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Abstract—Goldreich-Goldwasser-Halevi (GGH) public key 

cryptosystem is an instance of lattice-based cryptosystems whose 

security is based on the hardness of lattice problems. In fact, 

GGH cryptosystem is the lattice version of the first code-based 

cryptosystem, proposed by McEliece. However, it has a number 

of drawbacks such as; large public key length and low security 

level. On the other hand, Low Density Lattice Codes (LDLCs) are 

the practical classes of linear codes which can achieve capacity on 

the additive white Gaussian noise (AWGN) channel with low 

complexity decoding algorithm. This paper introduces a public 

key cryptosystem based on LDLCs to withdraw the drawbacks of 

GGH cryptosystem. To reduce the key length, we employ the 

generator matrix of the used LDLC in Hermite normal form 

(HNF) as the public key. Also, by exploiting the linear decoding 

complexity of the used LDLC, the decryption complexity is 

decreased compared to GGH cryptosystem. These increased 

efficiencies allow us to use the bigger values of security 

parameters. Moreover, we exploit the special Gaussian vector 

whose variance is upper bounded by the Poltyrev limit as the 

perturbation vector. These techniques can resist the proposed 

scheme against the most efficient attacks to the GGH-like 

cryptosystems.  

Keywords—Channel Coding; Code-Based Cryptography; 

Lattice Codes; Lattice-Based Cryptography.  

I. INTRODUCTION 

Code and lattice-based cryptography are two of the most 

promising candidates to post quantum cryptography. It is 

believed that code and lattice-based cryptosystems are able to 

resist the attacks performed by quantum computers. In fact, 

there is no known quantum algorithm allows attacking them 

significantly faster than classical algorithms. The security 

provided by such cryptosystems is based on the difficulty of 

some classical problems related to coding theory and lattices, 

respectively [1]. Up to now, various public key code and 

lattice-based cryptosystems have been introduced and 

developed. One of the instances of lattice-based public key 

cryptosystems is proposed by Goldreich, Goldwasser and 

Halevi, known as GGH cryptosystem [2]. In fact, GGH public 

key scheme is the lattice analog of the McEliece cryptosystem 

[3] in which Goppa codes are replaced by lattices. The GGH 

scheme has some advantages, such as [4]: (1) it seems to be 

more secure than RSA and ElGamal encryption schemes 

against quantum computers; (2) it has a natural signature 

scheme; (3) unlike NTRU cryptosystem [5], the secret key of 

the GGH scheme cannot be obtained by solving the shortest 

vector problem (SVP). However, it has a number of 

weaknesses as follows [6]: (1) because of special form of the 

perturbation vector employed in the GGH scheme, the 

problem of decrypting ciphertext can be reduced to easier 

problem and thus partial information on plaintext can be 

recovered; (2) the GGH cryptosystem is insecure against 

adaptive chosen ciphertext attacks (CCA2); (3) its key length 

is very large.  

On the other hand, Low Density Lattice Codes (LDLCs) are 

an efficient class of lattice codes which can achieve capacity 

on the additive white Gaussian noise (AWGN) channel [7]. 

LDLCs have the nonsingular generator matrix  , i.e.,        

  , and their parity check matrix       is restricted to be 

sparse. The sparsity of   in the LDLCs is utilized to develop a 

low complexity iterative decoding algorithm. The main goal of 

this study is to introduce a public key scheme based on 

LDLCs to overcome the drawbacks of the GGH cryptosystem. 

We use the properties of lattices and coding theory to improve 

the efficiency and security of our scheme. By exploiting an 

efficient iterative LDLC decoding algorithm, the decryption 

complexity is reduced. Moreover, by performing the Hermite 

normal form (HNF) [8] of the generator matrix of the used 

LDLC, the public key length is decreased. To improve the 

security level, we use the Gaussian vector whose variance is 

upper bounded with Poltyrev limit [9] as the perturbation 

vector. In this case, the proposed scheme can resist the most 

efficient attack to GGH cryptosystem, called as Embedding 

attack [6]. Also, by employing the Fujisaki-Okamoto 

conversion [10], the proposed scheme is not insecure against 

CCA2 and broadcast attack.  

This paper is organized as follows. Section II gives an 

introduction to lattices, low density lattice codes and also 

reviews the construction of GGH cryptosystem. Section III 
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explains the concept of the proposed public key cryptosystem 

based on LDLCs. The efficiency and security of the proposed 

cryptosystem are also assessed in Sections IV and V, 

respectively. Finally, Section VI concludes the paper.  

II. LATTICES, LOW DENSITY LATTICE CODES AND GGH 

CRYPTOSYSTEM 

A. Lattices and Low Density Lattice Codes 

An  -dimensional lattice   over   , where    , is the set 

of all integer linear combinations of some linearly independent 

vectors          , i.e.,   {∑      |    } . The vectors 

        are called basis vectors and the set of vectors 

{       } is called a basis of  . In this case, the dimension of 

lattice   is   and its basis matrix (also called generator matrix 

in channel coding) is the     matrix   whose   rows are the 

basis vectors        . The lattice constructed by the 

generator matrix   is the set of all integral linear combinations 

of the rows of  , i.e.,      {       }, where   is an  -

dimensional vector of integers. Hence, every point of the 

lattice      is of the form     . The  -th successive minima 

of lattice     , denoted by         , is the smallest real 

number such that there exist    non-zero linear independent 

vector              with ‖  ‖   ‖  ‖          The 

lattice      is called full-dimensional if      [7, 11]. In the 

rest of this paper, for simplicity, we assume that      is full-

dimensional and its generator matrix is the      square 

matrix. However, this case can be easily extended to the non-

square generator matrix. Let   be a non-singular     matrix, 

the orthogonality defect and dual orthogonality defect of   are 

obtained as        |         |∏ ‖  ‖  and         

|       |∏ ‖  
 ‖  , respectively where,   

  is the  -th row in    . 

One well-known equivalent lower triangular form related to 

the generator matrix   is called the Hermite normal form 

(HNF) of  , denoted by          . It is shown that given an 

    nonsingular integer valued matrix  , there exist an     

unimodular matrix   such that the HNF of   is obtained as 

             [8]. In this case, the entries of lower 

triangular         
  ,         , have the following 

properties: (1) if     , then     
     (2) if    , then      

     

(3) if    , then       
      

 .  

The problem of finding a vector         such that 

  ‖  ‖           is called shortest vector problem (SVP) 

which is known as NP-complete problem [12]. Given a vector 

      , a basis   and a vector   (which is usually not in the 

lattice), the problem of finding the lattice vector   closest to   

is called closest vector problem (CVP). The complexity of 

general CVP was analyzed by van Emde Boas who showed 

that this problem is NP-hard [13]. In channel coding, CVP is 

referred to as lattice decoding problem (LDP) [11]. Another 

hard problem related to lattices is shortest basis problem 

(SBP) in which given a basis   for a lattice in   , the goal is 

to find the basis    which has the smallest orthogonality 

defect. It is known that there is no known polynomial time 

algorithm to solve SBP [2]. An  -dimensional lattice code 

over    is defined by an  -dimensional lattice         and 

a shaping region      [11, 14]. In this case, the codewords 

are all the points of lattice      which are lied within the 

shaping region  . Inspired by Low Density Parity Check 

(LDPC) codes and in the goal of finding practical low 

complexity lattice codes, Low Density Lattice Codes (LDLCs) 

are introduced [7]. An  -dimensional LDLC over    is an  -

dimensional lattice code with a nonsingular generator matrix 

 , i.e.,          , for which the parity check matrix       

is restricted to be sparse. The sparsity of   in LDLCs is 

utilized to develop a linear complexity iterative decoding 

algorithm by which good error performance is attained at large 

block length. The  -th row degree, denoted by   ,        , is 

the number of nonzero elements in the row   of the parity 

check matrix  . Moreover, the  -th column degree, denoted by 

  ,        , is defined as the number of nonzero elements 

in column   of the parity check matrix  . An LDLC is regular 

if all the row/column degrees of   are equal to a common 

degree  . A regular LDLC with degree   is called Latin square 

LDLC if every row/column of the parity check matrix   has 

the same   nonzero values. In a Latin square LDLC, the 

values of the   non-zero coefficients in each row and each 

column are some permutation of the values           . The 

sorted sequence of these   nonzero values            

  is called the generating sequence of Latin square LDLC [7].  

B. The Structure of GGH Public Key Cryptosystem 

The security of GGH public key cryptosystem [2] relies on 

the computational difficulty of CVP. To generate the key, two 

different bases, called as public basis (or public key)        

and private basis (or private key)       , of the same lattice 

     are used. The private basis   is an     matrix with a 

low dual orthogonality defect. It can be generated as      

  , where,   is an     identity matrix,    [   
 ] is an     

matrix such that |   
 |    and   √   for some constant  . The 

public key   is an     matrix with a high dual orthogonality 

defect such that generates the same lattice as  , i.e.,      

    . The public key   is generated as           , where 

   is the unimodular matrix (a matrix with integer entries and 

determinant of unit magnitude). To encrypt a message     , 

the ciphertext is obtained as         The vector   {  }  

is called perturbation (or error) vector, where,   is a small 

constant. At the receiver, the vector      is recovered as 

   ⌈    ⌋ , where         is the unimodular matrix and 

⌈    ⌋ denotes the vector obtained by rounding each entry in 

     to the nearest integer. Hence, ⌈    ⌋   ⌈          

  ⌋     ⌈    ⌋ and the decryption works if ⌈    ⌋   .  

III. THE PROPOSED PUBLIC KEY SCHEME  

A. Why We Use LDLCs? 

At this point, the main question is that why we employ 

LDLCs in the structure of proposed public key scheme. To 

response this question, we cite the following reasonable 

causes: (1) One important subject about the proposed public 

key scheme is to find the families of easily and low 
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complexity decodable lattice codes for a legitimate receiver 

(by the knowledge of private key), such that the decoding of 

these codes is infeasible for an active attacker (without the 

knowledge of private key) in polynomial time. It is shown that 

LDLCs have efficient and low complexity iterative decoding 

algorithm by which the better error performance can be 

attained [7] compared to other similar codes such as; LDPC 

lattice codes [15]. Moreover, if the HNF of their generator 

matrix is considered as the public key, then the decoding of 

these codes is infeasible for the active attacker. (2) LDLCs 

have a sufficient tradeoff between error performance and code 

length. This property allows us to use larger values of security 

parameters in the proposed scheme which leads to be secure 

against the cryptanalytic attacks, such as; the round-off attack 

and the nearest plane attack (see Sec. V). (3) By exploiting the 

properties of LDLCs, the security of the proposed scheme is 

based on two inherent hard lattice problems, i.e., SBP and 

CVP. In fact, recovering the generator matrix   from the 

public key           is equivalent to solve SBP. Also, 

finding the closest lattice point to ciphertext   requires solving 

CVP. This strategy leads to improve the security level of the 

proposed scheme. (4) By using the LDLCs in the proposed 

scheme, a relationship can be established between code-based 

cryptography and lattice-based cryptography. In this case, we 

can exploit from the efficient properties of codes and lattices, 

simultaneously to improve the security and efficiency. 

B. Key Generation 

 The secret key set is      {   }, where   is the sparse 

parity check matrix of the used LDLC and   is the     

unimodular matrix. The umimodular matrix   is used for 

converting the generator matrix       of the used LDLC to 

its Hermite normal form (HNF). To obtain the public key, 

denoted by   , first the generator matrix of the used LDLC is 

constructed as       and then its HNF, i.e.,           

  , is considered as the public key. In this case, the generator 

matrix of the used LDLC and its HNF are two different bases 

of the same lattice, i.e.,           . The HNF    depends on 

the lattice       not on the generator matrix  . Therefore, the 

public key    gives no information about the parameters of the 

secret key set, i.e.,       and  .  

C. Encryption  

In the proposed public key scheme, an integer information 
sequence is considered as a plaintext vector (message)     . 
To encrypt the message  , the sender (Alice) first fetches the 
public key           from the public directory. Then, she 
constructs a codeword (lattice point) as          , where 

     . Finally, the ciphertext is obtained as         
   , where                     is a Gaussian vector 
with mean   and variance          ⁄ . The ciphertext   is 
transmitted through the insecure noiseless channel. Due to 
addition of codeword   and Gaussian perturbation vector  , the 
transmission of ciphertext   through noiseless channel is 
equivalent to transmission of codeword   through AWGN 
channel without power restrictions. It is shown that for power 
unconstrained AWGN channel, there exists a lattice code of 
dimension   such that the lattice point (codeword)       can 

be decoded with arbitrarily small error probability if and only if 
the variance    of noise vector   is less than     

  

 √|      |  
      ⁄  [7, 9]. In fact, this maximum noise 

variance that a lattice code should tolerate to have reliable 
communication over unconstrained AWGN channel is called 
Poltyrev limit [9]. In the proposed scheme, since the generator 
matrix of the used LDLC is non-singular, i.e.,         , the 
maximum noise variance is equal to     

        ⁄ . 
Therefore, to achieve the reliable communication and also have 
small error probability, we consider the Gaussian vector with 
variance          ⁄  as the perturbation vector  .. 

D. Decryption 

The legitimate receiver (Bob) observes the ciphertext  
     . In this case, by the knowledge of secret key set     , 

he constructs the generator matrix       of the used LDLC 
and attempts to estimate the closest lattice point to the 
ciphertext  , i.e.,  ̂    ̂ , using the low complexity iterative 
LDLC decoding algorithm. The estimate of lattice point  ̂ is 
not directly found in the LDLC decoding algorithm. Instead, 
the probability density function (pdf) of the codeword 
           , i.e.,   ̂  | 

  |  ,           , is estimated. In 

fact, the  -th element of codeword  , denoted by   , is 
estimated as  ̂         ̂  | 

  |   and hence the estimated 

codeword  ̂    ̂     ̂ ) can be obtained [7]. Then, the 
estimation of the vector    is obtained as   ̂   ̂  
⌈ ̂   ⌋  ⌈ ̂ ⌋ . Finally, the message is estimated as  ̂  
  ̂   . Fig. 1 illustrates the block diagram of the proposed 
public key scheme based on LDLCs. As can be viewed from 
this figure, at the first step, Alice fetches    from the public 
directory. Then, she constructs the codeword (lattice point) as 
      and adds the Gaussian perturbation vector with zero-
mean and variance          ⁄  to it. Also, the ciphertext 
      is transmitted over the insecure noiseless channel. On 
the other hand, Bob, by the help of LDLC decoding algorithm, 
can estimate the closest lattice point to the ciphertext, i.e., 
 ̂    ̂ , and recover   ̂  ⌈ ̂ ⌋ . Finally, the message is 
estimated as  ̂    ̂   . It is clear that the encryptor and the 
LDLC encoder are combined together at the transmitter. Also, 
the decryptor and the LDLC decoder are joined together at the 
receiver. 

Note that for the power constrained AWGN channel, the 
LDLC encoding/decoding operations must be performed with 
shaping region to prevent the codeword’s power from being 
too large [7]. As aforementioned in Sec. III-C, since the 
variance of perturbation vector   is bounded by Poltyrev limit, 
i.e.,          ⁄ , the shaping region boundaries is ignored in 
the encoding/decoding algorithms of the used LDLC. This 
operation has the following advantages for our scheme: (1) 
Since the number of points of the used LDLC, without 
considering the shaping region, is usually huge for the active 
attacker (Oscar), he cannot use an exhaustive method to 
implement the LDLC decoding operation. In fact, recovering 
the generator matrix   from the public key           is 
equivalent to solve SBP for Oscar. Also, finding the closest 
lattice vector, i.e.,        , to the ciphertext   is equivalent 
to solve LDP for him. (2) Ignoring the shaping region 
boundaries in the LDLC encoding /decoding can decrease the 
encryption/decryption complexity of the proposed scheme. 
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Fig. 1. The block diagram of the proposed public key cryptosystem based on LDLCs. 

IV. EFFICIENCY 

 In this section, the efficiency of the proposed cryptosystem 

is evaluated in terms of its key length and computational 

complexity.  

A. Key Length 

It is shown that for large dimension        and degree 
    , a set of generating sequence           ,     , 
  ∑   

  
     

 ⁄   , can result the parity check matrix   which 
satisfies all required properties to have efficient iterative LDLC 
decoding [7]. Moreover, the experiments on the security of the 
GGH-like cryptosystems based on HNF basis are shown that 
one necessary condition to achieve high security level is to 
apply the lattices with dimension       [16]. Hence, we use 
the LDLC with        and degree      to improve the 
security and efficiency of the proposed scheme. We employ the 
Micciancio’s idea [8] by which the public key of the proposed 
scheme is obtained as the HNF of the generator matrix of used 
LDLC. In this case, the public key size requires           
bits compared to GGH cryptosystem, whose public key size 
requires           bits. Table I denotes the comparison 
between the public key lengths of the GGH and the proposed 
schemes. It is clear that applying the large dimensions, i.e., 
               , for the original GGH scheme is 
impractical. However, the key length of the proposed scheme, 
by using the Micciancio’s method is decreased significantly 
compared to the key lengths of GGH public key scheme. For 
example, for the dimension equal to      , the key length of 
the proposed scheme decreases up to 97 percent. 

                                                 TABLE I 

COMPARING THE KEY LENGTHS OF THE GGH AND PROPOSED SCHEMES. 

         Scheme 

 
Dimension 

GGH 
Scheme 

Proposed 
Scheme 

                    

                  

                

                   

                   

B. Computational Complexity 

As illustrated in Fig. 1, encryption procedure is performed 

by calculating the codeword       and then adding the 

Gaussian perturbation vector   to  . Therefore, the encryption 

complexity can be expressed as                        , 
where,                  is the encoding complexity of the 

used LDLC and                 is the number of required 

binary operations for addition of  -symbol Gaussian 

perturnbation vector   to the codeword   (by asuming that the 

entries of   are bounded by  ). However, in the case of 

implementing a CCA2-secure variant (see Sec. V-D), the 

complexity of performing some suitable scrambling operation 

on the message   before multiplication by    should be 

considered. The decryption complexity of this scheme is 

expressed as                     ( 
 ̂   ) , where 

                is the decoding complexity of the used 

LDLC and     ( 
 ̂   )           is the number of 

required binary operations to perform the product of the 

estimated vector   ̂  ⌈ ̂ ⌋  by the inverse of unimodular 

matrix   (by asuming that the entries of   are bounded by  ). 

V.  SECURITY 

In this section, the cryptanalytic strength of the proposed 

scheme against some well-known attacks is being examined. 

A. The Embedding Attack 

The embedding attack [6] is an efficient method to directly 

solve  -CVP and seems to be practically the best way to break 

a CVP-based public key cryptosystem. This attack has been 

successfully used by Nguyen [6] to break the GGH 

cryptosystem. To perform this attack against GGH scheme, 

first the integer vector   { }  is added to the ciphertext 

      ,   {  }  of the GGH scheme and then the 

modular equation                   is obtained, 

where              . By subtracting the vector       

from the ciphertext  , the vector  −       ( −    )   

  is obtained. Now, this equation is divided by   , the 

equation   −         ⁄          ⁄  is obtained, where 

     −       ⁄ . In this case, since the rational point 

  −         ⁄  is known, the simplified CVP-instance with a 

much smaller perturbation vector    ⁄  { 
 

 
}
 

 is obtained. 

The error vector length is now √  ⁄ , compared to  √ , 

previously. By this way, the problem of decrypting ciphertexts 

(CVP-instances for which the error vector has entries   ) is 

reduced to a simpler CVP-instance for which the error vector 
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has entries  
 

 
. As it is mentioned, the embedding attack is 

applicable if the employed perturbation vector   has the 

particular form, e.g.,   {  } . In the proposed public key 

scheme, since the perturbation vector   is Gaussian vector 

with mean   and variance          ⁄ , the entries of   are 

not known exactly for attacker and therefore the modular 

equation           cannot be accessed. Hence, the 

simplified CVP-instance with a much smaller perturbation 

vector cannot be attained to break the proposed scheme.  

B. The Round-Off Attack 

In the round-off attack [2], first it is tried to multiply the 

inverse of public key           by the ciphertext   as 

                 . Then, the attacker does an exhaustive 

search to find the vector          . If the vector   is found 

by an exhaustive search, the message   will be recovered 

successfully. Therefore, the size of the search space needed for 

finding the correct vector   should be large enough to prevent 

the Round-off attack. Below, we evaluate an approximate size 

of the search space in the proposed public key scheme. Let    

and    denote the  -th entry in the vectors           and the 

perturbation vector  , respectively. Let   
   be the  -th row of 

       and    
   be the      -th element in the matrix       . 

Using these notations, we have      
     ∑    

  
   ,         

and         ∑    
   

  [  
 ]    ‖  

  ‖  , where ‖  
  ‖  is the 

Euclidean norm of the  -th row in       . To calculate the size 

of search space for the vector  , it is assumed that each entry 

   in   is Gaussian and all the entries are independent. In this 

case, the size of search space is exponential in the differential 

entropy of the Gaussian random vector  . The differential 

entropy of   with variance    is obtained as      
 

 
          . Since it is assumed that   ’s are independent, the 

differential entropy of the vector   equals the sum of the 

differential entropies of the entries, i.e.,       
 

 
          

∑    ‖  
  ‖ . Hence, the size of search space is obtained as 

               ⁄     ∏ ‖  
  ‖ . In the proposed scheme, 

since          ⁄ , we have       ⁄    ⁄  ∏ ‖  
  ‖ . It is 

shown that the Round-off attack is capable to recognize the 

vector   up to dimension 100. In the proposed scheme, since 

the used dimension is more than 1000, this attack is also 

doomed to fail. 

C. The Nearest Plane Attack 

In the nearest plane attack [2], a better approximation 

technique is used to improve the round-off attack. In this 

attack, by the knowledge of public key   , it is tried to apply 

the LLL lattice reduction algorithm [17] to obtain a reduced 

basis   {        } . Now, for a given ciphertext   and a 

reduced basis  , all the affine spaces are considered as 

   {     ∑     
   
         }  for all      Then, the 

hyperplane    is found which is the closest point, denoted by 

 , to the ciphertext  . Also, the point  −     is projected onto 

the   −   -dimensional space which is spanned by    
{         }. By this way, a new point     −     and a new 

basis    are obtained. Such algorithm is proceeded recursively 

to find the closest point to   , denoted by   , in this   −   -

dimensional lattice   . Finally, by finding the point   , the 

point          can be computed. In summary, the nearest-

plane attack is partitioned into two parts: (1) the offline 

process in which the public key           is transformed to 

the reduced basis   by using the lattice reduction algorithms; 

(2) the online process in which the inverse of reduced basis   

is multiplied by the ciphertext   as in the similar way used in 

the Round-off attack. The work factor of this attack can be 

computed from the Euclidean norm of the rows in the 

generator matrix  . It is shown that the Nearest plane attack 

has a lower work factor than the Round-off attack. But its 

work factor grows exponentially with the dimension of the 

lattice. Experiments show that this attack is infeasible for the 

dimensions 140-150 [2]. For the proposed scheme, since the 

used dimension is more than 1000, this attack is also failed. 

D. The Adaptive Chosen Ciphertext Attack  

It is shown that both McEliece and GGH cryptosystems are 

insecure against adaptive chosen ciphertext attacks (CCA2) 

[18, 21]. Therefore, generic [10, 18] and specific [19] CCA2-

secure conversions can be used to make these schemes secure 

against CCA2. All applied methods in these conversions are 

based on scrambling the message inputs. In the proposed 

public key scheme, the ciphertext is        , where   is a 

message and   is a Gaussian perturbation vector. In this case, 

if an adversary encrypts one of two messages    and    and 

obtains a ciphertext  , then the attacker can distinguish a 

plaintext    if ‖   
 −  ‖  ‖   

 −  ‖. In such attack, given 

a ciphertext        , an adversary inputs the        to 

the decryption oracle for some    and obtains the output of  

the decryption oracle, i.e.,   ̂. Then, the adversary can find out 

the original message   by calculating    ̂ −   . It means 

that the proposed scheme is insecure against CCA2. To obtain 

the security against CCA2, we can apply the Fujisaki-

Okamoto generic conversion [10] in the proposed scheme as 

follows. Let   ,    be a symmetric encryption and a 

decryption form with a key  , respectively. Let   and   be 

random oracles. Then,           and the ciphertext is 

obtained as                          . For the 

decryption, using the LDLC decoding, first    ̂    ̂   is 

estimated and   ̂     ̂        is obtained. Then, the estimate 

of perturbation vector  ̂    −   ̂   is computed. Now, a 

plaintext  ̂            with the secret key      is recovered. 

If (   ̂  ̂ )    ̂    , then the output of decryption oracle is 

 ̂. Otherwise, the decryption fails. By this way, an adaptive 

chosen ciphertext attack can be prevented for the proposed 

scheme.  

E. The Broadcast Attack 

In [20], Hastad presented an efficient attack, called as 

broadcast attack, in which the message is recovered in the 

broadcast scenario (i.e., sending a single message to different 

recipients using their respective public keys). Inspired by 

Hastad’s method, two types of the broadcast attack are 

presented in [21] against the GGH cryptosystem. In these 

attacks, it is assumed that the sender encrypts the single 

message for different receivers. In this way, a random message 

  is encrypted with different random public keys   
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     , is encrypted for different receivers and various 

ciphertexts       
            are obtained. The goal is 

to recover the message      without any knowledge of 

receiver’s secret key. It is shown that the intersecting lattice 

has interesting properties in the broadcast attack againt GGH 

scheme. Let    and    be two lattices, then the intersecting 

lattice of them is obtained as          
    

   . In the first 

type of broadcast attack, it is demonstrated that solving the 

shortest vector problem on the intersection lattice       will 

be easier than each of    or   . In such attack, given the public 

keys   
         , and the ciphertexts           , the 

embedding basis   
    [

  
  

   
]  is computed. Then, the 

intersection lattice        ⋂     
    

    is obtained. Finally, 

the vector       is found as the shortest vector of lattice 

      . By this way, the message   can be recovered. In the 

second type of broadcast attack, first, the basis     ∑   
  

    is 

obtained. Then, the vector     ∑   
 
    is computed and the 

closest vector   of     is found in the lattice       . Finally, the 

message            is recovered.  

To resist the proposed public key cryptosystem against 

broadcast attack, similar to CCA2-secure scheme, a random 

part (that is sufficiently big) should be added to the messages 

to prevent two messages to be equal under a reasonable 

probability. In fact, if the half of the message   is random, the 

proposed scheme is secure against the broadcast attack. The 

scrambling method of message using the Fujisaki-Okamoto 

generic conversion for this scheme is suggested in Sec. V-D 

by which can be secure against this attack. However, using 

such conversion has repercussion in the computational 

complexity of this scheme. 

VI. CONCLUSION  

The current paper was an attempt to address the issue of 

applying low density lattice codes in the structure of a public 

key cryptosystem. Compared to GGH cryptosystem, the 

efficiency of new scheme is improved from two following 

aspects: (1) due to the use of low complexity LDLC decoding, 

the decryption complexity is decreased; (2) because of 

considering the HNF of generator matrix as the public key, the 

key length is reduced up to 97 percent in the dimension 

      . Moreover, by exploiting the following strategies, 

the new scheme is better than the original GGH scheme from 

the security point of view: (1) using the Gaussian vector 

whose variance is upper bounded by Poltyrev limit, i.e., 

         ⁄ , as the perturbation vector to resist against the 

embedding attack; (2) increasing the dimension of used LDLC 

(due to the increased efficiency of the proposed scheme) to 

resist the round-off and the nearest plane attacks; (3) 

employing the generic Fujisaki-Okamoto conversion to resist 

against CCA2 and broadcast attacks. 
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