≤ r1 exists, with the following costs:

1. Time for preprocessing the list: O(kN1+ρ).

2. Space complexity of the preprocessed data: O(N1+ρ).

3. Time for answering a query v: O(Nρ).

(a) Hash evaluations of the query vector v: O(Nρ).

(b) Candidates to compare to the query vector v: O(Nρ).

Although Lemma 1 only shows how to choose k and t to minimize the time complexity,
we can generally tune k and t to use slightly more time and less space. In a sense this
algorithm can be seen as a generalization of the naive brute-force search method, as k = 0
and t = 1 corresponds to checking the whole list in linear time with linear space. Note
that the main costs of the algorithm are determined by the value of ρ, which is therefore
often considered the central parameter of interest in LSH literature. The goal is to design
H so that ρ is as small as possible.



Faster sieving for shortest lattice vectors using spherical locality-sensitive hashing 5

2.4 Spherical locality-sensitive hashing

In [23] the family of hash functions that was considered was Charikar’s cosine hash fam-
ily [10] based on angular distances. In the same paper it was suggested that other hash
families, such as Andoni and Indyk’s celebrated Euclidean LSH family [4], may lead to
even better results. The latter method however does not seem to work well in the context
of sieving2, and instead we will focus on yet another LSH family, recently proposed by
Andoni et al. [5, 6] and coined spherical LSH.

Hash family. In spherical LSH, we assume3 that all points in the data set L lie on the
surface of a hypersphere Sn−1(R) = {v ∈ Rn : ‖x‖ = R}. In the following description of
the hash family we further assume that all vectors lie on Sn−1(1), although these definitions
can trivially be generalized to the general case Sn−1(R).

First, we sample U = 2Θ(
√
n) vectors s1, s2, . . . , sU ∈ Rn from an n-dimensional Gaus-

sian distribution with average norm E‖si‖ = 1.4 This equivalently corresponds to drawing
each vector entry from a univariate Gaussian distribution N (0, 1n). To each si we associate
a hash region Hi:

Hi = {v ∈ Sn(1) : 〈v, si〉 ≥ n−1/4} \
⋃i−1
j=1Hj . (i = 1, . . . , U) (2)

Since we assume that v ∈ Sn−1(1) and w.h.p. we have ‖si‖ ≈ 1, the condition 〈v, si〉 ≥
n−1/4 is equivalent to ‖v − si‖ ≤

√
2 − Θ(n−1/4), i.e., v lies in the almost-hemisphere of

radius
√

2−Θ(n−1/4) defined by si.
Note that the parts of Sn−1(1) that are covered by multiple hash regions are assigned

to the first region Hi that covers the point. As a result, the size of hash regions generally
decreases with i. Also note that the choice of U = 2Θ(

√
n) guarantees that with high

probability, at the end the entire sphere is covered by these hash regions H1, H2, . . . ,HU ;
informally, each hash region covers a 2−Θ(

√
n) fraction of the sphere, so we need 2Θ(

√
n)

regions to cover the entire hypersphere. Finally, taking U = 2Θ(
√
n) also guarantees that

computing hashes can trivially be done in 2Θ(
√
n) = 2o(n) time by going through each of

the hash regions H1, H2, . . . ,HU and checking whether it contains a given point v.
In our analysis we will use the following result, which is implicitly stated in [5, Lemma

3.3] and [6, Appendix B.1]. Note that in the application of sieving later on, vectors v and
w are not assumed to lie on the surface of a sphere, but inside a thin spherical shell with
some inner radius γR and outer radius R, with γ = 1− o(1). We can however still apply
spherical hashing, due to the observation that ‖ vR −

w
R ‖− ‖

v
‖v‖ −

w
‖w‖‖ = O(1− γ) = o(1).

In other words, by applying the hash method to normalized vectors x̃ = x
‖x‖ which all do

lie on a hypersphere, the inter-point distances are preserved up to a negligible additive
term o(1), which translates to an o(1) term in the application of LSH.

Lemma 2. Let v,w ∈ Rn with ‖v‖, ‖w‖ ∈ [γR,R] and γ = 1− o(1), and let θ denote the
angle between v and w. Then spherical LSH satisfies:

Ph∈H[h(v) = h(w)] = exp

[
−
√
n

2
tan2

(
θ

2

)
(1 + o(1))

]
. (3)

2 Technically speaking, the paper [4] uses the Johnson-Lindenstrauss lemma to project n- to n0-
dimensional vectors with n0 = o(n), so that single-exponential costs in n0 (2Θ(n0)) are sub-exponential
in n (2o(n)). However, this projection only preserves inter-point distances up to small errors if the length
of the list is sufficiently small (N = 2o(n)), which is not the case in sieving. Moreover, we estimated the
potential improvement using Euclidean LSH to be smaller than the improvement we obtain here.

3 In Section 3 we will justify why this assumption makes sense in sieving.
4 Note that Andoni et al. sample vectors with average norm

√
n instead, which means that everything in

our description is scaled by a factor
√
n.
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Algorithm 1 The Nguyen-Vidick sieve algorithm (sieving step)

1: Compute the maximum norm R = maxv∈Lm ‖v‖
2: Initialize empty lists Lm+1 and Cm+1

3: for each v ∈ Lm do
4: if ‖v‖ ≤ γR then
5: Add v to the list Lm+1

6: else
7: for each w ∈ Cm+1 do
8: if ‖v −w‖ ≤ γR then
9: Add v −w to the list Lm+1 and continue the outer loop

10: Add v to the centers Cm+1

Note that for θ1 = π
3 and θ2 = π

2 this leads to ρ = ln(p1)
ln(p2)

= tan2(π/6)
tan2(π/4)

(1+o(1)) = 1
3 +o(1).

This is significantly smaller than the related value of ρ for angular hashing with θ1 = π
3

and θ2 = π
2 , which is ρ′ = log2(

3
2) ≈ 0.585.

3 From the Nguyen-Vidick sieve to the SphereSieve

We will now describe how spherical LSH can be applied to sieving. More precisely, we will
show how spherical LSH can be applied to the heuristic sieve algorithm of Nguyen and
Vidick [34]. Applying the same technique to the practically superior GaussSieve [31] seems
difficult, and whether this is at all possible is left as an open problem.

3.1 The Nguyen-Vidick sieve

Initially the Nguyen-Vidick sieve starts with a long list L0 of long lattice vectors (generated
using e.g. Klein’s sampler [22]), and it iteratively builds shorter lists of shorter lattice
vectors Lm+1 by applying a sieve to Lm. After poly(n) applications of the sieve, one hopes
to be left with a list LM containing a shortest non-zero lattice vector. At the heart of the
heuristic sieve algorithm of Nguyen and Vidick lies the sieving step, mapping a list Lm to
the next list Lm+1, and this sieving step is described in Algorithm 1.

The sieving step in Algorithm 1 can be described as follows. We start with an expo-
nentially long list of vectors Lm, and we assume the longest of these vectors has length R;
computing R can trivially be done in Õ(|Lm|) time. Then, for a given parameter γ < 1
close to 1, we immediately add all vectors of norm less than γR to the next list Lm+1;
these vectors are not modified in this iteration of the sieve. In the next iteration we want
all vectors in Lm+1 to have norm less than γR, and the remaining vectors in the spherical
shell S = {v ∈ Lm : γR < ‖v‖ ≤ R} do not satisfy this condition, so the main task of the
sieving step is to combine lattice vectors in Lm ∩ S to make shorter vectors, which can
then be added to Lm+1. To do this, we first initialize an empty list of centers Cm+1, and
for each vector v ∈ S we do one of the following:

– If v is far away from all center vectors w ∈ Cm+1, we add v to Cm+1;

– If v is close to a center vector w ∈ Cm+1, we add v −w to Lm+1.

We go through all vectors in Lm one by one, each time deciding whether to add some-
thing to Lm+1 or to Cm+1. Note that for each list vector, this decision can be made in
O(|Cm+1|) = O(|Lm|) time by simply going through all vectors w ∈ Cm+1 and checking
whether it is close to v. Finally, we obtain a set Cm+1 ⊂ Lm which intuitively covers S
with balls of radius γR, and we obtain a set Lm+1 of short vectors. Since the size of Cm+1
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Algorithm 2 The SphereSieve algorithm (sieving step)

1: Compute the maximum norm R = maxv∈Lm ‖v‖
2: Initialize an empty list Lm+1

3: Initialize t empty hash tables Ti
4: Sample k · t random spherical hash functions hi,j ∈ H
5: for each v ∈ Lm do
6: if ‖v‖ ≤ γR then
7: Add v to the list Lm+1

8: else

9: Obtain the set of candidates C =
t⋃
i=1

Ti[hi(±v)]

10: for each w ∈ C do
11: if ‖v −w‖ ≤ γR then
12: Add v −w to the list Lm+1

13: Continue the outermost loop

14: Add v to all t hash tables Ti

is bounded from above by 2Θ(n), we know that if |Lm| is large enough, many vectors will
be included in |Lm+1| as well.

To analyze their heuristic sieve algorithm, Nguyen and Vidick used (a slightly stronger
version of) the following heuristic assumption.

Heuristic 1 The angle Θ(v,w) between two vectors v and w in Line 8 in Algorithm 1
follows the same distribution as the distribution of angles Θ(v,w) obtained by fixing v and
drawing w at random from Sn−1(1).

Using this heuristic assumption, Nguyen and Vidick showed that an initial list of size
|L0| = (4/3)n/2+o(n) ≈ 20.2075n+o(n) suffices to find a shortest vector if γ ≈ 1 [34]. Since
the time complexity is dominated by comparing almost every pair of vectors in Li in
each sieving step, this leads to a time complexity quadratic in |Li|. Overall, this means
that under the above heuristic assumption, the Nguyen-Vidick sieve solves SVP in time
20.415n+o(n) and space 20.2076n+o(n).

3.2 The SphereSieve

Algorithm 2 describes how we can apply spherical LSH to the sieve step of Nguyen and
Vidick’s heuristic sieve algorithm, in a similar fashion as how angular LSH was applied to
the GaussSieve in [23].

To apply spherical LSH to sieving efficiently, there are some subtle issues that we need
to consider. For instance, while the angular hashing technique of Charikar considered
in [23] is scale invariant, the parameters of spherical LSH slightly change if all vectors
are multiplied by a scalar. This means that for each application of the sieving step, the
parameters might change and we have to build fresh hash tables. Although this might
increase the practical time and space complexities considerably, this does not affect the
algorithm’s exponential asymptotics.

More importantly, to justify that we can apply spherical LSH (i.e., to justify the appli-
cation of Lemma 2), we need to guarantee that ‖v‖ ≈ ‖w‖ for targets v and (candidate)
near neighbors w, i.e., that all these vectors approximately lie on the surface of a sphere.
To see why this is true, consider a target vector v and a list vector w. By definition of
R, we know that v and w both have norm at most R. Moreover, the case ‖v‖ ≤ γR is
handled separately (in polynomial time) in Lines 6–7, and the fact that w ∈ Cm+1 implies
that ‖w‖ > γR as well. So when we get to the search in Lines 10–13, we know that the
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norms of both vectors satisfy ‖v‖, ‖w‖ ∈ [γR,R]. To get the optimal asymptotic time
and space complexities, Nguyen and Vidick further let γ → 1, which we needed to apply
Lemma 2.

4 Theoretical results

To obtain a first basic estimate of the potential improvements to the time and space
complexities using spherical LSH, we first note that in high dimensions “almost everything
is orthogonal.” In other words, angles close to 90◦ are much more likely to occur between
two random vectors than much smaller angles. So one might guess that for a target vector
v and a random list vector w, with high probability their angle is close to 90◦. On the
other hand, two non-reduced vectors v,w of similar norm for which the if-clause in Line 8
is true (i.e., for which ‖v − w‖ ≤ γR = R(1 − o(1)) and ‖v‖, ‖w‖ ≈ R), always have
a common angle of at most 60◦ + o(1). We therefore expect this angle to be close to
60◦ with high probability. Under the extreme (and imprecise) assumption that all angles
between pairwise reduced vectors are exactly 90◦, and non-reduced angles are at most
60◦, we obtain the following estimate for the optimized time and space complexities using
spherical LSH.

Estimate 1 Assuming that all reduced pairs of vectors are exactly orthogonal, the Sphere-
Sieve heuristically solves SVP in time and space at most (4/3)2n/3+o(n) = 20.2767n+o(n),
using the following parameters:

k = Θ(
√
n), t = (4/3)n/6+o(n) = 20.0692n+o(n). (4)

Under this assumption, we further get the trade-off between the time and space complexities
indicated by the dashed line in Figure 1.

Proof. Assuming that all reduced pairs of vectors are orthogonal, we obtain ρ = 1
3 as

described in Section 2.4. Since the time complexity is dominated by performing O(N)
nearest-neighbor searches on a list of size O(N), with N = (4/3)n/2+o(n) ≈ 20.2075n+o(n),
the result follows from Lemma 1.

Of course in practice not all reduced angles are actually 90◦, and one should carefully
analyze what is the real probability that a vector w whose angle with v is more than
60◦, is found as a candidate due to a collision in one of the hash tables. In that sense,
Estimate 1 should only be considered a rough estimate, and it gives a lower bound on the
best time complexity that we may hope to achieve with this method. Note however that
the estimated time complexity is significantly better than the similar estimate obtained
for the angular LSH-based HashSieve of Laarhoven [23], for which the estimated time
complexity was 20.3289n+o(n). Therefore, one might guess that also the actual asymptotic
time complexity, derived after a more precise analysis, is better than that of the HashSieve.

The following theorem, which is the main result of this paper, shows that this is indeed
the case, and it describes exactly what the asymptotic time and space complexities are
when the parameters are fully optimized to minimize the asymptotic time complexity. A
proof of Theorem 1 and an explanation of the constant 0.2972 can be found in Appendix A.

Theorem 1. The SphereSieve heuristically solves SVP in time and space 20.2972n+o(n)

using the following parameters:

k = Θ(
√
n), t = 20.0896n+o(n). (5)

By varying k and t, we further obtain the trade-off between the time and space complexities
indicated by the solid blue curve in Figure 1.
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Note that the estimated parameters from Estimate 1 are not far off from the main
result of Theorem 1. In other words, assuming that reduced vectors are always orthogonal
is not entirely realistic, but it provides a reasonable first estimate of the parameters that
we have to use.

5 A practical SphereSieve variant and two-level sieving

Let us briefly consider how this algorithm can be made slightly more practical. In particu-
lar, note that each spherical hash function requires the use of U = 2Θ(n) vectors s1, . . . , sU ,
which are (roughly) sampled from the surface of the unit hypersphere. In total, this means
that the algorithm uses t · k ·U random unit vectors to define hash regions on the sphere,
and all these vectors need to be stored in memory. Generating so many random vectors
from the surface of the unit hypersphere seems unnecessary, especially considering that
we already have a list Lm containing tons of vectors which (almost) lie on the surface of
a hypersphere as well, and these are already stored in memory.

The above suggests to make the following modification to the algorithm: for building a
single hash function hi,j , instead of sampling s1, . . . , sU randomly from the surface of the
sphere, we randomly sample these vectors from (a scaled version of) Lm. In other words,
we use the vectors in Lm to shape the hash regions, rather than sampling and storing
new vectors in memory solely for this purpose. According to Heuristic 1 these vectors are
also distributed randomly on the surface of the sphere, and so using the same heuristic
assumption we can justify that this modification does not drastically alter the behavior
of the algorithm. Note that since we need t · k hash functions, we need t · k selections of
U vectors from Lm. Fortunately t · k · U � |Lm| (cf. Theorem 1), so by independently
sampling U random vectors from Lm for each of the t ·k hash functions, the hash functions
hi,j can practically be considered independent.

Relation with two-level sieving. Now, note that for a single hash function, we first use
a small set of hash region-defining vectors U (where the radius of each hash region is
approximately (

√
2 − o(1))R), and then we use the NV-sieve in each of these regions

separately to make lists of centers Cm+1 (where a vector is considered nearby if it is
within a radius of approximately (1−o(1))R). This very closely resembles the ideas behind
Wang et al.’s two-level sieve algorithm [45], where a list C1(∼= U) of outer centers is built
(defining balls of radius γ1 ·R), and each of the centers of this outer list contains an inner
list Cw

2 (∼= Cm+1) of center vectors (defining a ball of radius γ2 ·R). In fact, for t = k = 1,
the SphereSieve is almost identical to the two-level sieve with γ1 ≈

√
2 and γ2 ≈ 1!

How order matters. One difference between the two methods is that the size of C2 in
the SphereSieve is sub-exponential (2Θ(

√
n)), compared to single exponential (2Θ(n)) in the

two-level sieve, which means that in our case, one of these hash tables is relatively ‘cheap’
to build. As a result, the asymptotic exponential overhead in our case only comes from t.
However, the key difference that allows us to obtain the improved performance overall is
that the analysis of spherical LSH [5,6] (and the closely related analysis of the celebrated
Euclidean LSH family [4]) makes crucial use of the fact that the outer list C1 is ordered,
and this same order is used each time a vector is assigned to a hash region. Without this
observation, Lemma 2 does not hold, and as in [45, 46] one would then have to resort to
computing intersections of volumes of complicated n-dimensional objects to obtain bounds
on the number of points needed to make this method work. One might say that the order
imposed on C1 is exactly what makes spherical LSH asymptotically more efficient than
the two-level sieve of Wang et al. [45] with γ1 ≈

√
2 and γ2 ≈ 1.
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6 Discussion

6.1 Practical implications

Theoretically, Theorem 1 and Figure 1 show that for sufficiently high dimensions n,
spherical LSH leads to even bigger speed-ups and better space complexities for siev-
ing than angular LSH [23]. With heuristic time and space complexities of less than
20.2972n+o(n) < 23n/10+o(n), the SphereSieve is the fastest heuristic algorithm to date for
solving SVP in high dimensions. As a result, one might conclude that in high dimensions,
to achieve 3k bits of security for a lattice-based cryptographic primitive relying on the
hardness of exact SVP, one should use a lattice of dimension at least 10k. As most cryp-
tographic schemes are broken even if a “somewhat short” lattice vector is found (which
by using BKZ [42,43] means that we can reduce the dimension in which we need to solve
SVP), and the time complexity of sieving with spherical LSH is lower than 2n/3+o(n), one
should probably use lattices of dimension even higher than 10k to guarantee 3k bits of
security. So if we simply look at the leading term in the exponent, various parameter
choices relying on the estimates of e.g. Chen and Nguyen [11] (solving SVP in dimension
200 takes time approximately 2111) would be too optimistic.

Although the leading term 0.2972n in the exponent is the best known so far and dom-
inates the complexity in high dimensions, this does not tell the whole story. Especially for
the SphereSieve presented in this paper, the o(n)-terms in the exponent are not negligible
at all for moderate n. Experiments further indicate [14,23,26,27,31,34,40] that the practi-
cal time complexity of various sieving algorithms in moderate dimensions n may be higher
than quadratic in the list size if we set γ close to 1, while setting γ � 1 makes the use of
spherical LSH problematic. Moreover, while the angular LSH method of Charikar [10] con-
sidered in [23] is very efficient and hashes can be computed in linear time, with spherical
LSH even the cost of computing a single hash value (before amplification) is already sub-
exponential (and super-polynomial) in n. So although the sieving algorithms we described
are asymptotically superior to all previous SVP algorithms, it is not clear whether it will
outperform the angular LSH-based sieving algorithm of Laarhoven [23] for any feasible
dimension n. Finding an accurate description of the practical costs of finding short(est)
vectors in dimension n remains a central problem in lattice cryptography, and does not
end here.

6.2 Open problems

An important question for future work remains whether the asymptotically superior spher-
ical LSH can be made truly efficient, i.e., with a comparable cost of computing hashes as
e.g. the angular LSH approach of Charikar [10] or the Euclidean LSH algorithm of Datar
et al. [12]. While asymptotic costs are important, the order terms matter in practice as
well, and being able to compute hashes in poly(n)-time rather than 2Θ(

√
n)-time would

make the SphereSieve significantly faster. Also, as mentioned at the start of Section 3,
being able to apply spherical LSH to the faster GaussSieve [31] may lead to a faster sieve
algorithm as well.

A second open problem related to LSH is to further improve upon the results of An-
doni et al. In the most recent work of Andoni and Razenshteyn [6], it was shown that
one can achieve an exponent of ρ = 1/(2c2 − 1) + o(1), where o(1) → 0 as n → ∞, using
data-dependent hashing. However, due to this dependence on the particular data set, the
authors already noted that applying this algorithm in a dynamic setting (with insertions
and deletions) is not straightforward. If their algorithm can be modified to work in dy-
namic settings as well, one may be able to reduce arbitrary data sets to what Andoni and
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Razenshteyn define as a “random instance,” which basically corresponds to a very sparse
instance where everything is really orthogonal. Then, applying the spherical LSH family
to these “random instances” might lead to a clean exponent of ρ = 1

3 + o(1), which would
lead to the time and space complexities described in Estimate 1.

Finally, related to two-level sieving, we saw that one of the main differences between
spherical LSH and two-level sieving is that the latter method does not use the fact that
C1 is ordered in analyzing “collision probabilities”, while the former makes crucial use of
this observation to derive sharp bounds on two vectors ending up in the same hash region.
Could similar proof techniques as those used in Euclidean LSH and spherical LSH [4–6]
also be used in the analysis of two-level sieving? Perhaps that may lead to better results
for the two-level sieve as well.
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A Proof of Theorem 1

To prove Theorem 1, we will show how to choose a sequence of parameters {(kn, tn)}n∈N
such that for large n, the following holds:

1. The average probability that a list vector w close5 to a target vector v collides with v
in at least one of the t hash tables is at least constant in n (i.e. 0 < ε 6= ε(n)):

p∗1 = P{hi,j}⊂H(v,w collide | θ(v,w) ≤ π
3 ) ≥ 1− ε. (6)

2. The average probability that a list vector w far away5 from a target vector v collides
with v in at least one of the t hash tables is exponentially small:

p∗2 = P{hi,j}⊂H(v,w collide | θ(v,w) > π
3 ) ≤ N−0.5681+o(1). (7)

5 Here “close” means that ‖v −w‖ ≤ γR, which as argued before corresponds to θ(v,w) ≤ 60◦ + o(1).
Similarly “far away” corresponds to a large angle θ(v,w) > 60◦ + o(1).

http://latticechallenge.org/ideallattice-challenge/
http://latticechallenge.org/svp-challenge
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3. The number of hash tables grows as t = N0.4319+o(1).

This would imply that for each search, the number of candidate vectors is of the order
N ·N−0.5681 = N0.4319. Overall we search the list Õ(N) times, so after substituting N =
(4/3)n/2+o(n) this leads to the following time and space complexities:

– Time (hashing): O(N · t) = 20.2972n+o(n).
– Time (searching): O(N2 · p∗2) = 20.2972n+o(n).
– Space: O(N · t) = 20.2972n+o(n).

The next two subsections are dedicated to proving Equations (6) and (7).

A.1 Good vectors collide with constant probability

The following lemma shows how to choose k (in terms of t) to guarantee that (6) holds.

Lemma 3. Let k = 6n−1/2(ln t − ln ln(1/ε)) ≈ (6 ln t)/
√
n. Then the probability that

reducing vectors collide in at least one of the hash tables is at least 1− ε.

Proof. The probability that a reducing vector w is a candidate vector, given the angle
Θ = Θ(v,w) ∈ (0, π3 ), is p∗1 = EΘ∈(0,π

3
) [p∗(Θ)], where we recall that p∗(θ) = 1−(1−p(θ)k)t

and p(θ) = Ph∈H[h(v) = h(w)] is given in Lemma 2. Since p∗(Θ) is strictly decreasing in
Θ, we can obtain a lower bound by substituting Θ = π

3 above. Using the bound 1−x ≤ e−x
which holds for all x, and inserting the given expression for k, we obtain:

p∗1 ≥ p∗
(
π
3

)
= 1− (1− exp(ln ln(1ε )− ln t))t = 1−

(
1− ln(1/ε)

t

)t
≥ 1− ε. (8)

This completes the proof.

A.2 Bad vectors collide with low probability

We first recall a lemma about the density of angles between random vectors. In short, the
density at an angle θ is proportional to (sin θ)n.

Lemma 4. [23, Lemma 4] Assuming Heuristic 1 holds, the pdf f(θ) of the angle between
target vectors and list vectors satisfies

f(θ) =

√
2n

π
(sin θ)n−2 [1 + o(1)] = 2n log2 sin θ+o(n). (9)

The following lemma relates the collision probability p∗2 of (7) to the parameters k and
t. Since Lemma 3 relates k to t, this means that only t ultimately remains to be chosen.

Lemma 5. Suppose N = 2cn·n with cn ≥ γ1 = 1
2 log2(

4
3) ≈ 0.2075, and suppose t = 2ct·n.

Let k = 6 ln t√
n

(1− o(1)). Then, for large n we have

p∗2 = P{hi,j}⊂H(v,w collide | θ(v,w) > π
3 ) ≤ O(N−α), (10)

where α ∈ (0, 1) is defined as

α =
−1

cn

[
max

θ∈(π
3
,π
2
)

{
log2 sin θ −

(
3 tan2

(
θ

2

)
− 1

)
ct

}]
+ o(1). (11)
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Proof. First, if we know the angle θ ∈ (π3 ,
π
2 ) between two bad vectors, then according to

Lemma 2 the probability of a collision in at least one of the hash tables is equal to

p∗(θ) = 1−
(

1− exp

[
−k
√
n

2
tan2

(
θ

2

)
(1 + o(1))

])t
. (12)

Letting f(θ) denote the density of angles θ on (π3 ,
π
2 ), we have

p∗2 = EΘ∈(π
3
,π
2
) [p∗(Θ)] =

∫ π/2

π/3
f(θ)p∗(θ)dθ. (13)

Substituting p∗(θ) and the expression of Lemma 4 for f(θ), noting that
∫ π/2
π/3 f(θ)dθ ≈∫ π/2

0 f(θ)dθ = 1 (i.e., the normalizing constant which we omit is negligible), we get

p∗2 =

∫ π/2

π/3
(sin θ)n

[
1−

(
1− exp

[
−3 ln t tan2

(
θ

2

)
(1 + o(1))

])t]
dθ. (14)

For convenience, let us write w(θ) = [−3 ln t tan2
(
θ
2

)
(1 + o(1)). Note that for θ � π

3 we
have w(θ)� − ln t so that (1− expw(θ))t ≈ 1− t expw(θ), in which case we can simplify
the expression between square brackets. However, the integration range includes π

3 as well,

so to be careful we will split the integration interval at π
3 + δ, where δ = Θ(n−1/2). (Note

that any value δ with 1
n � δ � 1 suffices.)

p∗2 =

∫ π/3+δ

π/3
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I1

+

∫ π/2

π/3+δ
f(θ)p∗(θ)dθ︸ ︷︷ ︸
I2

. (15)

Bounding I1. Using f(θ) ≤ f(π3 + δ), p∗(θ) ≤ 1, and sin(π3 + δ) = 1
2

√
3 [1 +O(δ)] (which

follows from a Taylor expansion of sinx around x = π
3 ), we obtain

I1 ≤ poly(n) sinn
(π

3
+ δ
)

= poly(n)

(
1

2

√
3

)n
(1 +O(δ))n = 2−γ1n+o(n). (16)

Bounding I2. For I2, our choice of δ is sufficient to make the aforementioned approximation
work6. Thus, for I2 we obtain the simplified expression

I2 ≤ poly(n)

∫ π/2

π/3+δ
(sin θ)nt exp

[
−3 ln t tan2

(
θ

2

)
(1 + o(1))

]
dθ (17)

≤
∫ π/2

π/3
2n log2 sin θ−(3 tan2( θ2)−1) log2 t+o(n)dθ. (18)

Note that the integrand is exponential in n and that the exponent E(θ) = n log2 sin θ +
(−3 tan2 θ

2 − 1) log2 t is a continuous, differentiable function of θ. So the asymptotic be-
havior of the entire integral I2 is the same as the asymptotic behavior of the integrand’s
maximum value:

log2 I2 ≤ max
θ∈(π

3
,π
2
)

{
n log2 sin θ −

(
3 tan2 θ

2 − 1
)

log2 t
}

+ o(n). (19)

6 By choosing the order terms in k appropriately, the o(1)-term inside w(θ) may be cancelled out, in which
case the δ-term dominates. Note that the o(1)-term in w(θ) can be further controlled by the choice of
γ = 1− o(1).
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Bounding p∗2 = I1 + I2. Combining (16) and (19), and writing ct = 1
n log2 t, we have

log2 p
∗
2

n
≤ max

{
−γ1, max

θ∈(π
3
,π
2
)
{log2 sin θ − (3 tan2 θ

2 − 1)ct}

}
+ o(1). (20)

The assumption cn ≥ γ1 and the definition of α ≤ 1 now give

log2 p
∗
2

n
≤ −αcn + o(1), (21)

which completes the proof.

A.3 Balancing the parameters

Recall that the overall time and space complexities are given by:

– Time (hashing): O(N · t) = 2(cn+ct)n+o(n).
– Time (searching): O(N2 · p∗2) = 2(cn+(1−α)cn)n+o(n).
– Space: O(N · t) = 2(cn+ct)n+o(n).

We can thus write the overall time and space complexities as 2ctimen and 2cspacen, with

ctime = cn + max{ct, (1− α)cn}+ o(1), cspace = cn + ct + o(1). (22)

Further recall that from Nguyen and Vidick’s analysis, we have N = (4/3)n/2+o(n) or
cn = γ1. To balance the time complexities of hashing and searching, so that the overall
time complexity is minimized, we solve (1 − α)γ1 = ct numerically7 for ct to obtain
the following corollary. Here θ∗ denotes the dominant angle θ maximizing the expression
in (11). Note that the final result takes into account the density at θ = θ∗ as well, and so
the result does not simply follow from Lemma 2.

Corollary 1. Taking ct ≈ 0.089624 leads to:

θ∗ ≈ 0.425395π, α ≈ 0.568115, ctime ≈ 0.297143, cspace ≈ 0.297143. (23)

Thus, using t ≈ 20.089624n hash tables and a hash length of k = Θ(
√
n), the heuristic time

and space complexities of the algorithm are balanced at 20.297143n+o(n).

Note that the dominant angle θ∗ ≈ 0.425395π is close to 1
2π, which explains why

the final result of Theorem 1 is not far off from the result in Estimate 1 based on the
assumption that θ∗ = 1

2π.

A.4 Trade-off between the space and time complexities

Finally, note that ct = 0 leads to the original Nguyen-Vidick sieve algorithm, while ct ≈
0.089624 minimizes the heuristic time complexity at the cost of more space. One can obtain
a continuous trade-off between these two extremes by considering values ct ∈ (0, 0.089624).
Numerically evaluating the resulting complexities for this range of values of ct leads to the
curve shown in Figure 1.

7 Note that α is implicitly a function of ct as well.
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