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Abstract. Non-interactive zero-knowledge (NIZK) proofs for algebraic relations in a group, such as the Groth-
Sahai proofs, are an extremely powerful tool in pairing-based cryptography. A series of recent works focused on
obtaining very efficient NIZK proofs for linear spaces in a weaker quasi-adaptive model. We revisit recent quasi-
adaptive NIZK constructions, providing clean, simple, and improved constructions via a conceptually different
approach inspired by recent developments in identity-based encryption. We then extend our techniques also to
linearly homomorphic structure-preserving signatures, an object both of independent interest and with many
applications.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs for efficiently proving algebraic relations in a group [38, 37,
35, 14] have had a profound impact on pairing-based cryptography, notably in (i) improving the concrete
efficiency of non-interactive cryptography schemes like group signatures [36], (ii) realizing stronger security
guarantees in applications like anonymous credentials [10, 9, 33], and (iii) minimizing interaction in secure
computation and two-party protocols [44, 31].

A recent fruitful line of works has focused in obtaining very efficient NIZK proofs for proving
membership in a linear subspace over a group, which is an important subset of the algebraic relations
supported by the Groth-Sahai NIZK [38]. For linear subspaces, the Groth-Sahai proofs were linear in the
dimensions of the (sub)space. The first substantial improvement was obtained by Jutla and Roy [42] in
a weaker quasi-adaptive model, where the CRS may depend on the linear subspace, and the soundness
guarantee is computational but adaptive. In addition, they used quasi-adaptive NIZK (QANIZK) for linear
subspaces to obtain improved KDM-CCA2-secure encryption as well as CCA2-secure IBE scheme with
short, publicly verifiable ciphertexts [18, 19]. Further efficiency improvements were subsequently obtained
in [49, 43, 1], leading to constant-size proofs, independent of the dimensions of space and subspace; several
of these constructions also realized stronger notions of soundness like one-time simulation soundness and
unbounded simulation soundness [51, 27], which in turn enable new applications.

1.1 Our Results and Techniques: QANIZK

We present clean, simple, and improved constructions of QANIZK protocols via a conceptually novel
approach. Previous constructions use fairly distinct techniques, resulting in a large family of schemes with
incomparable efficiency and security guarantees. We obtain a family of schemes that simultaneously match
– and in many settings, improve upon – the efficiency, assumptions, and security guarantees of all of the
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previous constructions. Figure 1 summarizes the efficiency of our constructions. Like the earliest Jutla-Roy
scheme [42], our schemes are fully explicit and simple to describe: the prover and verifier carry out simple
matrix-vector products in the exponent, and both correctness and zero-knowledge follow readily from one
simple equation. Furthermore, our schemes have a natural derivation from a symmetric-key setting, and
the derivation even extends to a modular and intuitive proof of security. Finally, in all but the settings with
unbounded security, we obtain a qualitative improvement in the underlying assumptions from decisional to
computational (search) assumptions; specifically, security relies on a natural computational analogue of the
decisional k-Lin assumption.

Our constructions and techniques are inspired by recent developments in obtaining adaptively secure
identity-based encryption schemes, notably the use of pairing groups to “compile” a symmetric-key
primitive into an asymmetric-key primitive [13, 54, 23], and the dual system encryption methodology for
achieving adaptive security against unbounded collusions [52, 47]. We then extend our techniques to linearly
homomorphic structure-preserving signatures [48, 49], an object both of independent interest and with many
applications.

Overview of our constructions. Fix a pairing group (G1,G2,GT ) with e : G1 ×G2 → GT . We present a
very simple non-interactive argument system for linear subspaces over G1 as defined by a matrix3 [M]1 :=
gM1 ∈ Gn×t

1 (n > t) and captured by the language:

LM =
{
[y]1 ∈ Gn

1 : ∃ x ∈ Zt
q s.t. y = Mx

}
.

The starting point of our construction is a hash proof system [26] for the language, which is essentially
a symmetric-key analogue of NIZK with a designated verifier. Namely, we pick a secret hash key K ←R

Zn×(k+1)
q known to the verifier (k ≥ 1 is a parameter of the security assumption) and publish the projection

[P]1 := [M⊤K]1 in the CRS. The proof is given by [π]1 := [x⊤P]1, and verification works by checking

whether π
?
= y⊤K. Completeness and perfect zero-knowledge follow readily from the fact that for all

y = Mx and P = M⊤K:

x⊤P = x⊤(M⊤K) = y⊤K.

Next, observe that if y is outside the span of M, then y⊤K is completely random given M⊤K; this is the case
even if such a y is adaptively chosen after seeing M⊤K. Thus, the construction achieves statistical adaptive
soundness: namely, a computationally unbounded cheating prover, upon seeing P, still cannot produce a
vector outside LM along with an accepting proof.

To achieve public verifiability, we carry out the hash proof system in G1 and publish a “partial
commitment” to K in G2 as given by [A]2, [KA]2, where the choice of A ∈ Z(k+1)×k

q is defined by

the security assumption. Instead of checking whether π ?
= y⊤K as before, anyone can now publicly check

whether πA ?
= y⊤KA via a pairing. As [A]2, [KA]2 leaks additional information about the secret hash

key K, we can only prove computational adaptive soundness. In particular, we rely on the Dk-KerMDH
Assumption [45], which stipulates that given a random [A]2 drawn from a matrix distribution Dk, it is hard
to find a non-zero [s]1 ∈ Gk+1

1 such that s⊤A = 0; this is implied by the Dk-MDDH Assumption [30], a

3 We use implicit representation notation for group elements, as explained in Section 2.1.
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generalization of the k-Lin Assumption.4 Therefore, for any ([y]1, [π]1) produced by an efficient adversary,

πA = y⊤KA =⇒ (π − y⊤K)A = 0
using assumption

=⇒ π − y⊤K = 0 =⇒ π = y⊤K,

upon which we are back in the symmetric-key setting, with a little more work to account for the leakage
from KA. Moreover, adaptive security in the symmetric-key setting (which is easy to analyze via a purely
information-theoretic argument) carries over to adaptive security in the public-key setting.

Two simple extensions. We extend this simple construction in two simple ways:

– First, we show that we can use A with the bottom row deleted, which saves one element to obtain proofs
of size k, albeit at the cost of a more intricate security reduction and a restriction to witness-sampleable
(WS) distributions for [M]1 [42]. The latter means that we are given an explicit description of M in the
security reduction, which we need to program the CRS as with prior works [43, 1] that achieve the same
proof size. In the case k = 1, the proof consists of 1 element and the CRS only contains n + t group
elements, which seems optimal.

– Second, we show how to achieve one-time simulation soundness, by replacing K with 2-wise
independent hash function K0 + τK1 where τ is a tag, and we publish [A]2, [K0A]2, [K1A]2 for
public verification. A single simulated proof reveals only an evaluation of the hash function at a single
point, while its evaluation at every other point remains hidden, upon which we are back in the setting of
standard adaptive soundness.

Unbounded simulation-soundness. To achieve unbounded simulation-soundness, we move from a 2-wise
independent hash function to an affine pseudo-random MAC (or, a randomized PRF) [13, 29, 25], which
guarantees pseudorandomness at a single point even upon giving out evaluations for polynomially many
other points. Here, we require a decisional assumption over G1. Our construction may also be viewed as an
instantiation of the dual system encryption methodology, whereas prior constructions in [48, 49] rely on the
random partitioning technique in [53, 12]. This allows us to immediately bypass two of the main limitations
of random partitioning: long public parameters and a polynomial-time but inefficient security reduction.

1.2 Extension: Linearly Homomorphic Structure Preserving Signatures

Linearly homomorphic signatures (LHS) [15, 28, 40] are signatures where the messages consist of vectors
over group G1 such that from any set of signatures on [mi]1 ∈ Gn

1 , one can efficiently derives a signature
σ on any element message [m]1 := [

∑
ωimi]1 in the span of m1, . . . ,mq. For security, one requires

that it is infeasible to produce a signature on a message outside of the span of all previously signed
messages. In recent years, LHS have drawn considerable attentions from the community with a wide
range of constructions under different assumptions [34, 6, 17, 16, 20, 32, 7, 8]. Linearly homomorphic
structure preserving signatures (LHSPS) [48] have the additional property that signatures and public keys
are all elements of the groups G1,G2,GT . This is a useful property when combined with other algebraic
tools such as Groth-Sahai NIZK systems. Applications beyond the algebraic compatibility include IND-
CCA1-secure encryption with publicly verifiable ciphertexts and verifiable computation for encrypted cloud

4 That is, Dk-MDDH ⇒ Dk-KerMDH; for the specific linear distribution Dk = Lk we have k-Lin := Lk-MDDH ⇒
Lk-KerMDH =: k-KerLin. We refer the reader to Section 2.2 for a more detailed treatment of the assumptions.
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Soundness WS? Assumption Proof CRS #pairings
GS08 [38] AS 2-Lin (G2) 2n+ 3t 6 3n(t+ 3)
LPJY14 [49] AS 2-KerLin (G2) 3 2n+ 3t+ 3 2n+ 4
ABP14 [1] AS k-Lin (G2) k + 1 kn+ (k + 1)t+ k kn+ k + 1
Πas (Fig 4) AS Dk-KerMDH (G2)✓ k + 1 kn+ (k + 1)t+ RE(A) kn+ RE(A)✓
JR13 [42] AS yes k-KerLin (G2) k(n− t) 2kt(n− t) + k + 1 k(n− t)(t+ 2)
JR14 [43] AS yes k-Lin (G2) k kn+ kt+ k2 kn+ k2

ABP14 [1] AS yes k-Lin (G2) k kn+ kt+ k kn+ k

Π′
as (Fig 5) AS yes Dk-KerMDH (G2)✓ k kn+ kt+ RE(A)✓ kn+ RE(A)✓

ABP14 [1] OTSS k-Lin (G2) k + 1 2kn+ 2(k + 1)t+ k kn+ k + 1
Πot-ss (Fig 6) OTSS Dk-KerMDH (G2)✓ k + 1 2kn+ 2(k + 1)t+ RE(A) kn+ RE(A)✓
ABP14 [1] OTSS yes k-Lin (G2) k 2λ(kn+ (k + 1)t) + k λkn+ k

Π′
ot-ss (Fig 9) OTSS yes Dk-KerMDH (G2)✓ k 2λ(kn+ (k + 1)t) + RE(A)✓ λkn+ RE(A)✓

CCS09 [18] USS 2-Lin (G2,G2) 2n+ 6t+ 52 18 O(tn)
LPJY14 [49] USS yes 2-Lin (G1,G2) 20 2n+ 3t+ 3λ+ 10 2n+ 30
Πuss (Fig 7) USS yes Dk-MDDH (G1,G2)✓ 2k + 2✓ kn+ 4(k + t+ 1)k + 2RE(A)✓ k(n+ k + 1) + RE(A)✓

Fig. 1. QANIZK for linear subspaces of Zn
q of dimension t and tag-space T = {0, 1}λ. For the soundness column we use AS for

adaptive soundness, OTSS for one-time simulation soundness, and USS for unbounded simulation soundness. WS stands for witness
sampleability [42] and slightly restricts the class of languages, cf. Section 3.2. We omit the generators for the group when computing
the CRS size. RE(A) and RE(A) depend on the assumption and denote the number of group elements needed to represent [A] and
[A] (the top k rows of [A]), respectively. In case of k-Lin, we have RE(A) = k and RE(A) = k− 1. Recall that k-Lin is a special
case of Dk-MDDH (decisional assumptions) and k-KerLin is a special case of Dk-KerMDH (search assumptions), for Dk = Lk,
the linear distribution. In all settings, we improve upon either the assumption (c.f. Figure 3), the CRS size, or # pairings used in
verification (which can be further reduced using randomized verification), as indicated by a ✓.

storage [4, 48], non-malleable trapdoor commitments to group elements [48] and QANIZK [49]. The first
constructions of LHSPS were given in [48, 21].

We show how to extend our QANIZK techniques to LHSPS. Concretely, for our one-time secure LHSPS,
we define a signature σ on message [m]1 ∈ Gn

1 as

σ = [m⊤K]1,

and publish [A]2, [KA]2 for verification. Security follows by the same argument as in our QANIZK
construction. Our construction can also be seen as a generalization of a 2-KerLin based scheme from
[48] to Dk-KerMDH. Similarly, the construction of unbounded simulation-sound QANIZK gives rise to
a fully secure LHSPS scheme. In the latter, the signatures on previously signed messages ([mi]1)1≤i≤q
reveal M⊤K to the adversary, where M = (m1, . . . ,mq). The winning condition of LHSPS is to produce
a valid signature on a message outside of the language LM, which corresponds to breaking simulation-
soundness in the QANIZK. Here, we do have to address an additional complication arising from the fact
that the LHSPS adversary is allowed to have previously requested signatures for the challenge tag. Our
constructions improve upon the efficiency of the prior schemes; see Figure 2. Moreover, our techniques also
offer two qualitative advantages over those in [49]: first, they immediately yield fully randomizable linearly
homomorphic signatures, which means they are strongly context-hiding [7, 4], and second, we completely
eliminate the additional restriction that adversary only query linearly independent vectors on each tag [48,
§2.1].

In fact, our constructions follow a more general and natural (in hindsight) methodology for constructing
LHSPS from any QANIZK: the signing key is the simulation trapdoor; a signature on [m]1 is a simulated
proof on the vector [m]1; verifying a signature is the same as verifying a proof. The proof of LHSPS security
uses the honest prover to simulate signatures. When a LHSPS adversary requests signatures on ([mi]1)1≤i≤q,
it gets QANIZK proofs for the vectors lying in the span of the matrix M := (m1, . . . ,mq). Soundness for
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Security Restrictions on adv. Assumption signature pk
LPJY13 [48, §3.1]: OT none 2-KerLin (G2) 3 2n+ 3
LPJY14 [49, §D]: OT none Lk-KerMDH (G2) k + 1 kn+ 2k − 1
LHSPSot (Fig 10) OT none Dk-KerMDH (G2) k + 1 kn+ RE(Dk)
LPJY13 [48, §3.2]: full indep. 2-KerLin (G1 = G2) 4 2n+ λ+ 5
LPJY13 [48, §B.2]: full, rand indep., targeting 2-Lin (G1 = G2) 15 2n+ λ+ 7
LHSPSfull (Fig 8) full, rand targeting Dk-MDDH (G1,G2) 2k + 2 kn+ 4(k + 1)k + 2RE(Dk)

Fig. 2. Linearly homomorphic structure-preserving signatures forM = Gn
1 and tag-space T = {0, 1}λ. In the security column,

OT stands for one-time security and full for full security; rand stands for full randomizability. The restrictions column describes the
restrictions required on the adversary. An independent adversary is restricted to querying linearly independent vectors on each tag;
a targeting adversary is required to provide a certificate that its output vector is outside the span of previous queried messages.

QANIZK tells us that it is infeasible to produce an accepting proof for a vector outside the span of M; this
means that it is infeasible to produce a valid signature for a vector outside the span of ([mi]1)1≤i≤q. For
the above construction to work, we require that proof verification does not depend on M, which is indeed
satisfied by all of our QANIZK protocols. The main qualitative difference between QANIZK and LHSPS
security is that in QANIZK, the entire M is fixed in advance, whereas in signatures, the corresponding
matrix is chosen adaptively and incrementally row by row. This means that QANIZK proof techniques that
require WS and that program an explicit description of M into the CRS (which is the case for the QANIZK
schemes with the shortest proofs) do not yield LHSPS schemes.

1.3 Discussion

Comparison with previous approaches. We briefly outline previous approaches for obtaining constant-
size QANIZK proofs for linear subspaces. The constructions in [43, 1] both derive their basic QANIZK
with adaptive soundness from a more general framework: a switching lemma in [43] and hash proof
system for disjunctions in [1]. Both frameworks seem inherently limited to decisional assumptions, whereas
our constructions enable the use of computational search assumptions. Moreover, the switching lemma
framework appears to be limited to applications where the adversary’s winning condition is efficiently
checkable, and therefore seems unlikely to extend beyond WS distributions or to LHSPS even in the one-
time setting. On the other hand, these more general frameworks could enable other new applications.

Previous QANIZK constructions achieving one-time simulation-soundness as well as the weaker notion
of single-theorem relatively soundness [41] proceed by combining a basic adaptively secure QANIZK
scheme with either a hash proof system [42, 49, 43] or some strengthening thereof [1]. Our approach for one-
time simulation-soundness by replacing a single key with the output of a 2-wise independent hash function
is arguably simpler and more natural.

The constructions of Libert et al. in [49] used LHSPS in the constructions of QANIZK. Interestingly,
while this prior work [49] used LHSPS to build QANIZK, we reverse the connection in this work, and as
a result, obtained even more efficient QANIZK and LHSPS. Their basic QANIZK with adaptive soundness
builds upon on an existing one-time structure-preserving signature in [2, 3]. Their QANIZK scheme with
unbounded simulation-soundness as well as the fully secure LHSPS in [48] relies on Waters’ random
partitioning technique [53, 12], which originated in the context of adaptively secure IBE; the final QANIZK
scheme is fairly complex, require a long CRS, an inefficient security reduction, and in addition the use of
Groth-Sahai NIWI proofs. Our schemes for unbounded simulation-soundness and full security rely on the
more powerful dual system encryption methodology [52] for building adaptively secure IBE, and are largely
self-contained.
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Other related work. The idea of compiling symmetric to asymmetric cryptography also appeared in several
prior works. In 1989, Bellare and Goldwasser [11] gave a transformation from a message authentication code
(originally, a PRF) and a NIZK to a signature scheme; interestingly, their transformation requires NIZK as
a building block, whereas NIZK is the target of our compiler. To the best of our knowledge, the first works
to explicitly point out that we can directly compile a symmetric primitive into an asymmetric one in pairing
groups came from the literature on attribute-based and identity-based encryption [54, 24, 5, 13]. These latter
works can be viewed as an instantiation of the dual system encryption methodology [52, 47]. In the specific
case of (H)IBE, they can also be viewed as an algebraic MAC plus a Groth-Sahai NIZK [13].

Perspective. As noted at the beginning of the introduction, Groth-Sahai NIZK have been widely used
in many cryptographic applications in recent years. We presented a conceptually different yet very simple
approach for building NIZK with extremely short proofs for linear subspaces, and also to improve one of the
applications. We are optimistic that our approach will yield concrete improvements to many constructions
that currently rely on Groth-Sahai proofs.

2 Definitions

Notation. If x ∈ Bn, then |x| denotes the length n of the vector. Further, x ←R B denotes the process
of sampling an element x from set B uniformly at random. If A ∈ Zn×k

q is a matrix with n > k, then

A ∈ Zk×k
q denotes the upper square matrix of A and then A ∈ Z(n−k)×k

q denotes the remaining n− k rows
of A. We use span() to denote the column span of a matrix.

2.1 Pairing groups

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ returns a description PG =
(G1,G2,GT , q, g1, g2, e) of asymmetric pairing groups where G1, G2, GT are cyclic groups of order q for
a λ-bit prime q, g1 and g2 are generators of G1 and G2, respectively, and e : G1 × G2 is an efficiently
computable (non-degenerate) bilinear map. Define gT := e(g1, g2), which is a generator in GT .

We use implicit representation of group elements as introduced in [30]. For s ∈ {1, 2, T} and a ∈ Zq,
define [a]s = gas ∈ Gs as the implicit representation of a in Gs. More generally, for a matrix A = (aij) ∈
Zn×m
q we define [A]s as the implicit representation of A in Gs:

[A]s :=

ga11s ... ga1ms

gan1
s ... ganm

s

 ∈ Gn×m
s

We will always use this implicit notation of elements in Gs, i.e., we let [a]s ∈ Gs be an element in
Gs. Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete logarithm problem in
Gs). Further, from [b]T ∈ GT it is hard to compute the value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion
problem). Obviously, given [a]s ∈ Gs and a scalar x ∈ Zq, one can efficiently compute [ax]s ∈ Gs. Further,
given [a]1, [a]2 one can efficiently compute [ab]T using the pairing e. For two matrices A,B with matching
dimensions define e([A]1, [B]2) := [AB]T ∈ GT .
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2.2 Matrix Diffie-Hellman Assumption

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH) and the Kernel Diffie-Hellman
assumptions [30, 45].

Definition 1 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs matrices in
Z(k+1)×k
q of full rank k in polynomial time.

Without loss of generality, we assume the first k rows of A←R Dk form an invertible matrix. TheDk-Matrix
Diffie-Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A←R Dk,
w←R Zk

q and u←R Zk+1
q .

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-MDDH). Let Dk be a matrix distribution and
s ∈ {1, 2, T}. We say that the Dk-Matrix Diffie-Hellman (Dk-MDDH) Assumption holds relative to GGen
in group Gs if for all PPT adversaries A,

Advmddh
Dk,GGen

(A) := |Pr[A(G, [A]s, [Aw]s) = 1]− Pr[A(G, [A]s, [u]s) = 1]| = negl(λ),

where the probability is taken over G ←R GGen(1λ), A←R Dk,w←R Zk
q ,u←R Zk+1

q .

The Kernel-Diffie-Hellman assumption Dk-KerMDH [45] is a natural computational analogue of the
Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman Assumption Dk-KerMDH). Let Dk be a matrix distribution and
s ∈ {1, 2}. We say that the Dk-Kernel Diffie-Hellman (Dk-KerMDH) Assumption holds relative to GGen in
group Gs if for all PPT adversaries A,

Advkmdh
Dk,GGen

(A) := Pr[c⊤A = 0 ∧ c ̸= 0 | [c]3−s ←R A(G, [A]s)] = negl(λ),

where the probability is taken over G ←R GGen(1λ), A←R Dk.

Note that we can use a non-zero vector in the kernel of A to test membership in the column space of A.
This means that the Dk-KerMDH assumption is a relaxation of the Dk-MDDH assumption, as captured in
the following lemma from [45].

Lemma 1. For any matrix distribution Dk, Dk-MDDH⇒Dk-KerMDH.

For each k ≥ 1, [30, 45] specify distributions Lk, SCk, Uk (and others) such that the corresponding
Dk-MDDH and Dk-KerMDH assumptions are generically secure in bilinear groups and form a hierarchy of
increasingly weaker assumptions.

SCk : A =


1 0 0 ... 0
a 1 0 ... 0
0 a 1 0
0 0 a 0
.
.
.

. . .
. . .

0 0 0 ... a

 , Lk : A =


1 1 1 ... 1
a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 0
.
.
.

. . .
. . .

0 0 0 ... ak

 , Uk : A =

( a1,1 ... a1,k
.
.
.

. . .
.
.
.

ak+1,1 ... ak+1,k

)
,

where a, ai, ai,j ← Zq. We define Link := Lk-MDDH (k-Linear Assumption of [39]) and KerLink := Lk-
KerMDH. Note that KerLin2 = SDP (Simultaneous Double Pairing Assumption of [22]). The relations
between the different assumptions for Dk = Lk are as follows:
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DDH 2-Lin 3-Lin . . .

1-KerLin 2-KerLin 3-KerLin . . . CDH

SDP

∥

Fig. 3. The relation between k-KerLin and k-Lin.

2.3 Quasi-adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed to depend on the
specific language for which proofs have to be generated [42]. The common reference string crs is generated
in a specific way and contains a fixed part par, produced by an algorithm Genpar, and a language-dependent
part crsl. However, for the zero-knowledge property there should be a single simulator for the entire class of
languages.

For public parameters par produced by Genpar, let Dpar be a probability distribution over a collection of
relations R = {Rρ} parametrized by a string ρ with an associated language Lρ = {y : ∃x s.t. Rρ(y, x) =
1}.

We now give a formal definition of QANIZK for Dpar in its tag-based variant.

Definition 4 (Quasi-adaptive Non-Interactive Zero Knowledge Argument). A Quasi-adaptive Non-
Interactive Zero Knowledege Argument (QANIZK) Π for a language distribution Dpar consists of five PPT
algorithms Π = (Genpar,Gencrs,Prove, Simπ,Verify):

– The probabilistic key generation algorithm Genpar(λ) returns the public parameters par.
– The probabilistic algorithm Gencrs(par, ρ) returns a common reference string crs and a trapdoor trap.

We assume that crs implicitly contains par and ρ and that it defines a tag-space T . (This is the classical
QANIZK setting.) If T is not specified then T = {ε} and tags can be ignored in all algorithms.

– The probabilistic proving algorithm Prove(crs, τ, x, y) returns a proof π with respect to tag τ ∈ T .
– The deterministic verification algorithm Verify(crs, τ, y, π) returns 1 or 0, where 1 means that π is a

valid proof of y ∈ Lρ.
– The probabilistic proving algorithm Simπ(crs, trap, τ, y) returns a proof π for some y (not necessarily

in Lρ) with respect to tag τ ∈ T .

We require that the algorithms satisfy the following properties:

(Perfect completeness). For all λ, all par output by Genpar(λ), all ρ output by Dpar, all (x, y) with
Rρ(y, x) = 1, all τ ∈ T , we have

Pr

[
Verify(crs, τ, y, π) = 1

∣∣∣∣ |(crs, trap)←R Gencrs(par, ρ)
π ←R Prove(crs, τ, x, y)

]
= 1.

(Perfect zero-knowledge). For all λ, all par output by Genpar(λ), all ρ output byDpar, all (crs, trap) output
by Gencrs(par, ρ), all (x, y) with Rρ(y, x) = 1, all τ ∈ T , the distributions

Prove(crs, τ, x, y) and Simπ(crs, trap, τ, y)

are the same (where the coin tosses are taken over Prove, Simπ).
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(Computational adaptive soundness). For all PPT adversaries A, Advas
Π(A) :=

Pr

y⋆ ̸∈ Lρ
∧Verify(crs, τ⋆, y⋆, π⋆) = 1

∣∣∣∣∣∣
par←R Genpar(λ); ρ←R Dpar

(crs, trap)←R Simcrs(par, ρ)
(τ⋆, y⋆, π⋆)←R A(par, crs, ρ)


is negligible.

Note that our formalization of perfect knowledge is similar to that of composable zero knowledge in [38] and
requires indistinguishability even for adversaries that get access to (crs, trap). In particular, the formalization
implies composability (namely, the adversary may see multiple proofs for many adaptively chosen instances
in the language). We also consider simulation soundness [51, 27], which is a strengthening of adaptive
soundness, and stipulates that an adversary cannot prove a false statement, even if it can see simulated
proofs for instances y of its choice.

Definition 5 (Simulation soundness). A QANIZK system Π is said to be (unbounded) simulation-sound if
for all PPT adversaries A, Advuss

Π (A) :=

Pr

y⋆ ̸∈ Lρ ∧ τ⋆ ̸∈ Qtags

∧Verify(crs, τ⋆, y⋆, π⋆) = 1

∣∣∣∣∣∣
par←R Genpar(λ); ρ←R Dpar

(crs, trap)←R Simcrs(par, ρ)

(τ⋆, y⋆, π⋆)←R AProveO(·,·)(par, crs, ρ)


is negligible, where ProveO(τ, y) returns Simπ(crs, trap, τ, y) and adds τ to the set Qtags. Π is said to be
one-time simulation-sound with corresponding advantage function Advot-ss

Π (A), if A is restricted to make
at most one query to the oracle ProveO.

We remark that a QANIZK with exponential tag-space can be transformed into a classical QANIZK with
T = {ε} using a one-time signature scheme or a MAC. Other security properties remain the same.

2.4 Linearly homomorphic structure-preserving signatures

We now define syntax and security of a linearly homomorphic structure-preserving signature (LHSPS)
scheme [48, 32, 15], where the signatures are fully randomizable and also strongly context-hiding [7, 4]. We
assume the existence of Genpar(λ), a probabilistic key generation algorithm that returns public parameters
par containing the description of a group G.

Definition 6 (Linearly homomorphic structure-preserving signature). A linearly homomorphic structure-
preserving signature (LHSPS) scheme LHSPS consists of four PPT algorithms LHSPS = (Gen, Sign,
SignDerive,Verify) with the following properties.

– The probabilistic key generation algorithm Gen(par) returns the (master) public/secret key (pk, sk),
where pk ∈ Gnpk for some npk ∈ poly(λ). We assume that pk implicitly defines a message space
M = Gn, for some n ∈ poly(λ), and a tag space T .

– The probabilistic signing algorithm Sign(sk, τ, [m]) returns a signature σ ∈ Gnσ on message [m] ∈ Gn

with respect to tag τ .
– The probabilistic signature derivation algorithm SignDerive(pk, τ, (ωi, σi)1≤i≤ℓ) returns a signature

σ ∈ Gnσ on the vector [
∑

ωimi], where ωi ∈ Zq and σi is a valid signature on [mi] with respect to tag
τ .

9



– The deterministic verification algorithm Verify(pk, τ, [m], σ) returns 1 or 0, where 1 means that σ is a
valid signature in [m].

We require that for all λ ∈ N, all pairs (pk, sk) generated by Gen(par), all tags τ ∈ T , the following holds:

(Perfect correctness.) for all messages [m] ∈ Gn, all σ generated by Sign(sk, τ, [m]) we have

Ver(pk, τ, [m], σ) = 1.

(Full randomizability.) for all messages [m1], . . . , [mℓ] ∈ Gn, all ω1, . . . , ωℓ ∈ Zq, for all σ1, . . . , σℓ
where σi ← Sign(sk, τ, [mi]), the distributions

Sign(sk, τ, [
∑

ωimi]) and SignDerive(pk, τ, (ωi, σi)1≤i≤ℓ)

are the same.

Note that our requirement of full randomizability implies strongly context hiding as considered in [7, 4]. We
now define security for LHSPS schemes.

Definition 7. To an adversary A and LHSPS we associate the advantage function Advufcma
LHSPS(A) :=

Pr

[
m∗ ̸∈ span(Mτ∗)
∧Verify(pk, τ∗, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←R Gen(par)

(τ∗, [m∗], σ∗)←R ASignO(·,·)(pk)

]
,

where SignO(τ, [m]) runs σ ←R Sign(sk, τ, [m]), appends the vector m (as a new column) to the matrix
Mτ (initialized with 0) and returns σ to A.

Note that the winning condition m∗ ̸∈ span(Mτ∗) may not be efficiently verifiable. We will also consider
security against a restricted class of “targeting adveraries” [48] which provide a certificate c∗ for m∗ ̸∈
span(Mτ∗).

Definition 8. To an adversary A and LHSPS we associate the advantage function Advufcma−t
LHSPS (A) :=

Pr

[
c∗⊤m∗ ̸= 0 ∧ c∗⊤Mτ∗ = 0
∧Verify(pk, τ∗, [m∗], σ∗) = 1

∣∣∣∣ (pk, sk)←R Gen(par)

(τ∗, [m∗], σ∗, [c∗])←R ASignO(·,·)(pk)

]
,

where SignO(τ, [m]) runs σ ←R Sign(sk, τ, [m]), appends the vector m (as a new column) to the matrix
Mτ (initialized with 0) and returns σ to A.

Observe that c∗⊤m∗ ̸= 0 ∧ c∗⊤Mτ∗ = 0 (which we can check via the pairing) implies m∗ ̸∈ span(Mτ∗).

3 Quasi-Adaptive Zero Knowledge for Linear Spaces

In this section we will describe a number of Quasi-Adaptive Zero Knowledge Proofs for linear spaces. From
now on and for the rest of this paper we will use Genpar = GGen. That is, Genpar(1λ) returns par = PG,
where PG = (G1,G2,GT , q, g1, g2, e) is a pairing group. The probability distribution Dpar returns a matrix
ρ = [M]1 ∈ Gn×t

1 , for integers n > t. Given par and ρ, the language LM is defined as

LM =
{
[y]1 ∈ Gn

1 : ∃ x ∈ Zt
q s.t. y = Mx

}
.

10



Lemma 2 (core lemma for adaptive soundness). Let n, t, k be integers. For any M ∈ Zn×t
q ,A ∈

Z(k+1)×k
q and any (possibly unbounded) adversary A,

Pr

[
y /∈ span(M) ∧ z⊤ = y⊤K

∣∣∣∣∣K←R Zn×(k+1)
q

(z,y)←R A(M⊤K,KA)

]
≤ 1

q

Pr

[
y /∈ span(M) ∧ τ ̸= τ̂
∧ z⊤ = y⊤(K0 + τ̂K1)

∣∣∣∣ K0,K1 ←R Zn×(k+1)
q ;

(z,y, τ)←R AO(·)(M⊤K0,M
⊤K1,K0A,K1A)

]
≤ 1

q
,

where O(τ̂) may only be called one time and returns K0 + τ̂K1.

Proof. To prove the first equation of the lemma, fix M ∈ Zn×t
q ,A ∈ Z(k+1)×k

q , and fix a non-zero vector
â /∈ span(A). Then, for any y /∈ span(M), the following distributions

(M⊤K,KA,y⊤Kâ) and (M⊤K,KA, u) (1)

are the same, where K ←R Zn×(k+1)
q , u ←R Zq. By a standard argument (e.g. complexity leveraging5),

this means that the two distributions are the same even if y /∈ span(M) is adaptively chosen after seeing
(M⊤K,KA). Therefore, for any adversary A, we have

Pr
K←RZn×(k+1)

q

[y /∈ span(M) ∧ z⊤â = y⊤Kâ | (z,y)←R A(M⊤K,KA)] ≤ 1/q

since y⊤Kâ is uniformly random from the adversary’s view-point. The lemma then follows from the fact
that z⊤ = y⊤K implies z⊤â = y⊤Kâ.

To prove the second equation of the lemma, observe that (K0 + τK1,K0 + τ̂K1) are pairwise-
independent, so we can essentially give away K0 + τK1 to A and still carry out the preceding proof with
K0 + τ̂K1 in place of K. More formally, for any τ ̸= τ̂ and any y /∈ span(M), the following distributions

(M⊤K0,M
⊤K1,K0A,K1A,K0 + τK1,y

⊤(K0 + τ̂K1)â)

and (M⊤K0,M
⊤K1,K0A,K1A,K0 + τK1, u)

are the same, where K0,K1 ←R Zn×(k+1)
q , u←R Zq. Upon eliminating the terms involving K0+ τK1, the

preceding claim follows from the fact that the following distributions

(M⊤K1,K1A, (τ̂ − τ)y⊤K1â) and (M⊤K1,K1A, u)

are the same, where K1 ←R Zn×(k+1)
q , u ←R Zq, as considered earlier in (1). The proof then proceeds as

before.

3.1 Simple QANIZK with Adaptive Soundness

Let Dk be any matrix distribution from Definition 1. Consider protocol Πas from Figure 4.

5 Using complexity leveraging, we can transform any adaptive distinguisher into a non-adaptive one with an exponential loss in the
distinguishing advantage. If the optimal non-adaptive distinguishing advantage is 0 as is the case for two identical distributions,
then the optimal adaptive distinguishing advantage must also be 0.
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Gen(par, [M]1 ∈ Gn×t
1 ):

A←R Dk;K←R Zn×(k+1)
q

P := M⊤K;C := KA
crs := ([P]1, [C]2, [A]2) ∈ Gt×(k+1)

1 ×Gn×k
2 ×G(k+1)×k

2

Return (crs, trap = K)

Prove(crs, [y]1,x): // y = Mx

Return π := (
[
x⊤P

]
1
) ∈ Gk+1

1

Sim(crs, trap = K, [y]1):

Return π := (
[
y⊤K

]
1
)

Verify(crs, [y]1, π):

Check: e(π, [A]2) = e(
[
y⊤

]
1
, [C]2)

Fig. 4. QANIZK Πas with adaptive soundness under Dk-KerMDH Assumption.

Theorem 1. Protocol Πas from Figure 4 is a Quasi-adaptive Non-Interactive Zero Knowledege Argument.
Furthermore, under the Dk-KerMDH Assumption in G2, it has adaptive soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact that for all y = Mx
and P = M⊤K:

x⊤P = x⊤(M⊤K) = y⊤K.

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We will show that for
all adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advas
Πas

(A) ≤ Advkmdh
Dk,GGen

(B) + 1/q. (2)

Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates [M]1 ←R Dpar, and the rest of the CRS as in the real scheme

by picking K ∈ Zn×(k+1)
q and computing

crs = ([P]1 =
[
M⊤K

]
1
∈ Gt×k

1 , [C]2 = [K ·A]2 ∈ Gn×k
2 , [A]2 ∈ G(k+1)×k

2 ).

Next, B runs A on crs and obtains a proof π = [z⊤]1 ∈ G1×k
1 and [y]1 ∈ Gn

1 satisfying y ̸∈ span(M) and
z⊤ ·A = y⊤ ·C = y⊤K ·A with probability Advas

Πas
(A). Finally, B returns [s]1 computed as

s⊤ = z⊤ − y⊤K.

Clearly, s⊤A = 0 and Pr[s = 0] ≤ 1/q by Lemma 2. This proves equation (2).

3.2 More Efficient QANIZK with Adaptive Soundness for WS distributions

Recall that we are considering a probability distribution Dpar that outputs a matrix [M]1 ∈ Gn×t
1 . Such

distributions are called witness sampleable (WS) [42] if there exist an efficiently sampleable distribution
D′par that outputs M′ ∈ Zn×t

q such that [M′]1 has the same distribution as [M]1. Note that this slightly
restricts the set of languages which can be handled. Whereas the techniques used in QANIZK protocols
for WS distributions pose no restrictions for most applications, are not applicable to structure-preserving
signatures (for the latter, [M]1 is chosen adaptively by an adversary).

In Figure 5 we give an efficiency improvement of Πas from Figure 4 which only works for WS
distributions.

12



Gen(par, [M]1 ∈ Gn×t
1 ):

A←R Dk;K←R Zn×k
q

P := M⊤K;C := KĀ
crs := ([P]1, [C]2, [Ā]2) ∈ Gt×k

1 ×Gn×k
2 ×Gk×k

2

Return (crs, trap = K)

Prove(crs, [y]1,x): // y = Mx

Return π :=
[
x⊤P

]
1
∈ G1×k

1

Simπ(crs, trap = K, [y]1):

Return π :=
[
y⊤K

]
1

Verify(crs, [y]1, π):

Check: e(π,
[
Ā
]
2
) = e(

[
y⊤

]
1
, [C]2)

Fig. 5. More efficient QANIZK Π ′
as with adaptive soundness for WS distributions under Dk-KerMDH Assumption. Recall that

A ∈ Zk×k
q denotes the upper square matrix of A ∈ Z(k+1)×k

q .

Theorem 2. Protocol Π ′as from Figure 5 is a Quasi-adaptive Non-Interactive Zero Knowledege Argument.
Suppose in addition that Dpar is a witness sampleable distribution. Then, under the Dk-KerMDH
Assumption in G2, the protocol has adaptive soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact that for all y = Mx
and P = M⊤K:

x⊤P = x⊤(M⊤K) = y⊤K.

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We will show that for
all adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advas
Π′

as
(A) ≤ Advkmdh

Dk,GGen
(B) + 1/q. (3)

Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates M ←R D′par. (The latter algorithm exists since Dpar is

witness sampleable.) Let M⊥ ∈ Zn×(n−t)
q be a basis for the kernel of M⊤, that is, M⊥ is a full-rank matrix

such that M⊤M⊥ = 0. Next, it picks K′ ∈ Zn×k
q ,R ∈ Z(n−t−1)×(k+1)

q and defines

A′ :=

(
A

R ·A

)
∈ Z(k+n−t)×k

q .

Let TA′ ∈ Z(n−t)×k
q be such that TA′A′ = A′. By implicitly defining K = K′+M⊥TA′ , B can compute

[C]2 = [KA]2 = [(K′ +M⊥TA′)A]2 = [K′A
′
+M⊥A′]2 = [(K′∥M⊥) ·A′]2

[P]1 = [M⊤K]1 = [M⊤K′]1.

(The way we program the CRS is similar to that in [43, Theorem 13].)

Next, B runs A on crs := ([P]1, [C]2, [Ā]2) and obtains a proof π = [z⊤]1 ∈ G1×k
1 and [y]1 ∈ Gn

1

satisfying y⊤M⊥ ̸= 0 and
z⊤ ·A = y⊤ ·C. (4)

By the definitions of C and A′,

z⊤A = (z⊤∥0)A′ = y⊤ ·C = y⊤(K′∥M⊥) ·A′
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such that [c]1 with
c⊤ = ((z⊤ − y⊤K′)∥ − y⊤M⊥) ̸= 0

satisfies c⊤A′ = 0. From c⊤ = (c⊤1 ∥c⊤2 ) ∈ Z1×(k+1)
q × Z1×(n−t−1)

q we will now extract a solution s to the
Dk-KerMDH problem. Define s⊤ = c⊤1 +c⊤2 R such that s⊤A = c⊤1 A+c⊤2 RA = c⊤A′ = 0. Since c ̸= 0
and matrix R only leaks through A′ as RA,

Pr
R←RZ(n−t−1)×(k+1)

q

[c⊤1 + c⊤2 R = 0 | RA] ≤ 1/q.

This proves equation (3).

3.3 Simple QANIZK with Adaptive One-Time Simulation Soundness

Protocol Πot-ss from Figure 6 with one-time simulation soundness is based on Πas from Figure 4 with the
hash key K replaced by the 2-wise independent hash function h(τ) := K0 + τK1. This allows arguing for
one-time simulation soundness. We remark that the protocol can be easily extending to ℓ-time simulation
soundness by using the ℓ-wise independent hash function h(τ) =

∑ℓ
i=0 τ

iKi. The size of crs would grow
with ℓ, but the proof size remains the same.

Gen(par, [M]1 ∈ Gn×t
1 ):

A←R Dk;K0,K1 ←R Zn×(k+1)
q

(P0,P1) := (M⊤K0,M
⊤K1) ∈ (Zt×(k+1)

q )2

(C0,C1) := (K0A,K1A) ∈ (Zn×k
q )2

crs := ([P0]1, [P1]1, [C0]2, [C1]2, [A]2)
Return (crs, trap = (K0,K1))
//crs defines tag-space T = Zq

Prove(crs, τ, [y]1,x): // y = Mx

Return π :=
[
x⊤(P0 + τP1)

]
1
∈ Gk+1

1

Simπ(crs, trap = (K0,K1), τ, [y]1):

Return π :=
[
y⊤(K0 + τK1)

]
1

Verify(crs, τ, [y]1, π):

Check: e(π, [A]2) = e(
[
y⊤

]
1
, [C0 + τC1]2)

Fig. 6. QANIZK Πot-ss protocol with adaptive one-time simulation-soundness under Dk-KerMDH Assumption.

Theorem 3. Protocol Πot-ss from Figure 6 is a Quasi-adaptive Non-Interactive Zero Knowledege Ar-
gument. Furthermore, under the Dk-KerMDH Assumption in G2, it has adaptive one-time simulation
soundness.

The proof of Theorem 3 is the same as that for Theorem 1 instantiated with the second part of Lemma 2.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact that for all y = Mx
and (P0,P1) = (M⊤K0,M

⊤K1) and all τ :

x⊤(P0 + τP1) = x⊤(M⊤K0 + τM⊤K1) = y⊤(K0 + τK1).

We proceed to establish adaptive soundness based on the Dk-KerMDH assumption. We will show that for
all adversaries A, there exists an adversary B with T(A) ≈ T(B) and

Advot-ss
Πot-ss(A) ≤ Advkmdh

Dk,GGen
(B) + 1/q. (5)
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Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates [M]1 ←R Dpar, and the rest of the CRS as in the real scheme

by picking K0,K1 ∈ Zn×(k+1)
q and computing crs as before. Next, B runs A on crs, simulates Simπ once

using (K0,K1), and obtains a tag τ , a proof π = [z⊤]1 ∈ G1×k
1 and [y]1 ∈ Gn

1 satisfying y ̸∈ span(M)
and z⊤ ·A = y⊤ · (C0 + τC1) = y⊤(K0 + τK1) ·A. Finally, B returns [s]1 computed as

s⊤ = z⊤ − y⊤(K0 + τK1).

Clearly, s⊤A = 0 and Pr[s = 0] ≤ 1/q by the second part of Lemma 2. This proves equation (5).

4 QANIZK with Unbounded Simulation Soundness for WS distributions

In this section, we present a QANIZK with unbounded simulation soundness. For unbounded simulation-
soundness, we can no longer rely on information-theoretic techniques for the core lemma (Lemma 2) as
in the previous section. Instead, we introduce a computational variant of the core lemma based on the Dk-
MDDH assumption in G1, which we will use again for the fully secure LHSPS in Section 5.

4.1 Computational Core Lemma

In the computational core lemma, instead of giving out zero/one copy of K0 + τK1 to the adversary as in
Lemma 2, we give out unbounded copies of

([r⊤B⊤(K0 + τK1)]1, [r
⊤B⊤]1) ∈ (G1×(k+1)

1 )2 (6)

where B ←R Dk,K0,K1 ←R Z(k+1)×(k+1)
q are fixed and a fresh r ←R Zk

q is chosen for each sample.
Under the Dk-MDDH assumption in G1 w.r.t. the matrix B, this essentially yields a pseudorandom MAC
(or randomized PRF) [13, 23, 29, 25]. Note that we can verify these pairs given (K0,K1). As before, we
then publish [A]2, [K0A]2, [K1A]2 for public verification. For completeness, we use the fact that for all
A,B, r,K0,K1:

e([r⊤B⊤(K0 + τK1)]1, [A]2) = e([r⊤B⊤]1, [K0A+ τK1A]2). (7)

The computational core lemma says that random samples in (6) are pseudorandom subject to the preceding
verification equation, in the sense that the first component hides any vector in the kernel of A. The
construction and proof strategy build upon those used in recent Dk-MDDH-based fully secure IBE schemes
in [13, 23], which in turn build upon earlier dual system IBE schemes in [52, 50, 46, 24].

Lemma 3 (computational core lemma for unbounded adaptive soundness). For all adversariesA, there
exists an adversary B with T(A) ≈ T(B) and

Pr


τ∗ /∈ Qtags

∧ b′ = b

∣∣∣∣∣∣∣∣∣∣∣

A,B←R Dk

K0,K1 ←R Z(k+1)×(k+1)
q

(P0,P1) := (B⊤K0,B
⊤K1)

pk := ([P0]1, [P1]1, [B]1,K0A,K1A,A)

b←R {0, 1}; b′ ←R AOb(·),O∗(·)(pk)


≤ 1

2
+ 2Q ·Advmddh

Dk,GGen
(B) +Q/q,

where
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– Ob(τ) returns (
[
bµa⊥ + r⊤(P0 + τP1)

]
1
, [r⊤B⊤]1) ∈ (G1×(k+1)

1 )2 with µ←R Zq, r←R Zk
q and adds

τ to Qtags. Here, a⊥ ̸= 0 satisfies a⊥A = 0.
– O∗(τ∗) returns K0 + τ∗K1. A only gets a single call τ∗ to O∗.
– Q is the number of queries A makes to Ob.

Proof. We proceed via a series of games. For i = 0, 1, . . . , Q, in Game i, we answer the first i queries toOb

using O0, and the last Q− i queries using O1. Let Advi denote the probability that A wins the game, that
is, τ∗ /∈ Qtags ∧ b′ = b. It suffices to show that for all i = 0, 1, . . . , Q− 1,

|Advi −Advi+1| ≤ 2Advmddh
Dk,GGen

(B) + 1/q.

The main difference between Game i and Game i+ 1 is that we answer the i’th query τ to Ob using O0 in
Game i and O1 in Game i+ 1, where Ob returns:([

bµa⊥ + r⊤B⊤(K0 + τK1)
]
1
, [r⊤B⊤]1

)
,where µ←R Zq, r←R Zk

q .

Using the MDDH assumption twice, we may switch [Br]1 with [w]1 ←R Gk+1
1 and then reverse the switch.

Then, we just need to bound the advantage of A in an experiment where we answer the i’th query τ to Ob

with ([
bµa⊥ +w⊤(K0 + τK1)

]
1
, [w⊤]1

)
,where µ←R Zq,w←R Zk+1

q ;

and the remaining q − 1 queries are handled using the normal O0,O1 as before. We may then proceed
via an information-theoretic argument (similar to that used in Lemma 2) to bound the advantage for this
experiment. Specifically, it suffices to show that for all A,B ← Dk, with probability 1 − 1/q over w ←R

Zk+1
q : for all τ ̸= τ∗, the following distributions

(pk,w⊤(K0 + τK1),K0 + τ∗K1) and (pk, µa⊥ +w⊤(K0 + τK1),K0 + τ∗K1) (8)

are the same, where K0,K1 ←R Z(k+1)×(k+1)
q . (As in Lemma 2, we may use complexity leveraging to

handle adaptive choices of τ, τ∗.) The quantities in the distributions above correspond to the answers for the
i’th query to Ob and the query to O∗; moreover, given pk, we can compute a⊥ and simulate the remaining
q− 1 queries to O0 and O1. Upon eliminating the terms involving K0 + τ∗K1, it suffices to show that with
probability 1− 1/q over w←R Zk+1

q , the following distributions

((τ − τ∗)w⊤K1,K1A,B⊤K1) and (µa⊥ + (τ − τ∗)w⊤K1,K1A,B⊤K1)

where K1 ←R Z(k+1)×(k+1)
q are the same. To establish the last statement, let us sample K1 as K′+µ′b⊥

⊤
a⊥

where K′ ←R Z(k+1)×(k+1)
q , µ′ ←R Zq and b⊥ ̸= 0 satisfies b⊥B = 0. Observe that (K1A,B⊤K1) =

(K′A,B⊤K′) and that with probability 1 − 1/q over w, we have b⊥w ̸= 0. Fix such a w, and the last
statement follows from the fact that for all µ, the following distributions

((τ − τ∗)µ′w⊤b⊥
⊤
a⊥) and (µa⊥ + (τ − τ∗)µ′w⊤b⊥

⊤
a⊥)

are the same, where µ′ ←R Zq.
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4.2 Our QANIZK Construction

Our protocol Πuss with unbounded simulation soundness for witness sampleable distributions (c.f. Sec-
tion 3.2) is given in Figure 7. We basically combine Πas with the pseudorandom MAC given in the
computational core lemma. The (simulated) proofs, instead of being [y⊤K]1 as in Πas, are now given by

([y⊤K+ r⊤B⊤(K0 + τK1)]1 , [r
⊤B⊤]1)

Roughly speaking, the pseudo-random MAC allows us to hide partial information about K across all the
simulated proofs, upon which we can use an information-theoretic argument as before.

The WS requirement basically means that we may assume that we know an explicit representation of
the matrix M in the proof of security. For the protocol in Section 3.2, we need an explicit representation of
M⊥ (a basis for the kernel of M) in the proof of security. For the protocol in this section, it suffices to know
[M⊥]2, with which we can efficiently verify the winning condition for (simulation) soundness; the latter is
necessary in order to build a distinguisher for the pseudorandom MAC.

Gen(par, [M]1 ∈ Gn×t
1 ):

A,B←R Dk

K←R Zn×(k+1)
q ;K0,K1 ←R Z(k+1)×(k+1)

q

P := M⊤K;C := KA
(C0,C1) := (K0A,K1A) ∈ (Z(k+1)×k

q )2

(P0,P1) := (B⊤K0,B
⊤K1) ∈ (Zk×(k+1)

q )2

crs := ([P]1, [C]2, [A]2, [B]1, [C0]2, [C1]2, [P0]1, [P1]1)
trap := K
Return (crs, trap)
//crs defines tag-space T = Zq

Prove(crs, τ, [y]1,x): // y = Mx

r←R Zk
q

π := (
[
x⊤P+ r⊤(P0 + τP1)

]
1
,
[
r⊤B⊤

]
1
) ∈ (G1×(k+1)

1 )2

Return π

Verify(crs, τ, [y]1, π):
Parse π = (π1, π2)
Check: e(π1, [A]2) = e([y⊤]1, [C]2) · e(π2, [C0 + τC1]2)

Simπ(crs, trap = K, τ, [y]1):

r←R Zk
q

Return π := (
[
y⊤K+ r⊤(P0 + τP1)

]
1
,
[
r⊤B⊤

]
1
)

Fig. 7. QANIZK Πuss protocol with (adaptive) unbounded simulation-soundness for WS distributions under Dk-MDDH
Assumption.

Theorem 4. Protocol Πuss from Figure 7 is a Quasi-adaptive Non-Interactive Zero Knowledege Argument.
Suppose in addition that Dpar is a witness sampleable distribution. Then, under the Dk-MDDH Assumption
in G1 and Dk-KerMDH Assumption in G2, the protocol has adaptive unbounded simulation soundness.

Proof. Perfect completeness and perfect zero-knowledge follow readily from the fact that for all y = Mx
and P = M⊤K:

x⊤P = x⊤(M⊤K) = y⊤K,

along with (7).

We proceed to establish adaptive unbounded simulation soundness. We will show that for any adversary
A that makes at most Q queries to Simπ, there exists adversaries B0,B1 with T(A) ≈ T(B0) ≈ T(B1) and

Advuss
Πuss

(A) ≤ Advkmdh
Dk,GGen

(B0) + 2Q ·Advmddh
Dk,GGen

(B1) + (Q+ 1)/q. (9)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i.
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Game 0. This is the real experiment from Definition 5.

Game 1. Switch Verify to Verify∗:
Verify∗(crs, τ, [y]1, π):
Parse π = (π1, π2)
Check: π1 = [y]⊤1K+ π2(K0 + τK1)

To bound |Adv0−Adv1|, it suffices to bound the probability thatA produces ([y]1, π1, π2) that passes
Verify but not Verify∗. We may rewrite the verification equation in Verify as

e(π1, [A]2) = e([y]⊤1K, [A]2) · e(π2(K0 + τK1), [A]2)

⇐⇒ e(π1 − [y]⊤1K+ π2(K0 + τK1), [A]2) = 0

Observe that for any ([y]1, π1, π2) that passes Verify but not Verify∗, the value

π1 − [y]⊤1K+ π2(K0 + τK1) ∈ G1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to sample under the D-KerMDH assumption. This
means that

|Adv0 −Adv1| ≤ Advkmdh
Dk,GGen

(B0).

Game 2. Let a⊥ be an element from the kernel of A. Switch Simπ to Sim∗π where
Sim∗

π(crs, trap = K, τ, [y]1): // adds µa⊥

r←R Zk
q ;µ←R Zq

Return π := (
[
y⊤K+ µa⊥ + r⊤(P0 + τP1)

]
1
,
[
r⊤B⊤

]
1
)

It follows readily from Lemma 3 and the fact that we can efficiently verify the winning condition for A
that

|Adv1 −Adv2| ≤ 2QAdvmddh
Dk,GGen

(B1) +Q/q.

Basically, we pick K ourselves and proceed as follows:
– when A makes a query (τ, [y]1) and τ ̸= τ∗, query Ob at τ to simulate either Simπ or Sim∗π, where

b = 0 corresponds to Simπ and b = 1 to Sim∗π;
– whenAmakes a query (τ, [y]1) and τ = τ∗, pick r← Zk

q , return ([y⊤K+ r⊤(P0 + τP1)]1 , [r
⊤B⊤]1);

– we query O∗ at τ∗ to simulate Verify∗.
The winning condition ofA can be efficiently verified becauseDpar is a witness sampleable distribution:
given [y]1 and M ∈ Zn×t

q we can verify [y]1 ∈ LM ⇔ [y⊤]1M
⊥ ̸= [0]1.

Game 3. Switch K←R Zn×(k+1)
q in Gen to K := K′ + ua⊥, where K′ ←R Zn×(k+1)

q ,u←R Zn
q .

We will bound the advantage of the adversary A in Game 3 via an information-theoretic argument. We first
look at what the adversary’s view together with K′ leaks about u:

– C = (K′ + ua⊥)A = K′A completely hides u;
– P = M⊤(K′ + ua⊥) leaks M⊤u;
– the output of Sim∗π completely hides u, since y⊤(K′+ua⊥) +µa⊥ is identically distributed to y⊤K′+

µa⊥ (namely, y⊤u is masked by µ←R Zq).

To convince Verify∗ to accept a proof (π1, π2) on y∗, the adversary must correctly compute

y∗⊤(K′ + ua⊥)

and thus (y∗)⊤u ∈ Zq. Given M⊤u, for any adaptively chosen y∗ not in the span of M, we have that (y∗)⊤u
is uniformly random over Zq from the adversary’s view-point. Therefore, Adv3 ≤ 1/q.
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5 Linearly Homomorphic Structure-Preserving Signatures

We show how to extend our QANIZK techniques to LHSPS (linearly homomorphic structure-preserving
signature), via a general methodology outlined in Section 1.2. The simplest example of our techniques as
applied to the QANIZK protocol Πas from Figure 4 yields a one-time LHSPS, presented in Section A.2.
Next, we modify the QANIZK protocol Πuss from Figure 7 into a fully secure LHSPS: we use sk = trap
and define a signature on [m]1 as the “simulated proof” Simπ(trap, [m]1). We only achieve security against
targeting adversaries (c.f. Definition 8), namely adversaries for which the winning condition is efficiently
verifiable; the latter is necessary in order to build a distinguisher for the pseudorandom MAC in the security
proof.

Gen(par):

A,B←R Dk;K←R Zn×(k+1)
q

K0,K1 ←R Z(k+1)×(k+1)
q

C := KA ∈ Zn×k
q

(C0,C1) := (K0A,K1A) ∈ (Z(k+1)×k
q )2

(P0,P1) := (B⊤K0,B
⊤K1) ∈ (Zk×(k+1)

q )2

sk := K
pk := ([C0]2, [C1]2, [P0]1, [P1]1, [C]2, [A]2, [B]1)
Return (pk, sk)

Sign(pk, sk, τ, [m]1):

r←R Zk
q ;

σ :=
([
m⊤K+ r⊤(P0 + τP1)

]
1
,
[
r⊤B⊤

]
1

)
Return σ ∈ (G1×(k+1)

1 )2

SignDerive(pk, τ, (ωi, σi)1≤i≤ℓ):

r←R Zk
q ;

Parse σi = ([si], [ti])

σ := (
[
r⊤(P0 + τP1) +

∑ℓ
i=1 ωisi

]
1
,
[
r⊤B⊤ +

∑ℓ
i=1 ωiti

]
1
)

Return σ ∈ (G1×(k+1)
1 )2

Verify(pk, τ, [m]1, σ):
Parse σ = (σ1, σ2)
Check:
e(σ1, [A]2) = e([m⊤]1, [C]2) · e(σ2, [C0 + τC1]2)

Fig. 8. Linearly homomorphic structure-preserving signature LHSPSfull with message-spaceM = Gn
1 and tag-space T = Zq .

Theorem 5. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, LHSPSfull
from Figure 8 is a linearly homomorphic structure-preserving signature scheme secure against targeting
adversaries.

The proof is similar to that in Theorem 4, with a complication and an additional 1/(Q+1) factor security loss
arising from the fact that the adversary is allowed to have previously requested signatures for the challenge
tag τ∗.

Proof. Perfect correctness and full randomizability are straight-forward. We proceed to establish security
against targeting adversaries. We will show that for any adversary A that makes at most Q signing queries,
there exists adversaries B0,B1 with T(A) ≈ T(B0) ≈ T(B1) and

Advufcma−t
LHSPSfull

(A) ≤ (Q+ 1)(Advkmdh
Dk,GGen

(B0) + 2QAdvmddh
Dk,GGen

(B1) +
Q+ 1

q
). (10)

We proceed via a series of games and we use Advi to denote the advantage of A in Game i.
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Game 0. This is the real experiment from Definition 8.

Game 1. Suppose the adversary makes at most Q queries to SignO with tags τ1, . . . , τQ. In addition, we
define τQ+1 := τ∗. Now, pick i∗ ←R [Q + 1] and abort if i∗ is not the smallest index i for which
τ∗ = τi. In the rest of the proof, we focus on the case we do not abort, which means that τ∗ = τi∗ and
τ1, . . . , τi∗−1 are all different from τ∗. This means that given τ , SignO can check whether τ∗ equals τ :
for the rest i∗ − 1 queries, answer NO, and starting from the i∗’th query, we know τ∗. It is easy to see
that

Adv1 ≥
1

Q+ 1
Adv0.

Game 2. Switch Verify to Verify∗:
Verify∗(pk, τ, [m]1, σ):
Parse σ = (σ1, σ2)
Check: σ1 = [m]⊤1K+ σ2(K0 + τK1)

As in the proof of Theorem 4, observe that for any ([m]1, σ1, σ2) that passes Verify but not Verify∗, the
value

σ1 − [m]⊤1K− σ2(K0 + τK1) ∈ G1×(k+1)
1

is a non-zero vector in the kernel of A, which is hard to sample under the D-KerMDH assumption. This
means that

|Adv1 −Adv2| ≤ Advkmdh
Dk,GGen

(B0).

Game 3. Switch Sign to Sign∗ where
Sign∗(pk, sk, τ, [m]1): // adds µa⊥ for τ ̸= τ∗

r←R Zk
q ;µ←R Zq

if τ = τ∗, µ := 0
Return σ := (

[
m⊤K+ µa⊥ + r⊤(P0 + τP1)

]
1
,
[
r⊤B⊤

]
1
)

As in the proof of Theorem 4, it follows readily from Lemma 3 and the fact that the adversary is targeting
that

|Adv2 −Adv3| ≤ 2QAdvmddh
Dk,GGen

(B1) +Q/q

Basically, we pick K ourselves and use Ob to simulate either Sign or Sign∗ for τ ̸= τ∗; compute the
signature directly to simulate Sign or Sign∗ for τ = τ∗; and O∗ to simulate Verify∗. The winning
condition of A can be efficiently verified since A is a targeting adversary.

Game 4. Switch K←R Zn×(k+1)
q in Gen to K := K′ + ua⊥, where K′ ←R Zn×(k+1)

q ,u←R Zn
q .

We will bound the advantage of the adversary in Game 4 via an information-theoretic argument, similar to
that in Theorem 4. We first look at what the adversary’s view together with K′ leaks about u:

– C = (K′ + ua⊥)A = K′A completely hides u;
– the output of SignO∗ on (m, τ) for τ ̸= τ∗ completely hides u, since m⊤(K′+ua⊥)+µa⊥ is identically

distributed to m⊤K′ + µa⊥ (namely, m⊤u is masked by µ←R Zq).
– the output of SignO∗ on τ∗ leaks M⊤

τ∗(K
′ + ua⊥), which is captured by M⊤

τ∗u;

To convince Verify∗ to accept a signature (σ1, σ2) on m∗, the adversary must correctly compute

m∗⊤(K′ + ua⊥)
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and thus (m∗)⊤u ∈ Zq. Given M⊤
τ∗u, for any adaptively chosen m∗ not in the span of Mτ∗ , we have that

(m∗)⊤u is uniformly random over Zq from the adversary’s view-point. Therefore, Adv4 ≤ 1/q.
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A Appendix

A.1 More efficient QANIZK with one-time simulation soundness for WS distributions

In Figure 9 we give a one-time simulation-sound QANIZK for WS distributions. It is a variant of Πot-ss
from Figure 9 with shorter proofs as with Π ′as. The result is inspired by the prior construction in [1]. Recall
that in Πot-ss, we replaced K in Πas with a 2-wise independent hash function K0 + τK1, which serves also
as a one-time MAC. Unfortunately, we cannot apply the same modification to Π ′as. Roughly speaking, in
the proof of security for Π ′as, we need to program K. In the setting for one-time simulation soundness, we
would need to program K0 + τ∗K1, which we cannot do since τ∗ is adaptively chosen.

Instead, we replace K in Π ′as with a different 2-wise independent hash function

τ 7→
∑ℓ

i=1
Ki,τi

as in Lamport’s one-time signature. As in the security proof for Lamport’s one-time signature, we would
guess i′ ←R [λ], b′ ←R {0, 1} so that τ∗i′ ̸= τi′ and τ∗i′ = b′ (such a (i′, b′) exists since τ ̸= τ∗) and then
program Ki′,b′ .

Gen(par, [M]1 ∈ Gn×t
1 ):

A←R Dk;Ki,b ←R Zn×k
q , i = 1, . . . , λ, b = 0, 1

Pi,b := M⊤Ki,b;Ci,b := Ki,bĀ
crs := ([Pi,b]1, [Ci,b]2, [Ā]2) ∈ (Gt×k

1 )2λ× (Gn×k
2 )2λ×Gk×k

2

Return (crs, trap = (Ki,b)1≤i≤ℓ,0≤b≤1)
//crs defines tag-space T = {0, 1}λ

Prove(crs, τ, [y]1,x): // y = Mx

Return π :=
[
x⊤ ∑ℓ

i=1 Pi,τi

]
1
∈ G1×k

1

Simπ(crs, trap = (K)i,b, τ, [y]1):

Return π :=
[
y⊤ ∑ℓ

i=1 Ki,τi

]
1

Verify(crs, τ, [y]1, π):

Check: e(π,
[
Ā
]
2
) = e(

[
y⊤

]
1
,
[∑ℓ

i=1 Ci,τi

]
2
)

Fig. 9. QANIZK Π ′
ot-ss protocol with adaptive one-time simulation-soundness for WS distributions under Dk-KerMDH

Assumption.

Theorem 6. The protocol from Figure 9 is a Quasi-adaptive Non-Interactive Zero Knowledege Argument.
Suppose in addition that Dpar is a witness sampleable distribution. Then, under the Dk-KerMDH
Assumption in G2, the protocol has adaptive one-time simulation soundness.

The proof is similar to that for Theorem 2, along with ideas from the security proof for Lamport’s
one-time signature scheme.

Proof. Perfect completeness and perfect zero-knowledge are straight-forward as before. We proceed to
establish adaptive soundness based on the Dk-KerMDH assumption. We will show that for all adversaries
A, there exists an adversary B with T(A) ≈ T(B) and

Advot-ss
Π′

ot-ss(A) ≤
1

2λ
(Advkmdh

Dk,GGen
(B) + 1/q).

B begins by choosing i′ ←R [λ], b′ ←R {0, 1} and abort later if it is not the case that τ∗i′ ̸= τi′ and τ∗i′ = b′.
B then selects (Ki,b)1≤i≤ℓ,0≤b≤1) as follows:
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– if (i, b) ̸= (i′, b′), pick Ki,b ←R Zn×k
q ;

– if (i, b) = (i′, b′), pick K′ ←R Zn×k
q and implicitly define Ki′,b′ = K′ + M⊥TA′ (as in the proof of

Theorem 2). This yields [Ci′,b′ ]2 = [(K′∥M⊥) ·A′]2.

Suppose τ∗i′ ̸= τi′ and τ∗i′ = b′, which happens with probability 1
2λ . Then, B can simulate Simπ on τ since

it knows (Ki,τi)1≤i≤λ explicitly. In addition, upon obtaining from A an accepting proof π = [z⊤]1 ∈ G1×k
1

for τ∗ and [y]1 ∈ Gn
1 satisfying y⊤M⊥ ̸= 0, we have

(z⊤ −
∑

i ̸=i′
Ki,τ∗i

) ·A = y⊤ ·Ci′,b′ = y⊤(K′∥M⊥) ·A′.

We may then proceed as in Theorem 2 to extract a solution to the Dk-KerMDH problem.

A.2 One-time Linearly Homomorphic Structure-Preserving Signatures

We now modify the QANIZK protocol Πas from Figure 4 into a one-time structure-preserving linearly
homomorphic signature scheme. One-time basically means that the tag space is a singleton set, upon
which we may omit the tag from the signature algorithms. Following the general methodology outlined
in Section 1.2, we use sk = trap and define a signature on [m]1 as the “simulated proof” Simπ(trap, [m]1).
The scheme can also be seen as a generalization of the one-time LHSPS scheme from [48] from Dk = L2
to arbitrary matrix distributions. It serves as a warm-up for our unbounded construction in the next section.

Gen(par):

A←R Dk;K←R Zn×(k+1)
q

C := KA ∈ Zn×k
q

sk := K
pk := ([C]2, [A]2)
Return (pk, sk)

Sign(pk, sk, [m]1):

σ :=
[
m⊤K

]
1

Return σ ∈ G1×(k+1)
1

SignDerive(pk, (ωi, σi)1≤i≤ℓ):

σ :=
∑ℓ

i=1 ωiσi

Return σ ∈ G1×(k+1)
1

Verify(pk, [m]1, σ):
Check: e(σ, [A]2) = e([m⊤]1, [C]2)

Fig. 10. One-time linearly homomorphic structure-preserving signature LHSPSot with message-spaceM = Gn
1 .

Theorem 7. Under the Dk-KerMDH Assumption in G2, LHSPSot from Figure 10 is a one-time linearly
homomorphic structure-preserving signature scheme.

The proof of Theorem 7 is essentially the same as the one of Theorem 1 with the difference that [P]1 =
[M⊤K]1 from crs of Πas is being constructed adaptively “on the fly”, where M = (m1, . . . ,mq) ∈ Zn×q

q

and [mi]1 ∈ Zn
q is the message of the i-th signing query. (This adaptivity is also the reason why one cannot

use the more efficient QANIZK protocol Π ′as from Figure 5.)

Proof. Perfect correctness and full randomizability are straight-forward. We proceed to establish security
based on the Dk-KerMDH assumption. We will show that for all adversaries A, there exists an adversary B
with T(A) ≈ T(B) and

Advufcma
LHSPSot(A) ≤ Advkmdh

Dk,GGen
(B) + 1/q. (11)
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Adversary B(PG, [A]2 ∈ G(k+1)×k
2 ) generates pk as in the real scheme by picking K ∈ Zn×(k+1)

q . Next,
B runs A on pk, answers signing queries on messages [m1]1, . . . , [mQ]1 as in the real scheme using K,
and obtains a signature σ = [z⊤]1 ∈ G1×k

1 on [m∗]1 ∈ Gn
1 such that m∗ /∈ span(M), where M =

(m1, . . . ,mQ) ∈ Zn×Q
q . Finally, B returns [s]1 computed as

s⊤ = z⊤ −m∗⊤K.

As before in Theorem 7, s⊤A = 0 and Pr[s = 0] ≤ 1/q by Lemma 2, since the signing queries only leak
M⊤K. This proves equation (11).
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