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Abstract—Definitions of election verifiability in the compu-
tational model of cryptography are proposed. The definitions
formalize notions of voters verifying their own votes, auditors
verifying the tally of votes, and auditors verifying that only
eligible voters vote. The Helios (Adida et al., 2009) and JCJ
(Juels et al., 2010) election schemes are shown to satisfy these
definitions. Two previous definitions (Juels et al., 2010; Cortier
et al., 2014) are shown to permit election schemes vulnerable to
attacks, whereas the new definitions prohibit those schemes.

I. INTRODUCTION

Electronic voting systems that have been deployed in real-
world, large-scale public elections place extensive trust in
software and hardware. Unfortunately, instead of being trust-
worthy, many systems are vulnerable to attacks that could
bring election outcomes into disrepute [18], [45], [54], [83]. So
relying solely on trust in voting systems is unwise; verification
of election outcomes is essential.1

Election verifiability enables voters and auditors to establish
the correctness of election outcomes, regardless of whether the
software and hardware of the voting system are trusted [1],
[2], [24], [55], [74]. According to Kremer et al. [61], election
verifiability encompasses three aspects:2

• Individual verifiability: voters can check that their own
ballots are recorded.

• Universal verifiability: anyone can check that the tally of
recorded ballots is computed properly.

• Eligibility verifiability: anyone can check that each tallied
vote was cast by an authorized voter.

In this paper, we propose new definitions of these three
aspects of verifiability in the computational model of cryp-
tography. Because some electronic voting systems outsource
voter authentication to third parties, whereas other voting
systems implement it themselves, we give two variants of our
definitions—one for systems with external authentication and
another for systems with internal authentication.

We employ our definitions to analyze the verifiability of two
well-known election schemes, Helios [5] and JCJ [57]. Helios
is a web-based voting system that has been deployed in the
real-world. JCJ is an election scheme that achieves coercion
resistance and has been implemented as Civitas [28]. The He-
lios 2.0 election scheme is known to have vulnerabilities that

1Doveryai, no proveryai (trust, but verify) says the Russian proverb.
2This decomposition has been criticized [67]; we discuss it in Section VII.

enable attacks on verifiability, and several patches for those
vulnerabilities have been proposed [16], [17], [33], [34]. By
employing those proposed patches, we obtain a scheme called
Helios 4.0 that satisfies our definition of election verifiability
with external authentication. Helios 2.0, as expected, fails to
satisfy our definition. Although a model of Helios 2.0 has been
proved to satisfy a different definition of verifiability [69], that
model uses an abstraction of cryptographic primitives that is
insufficient to detect some vulnerabilities. Our model includes
sufficient detail about cryptographic primitives to detect the
vulnerabilities.

Helios-C [32], a variant of Helios in which ballots are
digitally signed, satisfies our definition of election verifiability
with internal authentication. Although we might expect JCJ to
also satisfy this definition, it does not: a weakening of the
definition is required, because a fully corrupt tallier could
cause unauthorized votes to be tallied in JCJ. Civitas would
require the same weakening.

Our definitions of election verifiability improve upon two
previous definitions [32], [57] by detecting a new class of
collusion attacks, in which the tallying procedure announces
an incorrect tally, and the verification procedure colludes with
the tallying procedure to accept the incorrect tally. Examples
of collusion attacks include ballot stuffing, and announcing
tallies that are independent of the election. Our definitions
also improve upon those previous definitions by detecting a
new class of biasing attacks, in which the verification pro-
cedure rejects some legitimate election outcomes. Examples
of biasing attacks include rejecting outcomes in which a
particular candidate does not win, and rejecting all election
outcomes, even correct outcomes. And our definitions of
election verifiability are more formal than existing work on
global verifiability [66], [67], [69]. Global verifiability is
parameterized on goals, which prior work did not formalize,
as we discuss in Section VII.

This paper thus contributes to the security of electronic
voting systems by
• proposing computational definitions of election verifiabil-

ity,
• proving that well-known election schemes do (or do not)

satisfy election verifiability, and
• identifying collusion and biasing attacks as new classes

of attacks on voting systems and demonstrating that they
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are not detected by two earlier definitions.

Ours are the first proofs that Helios 4.0 and JCJ satisfy a
computational definition of verifiability.

We proceed as follows. Section II defines election ver-
ifiability with external authentication. Section III analyzes
Helios. Section IV defines election verifiability with internal
authentication. Section V analyzes JCJ. Section VI shows
that two previous definitions of election verifiability fail to
detect collusion and biasing attacks. Section VII reviews
related work, and Section VIII concludes. Proofs appear in
the forthcoming technical report.

II. EXTERNAL AUTHENTICATION

Some election schemes do not implement authentication
themselves, but instead rely on an external authentication
mechanism. Helios, for example, supports authentication with
Facebook, Google and Yahoo credentials.3 In essence, the
election scheme outsources ballot authentication. We begin by
defining election verifiability for that model.

A. Election scheme

An election scheme with external authentication, which
henceforth in this section we abbreviate as “election scheme,”
is a tuple (Setup,Vote,Tally,Verify) of probabilistic polyno-
mial-time (PPT) algorithms:

• Setup, denoted4 (PK T ,SK T ,mB ,mC )← Setup(k), is
executed by the tallier, who is responsible for tallying
ballots. Setup takes a security parameter k as input and
outputs a key pair (PK T , SK T ), a maximum number of
ballots mB , and a maximum number of candidates mC .5

• Vote, denoted b ← Vote(PK T , nC , β, k), is executed
by voters. A voter makes a choice of candidate from
a sequence c1, . . . , cnC

of candidates. A well-formed
choice is an integer β, such that 1 ≤ β ≤ nC . Vote takes
as input the public key PK T of the tallier, the number
nC of candidates, the voter’s choice β of candidate, and
security parameter k. It outputs a ballot b, or error symbol
⊥. An error might occur if the candidate choice is not
well-formed or for other reasons particular to the election
scheme.

• Tally, denoted (X, P )← Tally(PK T ,SK T ,BB , nC , k),
is executed by the tallier. It involves a public bulletin

3https://github.com/benadida/helios-server/tree/master/helios auth/auth
systems, accessed 13 June 2014.

4Let Alg(in; r) denote the output of probabilistic algorithm Alg on input
in and random coins r. Let Alg(in) denote Alg(in; r), where r is chosen
uniformly at random. And let ← denote assignment.

5The maximum ballots and candidate numbers are important to formalize
correctness. For instance, Helios requires that the maximum number of ballots
is less than or equal to the size of the underlying encryption scheme’s message
space, and JCJ requires that the maximum number of candidates is less than
or equal to the size of the underlying encryption scheme’s message space.
These maximums may also be useful to algorithms Vote, Tally, and Verify.
However, parameters mB and mC do not need to be explicitly supplied as
input to these algorithms, because they can be included in the public key,
where necessary.

board BB , which we model as a set.6 Tally takes as
input the public key PK T and private key SK T of the
tallier, the bulletin board BB , the number of candidates
nC , and security parameter k. It outputs a tally X and a
non-interactive proof P that the tally is correct. A tally
is a vector X of length nC such that X[j] indicates the
number of votes for candidate cj .7

• Verify, denoted v ← Verify(PK T ,BB , nC ,X, P, k), can
be executed by anyone to audit the election. Verify takes
as input the public key PK T of the tallier, the bulletin
board BB , the number of candidates nC , a tally X, a
proof P of correct tallying, and security parameter k. It
outputs a bit v, which is 1 if the tally successfully verifies
and 0 otherwise. We assume that Verify is deterministic.

Election schemes must satisfy Correctness, which asserts
that the tally produced by Tally corresponds to the choices
input to Vote:

Definition 1 (Correctness). There exists a negligible
function8 µ, such that for all security parameters k, integers
nB and nC , and choices β1, . . . , βnB

∈ {1, . . . , nC}, we have
if Y is a vector of length nC whose components are all 0, then

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);
for 1 ≤ i ≤ nB do

bi ← Vote(PK T , nC , βi, k);
Y[βi]← Y[βi] + 1;

BB ← {b1, . . . , bnB
};

(X, P )← Tally(PK T ,SK T ,BB , nC , k) :
nB ≤ mB ∧ nC ≤ mC ⇒ X = Y] > 1− µ(k).

Note that Correctness honestly runs the Vote and Tally algo-
rithms, and that it does not involve the adversary. Correctness
therefore stipulates that, under ideal conditions, an election
scheme does indeed produce the correct tally. Correctness is
not actually necessary to achieve verifiability: our definitions
of universal verifiability will ensure that, in the presence of
the adversary, Verify detects any errors in the tally. But it is
reasonable to rule out election schemes that simply do not
work properly under ideal conditions.

Election schemes must satisfy Verify Completeness, which
asserts that tallying produces a tally accepted by the verifica-
tion algorithm:

Definition 2 (Verify Completeness). There exists a negligible
function µ, such that for all security parameters k, bulletin

6Bulletin boards have also been modeled as public broadcast channels [35],
[75], [77]. We abstract from the details of channels by employing sets to
represent the data sent on them. We favor sets over multisets, because Cortier
and Smyth [33], [34] demonstrate attacks against privacy when the bulletin
board is modeled as a multiset.

7Let X[i] denote component i of vector X.
8Negligible functions, and other standard cryptographic primitives, are

defined in the forthcoming technical report.
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boards BB , and integers nC , we have

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);

(X, P )← Tally(PK T ,SK T ,BB , nC , k) :

|BB | ≤ mB ∧ nC ≤ mC ⇒
Verify(PK T ,BB , nC ,X, P, k) = 1] > 1− µ(k).

Verify Completeness stipulates that, under ideal conditions,
the tally produced by Tally will actually be accepted by
Verify. It turns out that Verify Completeness is necessary to
achieve verifiability: without Verify Completeness, election
schemes might be vulnerable to biasing attacks, as we show
in Section VI-B.

Election schemes must also satisfy Vote Injectivity, which
asserts that a ballot cannot be interpreted as a vote for more
than one candidate:

Definition 3 (Vote Injectivity). For all security parameters k,
public keys PK T , integers nC , and choices β and β′, such
that β 6= β′, we have

Pr[b← Vote(PK T , nC , β, k);

b′ ← Vote(PK T , nC , β
′, k) :

b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Vote Injectivity ensures that distinct choices are not mapped by
Vote to the same ballot. Without Vote Injectivity, an election
scheme might produce ballots whose meaning is ambiguous.
For example, if b = Vote(PK T , nC , β, k; r) were defined to
be β + r, then ballot b could be tallied as any well-formed
choice β′ such that β′ = b−r′ for some r′. But that definition
of Vote is prohibited by Vote Injectivity. Vote Injectivity thus
helps to ensure that the choices used to construct ballots can
be uniquely tallied.

Limitations: Our model of election schemes is sufficient
to analyze Helios and (after we extend the model to han-
dle internal authentication in IV-A) JCJ. These are notable
schemes, and formally analyzing their verifiability is a novel
contribution. But there are other notable schemes that fall
outside our model:
• Pret à Voter [24], MarkPledge [72], Scantegrity II [23],

and Remotegrity [84] all rely on features implemented
with paper, such as scratch-off surfaces and detachable
columns.

• Everlasting privacy [70], which requires Vote to output
a public ballot and a secret proof, involving temporal
information, to the voter.

• Scytl’s Pnyx.core ODBP 1.0 [27], which requires the
bulletin board to be divided into two parts: a public part
visible to all participants, and a secret part visible only
to election administrators.

We leave extending our model to these kinds of election
schemes as future work.

B. Election verifiability

Election verifiability comprises three aspects: individual,
universal, and eligibility verifiability. We express each as an

experiment, which is an algorithm that outputs 0 or 1. The
adversary wins an experiment by causing it to output 1.

1) Individual verifiability: In our model of election
schemes, all recorded ballots are posted on the bulletin board.
So for a voter to verify that her ballot has been recorded, it
suffices to enable her to uniquely identify her ballot on the
bulletin board.9

Individual verifiability experiment Exp-IV-Ext(Π,A, k),
where Π denotes an election scheme, A denotes the adversary,
and k denotes a security parameter, therefore challenges A to
generate a scenario in which the voter cannot uniquely identify
her ballot:

Exp-IV-Ext(Π,A, k) =

(PK T , nC , β, β
′)← A(k);1

b← Vote(PK T , nC , β, k);2

b′ ← Vote(PK T , nC , β
′, k);3

if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then4

return 15

else6

return 07

Line 1 asks A to compute two candidate choices β and β′,
such that ballots b and b′ for those choices, as computed by
Vote in lines 2 and 3, are equal. Individual verifiability thus
resembles Vote Injectivity (§II-A), but individual verifiability
allows choices to be equal and allows A to choose election
parameters.

In essence, Exp-IV-Ext challenges A to generate a collision
from algorithm Vote.10 If A cannot win, then voters can
uniquely identify their ballots on the bulletin board.

One way to achieve individual verifiability is to base the
election scheme on a probabilistic encryption scheme, such as
El Gamal [40]. Intuitively, if Vote encrypts the choice using
random coins, then it is overwhelmingly unlikely that two
votes will result in the same ballot. Our proofs that Helios
and JCJ satisfy individual verifiability are based on this idea.

Clash attacks: In a clash attack [69], the adversary
convinces n voters that a single ballot belongs to them all.
The adversary is then free to replace n−1 of those ballots on
the bulletin board with ballots of his choice.

Some clash attacks are possible because of vulnerabilities
in the design of Vote. For example, if Vote simply outputs
candidate choice β, then a voter has no way to distinguish her
vote for β from another voter’s vote for β. Exp-IV-Ext detects
clash attacks resulting from vulnerabilities in Vote.

Some clash attacks, however, are possible because the
adversary subverts Vote. For example, the adversary might
replace some hardware or software, or compromise the random
number generator. If any one of these aspects is compromised,
then Vote has effectively been changed to a different algo-

9Section VIII addresses the complementary issue of whether a recorded
ballot corresponds to the candidate choice a voter intended to make.

10Exp-IV-Ext can be equivalently formulated as an experiment that chal-
lenges A to predict the output of Vote. See the forthcoming technical report
for details.
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rithm. Exp-IV-Ext does not detect clash attacks resulting from
this kind of compromise.

In short, a voter can verify that her ballot has been recorded
if and only if she runs the correct Vote algorithm. We make no
guarantees to voters that do not run the correct Vote algorithm.
One way to make stronger guarantees is to audit ballots [10],
[11]. This would require modeling voting as an interactive
protocol with the adversary, rather than as an algorithm. We
leave this extension as future work.

2) Universal verifiability: For an election to be universally
verifiable, anyone must be able to check that a tally is correct
with respect to recorded ballots—that is, the tally represents
the choices used to construct the recorded ballots. Because
anyone can execute Verify, it suffices that Verify accepts only
when that property holds.

Universal verifiability experiment Exp-UV-Ext(Π,A, k)
therefore challenges adversary A to concoct a scenario in
which Verify incorrectly accepts:

Exp-UV-Ext(Π,A, k) =

(PK T ,BB , nC ,X, P )← A(k);1

Y ← correct-tally(PK T ,BB , nC , k);2

if X 6= Y ∧ Verify(PK T ,BB , nC ,X, P, k) = 1 then3

return 14

else5

return 06

In line 1, A is challenged to create a bulletin board BB and
purported tally X of that bulletin board. Line 2 constructs
the correct tally Y of BB , and line 3 checks whether Verify
accepts an incorrect tally.

Let function correct-tally be defined such that for all PK T ,
BB , nC , k, `, and β ∈ {1, . . . , nC},

correct-tally(PK T ,BB , nC , k)[β] = `

⇐⇒ ∃=`b ∈ (BB \ {⊥}) :

∃r : b = Vote(PK T , nC , β, k; r).

That is, component β of vector correct-tally(PK T ,BB ,
nC , k) equals ` iff there exist ` ballots on the bulletin board
that are votes for candidate β.11 The vector produced by
correct-tally must be of length nC . It follows that the output
of correct-tally represents the choices used to construct the
recorded ballots. Of course, correct-tally cannot be computed
by a PPT algorithm for typical cryptographic election schemes.
But that does not matter, because correct-tally is never
actually computed as part of an election scheme—its use is
solely in the definition of Exp-UV-Ext.

If A cannot win Exp-UV-Ext, then the tally of ballots on the
bulletin board is computed properly. In particular, no ballots
could have been omitted from the tally, and at most one
candidate choice could have been included in the tally for

11The definition of correct-tally employs a counting quantifier [78]
denoted ∃=. Predicate (∃=`x : P (x)) holds exactly when there are ` distinct
values for x such that P (x) is satisfied. Variable x is bound by the quantifier,
whereas ` is free.

each ballot. Vote Injectivity ensures that the candidate choice
can be uniquely recovered from the ballot.

Exp-UV-Ext uses correct-tally instead of Tally, so se-
curity analysts must convince themselves that correct-tally
is indeed correct. Because of the function’s simplicity, this
should be straightforward. By comparison, Tally algorithms
tend to be complicated. For example, compare the complexity
of correct-tally to Helios’s Tally algorithm, which appears in
the forthcoming technical report.

By design, Exp-UV-Ext assumes that the ballots on bulletin
board BB are exactly the ballots that should be tallied.
The external authentication mechanism is assumed to prohibit
unauthorized ballots from being posted on BB . Helios makes
such an assumption about its external authentication mecha-
nism.

3) Eligibility verifiability: For an election to satisfy eligi-
bility verifiability, anyone must be able to check that every
tallied vote was cast by an authorized voter—that is, it must
be possible to authenticate ballots. In election schemes with
external authentication, a trusted third party authenticates
ballots. That third party might convince itself that all tallied
ballots have been authenticated, but it cannot convince all other
parties. Eligibility verifiability, therefore, is not achievable in
election schemes with external authentication.

4) Election verifiability: Putting Exp-IV-Ext and
Exp-UV-Ext together, we define election verifiability
with external authentication. Let a PPT adversary’s success
Succ(Exp(·)) in an experiment Exp(·) be the probability that
the adversary wins—that is, Succ(Exp(·)) = Pr[Exp(·) = 1].

Definition 4 (Ver-Ext). An election scheme Π satisfies election
verifiability with external authentication (Ver-Ext) if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function µ, such that for all security parameters k,
we have Succ(Exp-IV-Ext(Π,A, k)) + Succ(Exp-UV-Ext(Π,
A, k)) ≤ µ(k).

An election scheme satisfies individual verifiability if
Succ(Exp-IV-Ext(Π,A, k)) ≤ µ(k), and similarly for univer-
sal verifiability.

Example—Toy scheme from nonces: A toy election
scheme satisfying Ver-Ext can be based on nonces. Each voter
publishes a nonce paired with her choice of candidate to the
bulletin board. This scheme illustrates the essence of election
verifiability, even though it does not offer any privacy.

Definition 5. Election scheme Nonce is defined as follows:
• Setup(k) outputs (⊥,⊥, poly(k),∞).12

• Vote(PK T , nC , β, k) selects a nonce r uniformly at
random from Z2k and outputs (r, β).

• Tally(PK T ,SK T ,BB , nC , k) computes a vector X of
length nC , such that X is a tally of the votes on BB for
which the nonce is in Z2k , and outputs (X,⊥).

• Verify(PK T ,BB , nC ,X, P, k) outputs 1 if (X, P ) =
Tally(⊥,⊥,BB , nC , k) and 0 otherwise.

12We write poly to denote some polynomial function.
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Proposition 1. Nonce satisfies Ver-Ext.

Proof sketch. Nonce satisfies individual verifiability, because
voters can use their nonce to check that their own ballot
appears on the bulletin board. With overwhelming probability,
voters will select unique nonces, hence generate distinct bal-
lots. Nonce also satisfies universal verifiability, because plain-
text candidate choices are posted on the bulletin board.

C. Orthogonality

Exp-IV-Ext and Exp-UV-Ext capture orthogonal security
properties:

• A scheme that satisfies individual verifiability but violates
universal verifiability can be constructed from Nonce by
modifying Verify to always output 1. Voters can still
check that their own ballot appears. But an adversary can
easily win Exp-UV-Ext, because Verify will accept any
tally.

• A scheme that satisfies universal verifiability but violates
individual verifiability can be constructed from Nonce by
removing the nonces, leaving just the voter’s choice in the
ballots. Call that scheme Choice. Anyone can still verify
the tally of the election, but an adversary can easily win
Exp-IV-Ext, because two votes for the same candidate
will collide.

III. CASE STUDY: HELIOS

Helios is an open-source, web-based electronic voting sys-
tem.13 Helios has been deployed in the real-world: the Interna-
tional Association of Cryptologic Research (IACR) has used
Helios annually since 2010 to elect board members [13], [47],
[52], the Catholic University of Louvain used Helios to elect
the university president [5], and Princeton University has used
Helios to elect several student governments [3], [73].

Attacks have been discovered against the original Helios
scheme, and defenses against those attacks have been pro-
posed [16], [17], [33], [34]. For clarity, we write Helios 2.0
to refer to the Helios scheme as originally proposed [5] and
Helios 4.0 to refer to the version of Helios that incorporates
the defenses.14 When referring in general to both of these
schemes, we simply write Helios.

To achieve verifiability while maintaining ballot se-
crecy [15], [17], Helios homomorphically encrypts candidate
choices. During tallying, all encrypted choices are homomor-
phically combined15 into a single ciphertext, which is then
decrypted to reveal the tally. Informally, Helios works as
follows:

13https://vote.heliosvoting.org/
14Our formalization of Helios 4.0 is based on the specification [4] for

the next release. This specification incorporates proposals by Cortier and
Smyth [34] for non-malleable ballots and by Bernhard et al. [17] to replace the
weak Fiat–Shamir transformation with the strong Fiat–Shamir transformation.

15The homomorphic combination of ciphertexts is straightforward for two-
candidate elections [9], [14], [29], [49], [76], since choices (e.g., “yes”
or “no”) can be encoded as 1 or 0. Multi-candidate elections are also
possible [14], [36], [48].

• Setup. The tallier generates a key pair for a homomorphic
encryption scheme and publishes the public key.16

• Voting. A voter encrypts her candidate choice with the
tallier’s public key, and she proves in zero knowledge that
the ciphertext contains a well-formed choice. The voter
posts her ballot (i.e., ciphertext and proof) on the bulletin
board BB . During posting, BB is assumed to correctly
authenticate voters.

• Tallying. The tallier discards any ballots from the bulletin
board for which proofs do not hold. The tallier homomor-
phically combines the ciphertexts in the remaining bal-
lots, decrypts the homomorphic combination, and proves
in zero knowledge that decryption was performed cor-
rectly. Finally, the tallier publishes the winning candidate
and proof of correct decryption.

• Verification. A verifier recomputes the homomorphic
combination and checks all the zero-knowledge proofs.

We give a formal description of Helios 4.0 in the forthcom-
ing technical report.17 Using that formalization, we can prove
that Helios 4.0 is verifiable:

Theorem 1. Helios 4.0 satisfies Ver-Ext.

Proof sketch. Helios 4.0 satisfies individual verifiability, be-
cause the probabilistic encryption scheme ensures that ballots
are unique, with overwhelming probability. And Helios 4.0
satisfies universal verifiability, because the zero-knowledge
proofs can be publicly verified.

A formal proof of Theorem 1 appears in the forthcoming tech-
nical report. The proof assumes the random oracle model [8].

We would not expect Ver-Ext to hold for earlier revisions
of Helios, because they are known to be vulnerable to attacks
against verifiability [17]. Accordingly, we prove that Helios 2.0
does not satisfy Ver-Ext in the forthcoming technical report.

IV. INTERNAL AUTHENTICATION

Some election schemes implement their own authentication
mechanisms. JCJ [55]–[57] and Civitas [28], for example,
authenticate ballots based on credentials issued to voters by
a registration authority. Schemes with this kind of internal
authentication enable verification of whether tallied ballots
were cast by authorized voters.

A. Election scheme

A registrar is responsible for issuing authentication creden-
tials to voters. Each voter is associated with a credential pair
(pk , sk). The voter uses private credential sk to construct
a ballot. Public credential pk is used during tallying and
verification. Let L denote the electoral roll, which is the set
of all public credentials.

An election scheme with internal authentication, which
henceforth in this section we abbreviate as “election scheme,”

16Helios permits the tallier’s role to be distributed amongst several talliers.
For simplicity, we consider only a single tallier in this paper.

17Our formalization is the first cryptographic description of Helios 4.0,
hence an additional contribution of this work.
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is a tuple (Setup,Register,Vote,Tally,Verify) of PPT algo-
rithms. The algorithms are now denoted as follows:

• (PK T ,SK T ,mB ,mC )← Setup(k)
• (pk , sk)← Register(PK T , k)
• b← Vote(sk ,PK T , nC , β, k)
• (X, P )← Tally(PK T ,SK T ,BB , L, nC , k)
• v ← Verify(PK T ,BB , L, nC ,X, P, k)

Setup is unchanged from election schemes with external
authentication (cf. §II-A). The only change to Vote is that it
now accepts private credential sk as input. Similarly, the only
change to Tally and Verify is that they now accept electoral
roll L as input.

Register is executed by the registrar. It takes as input the
public key PK T of the tallier and security parameter k. It
outputs a credential pair (pk , sk). After all voters have been
registered, the registrar certifies the electoral roll, perhaps by
digitally signing and publishing it.18

Election schemes must continue to satisfy Correctness,
Verify Completeness, and Vote Injectivity, which we update
to include private credentials and the electoral roll:

Definition 6 (Correctness). There exists a negligible function
µ, such that for all security parameters k, integers nB
and nC , and choices β1, . . . , βnB

∈ {1, . . . , nC}, we have
if Y is a vector of length nC whose components are all 0, then

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);
for 1 ≤ i ≤ nB do

(pk i, sk i)← Register(PK T , k);
bi ← Vote(sk i,PK T , nC , βi, k);
Y[βi]← Y[βi] + 1;

L← {pk1, . . . , pknB
};

BB ← {b1, . . . , bnB
};

(X, P )← Tally(PK T ,SK T ,BB , L, nC , k) :
nB ≤ mB ∧ nC ≤ mC ⇒ X = Y] > 1− µ(k).

Definition 7 (Verify Completeness). There exists a negligible
function µ, such that for all security parameters k, bulletin
boards BB , and integers nC and nV , we have

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);

L← {pk1, . . . , pknV
};

(X, P )← Tally(PK T ,SK T ,BB , L, nC , k) :

|BB | ≤ mB ∧ nC ≤ mC ⇒
Verify(PK T ,BB , L, nC ,X, P, k) = 1] > 1− µ(k).

Definition 8 (Vote Injectivity). For all security parameters k,
public keys PK T , integers nC and choices β and β′, such

18It might at first seem surprising that Register does not require the
registrar to provide any private keys as input. But in constructions of election
schemes with internal authentication, e.g., [28], [57], the registrar does not
sign credential pairs with its own private key. Rather, the registrar signs the
electoral roll.

that β 6= β′, we have

Pr[(pk , sk)← Register(PK T , k);

(pk ′, sk ′)← Register(PK T , k);

b← Vote(sk ,PK T , nC , β, k);

b′ ← Vote(sk ′,PK T , nC , β
′, k) :

b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

B. Election verifiability

Recall (from §II-B) that election verifiability is expressed
with experiments, and that an adversary wins by causing an
experiment to output 1. We henceforth assume that the adver-
sary is stateful—that is, information persists across invocations
of the adversary in a single experiment. Our experiments in
Section II did not need this assumption, because they never
invoked the adversary more than once.

1) Individual verifiability: The individual verifiability ex-
periment again challenges adversary A to generate a scenario
in which the voter could not uniquely identify her ballot:19

Exp-IV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k)2

L← {pk1, . . . , pknV
};3

Crpt ← ∅;4

(nC , β, β
′, i, j)← AC(L);5

b← Vote(sk i,PK T , nC , β, k);6

b′ ← Vote(sk j ,PK T , nC , β
′, k);7

if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥8

∧ i 6= j ∧ sk i 6∈ Crpt ∧ sk j 6∈ Crpt then
return 19

else10

return 011

The main differences from the corresponding experiment for
external authentication (§II-B1) are that voters are registered in
line 2, and that A is given access to an oracle C in line 5. That
oracle is used to model A corrupting voters and learning their
private credentials. On invocation C(`), where 1 ≤ ` ≤ nV ,
the oracle records that voter ` is corrupted by updating Crpt
to be Crpt ∪ {sk `} and outputs sk `.

In line 5, A must output two candidate choices and two
voter indices, such that ballots computed for those are equal.
Those indices must be legal with respect to nV , but we elide
that detail from the experiment for simplicity. In line 8, A wins
only if the voter indices A output were not corrupted during
the experiment, meaning that those voters never revealed their
private credentials to A.

2) Universal verifiability: The universal verifiability exper-
iment again challenges A to concoct a scenario in which Verify
incorrectly accepts a tally:

19Unlike Exp-IV-Ext, a variant of Exp-IV-Int that challenges A to predict
the output of Vote is strictly stronger. See the forthcoming technical report
for details.
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Exp-UV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k)2

L← {pk1, . . . , pknV
};3

M ← {(pk1, sk1), . . . , (pknV
, sknV

)};4

(BB , nC ,X, P )← A(M);5

Y ← correct-tally(PK T ,BB ,M, nC , k);6

if X 6= Y ∧ Verify(PK T ,BB , L, nC ,X, P, k) = 1 then7

return 18

else9

return 010

The main differences from the corresponding experiment for
external authentication (§II-B2) are that voters are registered
in line 2, and their credential pairs are used in the rest of the
experiment.

Function correct-tally is now modified to tally only autho-
rized ballots. A ballot is authorized if it is constructed with a
private credential from M , and that private credential was not
used to construct any other ballot on BB . By comparison, the
original correct-tally function (§II-B2) tallies all the ballots
on BB .

Formally, let function correct-tally now be defined such
that for all PK T , BB , M , nC , k, `, and β ∈ {1, . . . , nC},

correct-tally(PK T ,BB ,M, nC , k)[β] = `

⇐⇒ ∃=`b ∈ authorized(PK T , (BB \ {⊥}),M, nC , k) :

∃sk , r : b = Vote(sk ,PK T , nC , β, k; r).

And let authorized be defined as follows:

authorized(PK T ,BB ,M, nC , k) =

{b : b ∈ BB

∧ ∃pk , sk , β, r : b = Vote(sk ,PK T , nC , β, k; r)

∧ (pk , sk) ∈M ∧ ¬∃b′, β′, r′ : b′ ∈ (BB \ {b})
∧ b′ = Vote(sk ,PK T , nC , β

′, k; r′)}.

Function authorized discards all revotes—that is, if there is
more than one ballot submitted with a private credential sk ,
then all ballots submitted under that credential are discarded.
Therefore, election schemes that permit revoting cannot by
analyzed with this definition of authorized . But alternative
definitions of authorized are possible—for example, if ballots
were timestamped, authorized could discard all but the most
recent ballot submitted under a particular credential.

3) Eligibility verifiability: Recall (from §II-B3) that for
an election scheme to satisfy eligibility verifiability, anyone
must be able to check that every tallied vote was cast by an
authorized voter—that is, it must be possible to authenticate
ballots. Because voters are issued credential pairs that can
be used to authenticate ballots, it suffices to ensure that
knowledge of a private credential is necessary to construct
an authentic ballot.

The eligibility verifiability experiment therefore challenges
A to produce a ballot under a private credential that A does
not know:

Exp-EV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);2

L← {pk1, . . . , pknV
};3

Crpt ← ∅; Rvld ← ∅;4

(nC , β, i, b)← AC,R(L);5

if ∃r : b = Vote(sk i,PK T , nC , β, k; r) ∧ b 6=⊥6

∧ b 6∈ Rvld ∧ ski 6∈ Crpt then
return 17

else8

return 09

In line 1, A chooses the tallier’s public key and the number of
voters. Line 2 registers voters. A is not permitted to influence
registration while it is in progress.20 In particular, A is not
permitted to choose credential pairs, because by doing so A
could trivially win the experiment.

Line 4 initializes two sets: Crpt is a set of voters who
have been corrupted, meaning that A has learned their private
credential, and Rvld is a set of ballots that have been revealed
to A. The former set is useful to track, because A might coerce
some voters into revealing their private credentials. The latter
set is useful to track, because A will naturally learn some
ballots by observing them on the bulletin board.

Line 5 challenges A to produce a ballot b with the help
of two oracles. Oracle C is the same oracle as in Exp-IV-Int
(cf. §IV-B1); it leaks the private credentials of corrupted voters
to A. Oracle R reveals ballots. On invocation R(i, β, nC),
where 1 ≤ i ≤ nV , oracle R does the following:

1) Computes a ballot b that represents a vote for candidate
β by a voter with private credential sk i, that is, b ←
Vote(sk i,PK T , nC , β, k).

2) Records b as being revealed by updating Rvld to be
Rvld ∪ {b}.

3) Outputs b.
In line 6, A wins if the ballot it produced is the output

of Vote for a voter that A did not corrupt, and if that ballot
was not revealed. If A cannot succeed in this experiment, then
knowledge of a private credential is necessary to construct a
ballot, hence only authorized votes are tallied.

4) Election verifiability: With Exp-IV-Int, Exp-UV-Int, and
Exp-EV-Int, we define election verifiability with internal au-
thentication.

Definition 9 (Ver-Int). An election scheme Π satisfies election
verifiability with internal authentication (Ver-Int) if for all
probabilistic polynomial-time adversaries A, there exists a
negligible function µ, such that for all security parameters
k, we have

Succ(Exp-IV-Int(Π,A, k))

+ Succ(Exp-UV-Int(Π,A, k))

+ Succ(Exp-EV-Int(Π,A, k)) ≤ µ(k).

20Küsters and Truderung [65] explore some consequences of permitting
adversarial influence during registration.
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An election scheme satisfies eligibility verifiability if
Succ(Exp-EV-Ext(Π,A, k)) ≤ µ(k), and similarly for indi-
vidual and universal verifiability.

Example—Toy scheme from digital signatures: A toy
election scheme satisfying Ver-Int can be based on a digital
signature scheme (Gen,Sign,Verify). Each voter publishes her
signed candidate choice on the bulletin board.

Definition 10. Election scheme Sig is defined as follows:
• Setup(k) outputs (⊥,⊥, poly(k),∞).
• Register(PK T , k) computes (pk , sk) ← Gen(1k) and

outputs (pk , sk).
• Vote(sk ,PK T , nC , β, k) outputs (β,Sign(sk , β)).
• Tally(PK T ,SK T ,BB , L, nC , k) computes a vector X

of length nC , such that X is a tally of all the ballots
on BB that are signed by distinct private keys whose
corresponding public keys appear in L, and outputs
(X,⊥).

• Verify(PK T ,BB , L, nC ,X, P, k) outputs 1 if (X, P ) =
Tally(⊥,⊥,BB , L, nC ,⊥) and 0 otherwise.

The verifiability of Sig follows from the security of the
underlying signature scheme.

Proposition 2. If (Gen,Sign,Verify) is a signature scheme
satisfying existential unforgeablility under adaptive chosen-
message attack, then Sig satisfies Ver-Int.

Proof sketch. Sig satisfies individual verifiability, because vot-
ers can verify that their signed choices appear on the bulletin
board. Sig satisfies universal verifiability, because signed plain-
text choices are posted on BB . Finally, Sig satisfies eligibility
verifiability, because anyone can check that the signed choices
belong to registered voters.

Example—Helios-C: Helios-C [32] is a variant of Helios
for two candidate elections in which ballots are digitally
signed.21 Informally, Helios-C works as follows:
• Setup. As in Section III.
• Registration. To register a voter, the registrar generates a

key pair for a signature scheme and sends the private key
to the voter. After all voters are registered, the registrar
publishes electoral roll L.

• Voting. A voter generates a ciphertext and proof as in
Section III, signs the ciphertext and proof with her private
key, and posts the ciphertext, proof, and signature on the
bulletin board.

• Tallying. The tallier discards all ballots on the bulletin
board that are not signed by distinct private keys whose
corresponding public keys appear in L. The remaining
ciphertexts and proofs are processed as in Section III.

• Verification. A verifier first discards ballots that are not
properly signed, then continues as in Section III.

Helios-C satisfies Ver-Int: individual and universal verifia-
bility follow from Theorem 1, and eligibility verifiability is
satisfied because anyone can check that the signed choices

21https://github.com/glondu/helios-server

Line IV UV EV Scheme
1 7 7 7 AlwaysVerify(IgnoreCreds(Choice))
2 7 7 3 —
3 7 3 7 IgnoreCreds(Choice)
4 7 3 3 —
5 3 7 7 AlwaysVerify(IgnoreCreds(Nonce))
6 3 7 3 AlwaysVerify(Sig)
7 3 3 7 Malleable Sig
8 3 3 3 Sig

TABLE I
ELECTION SCHEMES THAT SATISFY EACH COMBINATION OF INDIVIDUAL,

UNIVERSAL AND ELIGIBILITY VERIFIABILITY

belong to registered voters, as in Proposition 2. We omit a
formal proof.

C. Orthogonality

If an election scheme satisfies eligibility verifiability, then
no one can construct a ballot that appears to be associated
with public credential pk unless they know private credential
sk . That means that a voter can uniquely identify her ballot,
because no one else knows her private credential. Eligibility
verifiability therefore implies individual verifiability.

Theorem 2. If an election scheme Π satisfies eligibility
verifiability, then Π also satisfies individual verifiability.

The proof of Theorem 2 appears in the forthcoming technical
report.

Otherwise, Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int capture
orthogonal security properties, as shown in Table I. In that
table, AlwaysVerify(·) is a function that transforms an election
scheme by compromising Verify to always return 1. Thus,
AlwaysVerify(Π) is guaranteed not to satisfy Exp-UV-Int.
Similarly, IgnoreCreds(·) is a function that accepts as input
an election scheme with external authentication and returns
as output an election scheme with internal authentication.
The resulting scheme, however, simply ignores credentials
altogether: Register returns (⊥,⊥), Vote ignores sk , and Tally
and Verify ignore L. Thus, IgnoreCreds(Π) is guaranteed
not to satisfy Exp-EV-Int. Using those functions, we briefly
explain each line of the table:

1) Recall (from §II-C) that Choice is the election scheme in
which ballots contain only the plaintext candidate choice.
That scheme satisfies Exp-UV-Ext but not Exp-IV-Ext.
By compromising Verify, we obtain a scheme that satis-
fies no properties.

2) By Theorem 2, this situation is impossible.
3) Compared to line 1 of Table I, this scheme also satisfies

Exp-UV-Int, because Verify is not compromised.
4) By Theorem 2, this situation is impossible.
5) Recall (from §II-B4) that Nonce is the election scheme

in which ballots contain a nonce and a plaintext can-
didate choice. That scheme satisfies Exp-IV-Ext and
Exp-UV-Ext. Moreover, IgnoreCreds(Nonce) satisfies
Exp-IV-Int and Exp-UV-Int. By compromising Verify, we
obtain a scheme that satisfies only Exp-IV-Int.
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6) Sig satisfies all three properties. By compromising Verify,
we obtain a scheme that satisfies only Exp-IV-Int and
Exp-EV-Int.

7) By making Sig’s underlying signature scheme mal-
leable,22 we could obtain a scheme that does not satisfy
Exp-EV-Int, because the adversary could construct a valid
ballot out of a revealed ballot. But the scheme would
continue to satisfy Exp-IV-Int and Exp-UV-Int.

8) Sig satisfies all three properties.

V. CASE STUDY: JCJ AND CIVITAS

JCJ [55]–[57] (named for its designers, Juels, Catalano, and
Jakobsson) is a coercion-resistant election scheme, meaning
voters cannot prove whether or how they voted, even if
they can interact with the adversary while voting. Coercion
resistance protects elections from improper influence by ad-
versaries.

To achieve verifiability and coercion resistance, JCJ uses
verifiable mixnets, which anonymize a set of messages.23

During tallying, all encrypted choices are anonymized by a
mixnet, then all choices are decrypted. The tally is computed
from the decrypted choices. Informally, JCJ works as follows:
• Setup. The tallier generates a key pair (PK T ,SK T ) for

an encryption scheme and publishes the public key.
• Registration. To register a voter, the registrar generates

a nonce, which is sent to the voter and serves as the
private credential.24 The public credential is computed
as an encryption of the private credential with PK T .
After all voters are registered, the registrar publishes the
electoral roll.

• Voting. A voter encrypts her candidate choice with PK T .
She also encrypts her private credential with PK T . She
proves in zero-knowledge that she simultaneously knows
both plaintexts, and that her choice is well-formed. The
voter posts her ballot (i.e., both ciphertexts and the proof)
on the bulletin board.

• Tallying. The tallier discards any ballots from the bulletin
board for which the zero-knowledge proofs do not verify.
All unauthorized ballots are then discarded through a
combination of protocols that includes verifiable mixnets
and plaintext equivalence tests (PETs) [53]. PETs enable
proof that two ciphertexts contain the same plaintext
without revealing that plaintext. The tallier decrypts and
publishes the remaining ballots, along with a proof that
decryption was performed correctly.

• Verification. A verifier checks all the proofs included in
ballots, and all the proofs published during tallying.

The forthcoming technical report gives a formal description
of JCJ. That formalization satisfies individual and universal

22Given a message m and signature σ, a malleable signature scheme
permits computation of a signature σ′ on a related message m′ [20]. The
malleable signature scheme Sig used in line 7 of Table I would need to
enable an adversary to transform a signature on a well-formed candidate β
into a signature on a distinct, well-formed candidate β′.

23Chaum [21] introduced mixnets. Adida [1] surveys verifiable mixnets.
24JCJ permits the registrar’s role to be distributed among several registrars.

For simplicity, we consider only a single registrar in this paper.

verifiability, assuming that the cryptographic primitives satisfy
certain properties that we identify. But the formalization fails
to satisfy eligibility verifiability, because knowledge of the
tallier’s private key SK T suffices to construct ballots that
appear authentic: with SK T , any public credential can be
decrypted to discover the corresponding private credential.
Note that Exp-EV-Int permits an adversary A to choose the
tallier’s key pair, so A does know SK T hence can construct
a ballot that suffices to win Exp-EV-Int.

We can nonetheless prove that JCJ satisfies a weaker variant
of eligibility verifiability. Consider the following experiment,
which does not permit the adversary to choose the tallier’s key
pair:

Exp-EV-Int-Weak(Π,A, k) =

(PK T ,SK T ,mB ,mC )← Setup(k);1

nV ← A(PK T , k);2

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k)3

L← {pk1, . . . , pknV
};4

Crpt ← ∅; Rvld ← ∅;5

(nC , β, i, b)← AC,R(L);6

if ∃r : b = Vote(sk i,PK T , nC , β, k; r) ∧ b 6=⊥7

∧ b 6∈ Rvld ∧ ski 6∈ Crpt then
return 18

else9

return 010

Line 1 of Exp-EV-Int has been refactored into lines 1 and 2
of Exp-EV-Int-Weak. In line 1 of Exp-EV-Int-Weak, keys are
generated by the experiment. In line 2, A is given the public
key but not the private key.

Using Exp-EV-Int-Weak, we define a weaker variant of
Ver-Int and prove that JCJ satisfies it:

Definition 11 (Ver-Int-Weak). An election scheme Π sat-
isfies weak election verifiability with internal authentication
(Ver-Int-Weak) if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function µ, such that for all
security parameters k, we have

Succ(Exp-IV-Int(Π,A, k))

+ Succ(Exp-UV-Int(Π,A, k))

+ Succ(Exp-EV-Int-Weak(Π,A, k)) ≤ µ(k).

Theorem 3. JCJ satisfies Ver-Int-Weak.

Proof sketch. JCJ satisfies individual verifiability, because
the probabilistic encryption scheme ensures that ballots are
unique, with overwhelming probability. JCJ satisfies universal
verifiability, because the proofs produced throughout tallying
can be publicly verified. And JCJ satisfies eligibility verifiabil-
ity, because A cannot construct new ballots without knowing
a voter’s private credential or the tallier’s private key.

A formal proof of Theorem 3 appears in the forthcoming tech-
nical report. The proof assumes the random oracle model [8].

The Civitas scheme refines the JCJ scheme. The refinements
relevant to election verifiability are (i) an implementation
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of a distributed registration protocol, (ii) a mixnet based on
randomized partial checking (RPC), and (iii) usage of some
different zero-knowledge proofs than JCJ. We leave a proof
that the full Civitas scheme satisfies Ver-Int as future work.25

VI. NEW CLASSES OF ATTACK

Our definitions of election verifiability improve upon exist-
ing definitions by detecting two previously unidentified classes
of attack:
• Collusion attacks. An election scheme’s tallying and

verification procedures might collude to accept incorrect
tallies.

• Biasing attacks. An election scheme’s verification proce-
dure might reject some legitimate tallies.

Although an honestly-designed election scheme would hope-
fully not exhibit these vulnerabilities, it is the job of veri-
fiability definitions to detect malicious schemes, regardless
of whether vulnerabilities are due to malice or slips. So
definitions of election verifiability should preclude collusion
and biasing attacks.

A. Collusion Attacks

Here are two examples of potential collusion attacks:
• Ballot stuffing. Tally behaves normally, but adds κ votes

for candidate β. Verify subtracts κ votes from β, then
proceeds with verification as normal. Elections thus verify
as normal, except that candidate β receives extra votes.

• Backdoor tally replacement. Tally and Verify behave
normally, unless a backdoor value is posted on the
bulletin board BB . For example, if (SK T ,X

∗) appears
on BB , then Tally and Verify both ignore the correct
tally and instead replace it with tally X∗. Value SK T is
the backdoor here; it cannot appear on BB (except with
negligible probability) unless the tallier is malicious.

Ballot stuffing is detected by our definitions of correctness
(§II-A and §IV-A), because these definitions require that the
tally produced by Tally corresponds to the choices encapsu-
lated in ballots on the bulletin board. Backdoor tally replace-
ment is detected by our definitions of universal verifiability
(§II-B2 and §IV-B2), because those definitions require Verify
to accept only those tallies that correspond to a correct tally
of the bulletin board.

Prior definitions of election verifiability [32], [57] do not
rule out collusion attacks. We show, next, that the definition
of election verifiability by Juels et al. [57] fails to detect ballot
stuffing and backdoor tally replacement, and that the definition
by Cortier et al. [32] fails to detect backdoor tally replacement.

Juels et al. [57] formalize definitions that we name JCJ-
correctness and JCJ-verifiability. We restate those definitions
in the forthcoming technical report. JCJ-correctness is meant
to capture that “A cannot pre-empt, alter, or cancel the votes of

25In that proof, it would be necessary to assume the RPC construction satis-
fies the definition of mixnets given in the forthcoming technical report. Work
by Khazaei and Wikström [58] suggests that actually proving satisfaction is
unlikely to be possible. Alternatively, the mixnet could be replaced by one
based on zero-knowledge proofs [42], [71].

honest voters [and] that A cannot cause voters to cast ballots
resulting in double voting” [57, p. 45]. JCJ-verifiability is “the
ability for any player to check whether the tally. . . has been
correctly computed” [57, p. 46].

To show that the JCJ definitions fail to detect collusion
attacks, we first formalize the ballot stuffing attack. An
election scheme Π = (. . . ,Tally,Verify) can be modified
to derive a ballot-stuffing election scheme Stuff(Π, β, κ) =
(. . . ,TallyS ,VerifyS), which adds κ votes to β, as follows:26

• TallyS(. . .) computes (X, P ) ← Tally(. . .) and outputs
(Add(X, β, κ), P ), and

• VerifyS(. . . ,X, P, . . .) computes v ← Verify(. . . , Add(
X, β,−κ), P, . . .) and outputs v,

where Add(X, β, κ) = (X[1], . . . ,X[β − 1],X[β] + κ,X[β +
1], . . . ,X[|X|]).27

Proposition 3. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability, and integers β and κ, it
holds that Stuff(Π, β, κ) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in the forthcoming technical report.
Second, we formalize the backdoor tally replacement attack.

An election scheme Π = (. . . ,Tally,Verify) can be modified
to derive an election scheme Backdoor(Π) = (. . . ,TallyB ,
VerifyB), as follows:
• TallyB(. . . ,SK T ,BB , . . .) checks whether there exists a

unique X∗ such that (SK T ,X
∗) ∈ BB . If so, TallyB

outputs (X∗,⊥). Otherwise, TallyB computes

(X, P )← Tally(. . . ,SK T ,BB , . . .)

and outputs (X, P ).
• VerifyB(PK T , . . . ,BB , . . . ,X, P, . . .) checks whether

there exists a unique X∗ such that (SK T ,X
∗) ∈ BB .28

If so, VerifyB outputs 1. Otherwise, VerifyB computes

v ← Verify(PK T , . . . ,BB , . . . ,X, P, . . .)

and outputs v.

Proposition 4. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability that does not leak the tal-
lier’s private key, it holds that Backdoor(Π) satisfies JCJ-
correctness and JCJ-verifiability.

A formal proof appears in the forthcoming technical report,
where we also formally define key leakage.

Cortier et al. [32] propose definitions similar to JCJ-
verifiability and insist that election schemes must satisfy their
notions of correctness and partial tallying. Ballot stuffing
is detected by their correctness property, but backdoor tally
replacement is not. The ideas remain the same, so we omit
formalized results. We have reported these findings to the
original authors [30], [43], [44].

26We omit many of the parameters of Tally and Verify here for simplicity;
see the forthcoming technical report for details.

27Let |X| denote the length of vector X.
28VerifyB also needs to check that SKT is the private key corresponding

to PKT . We omit formalizing this detail, but note that it is straightforward
for real-world encryption schemes such as El Gamal and RSA.
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B. Biasing attacks

Here are three formalizations of biasing attacks, derived
from an election scheme Π = (. . . ,Verify).
• Reject All. Let Reject(Π) be (. . . ,VerifyR), where

VerifyR always outputs 0. VerifyR therefore always re-
jects, hence no election can ever be considered valid.

• Selective Reject. Let ε be a distinguished value. Let
Selective(Π, ε) be (. . . ,VerifyR), where VerifyR(. . . ,
BB , . . .) computes

v ← Verify(. . . ,BB , . . .)

and outputs 1 if both v = 1 and ε 6∈ BB . Otherwise,
VerifyR outputs 0. VerifyR therefore rejects if ε appears
on the bulletin board, hence some elections can be
invalidated.

• Biased Reject. Suppose Z is a set of tallies. Let
Bias(Π, Z) be (. . . ,VerifyR), where VerifyR(. . . ,X, . . .)
computes

v ← Verify(. . . ,X, . . .)

and outputs 1 if both v = 1 and X ∈ Z. Otherwise,
VerifyR outputs 0. VerifyR therefore only accepts a subset
of the tallies accepted by Verify, hence biases tallies
toward Z.

These formalizations do not satisfy our definitions of Verify
Completeness (§II-A and §IV-A), hence, our definitions of
verifiability detect these biasing attacks.

The definition of verifiability by Juels et al. [57] fails to
detect all three of the above attacks, because that definition
has no notion of Verify Completeness. For example, it is
vulnerable to Biased Reject attacks:

Proposition 5. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability, and given a multiset Z,
it holds that Bias(Π, Z) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in the forthcoming technical report.
The definition of verifiability by Cortier et al. [32] detects

Biased Reject and Reject All attacks, but fails to detect
Selective Reject attacks, because that definition’s notion of
Verify Completeness does not quantify over all bulletin boards.
Again, the ideas remain the same, so we omit formalized
results. We have reported these findings to the original au-
thors [30], [43], [44].29

VII. RELATED WORK

Kiayias [59] presents an overview of security properties
for election schemes. Many election schemes in the literature
state properties called correctness, accuracy, or (universal)
verifiability without formally defining those terms.

In the computational model, Juels et al. [55]–[57] and
Cortier et al. [32] give game-based definitions of verifiability.
As we have shown, those definitions fail to detect biasing and

29We reported problems with the peer-reviewed definitions [32] in [44] and
problems with an earlier definition [31] in [30], [43].

collusion attacks (cf. §VI). Definitions of universal verifiability
(which is just one aspect of election verifiability) in the
computational model seem to originate with Benaloh and
Tuinstra [12], who define a correctness property that says
every participant is convinced that the tally is accurate with
respect to the votes cast, and with Cohen and Fischer [29], who
define verifiability to mean that there exists a check function
that returns good iff the announced tally of the election
corresponds to the cast votes.

Also in the computational model, Groth [46], and Moran
and Naor [70], state definitions of verifiability in terms of
universal composability [19]. These definitions involve defin-
ing an ideal functionality; part of that is similar to our
correct-tally function. Groth’s definition does not guaran-
tee universal verifiability [46, p. 2], but Moran and Naor’s
does [70, p. 386].

In the symbolic model, Smyth et al. [82] define the first
definition of election verifiability. This definition is amenable
to automated reasoning, but is stronger than necessary and
cannot be satisfied by many election schemes, including Helios
and Civitas. Kremer et al. [61] overcome this limitation with
a weaker definition that sacrifices amenability to automated
reasoning, and Smyth [79, §3] extends this definition. Dreier
et al. have adapted election verifiability to auction [39] and
examination [38] systems.

Also in the symbolic model, Kremer and Ryan [60] and
Backes et al. [7] formalize definitions of eligibility. For both
definitions, if a voting protocol satisfies the definition, then
only ballots cast by authorized voters will be tallied. These
definitions are not intended to provide assurances if the
election authorities are dishonest. For example, the definition
of Kremer and Ryan does not detect whether corrupt election
authorities insert votes [60, §5.2]. Likewise, the definition of
Backes et al. assumes that election authorities are honest [7,
§3].

Our definition of election verifiability follows Smyth et
al. [61], [79], [82] by deconstructing it into individual, uni-
versal, and eligibility verifiability. Other deconstructions of
election verifiability are possible. For example, Adida and Neff
[6, §2] identify four aspects of verifiability:
• Cast as intended: the ballot is cast at the polling station

as the voter intended.
• Recorded as cast: cast ballots are preserved with integrity

through the ballot collection process.
• Counted as recorded: recorded ballots are counted cor-

rectly.
• Eligible voter verification: only eligible voters can cast a

ballot in the first place.
Those definitions are not mathematical, so we cannot attempt
a precise comparison. Nonetheless, eligibility verifiability and
eligible voter verification seem to be addressing similar con-
cerns. Likewise, individual and universal verifiability together
seem to be addressing concerns similar to that of recorded
as cast and counted as recorded together. Recorded as cast,
in our work, reduces to the bulletin board preserving ballots
with integrity—a property that we have assumed, because
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cryptographic election schemes assume it, too. Peters [75] and
Sandler and Wallach [77] propose ways to construct secure
bulletin boards. We postpone a discussion of cast as intended
to Section VIII.

Privacy properties [37], [57], [67], [68], [80], [81]—such
as ballot secrecy, receipt freeness, and coercion resistance—
complement verifiability. Chevallier-Mames et al. [25], [26]
and Hosp and Vora [50], [51] show an incompatibility result:
election schemes cannot unconditionally satisfy privacy and
universal verifiability. But weaker versions of these properties
can hold simultaneously, as can be witnessed from Theorems 1
and 3 coupled with existing privacy results such as the
ballot secrecy proofs for Helios 4.0 [17, Theorem 3], [15,
Theorem 6.12], and the coercion resistance proof for JCJ [57,
§5].

Comparison with global verifiability: Küsters et al. [66],
[67], [69] present a definition of global verifiability that can
be used with any kind of protocol, not just electronic voting
protocols. To analyze the verifiability of a protocol, users of
this definition must themselves formalize goals, which are
properties required to hold in every run of the protocol. For
example, a goal γ` is presented in a case study [67, §5.2] of
global verifiability applied to voting:

γ` contains all runs for which there exist choices
of the dishonest voters (where a choice is either to
abstain or to vote for one of the candidates) such that
the result obtained together with the choices made by
the honest voters in this run differs only by ` votes
from the published result (i.e. the result that can be
computed from the simple ballots on the bulletin
board).

Another goal γ is presented in a case study [69, §6.2] of
Helios:

γ is satisfied in a run if the published result exactly
reflects the actual votes of the honest voters in this
run and votes of dishonest voters are distributed in
some way on the candidates, possibly in a different
way than how the dishonest voters actually voted.

These informal statements of goals are appealing, but they do
not constitute rigorous mathematical definitions.30 In our own
work, we found that formal definitions were quite tricky to get
right—for example, which ballots should be counted, how to
count them, and how to determine whether that count differed
from the published tally. So one contribution of our own work
is to give a fully formal definition of election verifiability.

In their analysis of Helios, Küsters et al. [69] use goal
γ to conclude that Helios 2.0 satisfies global verifiability.
Yet Bernhard et al. [17] demonstrate an attack against the
verifiability of Helios 2.0, and in the forthcoming technical
report we show that Helios 2.0 does not satisfy Ver-Ext. This
seeming discrepancy arises because the model in [69] does
not formalize all the cryptographic primitives used by Helios,

30We shared [63] and discussed [64] our results with Küsters. In response,
Küsters et al. propose a formalization of goals [62, §5.2]. We will consider
this formalization in future work.

hence the attack goes unnoticed. So another contribution of
our own work is to correctly distinguish between unverifiable
and verifiable variants of Helios by rigorously analyzing the
cryptography used in Helios.

It is natural to ask whether election verifiability can be
expressed in terms of global verifiability. We believe it can be.
For instance, individual, universal and eligibility verifiability
could be expressed, in the informal style of the goals quoted
above, as the following goals:
• γIV is satisfied in a run if voters can uniquely identify

their ballots on the bulletin board in this run.
• γUV is satisfied in a run if the correct tally of votes cast

by authorized voters in this run is the same as the tally
produced by algorithm Tally.

• γEV is satisfied in a run if every ballot tallied in this
run was created by a voter in possession of a private
credential.

We leave formalization of these goals as future work.
In the other direction, it is also natural to ask how global

verifiability of γ` or γ would compare with election verifia-
bility. Answering this question seems to require formalizing
those goals. It would likely be possible to refine the informal
statements of the goals into formal statements that are weaker,
stronger, or even incomparable to our formal definition of
election verifiability.

Küsters et al. [67] argue that deconstructing verifiability
into individual and universal verifiability is insufficient to
detect certain attacks involving ill-formed ballots. But those
attacks leave open the possibility that there do exist notions of
individual and universal verifiability that would be sufficient.
Indeed, our own definition of universal verifiability rules out
attacks based on ill-formed ballots, because correct-tally
ensures that tallied ballots are well-formed.

VIII. CONCLUDING REMARKS

When we began this work, we were studying the Juels et
al. definition of election verifiability [57]. We soon discovered
that the definition fails to detect biasing and collusion attacks.
While attempting to improve the Juels et al. definition to
rule out those attacks, we discovered that factoring it into
individual, universal, and eligibility verifiability led to an
elegant decomposition of (mostly) orthogonal properties. We
later sought to apply our new definitions to existing electronic
voting systems, and Helios [5] and Civitas [28] were natural
choices. But they treat authentication differently—Helios out-
sources authentication, whereas Civitas does not—so we were
led to separate our definitions into variants for external and
internal authentication. We were at first surprised to discover
that JCJ, hence Civitas, does not satisfy the strong definition of
eligibility verifiability. But upon reflection, it became apparent
that an adversary who knows the tallier’s private key can
easily forge ballots that appear to be from eligible voters.
Helios-C [32], however, avoids this problem by employing
digital signatures.

Our definitions of verifiability have not addressed the issue
of voter intent—that is, whether the ballot constructed by the
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Vote algorithm corresponds to the candidate choice that a voter
intended to make. Adida and Neff call this property “cast as
intended” [6]. Many election schemes (e.g., [41], [49], [57])
do not satisfy cast as intended, because the schemes assume
that voters construct ballots on trusted platforms. Nevertheless,
schemes by Chaum [22], Neff [72], and Benaloh [10], [11]
use cryptographic mechanisms to verify voter intent. It would
be natural to explore strengthening our definitions to address
voter intent.

The goal of this research is to enable verifiability of the
voting systems we use in real-life, rather than merely trusting
them. Research on verifiability can generalize beyond voting
to other systems that must guarantee strong forms of integrity.
Verifiable voting systems thus have the potential to contribute
to the science of security, to democracy, and to broader society.
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