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Abstract—Election verifiability is defined in the computational
model of cryptography. The definition formalizes notions of voters
verifying their own votes, auditors verifying the tally of votes,
and auditors verifying that only eligible voters vote. The Helios
(Adida et al., 2009), Helios-C (Cortier et al., 2014) and JCJ (Juels
et al., 2010) election schemes are analyzed using the definition.
Neither Helios nor Helios-C satisfy the definition because they do
not ensure that recorded ballots are tallied in certain cases when
the adversary posts malicious material on the bulletin board. A
variant of Helios is proposed and shown to satisfy the definition.
JCJ similarly does not ensure that recorded ballots are tallied in
certain cases. Moreover, JCJ does not ensure that only eligible
voters vote, due to a trust assumption it makes. A variant of
JCJ is proposed and shown to satisfy a weakened definition
that incorporates the trust assumption. Previous definitions of
verifiability (Juels et al., 2010; Cortier et al., 2014; Kiayias et
al., 2015) and definitions of global verifiability (Küsters et al.,
2010; Cortier et al., 2016) are shown to permit election schemes
vulnerable to attacks, whereas the new definition prohibits those
schemes. And a relationship between the new definition and a
variant of global verifiability is shown.

I. INTRODUCTION

Electronic voting systems that have been deployed in real-
world, large-scale public elections place extensive trust in soft-
ware and hardware. Unfortunately, instead of being trustwor-
thy, many systems are vulnerable to attacks that could bring
election outcomes into disrepute [29], [30], [84], [142]. So
relying solely on trust in voting systems is unwise; verification
of election outcomes is essential.1

Election verifiability enables voters and auditors to ascertain
the correctness of election outcomes, regardless of whether
the software and hardware of the voting system are trustwor-
thy [1], [2], [39], [85], [111]. Kremer et al. [94] decompose
election verifiability into three aspects:
• Individual verifiability: voters can check that their own

ballots are recorded.
• Universal verifiability: anyone can check that the tally of

recorded ballots is computed properly.
• Eligibility verifiability: anyone can check that each tallied

vote was cast by an authorized voter.

We propose new definitions of these three aspects of ver-
ifiability in the computational model of cryptography. We
show that individual and universal verifiability are orthogonal,
and that eligibility verifiability implies individual verifiability.
Because some electronic voting systems implement voter
authentication themselves, whereas other systems outsource
voter authentication to third parties, we develop two variants of
our definitions—one for systems with internal authentication
and another for systems with external authentication.

We employ our definitions to analyze the verifiability of two
well-known election schemes, JCJ [87] and Helios [5]. JCJ
is an election scheme that achieves coercion resistance and
has been implemented as Civitas [43]; it implements its own
internal authentication. Helios is a web-based voting system
that has been deployed in the real-world and outsources au-
thentication. We also analyze the verifiability of Helios-C [47],
a variant of Helios that implements internal authentication by
digitally signing ballots.

The first implementation of Helios, namely Helios 2.0, and
the current release, namely Helios 3.1.4, are known to have
vulnerabilities that can be exploited to violate ballot secrecy
and verifiability [23], [32], [52], [53], and the next Helios
release [4], henceforth Helios’12, is intended to mitigate
against those vulnerabilities. Our analysis shows that the
mitigations are insufficient to ensure verifiability. In particular,
an adversary could record a ballot that causes a voter’s ballot
to be omitted from tallying. A variant of Helios, henceforth
Helios’16, is proposed, and shown to satisfy our definition of
election verifiability with external authentication. Helios 2.0,
Helios 3.1.4 and Helios’12 fail to satisfy our definition.

Our analysis of Helios-C reveals that an adversary could
record an ill-formed ballot that causes tallying to abort in
a manner that anyone will accept. Yet, our definition of
universal verifiability demands that accepted outcomes include
the choices used to construct any well-formed ballots. Hence,
each voter can be assured that their choice contributed to

1. Doveryai, no proveryai (trust, but verify) says the Russian proverb.
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the outcome. By comparison, Helios-C does not assure this,
because ill-formed ballots cause tallying to abort and that abort
will be accepted. Thus, Helios-C does not satisfy our defini-
tion of universal verifiability. Nevertheless, a straightforward
variant of Helios-C that disregards ill-formed ballots should
satisfy our definition.

Our analysis of JCJ reveals that an adversary could cause
the acceptance of tallies which exclude authorized ballots in
favour of unauthorized ballots. Yet, our definition of universal
verifiability demands that accepted outcomes include only
the choices cast by authorized voters. Thus, JCJ does not
satisfy our definition of universal verifiability. The JCJ election
scheme does not satisfy our definition of eligibility verifiability
either, because an adversary who learns the tallier’s private
key could cast unauthorized votes. We introduce a weakened
definition of eligibility verifiability, incorporating JCJ’s trust
assumption that the private key is not known to the adversary,
and show that variants of JCJ, henceforth JCJ’16, satisfy
our weakened definition of election verifiability with internal
authentication.

Küsters et al. [97], [98], [100], [101] propose an alternative,
holistic notion of verifiability called global verifiability, which
must be instantiated with a goal. We undertake a formal
comparison of election verifiability and global verifiability,
when instantiated with a goal proposed by the aforementioned
authors and a goal by Cortier et al. [49]. We found that
Helios’16 does not satisfy global verifiability with those goals.
Nonetheless, we were able to show that Helios’16 satisfies a
slightly weaker goal. And, moreover, election verifiability is
strictly stronger than global verifiability with that goal.

Our definitions of election verifiability improve upon two
previous definitions [47], [87] by detecting a new class of
collusion attacks, in which the tallying algorithm announces
an incorrect tally, and the verification algorithm colludes with
the tallying algorithm to accept the incorrect tally. Examples
of collusion attacks include vote stuffing, and announcing
tallies that are independent of the election. Our definitions
also improve upon those previous definitions and a further
definition [91] by detecting a new class of biasing attacks,
in which the verification algorithm rejects some legitimate
election outcomes. Examples of biasing attacks include reject-
ing outcomes in which a particular candidate does not win,
and rejecting all election outcomes, even correct outcomes.
Moreover, our definitions improve upon global verifiability
instantiated with goals by Küsters et al. [101] and Cortier et
al. [49] by detecting a new class of revelation attacks, in which
the verification algorithm accepts incorrect outcomes when
coins used to construct some ballots are leaked. Examples of
revelation attacks include announcing tallies that exclude or
replace some votes.

This paper thus contributes to the security of electronic
voting systems by:
• proposing definitions of election verifiability in the com-

putational model;
• showing that individual, universal, and eligibility verifia-

bility are mostly orthogonal properties of voting systems;

• proving that Helios 2.0, Helios 3.1.4, Helios’12, Helios-C
and JCJ do not satisfy election verifiability, and that
Helios’16 and JCJ’16 do;

• formally comparing election and global verifiability; and
• identifying new classes of attacks on voting systems and

demonstrating that they are not detected by earlier works.

Our definitions are sufficient to analyze Helios, Helios-C,
and JCJ. They correctly identify Helios 2.0, Helios 3.1.4,
Helios’12, Helios-C and JCJ as not satisfying verifiability. And
they enable the first proofs that Helios’16 and JCJ’16 satisfy a
definition of verifiability in the computational model. Although
some protocols may fall outside the scope of our definitions,
they are sufficiently general to be useful.

Structure: Section II defines election verifiability with ex-
ternal authentication. Section III analyzes Helios. Section IV
defines election verifiability with internal authentication. Sec-
tion V analyzes Helios-C. Section VI analyzes JCJ. Sec-
tion VII presents a comparison between election and global
verifiability. Section VIII introduces collusion, biasing and rev-
elation attacks. Section IX reviews related work and Section X
concludes. Appendix A defines cryptographic primitives. The
remaining appendices explore alternative definitions of verifi-
ability, give the details of Helios and JCJ, and present proofs.

II. EXTERNAL AUTHENTICATION

Some election schemes do not implement authentication
themselves, but instead rely on an external authentication
mechanism. Helios, for example, supports authentication with
Facebook, Google and Twitter credentials.2 In essence, the
election scheme outsources ballot authentication. We begin by
defining election verifiability for that model.

A. Election scheme syntax

We define syntax for an election scheme with external
authentication, which henceforth in this section we abbreviate
as “election scheme.”3

Definition 1 (Election scheme with external authentication).
An election scheme with external authentication is a tuple
(Setup,Vote,Tally,Verify) of probabilistic polynomial-time
(PPT) algorithms:

• Setup, denoted4 (PK T ,SK T ,mB ,mC ) ← Setup(k), is
executed by the tallier, who is responsible for tallying
ballots.5 Setup takes a security parameter k as input and

2. https://github.com/benadida/helios-server/tree/master/helios auth/auth
systems, accessed 4 Aug 2015.

3. We focus on modeling first-past-the-post voting systems. Smyth shows
the syntax is sufficiently versatile to capture ranked-choice voting systems
too [125].

4. Let Alg(in; r) denote the output of probabilistic algorithm Alg on input
in and coins r. Let Alg(in) denote Alg(in; r), where r is chosen uniformly at
random (from the coin space of algorithm Alg). And let← denote assignment.

5. Some election schemes (e.g., Helios, Helios-C, and JCJ) permit the
tallier’s role to be distributed amongst several talliers. For simplicity, we
consider only a single tallier in this paper.
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outputs a key pair (PK T , SK T ), a maximum number of
ballots mB , and a maximum number of candidates mC .6

• Vote, denoted b ← Vote(PK T , nC , β, k), is executed
by voters. A voter makes a choice of candidate from
a sequence c1, . . . , cnC

of candidates. A well-formed
choice is an integer β, such that 1 ≤ β ≤ nC . Vote takes
as input the public key PK T of the tallier, the number
nC of candidates, the voter’s choice β of candidate,
and security parameter k. It outputs a ballot b, or error
symbol ⊥. An error might occur if the candidate choice
is not well-formed or for other reasons particular to the
election scheme.

• Tally, denoted (X, P ) ← Tally(SK T ,BB , nC , k), is
executed by the tallier. It involves a public bulletin board
BB , which we model as a set.7 Tally takes as input the
private key SK T of the tallier, the bulletin board BB , the
number of candidates nC , and security parameter k. It
outputs a tally X and a non-interactive proof P that the
tally is correct. A tally is a vector X of length nC such
that X[j] indicates the number of votes for candidate cj .8

• Verify, denoted v ← Verify(PK T ,BB , nC ,X, P, k), can
be executed by anyone to audit the election. Verify takes
as input the public key PK T of the tallier, the bulletin
board BB , the number of candidates nC , a tally X, a
proof P of correct tallying, and security parameter k. It
outputs a bit v, which is 1 if the tally successfully verifies
and 0 otherwise. We assume that Verify is deterministic.

Election schemes must satisfy Correctness: there exists a
negligible function µ, such that for all security parameters k,
integers nB and nC , and choices β1, . . . , βnB

∈ {1, . . . , nC},
it holds that if Y is a vector of length nC whose components
are all 0, then

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);
for 1 ≤ i ≤ nB do

bi ← Vote(PK T , nC , βi, k);
Y[βi]← Y[βi] + 1;

BB ← {b1, . . . , bnB
};

(X, P )← Tally(SK T ,BB , nC , k) :
nB ≤ mB ∧ nC ≤ mC ⇒ X = Y] > 1− µ(k).

Correctness asserts that tallies produced by Tally correspond
to the choices input to Vote. Note that Correctness does not in-
volve an adversary. Correctness therefore stipulates that, under
ideal conditions, an election scheme does indeed produce the
correct tally. Correctness is not actually necessary to achieve
verifiability: our definition of universal verifiability will ensure
that, in the presence of an adversary, Verify detects any errors
in the tally. But it is reasonable to rule out election schemes
that simply do not work properly under ideal conditions.

Limitations: Our model of election schemes is sufficient
to analyze Helios and, after we extend the model to handle
internal authentication in Section IV-A, Helios-C and JCJ.
These are notable schemes, and formally analyzing their
verifiability is a valuable contribution. But there are other

notable schemes that fall outside our model:
• Prêt à Voter [39], MarkPledge [107], Scantegrity II [36],

and Remotegrity [143] all rely on features implemented
with paper, such as scratch-off surfaces and detachable
columns.

• Everlasting privacy [105], which requires Vote to output
a public ballot and a secret proof, involving temporal
information, to the voter.

• Scytl’s Pnyx.core ODBP 1.0 [42], which requires the
bulletin board to be divided into two parts: a public part
visible to all participants, and a secret part visible only
to election administrators.

Distributed tallying also falls outside our model. We leave ex-
tension of our model to other election schemes and distributed
tallying as future work.

B. Election verifiability

Election verifiability comprises three aspects: individual,
universal, and eligibility verifiability. We express each as an
experiment, which is an algorithm that outputs 0 or 1. The
adversary wins an experiment by causing it to output 1.

1) Individual verifiability: In our model of election
schemes, all recorded ballots are posted on the bulletin board.
So for a voter to verify that their ballot has been recorded, it
suffices to enable them to uniquely identify their ballot on the
bulletin board.9

Individual verifiability experiment Exp-IV-Ext(Π,A, k),
where Π denotes an election scheme, A denotes the adversary,
and k denotes a security parameter, therefore challenges A to
generate a scenario in which the voter cannot uniquely identify
their ballot. In essence, Exp-IV-Ext challenges A to generate
a collision from Vote.10 If A cannot win, then voters can
uniquely identify their ballots on the bulletin board:

Exp-IV-Ext(Π,A, k) =

(PK T , nC , β, β
′)← A(k);1

b← Vote(PK T , nC , β, k);2

b′ ← Vote(PK T , nC , β
′, k);3

if b = b′ ∧ b 6= ⊥ ∧ b′ 6= ⊥ then4

return 15

else6

return 07

6. The maximum ballots and candidate numbers are used to formalize
Correctness. Helios requires that the maximum number of ballots is less than
or equal to the size of the underlying encryption scheme’s message space, and
JCJ requires that the maximum number of candidates is less than or equal to
the size of the underlying encryption scheme’s message space.

7. Bulletin boards have also been modeled as public broadcast chan-
nels [56], [113], [118]. We abstract from the details of channels by employing
sets to represent the data sent on them. We favor sets over multisets, because
Cortier and Smyth [52], [53] demonstrate attacks against privacy when the
bulletin board is modeled as a multiset.

8. Let X[i] denote component i of vector X.
9. Section X addresses the complementary issue of whether a recorded

ballot corresponds to the candidate choice a voter intended to make.
10. Exp-IV-Ext can be equivalently formulated as an experiment that chal-

lenges A to predict the output of Vote. See Appendix B for details.
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Line 1 asks A to compute two candidate choices β and β′,
such that ballots b and b′ for those choices, as computed by
Vote in lines 2 and 3, are equal.

One way to achieve individual verifiability is to base the
election scheme on a probabilistic encryption scheme, such as
El Gamal [65]. Intuitively, if Vote encrypts the choice using
coins chosen uniformly at random, then it is overwhelmingly
unlikely that two votes will result in the same ballot. Our
proofs that Helios, Helios-C and JCJ satisfy individual verifi-
ability are based on this idea.

Clash attacks: In a clash attack [100], the adversary
convinces some voters that a single ballot belongs to all of
them. Some clash attacks are possible because of vulnerabili-
ties in the design of Vote. For example, if Vote simply outputs
candidate choice β, then a voter has no way to distinguish their
vote for β from another voter’s vote for β. Exp-IV-Ext detects
clash attacks resulting from vulnerabilities in Vote.

Some clash attacks, however, are possible because the
adversary subverts the implementation of Vote. For example,
the adversary might replace some hardware or software, or
compromise the random number generator. If any one of
these aspects is compromised, then Vote has effectively been
changed to a different algorithm Vote′. The conclusions drawn
by a security analyst who uses our definition of individual ver-
ifiability to analyze Vote would not necessarily be applicable
to Vote′.

In short, a voter can verify that their ballot has been recorded
if and only if they run the correct Vote algorithm. We make
no guarantees to voters that do not run the correct Vote
algorithm. One way to make stronger guarantees is to use cut-
and-choose protocols to audit ballots [15], [16]. This would
require modeling voting as an interactive protocol with the
adversary, rather than as an algorithm. We leave this extension
as future work.

2) Universal verifiability: For an election to be universally
verifiable, anyone must be able to check that a tally is correct
with respect to recorded ballots—that is, the tally represents
the choices used to construct the recorded ballots. Because
anyone can execute Verify, it suffices that Verify accepts if
and only if that property holds.

Universal verifiability experiment Exp-UV-Ext(Π,A, k)
therefore challenges adversary A to concoct a scenario in
which Verify incorrectly accepts, thereby capturing the only
if requirement:

Exp-UV-Ext(Π,A, k) =

(PK T ,BB , nC ,X, P )← A(k);1

Y ← correct-tally(PK T ,BB , nC , k);2

if X 6= Y ∧ Verify(PK T ,BB , nC ,X, P, k) = 1 then3

return 14

else5

return 06

In line 1, A is challenged to create a bulletin board BB and
purported tally X of that bulletin board. Line 2 constructs the
correct tally Y of BB (using function correct-tally , which

we define below), and line 3 checks whether Verify accepts
an incorrect tally. If A cannot win Exp-UV-Ext, then Verify
will not accept incorrect tallies. In particular, no ballots can
be omitted from the tally, and at most one candidate choice
can be included in the tally for each ballot.

Let function correct-tally be defined such that for all PK T ,
BB , nC , k, `, and β ∈ {1, . . . , nC},

correct-tally(PK T ,BB , nC , k)[β] = `

⇐⇒ ∃=`b ∈ (BB \ {⊥}) :

∃r : b = Vote(PK T , nC , β, k; r).

The vector produced by correct-tally must be of length
nC . Component β of vector correct-tally(PK T ,BB , nC , k)
equals ` iff there exist11 ` ballots on the bulletin board
that are votes for candidate β. It follows that the output
of correct-tally represents the choices used to construct the
recorded ballots. Of course, correct-tally cannot be computed
by a PPT algorithm for typical cryptographic election schemes.
But that does not matter, because correct-tally is never
actually computed as part of an election scheme—its use is
solely in the definition of Exp-UV-Ext.12

Function correct-tally requires that ballots can only be
interpreted for one candidate, which can be ensured by In-
jectivity:

Definition 2 (Injectivity). An election scheme (Setup,Vote,
Tally,Verify) satisfies Injectivity, if for all security parameters
k, public keys PK T , integers nC , and choices β and β′, such
that β 6= β′, we have

Pr[b← Vote(PK T , nC , β, k);

b′ ← Vote(PK T , nC , β
′, k) :

b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Injectivity ensures that distinct choices are not mapped by
Vote to the same ballot.13 Without Injectivity, an election
scheme might produce ballots whose meaning is ambiguous.
For example, if Vote(PK T , nC , β, k; r) were defined to be
β + r, then a ballot b could be tallied as any well-formed
choice β′ such that β′ = b−r′ for some r′. But that definition
of Vote is prohibited by Injectivity. Thus, Injectivity helps
to ensure that the choices used to construct ballots can be
uniquely tallied.

Security analysts must convince themselves that
correct-tally is indeed correct. Because of the function’s
simplicity, this should be relatively straightforward. By
comparison, Tally algorithms for real voting schemes tend
to be complicated. For example, compare the complexity of

11. The definition of correct-tally employs a counting quantifier [122]
denoted ∃=. Predicate (∃=`x : P (x)) holds exactly when there are ` distinct
values for x such that P (x) is satisfied. Variable x is bound by the quantifier,
whereas ` is free.
12. Kiayias et al. [91] use a similar super-polynomial vote extractor to

recover choices from ballots in an experiment defining verifiability.
13. Individual verifiability resembles Injectivity, but individual verifiability

allows choices to be equal and allows adversary A to choose election
parameters.
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correct-tally to Helios’s Tally algorithm, which appears in
Definition 24 of Appendix C.

By design, Exp-UV-Ext assumes the ballots on bulletin
board BB are exactly the ballots that should be tallied.
The external authentication mechanism is assumed to prohibit
unauthorized ballots from being posted on BB . Helios makes
such an assumption about its external authentication mecha-
nism.

Election schemes must also satisfy Completeness, which
stipulates that tallies produced by Tally will actually be
accepted by Verify, capturing the if requirement:

Definition 3 (Completeness). An election scheme (Setup,
Vote,Tally,Verify) satisfies Completeness, if for all PPT ad-
versaries A, there exists a negligible function µ, such that for
all security parameters k, it holds that

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);

(BB , nC)← A(PK T , k);

(X, P )← Tally(SK T ,BB , nC , k) :

|BB | ≤ mB ∧ nC ≤ mC ⇒
Verify(PK T ,BB , nC ,X, P, k) = 1] > 1− µ(k).

Without Completeness, election schemes might be vulnerable
to biasing attacks, as we show in Section VIII-B.

3) Eligibility verifiability: For an election to satisfy eligi-
bility verifiability, anyone must be able to check that every
tallied vote was cast by an authorized voter—hence, it must
be possible to authenticate ballots. In election schemes with
external authentication, a trusted third party authenticates
ballots. That third party might convince itself that all tallied
ballots have been authenticated, but it cannot convince all other
parties. Eligibility verifiability, therefore, is not achievable in
election schemes with external authentication.

4) Election verifiability: With Exp-IV-Ext and
Exp-UV-Ext, we define election verifiability with external
authentication. Let a PPT adversary’s success Succ(Exp(·))
in an experiment Exp(·) be the probability that the adversary
wins—that is, Succ(Exp(·)) = Pr[b← Exp(·) : b = 1].

Definition 4 (Ver-Ext). An election scheme Π satisfies election
verifiability with external authentication (Ver-Ext) if Com-
pleteness and Injectivity are satisfied and for all PPT adver-
saries A, there exists a negligible function µ, such that for
all security parameters k, it holds that Succ(Exp-IV-Ext(Π,
A, k)) + Succ(Exp-UV-Ext(Π,A, k)) ≤ µ(k).

An election scheme satisfies individual verifiability if
Succ(Exp-IV-Ext(Π,A, k)) ≤ µ(k). And universal verifiabil-
ity is satisfied if the election scheme satisfies Completeness
and Injectivity, and Succ(Exp-UV-Ext(Π,A, k)) ≤ µ(k).

C. Example—Toy scheme from nonces

A toy election scheme satisfying Ver-Ext can be based on
nonces. Each voter publishes a nonce paired with their choice
of candidate to the bulletin board. This scheme illustrates the
essence of election verifiability, even though it does not offer
any privacy.

Definition 5. Election scheme Nonce is defined as follows:
• Setup(k) outputs (⊥,⊥, p1(k), p2(k)), where p1 and p2

may be any polynomial functions.
• Vote(PK T , nC , β, k) selects a nonce r uniformly at

random from Z2k and outputs (r, β).
• Tally(SK T ,BB , nC , k) computes a vector X of length
nC , such that X is a tally of the votes on BB for which
the nonce is in Z2k , and outputs (X,⊥).

• Verify(PK T ,BB , nC ,X, P, k) outputs 1 if (X, P ) =
Tally(⊥,BB , nC , k), and 0 otherwise.

Proposition 1. Nonce satisfies Ver-Ext.

Proof sketch. Nonce satisfies individual verifiability, because
voters can use their nonce to check that their own ballot
appears on the bulletin board. With overwhelming probability,
Vote will select unique nonces for each voter, hence generate
distinct ballots. Nonce also satisfies universal verifiability,
because plaintext candidate choices are posted on the bulletin
board.

D. Orthogonality

Exp-IV-Ext and Exp-UV-Ext capture orthogonal security
properties. A scheme that satisfies individual verifiability but
violates universal verifiability can be constructed from Nonce
by modifying Verify to always output 1. Voters can still check
that their own ballot appears. But an adversary can easily win
Exp-UV-Ext, because Verify will accept any tally. A scheme
that satisfies universal verifiability but violates individual
verifiability can be constructed from Nonce by removing the
nonces, leaving just the voter’s choice in the ballots. Call
that scheme Choice. Anyone can still verify the tally of the
election, but an adversary can easily win Exp-IV-Ext, because
two votes for the same candidate will collide.

III. CASE STUDY: HELIOS

Helios [5], [112] is an open-source, web-based electronic
voting system,14 which has been deployed in the real-world.
The International Association of Cryptologic Research (IACR)
has used Helios annually since 2010 to elect board mem-
bers [18], [76], the ACM used Helios in an ACM general
election [140], the Catholic University of Louvain used Helios
to elect the university president [5], and Princeton University
has used Helios to elect several student governments [3], [109].

Helios is intended to satisfy verifiability whilst maintain-
ing ballot secrecy—i.e., without revealing voters’ votes. For
ballot secrecy, voters encrypt candidate choices using a ho-
momorphic encryption scheme, these encrypted choices are
homomorphically combined, and the tallier decrypts the ho-
momorphic combination to reveal the tally.15 For verifiability,
encryption and decryption steps are accompanied by zero-
knowledge proofs.

14. https://vote.heliosvoting.org/, accessed 16 Nov 2015.
15. Homomorphic combination of ciphertexts is straightforward for two-

candidate elections [14], [19], [44], [79], [117], since choices (e.g., “yes”
or “no”) can be encoded as 1 or 0. Multi-candidate elections are also
possible [19], [59], [78].
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Informally, Helios works as follows:
• Setup. The tallier generates a key pair for a homomorphic

encryption scheme and publishes the public key.
• Voting. A voter encrypts their candidate choice with

the tallier’s public key, and proves in zero-knowledge
that the ciphertext contains a well-formed choice. The
voter posts their ballot (i.e., ciphertext and proof) on the
bulletin board. (The bulletin board is assumed to correctly
authenticate voters during posting.)

• Tallying. The tallier discards any ballots from the bulletin
board for which proofs do not hold. The tallier homomor-
phically combines the ciphertexts in the remaining bal-
lots, decrypts the homomorphic combination, and proves
in zero-knowledge that decryption was performed cor-
rectly. Finally, the tallier publishes the winning candidate
and proof of correct decryption.

• Verification. A verifier recomputes the homomorphic
combination and checks all the zero-knowledge proofs.

Helios was first implemented as Helios 2.0.16,17

Chang-Fong & Essex [32] have shown that Helios 2.0 does
not satisfy universal verifiability. Thus, we would not expect
Ver-Ext to hold for Helios 2.0. Indeed, we formalize a generic
construction for Helios-like election schemes (Appendix C),
which we use to derive a formal description of Helios 2.0
(Appendix D). And using that description, we can prove that
Helios 2.0 is not verifiable:

Proposition 2. Helios 2.0 does not satisfy Ver-Ext.

Proof sketch. Our proof formalizes the attack by Chang-Fong
& Essex in the context of our Completeness definition.

A proof of Proposition 2 appears in Appendix D. Vulnerabil-
ities can be attributed Helios 2.0 not checking the suitability
of cryptographic parameters nor checking that all elements of
ballots are constructed using the correct parameters, and the
current version of Helios (Helios 3.1.4) is intended to miti-
gate against those vulnerabilities by performing the necessary
checks.18

Bernhard et al. [23] have shown that Helios 3.1.4 does
not satisfy universal verifiability. Thus, we would not expect
Ver-Ext to hold for Helios 3.1.4 either. Indeed, we use our
generic construction to derive a formal description of Helios
3.1.4 (Appendix E). And using that description, we can prove
that Helios 3.1.4 is not verifiable:

Proposition 3. Helios 3.1.4 does not satisfy Ver-Ext.

Proof sketch. Our proof formalizes the attack by Bernhard et
al. in the context of our universal verifiability experiment.

A proof of Proposition 3 appears in Appendix E. Bernhard et
al. attribute vulnerabilities to application of the Fiat–Shamir
transformation without inclusion of statements in hashes (i.e.,
the weak Fiat–Shamir transformation), and including state-
ments in hashes (i.e., applying the Fiat–Shamir transformation)
is postulated as a defense.

Beyond verifiability, Helios 3.1.4 has been shown not to
satisfy ballot secrecy,19 due to tallying meaningfully related

ballots,20 and omitting such ballots from the tally (i.e., ballot
weeding) is postulated as a defense [21], [22], [52], [53],
[124], [131], [132], [134]. The next Helios release (Helios’12)
is intended to mitigate against vulnerabilities. In particular, the
specification [4] incorporates the Fiat–Shamir transformation
(rather than the weak Fiat–Shamir transformation). And there
are plans to incorporate ballot weeding.21,22 Although ballot
weeding can be sufficient for ballot secrecy (cf. [131, §6]
& [126]), we have found that it violates universal verifiability.
In particular, an adversary can observe a voter’s ballot and
cast a related ballot (for a candidate other than the voter’s
choice), such that the voter’s ballot is omitted from tallying.
(This could be achieved, for example, by manipulating the
bulletin board to ensure that the adversary’s ballot is processed
before the voter’s ballot, since this causes the voter’s ballot to
be weeded.) Our definition of universal verifiability requires
all ballots on the bulletin board to be tallied, thus it is violated
by ballot weeding. It follows that Helios’12 does not satisfy
Ver-Ext, because that scheme relies upon ballot weeding to
defend against ballot secrecy violations.

Remark 4. Helios’12 does not satisfy Ver-Ext.

Proof sketch. Helios’12 uses ballot weeding, which violates
universal verifiability, as described above.

An informal proof of Remark 4 follows immediately from our
discourse. A formal proof would require a formal description
of Helios’12. Such a formal description can be derived as
a straightforward variant of Helios 3.1.4 that applies the
Fiat–Shamir transformation (rather than the weak Fiat–Shamir
transformation) and uses ballot weeding. These details provide
little value, so we do not pursue them further.

To ensure universal verifiability, we propose variants of
Helios’12. Our variants defend against ballot secrecy vio-

16. https://github.com/benadida/helios/releases/tag/2.0, released 25 Jul 2009,
accessed 16 Nov 2015.
17. Helios 2.0 builds upon Adida’s Helios 1.0 [2]. But, the two systems are

rather different. In particular, the Helios 2.0 tallier homomorphically combines
encrypted choices and decrypts the homomorphic combination to reveal the
tally, whereas the Helios 1.0 tallier mixes encrypted choices and decrypts the
ciphertexts output by the mix. Adida has not released an implementation of
Helios 1.0. Tsoukalas et al. [141] released Zeus as a fork of Helios 2.0 spliced
with mixnet code to derive an implementation (https://github.com/grnet/zeus,
accessed 15 Sep 2017) and Yingtong Li released helios-server-mixnet as
an extension of Zeus with threshold asymmetric encryption and some other
minor changes (https://github.com/RunasSudo/helios-server-mixnet, accessed
15 Sep 2017). Smyth shows that those implementations do not satisfy universal
verifiability and proves that a variant does [128].
18. Cf. https://github.com/benadida/helios-server/pull/133, accessed 14 Dec

2016.
19. Eligibility is not satisfied either [104], [137], [138].
20. Meaningfully related ballots can be constructed because Helios ballots

are malleable.
21. Cf. https://github.com/benadida/helios-server/issues/8 and https://github.

com/benadida/helios-server/issues/35, accessed 9 Aug 2016.
22. Ballot weeding mechanisms have been proposed, e.g., [21], [22], [25],

[52], [53], [124], [131], [134], but the specification for Helios’12 does not
yet define a particular mechanism. One candidate mechanism would omit any
ballot containing a previously observed hash from the tallying procedure.

6

https://github.com/benadida/helios/releases/tag/2.0
https://github.com/grnet/zeus
https://github.com/RunasSudo/helios-server-mixnet
https://github.com/benadida/helios-server/pull/133
https://github.com/benadida/helios-server/issues/8
https://github.com/benadida/helios-server/issues/35
https://github.com/benadida/helios-server/issues/35


lations by incorporating proposals by Smyth et al. [135],
[136] and Smyth [126] for non-malleable ballots, rather than
proposals for ballot weeding. We formalize those variants as a
set (Helios’16) of election schemes (Appendix F). Using that
formalization, we can prove that Helios’16 is verifiable:23

Theorem 5. Helios’16 satisfies Ver-Ext.

Proof sketch. Helios’16 satisfies individual verifiability, be-
cause the probabilistic encryption scheme ensures that ballots
are unique, with overwhelming probability. And Helios’16
satisfies universal verifiability, because the zero-knowledge
proofs can be publicly verified.

A formal proof of Theorem 5 appears in Appendix F. The
proof assumes the random oracle model [11]. This proof,
coupled with the proof of ballot secrecy by Smyth [126],
provides strong motivation for future Helios releases being
based upon Helios’16, since it is the only variant of Helios
which is known be secure.

IV. INTERNAL AUTHENTICATION

Some election schemes implement their own authentication
mechanisms. JCJ [85]–[87] and Civitas [43], for example,
authenticate ballots based on credentials issued to voters by
a registration authority. Schemes with this kind of internal
authentication enable verification of whether tallied ballots
were cast by authorized voters.

A. Election scheme syntax

A registrar is responsible for issuing authentication creden-
tials to voters.24 Each voter is associated with a credential pair
(pk , sk). The voter uses private credential sk to construct
a ballot. Public credential pk is used during tallying and
verification. Let L denote the electoral roll, which is the set
of all public credentials.

We revise our syntax to capture an election scheme with
internal authentication, which henceforth in this section we
abbreviate as “election scheme.”

Definition 6 (Election scheme with internal authentication).
An election scheme with internal authentication is a tuple
(Setup,Register,Vote,Tally,Verify) of PPT algorithms:

• (PK T ,SK T ,mB ,mC )← Setup(k)
• (pk , sk)← Register(PK T , k)
• b← Vote(sk ,PK T , nC , β, k)
• (X, P )← Tally(SK T ,BB , L, nC , k)
• v ← Verify(PK T ,BB , L, nC ,X, P, k)

Election schemes must satisfy Correctness: there exists a
negligible function µ, such that for all security parameters k,
integers nB and nC , and choices β1, . . . , βnB

∈ {1, . . . , nC},
it holds that if Y is a vector of length nC whose components
are all 0, then

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);
for 1 ≤ i ≤ nB do

(pk i, sk i)← Register(PK T , k);
bi ← Vote(sk i,PK T , nC , βi, k);
Y[βi]← Y[βi] + 1;

L← {pk1, . . . , pknB
};

BB ← {b1, . . . , bnB
};

(X, P )← Tally(SK T ,BB , L, nC , k) :
nB ≤ mB ∧ nC ≤ mC ⇒ X = Y] > 1− µ(k).

Setup is unchanged from election schemes with external
authentication (cf. §II-A). The only change to Vote is that it
now accepts private credential sk as input. Similarly, the only
change to Tally and Verify is that they now accept electoral
roll L as input. Register is executed by the registrar. It takes as
input the public key PK T of the tallier and security parameter
k, and it outputs a credential pair (pk , sk). After all voters
have been registered, the registrar certifies the electoral roll,
perhaps by digitally signing and publishing it.25

B. Election verifiability

Secure construction of electoral rolls is not a topic that
electronic voting systems usually address—though it seems an
important part of any real-world deployment. Indeed, voting
systems typically assume the registrar is honest. In our ex-
periments, below, we model an adversary who cannot corrupt
the registration process that issues credentials to voters. Hence
our definitions will not detect attacks against verifiabilities that
result solely from weaknesses in the registration process.26

Recall (from §II-B) that election verifiability is expressed
with experiments, and that an adversary wins by causing an
experiment to output 1. We henceforth assume that the adver-
sary is stateful—that is, information persists across invocations
of the adversary in a single experiment. Our experiments in
Section II did not need this assumption, because they never
invoked the adversary more than once.

1) Individual verifiability: The individual verifiability ex-
periment again challenges adversary A to generate a scenario
in which the voter could not uniquely identify their ballot:27

23. A set of election schemes satisfies Ver-Ext, if every scheme in the set
satisfies Ver-Ext.
24. Some election schemes (e.g., Helios-C and JCJ) permit the registrar’s

role to be distributed among several registrars. For simplicity, we consider
only a single registrar in this paper.
25. It might seem surprising that Register does not require the registrar to

provide any private keys as input. But in constructions of election schemes
with internal authentication, e.g., [43], [87], the registrar does not sign
credential pairs with its own private key. Rather, the registrar signs the
electoral roll.
26. Küsters and Truderung [96] explore some consequences of permitting

adversarial influence during registration.
27. Unlike Exp-IV-Ext, a variant of Exp-IV-Int that challenges A to predict

the output of Vote is strictly stronger. See Appendix B for details.
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Exp-IV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);2

L← {pk1, . . . , pknV
};3

Crpt ← ∅;4

(nC , β, β
′, i, j)← AC(L);5

b← Vote(sk i,PK T , nC , β, k);6

b′ ← Vote(sk j ,PK T , nC , β
′, k);7

if8

b = b′∧b 6= ⊥∧b′ 6= ⊥∧ i 6= j∧sk i 6∈ Crpt ∧sk j 6∈ Crpt
then

return 19

else10

return 011

The main differences from the corresponding experiment for
external authentication (§II-B1) are that voters are registered in
line 2, and that A is given access to an oracle C in line 5. The
oracle is used to model A corrupting voters and learning their
private credentials: on invocation C(`), where 1 ≤ ` ≤ nV ,
the oracle records that voter ` is corrupted by updating Crpt
to be Crpt∪{sk `} and outputs sk `. In line 5, the voter indices
output by A must be legal with respect to nV , but we elide
that detail from the experiment for simplicity. Line 8 ensures
that A cannot trivially win by corrupting voters.

2) Universal verifiability: The universal verifiability exper-
iment again challenges A to concoct a scenario in which Verify
incorrectly accepts:

Exp-UV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);2

L← {pk1, . . . , pknV
};3

M ← {(pk1, sk1), . . . , (pknV
, sknV

)};4

(BB , nC ,X, P )← A(M);5

Y ← correct-tally(PK T ,BB ,M, nC , k);6

if X 6= Y ∧ Verify(PK T ,BB , L, nC ,X, P, k) = 1 then7

return 18

else9

return 010

The main differences from the corresponding experiment for
external authentication (§II-B2) are that voters are registered
in line 2, and their credential pairs are used in the rest of the
experiment.

The tally of recorded ballots should contain at most one vote
per voter. Hence, election schemes must handle revotes—i.e.,
multiple ballots submitted by the same voter. Election schemes
with external authentication implicitly handle revoting, by
assuming a third party ensures that the recorded ballots contain
at most one ballot per voter. Election schemes with internal
authentication must explicitly handle revoting by tallying only
authorized ballots. A ballot is authorized if it is constructed
with a private credential from M , and that private credential
was not used to construct any other ballot on BB .28,29

Function correct-tally is now modified to tally only autho-

rized ballots: let function correct-tally now be defined such
that for all PK T , BB , M , nC , k, `, and β ∈ {1, . . . , nC},

correct-tally(PK T ,BB ,M, nC , k)[β] = `

⇐⇒ ∃=`b ∈ authorized(PK T , (BB \ {⊥}),M, nC , k) :

∃sk , r : b = Vote(sk ,PK T , nC , β, k; r).

By comparison, the original correct-tally function (§II-B2)
tallies all the ballots on BB . Function correct-tally requires
that ballots can only be interpreted for one candidate, which
can again be ensured by Injectivity, which we update to include
private credentials:

Definition 7 (Injectivity). An election scheme (Setup,
Register,Vote,Tally,Verify) satisfies Injectivity, if for all se-
curity parameters k, public keys PK T , integers nC , and
choices β and β′, such that β 6= β′, we have

Pr[(pk , sk)← Register(PK T , k);

(pk ′, sk ′)← Register(PK T , k);

b← Vote(sk ,PK T , nC , β, k);

b′ ← Vote(sk ′,PK T , nC , β
′, k) :

b 6= ⊥ ∧ b′ 6= ⊥ ⇒ b 6= b′] = 1.

Let authorized be defined as follows:

authorized(PK T ,BB ,M, nC , k) =

{b : b ∈ BB

∧ ∃pk , sk , β, r : b = Vote(sk ,PK T , nC , β, k; r)

∧ (pk , sk) ∈M ∧ ¬∃b′, β′, r′ : b′ ∈ (BB \ {b})
∧ b′ = Vote(sk ,PK T , nC , β

′, k; r′)}.

Function authorized discards ballots submitted under the
same credential—that is, if there is more than one ballot
submitted with a private credential sk , then all ballots sub-
mitted under that credential are discarded. Therefore, elec-
tion schemes that permit revoting cannot by analyzed with
this definition of authorized . But alternative definitions of
authorized are possible—for example, if ballots were times-
tamped, authorized could discard all but the most recent ballot
submitted under a particular credential.

Election schemes must continue to satisfy Completeness,
which we update to include credentials and the electoral roll:

28. Helios-C is claimed to support an alternative definition of authorized,
whereby only the last ballot cast by a voter is authorized. We found that
Helios-C does not support this definition. In particular, an adversary can
observe the ballots cast by a voter and replay one of those ballots. The
replayed ballot will overwrite the last ballot cast by the voter and will be
authorized instead of it.
29. JCJ is claimed to support alternative definitions of authorized—e.g., only

the last ballot cast by a voter is authorized—using a policy [87, §4.1]. We
found that the policy proposed by Juels et al. (namely, “order of postings
to [the bulletin board]”) does not support this definition of authorized. In
particular, an adversary can intercept a voter’s ballot and replay that ballot after
observing the voter’s revote, thus the policy incorrectly defines the first ballot
as authorized. This could be prevented by proving knowledge of previously
constructed ballots (cf. Clarkson et al. [43]).
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Definition 8 (Completeness). An election scheme (Setup,
Register,Vote,Tally,Verify) satisfies Completeness, if for all
PPT adversaries A, there exists a negligible function µ, such
that for all security parameters k, it holds that

Pr[(PK T ,SK T ,mB ,mC )← Setup(k);

nV ← A(PK T , k);

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);

L← {pk1, . . . , pknV
};

M ← {(pk1, sk1), . . . , (pknV
, sknV

)};
(BB , nC)← A(M);

(X, P )← Tally(SK T ,BB , L, nC , k) :

|BB | ≤ mB ∧ nC ≤ mC ⇒
Verify(PK T ,BB , L, nC ,X, P, k) = 1] > 1− µ(k).

3) Eligibility verifiability: Recall (from §II-B3) that for
an election scheme to satisfy eligibility verifiability, anyone
must be able to check that every tallied vote was cast by an
authorized voter—hence, it must be possible to authenticate
ballots. Because voters are issued credential pairs that can
be used to authenticate ballots, it suffices to ensure that
knowledge of a private credential is necessary to construct
an authentic ballot.

Eligibility verifiability experiment Exp-EV-Int therefore
challenges A to produce a ballot under a private credential
that A does not know:

Exp-EV-Int(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);2

L← {pk1, . . . , pknV
};3

Crpt ← ∅; Rvld ← ∅;4

(nC , β, i, b)← AC,R(L);5

if ∃r : b = Vote(sk i,PK T , nC , β, k; r) ∧ b 6= ⊥ ∧ b 6∈6

Rvld ∧ sk i 6∈ Crpt then
return 17

else8

return 09

In line 1, A chooses the tallier’s public key and the number of
voters. Line 2 registers voters. A is not permitted to influence
registration while it is in progress. In particular, A is not
permitted to choose credential pairs, because by doing so A
could trivially win the experiment.

Line 4 initializes two sets: Crpt is a set of voters who
have been corrupted, meaning that A has learned their private
credential, and Rvld is a set of ballots that have been revealed
to A. The former set models A coercing voters to reveal their
private credentials. The latter set models A observing ballots
on the bulletin board.

Line 5 challenges A to produce a ballot b with the help
of two oracles. Oracle C is the same oracle as in Exp-IV-Int
(cf. §IV-B1); it leaks the private credentials of corrupted voters
to A. Oracle R reveals ballots. On invocation R(i, β, nC),
where 1 ≤ i ≤ nV , oracle R does the following:

• Computes a ballot b that represents a vote for candidate
β by a voter with private credential sk i, that is, computes
b← Vote(sk i,PK T , nC , β, k).

• Records b as being revealed by updating Rvld to be
Rvld ∪ {b}.

• Outputs b.

In line 6, A wins if (i) the ballot is authentic, meaning that
it is the output of Vote on an authorized credential, and (ii)
that credential belongs to a voter that A did not corrupt, and
(iii) that ballot was not revealed. If A cannot succeed in this
experiment, then only authorized votes are tallied.

4) Election verifiability: With Exp-IV-Int, Exp-UV-Int, and
Exp-EV-Int, we define election verifiability with internal au-
thentication.

Definition 9 (Ver-Int). An election scheme Π satisfies election
verifiability with internal authentication (Ver-Int) if Complete-
ness and Injectivity are satisfied and for all PPT adversaries
A, there exists a negligible function µ, such that for all
security parameters k, it holds that Succ(Exp-IV-Int(Π,A,
k)) + Succ(Exp-UV-Int(Π,A, k)) + Succ(Exp-EV-Int(Π,A,
k)) ≤ µ(k).

An election scheme satisfies eligibility verifiability if
Succ(Exp-EV-Int(Π,A, k)) ≤ µ(k), and similarly for indi-
vidual verifiability. Universal verifiability is satisfied if the
election scheme satisfies Completeness and Injectivity, and
Succ(Exp-UV-Int(Π,A, k)) ≤ µ(k).

C. Example—Toy schemes from digital signatures

A toy election scheme satisfying Ver-Int can be based on a
digital signature scheme.30 Each voter publishes their signed
candidate choice on the bulletin board.

Definition 10. Suppose Γ = (Gen,Sign,Ver) is a digital
signature scheme. Let election scheme Sig(Γ) be defined as
follows:

• Setup(k) outputs (⊥,⊥, p1(k), p2(k)), where p1 and p2

may be any polynomial functions.
• Register(PK T , k) outputs a key pair produced by

Gen(k).
• Vote(sk ,PK T , nC , β, k) computes σ ← Sign(sk , β) and

outputs (β, σ).
• Tally(SK T ,BB , L, nC , k) computes a vector X of length
nC , such that X is a tally of all the ballots (choice-
signature pairs) on BB that are signed by distinct private
keys whose corresponding public keys appear in L (for-
mally, signatures can be checked using algorithm Ver),
and outputs (X,⊥).

• Verify(PK T ,BB , L, nC ,X, P, k) outputs 1 if (X, P ) =
Tally(⊥,⊥,BB , L, nC ,⊥) and 0 otherwise.

Let Sig denote Sig(Γ) for an unspecified digital signature
scheme Γ satisfying strong unforgeablility [7], [27].31 The

30. Digital signature schemes are defined in Appendix A.
31. Strong unforgeability is defined in Appendix A.
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Line IV UV EV Scheme
1 7 7 7 AlwaysVerify(IgnoreCreds(Choice))
2 7 7 3 —
3 7 3 7 IgnoreCreds(Choice)
4 7 3 3 —
5 3 7 7 AlwaysVerify(IgnoreCreds(Nonce))
6 3 7 3 AlwaysVerify(Sig)
7 3 3 7 Malleable Sig
8 3 3 3 Sig

TABLE I
ELECTION SCHEMES THAT SATISFY EACH COMBINATION OF INDIVIDUAL,

UNIVERSAL AND ELIGIBILITY VERIFIABILITY

verifiability of Sig follows from the security of the underlying
signature scheme:

Proposition 6. Sig satisfies Ver-Int.

Proof sketch. Sig satisfies individual verifiability, because vot-
ers can verify that their signed choices appear on the bulletin
board. Sig satisfies universal verifiability, because signed plain-
text choices are posted on BB . Finally, Sig satisfies eligibility
verifiability, because anyone can check that the signed choices
belong to registered voters.

D. Orthogonality

Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int capture mostly
orthogonal security properties, as shown in Table I. Individ-
ual and universal verifiability are orthogonal, and eligibility
verifiability implies individual verifiability.

Theorem 7. If an election scheme Π satisfies Exp-EV-Int,
then Π also satisfies Exp-IV-Int.

Proof sketch. If Π satisfies Exp-EV-Int, then no one can
construct a ballot that appears to be associated with public
credential pk unless they know private credential sk . That
means that a voter can uniquely identify their ballot, because
no one else knows their private credential. Therefore Π satis-
fies Exp-IV-Int.

A proof of Theorem 7 appears in Appendix G.
In Table I, AlwaysVerify(·) is a function that transforms

an election scheme by compromising Verify to always re-
turn 1. Thus, AlwaysVerify(Π) is guaranteed not to satisfy
Exp-UV-Int. Similarly, IgnoreCreds(·) is a function that ac-
cepts as input an election scheme with external authentication
and returns as output an election scheme with internal au-
thentication. The resulting scheme, however, simply ignores
credentials altogether: Register returns (⊥,⊥), Vote ignores
sk , and Tally and Verify ignore L. Thus, IgnoreCreds(Π) is
guaranteed not to satisfy Exp-EV-Int. Using those functions,
we briefly explain each line of the table:

1) Recall (from §II-D) that Choice is the election scheme in
which ballots contain only the plaintext candidate choice.
By compromising Verify and ignoring credentials, we
obtain a scheme that satisfies no properties.

2) By Theorem 7, this situation is impossible.

3) Compared to line 1 of Table I, this scheme satisfies
Exp-UV-Int, because Verify is not compromised.

4) By Theorem 7, this situation is impossible.
5) Nonce satisfies Exp-IV-Ext and Exp-UV-Ext. Moreover,

IgnoreCreds(Nonce) satisfies Exp-IV-Int and Exp-UV-Int.
By compromising Verify, we obtain a scheme that satis-
fies only Exp-IV-Int.

6) Sig satisfies all three properties. By compromising Verify,
we obtain a scheme that satisfies only Exp-IV-Int and
Exp-EV-Int.

7) By making Sig’s underlying signature scheme mal-
leable,32 we could obtain a scheme that does not satisfy
Exp-EV-Int, because the adversary could construct a valid
ballot out of a revealed ballot. But the scheme would
continue to satisfy Exp-IV-Int and Exp-UV-Int.

8) Sig satisfies all three properties.

V. CASE STUDY: HELIOS-C

Helios-C [47], [48] is a variant of Helios (cf. §III) for two-
candidate elections in which ballots are digitally signed.33

Informally, Helios-C works as follows [47, §5]:
• Setup. As in Section III.
• Registration. To register a voter, the registrar generates a

key pair for a signature scheme and sends the private key
to the voter. After all voters are registered, the registrar
publishes electoral roll L.

• Voting. A voter generates a ciphertext and proof as in
Section III, signs the ciphertext and proof with their
private key, and posts their public key, ciphertext, proof,
and signature on the bulletin board.

• Tallying. The tallier aborts if any ballots on the bulletin
board are not signed by distinct private keys whose
corresponding public keys appear in L. The tallier also
aborts if there exists a proof on the bulletin board that
does not hold. The ciphertexts and proofs are processed
as in Section III.

• Verification. If the tallier aborted, then a verifier immedi-
ately accepts. Otherwise, the tallier recomputes the homo-
morphic combination and checks all the zero-knowledge
proofs, as in Section III.

Whilst analyzing Helios-C, we discovered that aborting
violates our definition of universal verifiability. In particular,
an adversary could post an ill-formed ballot on the bulletin
board. (For example, a malicious tallier could secretly tally the

32. Given a message m and signature σ, a malleable signature scheme
permits computation of a signature σ′ on a related message m′ [33]. The
malleable signature scheme Sig used in line 7 of Table I would need to
enable an adversary to transform a signature on a well-formed candidate β
into a signature on a distinct, well-formed candidate β′.
33. Helios-C has been implemented (https://github.com/glondu/helios-server/

tree/heliosc, released c. 2013, accessed 25 Nov 2015), but development
has ceased in favour of the Belenios variant (https://github.com/glondu/
belenios/releases/tag/1.0, released 22 Apr 2016, accessed 25 Apr 2016). We
analyse Helios-C because a cryptographic definition has been presented in
the literature, whereas Belenios has not appeared in the literature. (Results
for one system do not imply results for the other, because the two systems
are rather different. And similarly for a further variant [46] of Helios-C.)
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recorded ballots while the election is in progress and, if that
tally is unfavorable to the tallier’s preferred candidate, then the
tallier could post an ill-formed ballot on the bulletin board.)
That ballot will cause tallying to abort. And verifiers will
accept that abort. Yet, our definition of universal verifiability
demands that verifiers only accept outcomes representing all
the choices used to construct the recorded ballots, which abort-
ing violates. Thus, Helios-C does not satisfy our definition of
universal verifiability.34

Remark 8. Helioc-C does not satisfy Ver-Int.

Proof sketch. Helios-C aborts on errors in a manner that
violates universal verifiability, as described above.

An informal proof of Remark 8 follows immediately from our
discourse and we do not pursue a formal proof. A variant of
Helios-C that disregards ill-formed ballots should satisfy our
definition of universal verifiability.

Cortier et al. [47] analyzed Helios-C using a different
definition of universal verifiability. That definition can be
satisfied by schemes in which tallying aborts in a manner that
anyone will accept. In particular, the experiment used by that
definition cannot be won by an adversary that causes an abort.
(As discussed above, this is undesirable, because an adversary
might cause an abort when an election is unfavorable for the
adversary.) Thus, verifiers accept outcomes that do not include
the choices used to construct voters’ ballots. By comparison,
our definition demands that verifiers reject such outcomes.

Beyond verifiability, Quaglia & Smyth [115] discovered that
Helios-C does not satisfy ballot secrecy (in the presence of an
adversary that controls the bulletin board or communication
channel). They realised that proving correct signature con-
struction suffices for ballot secrecy and proposed a generic
construction for election schemes with internal authentication
from schemes with external authentication. Moreover, they
proved that their construction produces schemes satisfying
ballot secrecy and verifiability.

VI. CASE STUDY: JCJ

JCJ (named for its designers, Juels, Catalano, and Jakobs-
son) [85]–[87] is a coercion-resistant election scheme, mean-
ing voters cannot prove whether or how they voted, even
if they can interact with the adversary while voting, which
protects elections from improper influence by adversaries. JCJ
was the first scheme to achieve coercion resistance and has
been influential in the design of many subsequent schemes.

To achieve verifiability and coercion resistance, JCJ uses
verifiable mixnets, which anonymize a set of messages.35

During tallying, all encrypted choices are anonymized by a
mixnet, then all choices are decrypted. The tally is computed
from the decrypted choices. Informally, JCJ works as follows:
• Setup. The tallier generates a key pair for an encryption

scheme and publishes the public key.
• Registration. To register a voter, the registrar generates

a nonce, which is sent to the voter and serves as the
private credential. The public credential is computed as

an encryption of the private credential with the tallier’s
public key. After all voters are registered, the registrar
publishes the electoral roll.

• Voting. A voter encrypts their candidate choice with
the tallier’s public key. They also encrypts their private
credential with the tallier’s public key. The voter proves
in zero-knowledge that they simultaneously knows both
plaintexts, and that their choice is well-formed. The voter
posts their ballot (i.e., both ciphertexts and the proof) on
the bulletin board.

• Tallying. The tallier discards any ballots from the bulletin
board for which the zero-knowledge proofs do not verify.
All unauthorized ballots are then discarded through a
combination of protocols that includes verifiable mixnets
and plaintext equivalence tests (PETs) [82]. (A PET
enables a proof that two ciphertexts contain the same
plaintext without revealing that plaintext.) In particular,
the tallier mixes the ciphertexts in the ballots (i.e., the
encrypted choices and the encrypted credentials), using
the same secret permutation for both mixes, hence, the
mixes preserve the relation between encrypted choices
and encrypted credentials. The tallier also mixes the
public credentials published by the registrar. And discards
any mixed encrypted choice if a PET does not hold
between the corresponding encrypted credential and a
mixed public credential—i.e., ballots cast using ineligible
credentials are discarded. Finally, the tallier decrypts the
remaining encrypted choices and publishes the corre-
sponding tally, along with a proof that decryption was
performed correctly.

• Verification. A verifier checks all the proofs included in
ballots, and all the proofs published during tallying.

We formalize a generic construction for JCJ-like election
schemes (Appendix I), which we instantiate to derive a formal
description of JCJ (Appendix J). Whilst analyzing JCJ, we
discovered that the mixes are insufficient for universal verifia-
bility, because a verifier cannot distinguish between mixes that
preserve the relation between encrypted choices and encrypted
credentials, and mixes that do not. In particular, the proofs
associated with mixes only prove a mapping between the
ciphertexts input and those output. Thus, there is no proof
that the relation between encrypted choices and encrypted
credentials is maintained during mixing. As such, authorized
ballots might be discarded in favour of unauthorized ballots,
and the tally will include choices from those unauthorized
ballots. Hence, universal verifiability is not satisfied. JCJ does
not satisfy eligibility verifiability either, because knowledge of
the tallier’s private key suffices to construct ballots that appear
authentic: with the private key, any public credential can be
decrypted to discover the corresponding private credential.
(Note that experiment Exp-EV-Int permits an adversary to
choose the tallier’s key pair, so the adversary knows the

34. Helios 2.0, Helios 3.1.4, Helios’12 and Helios’16 do not abort, so they
are not similarly effected.
35. Chaum [34] introduced mixnets. Adida [1] surveys verifiable mixnets.
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private key, hence can construct a ballot that suffices to win
Exp-EV-Int.)

Proposition 9. JCJ does not satisfy Ver-Int.

Proof sketch. As described above, JCJ accepts tallies which
exclude authorized ballots in favour of unauthorized ballots.
Thus, universal verifiability is not satisfied. Moreover, an
adversary can cast unauhorized ballots. Thus, eligibility veri-
fiability is not satisfied.

A formal proof of Proposition 9 appears in Appendix J. That
proof shows that universal verifiability is not satisfied. We have
reported these findings to the original authors.36

We can nonetheless prove that JCJ satisfies a variant of
eligibility verifiability. Consider the following experiment,
which does not permit the adversary to choose the tallier’s
key pair:

Exp-EV-Int-Weak(Π,A, k) =

(PK T ,SK T ,mB ,mC )← Setup(k);1

nV ← A(PK T , k);2

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);3

L← {pk1, . . . , pknV
};4

Crpt ← ∅; Rvld ← ∅;5

(nC , β, i, b)← AC,R(L);6

if ∃r : b = Vote(sk i,PK T , nC , β, k; r) ∧ b 6= ⊥ ∧ b 6∈7

Rvld ∧ sk i 6∈ Crpt then
return 18

else9

return 010

Line 1 of Exp-EV-Int has been refactored into lines 1 and 2
of Exp-EV-Int-Weak. In line 1 of Exp-EV-Int-Weak, keys are
generated by the experiment. In line 2, A is given the public
key but not the private key.37

We propose a variant of our generic construction for JCJ-
like schemes (Appendix K). That variant proves the mixes
preserve the relation between encrypted choices and encrypted
credentials. Using Exp-EV-Int-Weak, we define a weaker vari-
ant of Ver-Int and prove that instantiations of our construction
satisfy it.

Definition 11 (Ver-Int-Weak). An election scheme Π sat-
isfies weak election verifiability with internal authentication
(Ver-Int-Weak) if Completeness and Injectivity are satis-
fied and for all PPT adversaries A, there exists a negli-
gible function µ, such that for all security parameters k,
we have Succ(Exp-IV-Int(Π,A, k))+Succ(Exp-UV-Int(Π,A,
k)) + Succ(Exp-EV-Int-Weak(Π,A, k)) ≤ µ(k).

An election scheme satisfies weak eligibility verifiability if
Succ(Exp-EV-Int-Weak(Π,A, k)) ≤ µ(k).

Let JCJ’16 be the set of election schemes derived from the
variant of our generic construction, assuming cryptographic
primitives satisfy certain properties that we identify.38

Theorem 10. JCJ’16 satisfies Ver-Int-Weak.

Proof sketch. JCJ’16 satisfies individual verifiability, because

the probabilistic encryption scheme ensures that ballots are
unique, with overwhelming probability. JCJ’16 satisfies uni-
versal verifiability, because the proofs produced throughout
tallying can be publicly verified. And JCJ’16 satisfies eligi-
bility verifiability, because A cannot construct new ballots
without knowing a voter’s private credential or the tallier’s
private key.

A formal proof of Theorem 10 appears in Appendix K. The
proof assumes the random oracle model.

The Civitas [43] scheme refines the JCJ scheme. Some
refinements relevant to election verifiability are an implemen-
tation of a distributed registration protocol, and a mixnet based
on randomized partial checking (RPC) [83]. We leave a proof
that Civitas satisfies Ver-Int-Weak as future work. In that
proof, it would be necessary to assume the RPC construction
satisfies the definition of mixnets given in the appendix.
Work by Khazaei and Wikström [89] suggests that actually
proving satisfaction is unlikely to be possible. Alternatively,
the mixnet could be replaced by one based on zero-knowledge
proofs [68], [106].

VII. COMPARISON WITH GLOBAL VERIFIABILITY

Küsters et al. [97], [98], [100] present a definition of global
verifiability that can be used with any kind of protocol, not
just electronic voting protocols. To analyze the verifiability of
a protocol, analysts must define goals, which are properties
required to hold in runs of the protocol. For example, a goal
γ` is presented in a case study [98, §5.2] of global verifiability
applied to voting:

γ` contains all runs for which there exist choices
of the dishonest voters (where a choice is either to
abstain or to vote for one of the candidates) such that
the result obtained together with the choices made by
the honest voters in this run differs only by ` votes
from the published result (i.e. the result that can be
computed from the simple ballots on the bulletin
board).

Another goal γ is presented in a case study [100, §6.2] of
Helios:

γ is satisfied in a run if the published result exactly
reflects the actual votes of the honest voters in this
run and votes of dishonest voters are distributed in
some way on the candidates, possibly in a different
way than how the dishonest voters actually voted.

These informal statements of goals are appealing, but they do
not constitute rigorous mathematical definitions. As Kiayias et
al. write, “[global verifiability] has the disadvantage that the
set γ remains undetermined and thus the level of verifiability
that is offered by the definition hinges on the proper definition
of γ which may not be simple” [91, p. 476].

36. Dario Catalano, email communication, 30 November 2016.
37. Exp-EV-Int-Weak can be equivalently formulated as an experiment with

one registered voter. See Appendix H for details.
38. A set of election schemes satisfies Ver-Int-Weak, if every scheme in the

set satisfies Ver-Int-Weak.
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In our own work, we found that formal definitions were
quite tricky to get right—for example, which ballots should be
counted, how to count them, and how to determine whether
that count differed from the published tally. So we shared39

and discussed40 our results with Küsters. In response, Küsters
et al. updated their technical report to propose a formal
goal [101, §5.2]. In essence, that goal is satisfied in a run if
choices β1, . . . , βnh

of honest voters are included in the tally
and the tally contains at most nh + nd choices, where nd is
the number of dishonest voters. We found that Helios’16 and
Nonce do not satisfy global verifiability with that goal, because
the goal requires: 1) participation of all voters, 2) ballot posting
to always succeed, and 3) bulletin boards not to drop, inject
nor modify ballots. The first and second requirements define
availability properties, which an adversary can disrupt. And the
third can be disrupted by an adversary that controls the bulletin
board. Thus, there exist runs of both Helios’16 and Nonce
that cannot satisfy this goal. We defer definitions of global
verifiability and the goal by Küsters et al. to Appendix N, and
formal results to Appendix O, because the above discussion
can be appreciated without the burden of technical details.

Cortier et al. [49, §10.2] propose a variant of the goal by
Küsters et al. [101, §5.2]. Their goal is informally claimed
to permit some honest voters’ choices to be dropped from the
tally, which would intuitively address problems associated with
the third requirement. However, this claim is not supported
by their formally stated goal, because the goal requires the
tally to include nh + nd choices, where nh, respectively nd,
is the number of honest, respectively dishonest, voters. Thus,
the goals by Cortier et al. and Küsters et al. have similar
drawbacks. We omit recalling further details, because the ideas
remain the same. We reported our findings to Cortier et al. and
Küsters et al.,41 but they did not respond. We reported our
findings again,42 which resulted in confirmation of the error,43

but no fix is yet public.
It is natural to ask whether individual, universal and eligi-

bility verifiability can each be expressed in terms of global
verifiability. We believe they can. For instance, they could be
expressed, in the informal style of the goals quoted above, as
the following goals:
• GIV is satisfied in a run if voters can uniquely identify

their ballots on the bulletin board in this run.
• GUV is satisfied in a run if the correct tally of votes cast

by authorized voters in this run is the same as the tally
that algorithm Verify successfully verifies.

• GEV is satisfied in a run if every ballot tallied in this
run was created by a voter in possession of a private
credential.

Cortier et al. [49], [50] have also expressed goals intended to
capture our definitions of individual and universal verifiability.
We discuss their work in Section IX.

It is also natural to ask whether election verifiability can be
expressed in terms of global verifiability using a single, holistic
goal. Indeed, roughly speaking, it can. We introduce a goal
δGV that is satisfied in a run if ballots b1, . . . , bn for choices
β1, . . . , βn appear in the run, such that b1, . . . , bn are included

on the bulletin board and no further ballots are included, and
the run produces a tally for choices β1, . . . , βn. We show
election verifiability implies global verifiability with that goal.
(Hence, Helios’16 and Nonce satisfy global verifiability using
goal δGV .) We also show that global verifiability implies
universal verifiability, but not individual verifiability, with that
goal. It might seem surprising that individual verifiability is
not implied, but this is a consequence of a technical detail.
In particular, given a goal defining some properties, global
verifiability only requires those properties to hold on runs in
which an auditor (or judge) accepts.44 Thus, such properties
need not hold on runs in which an auditor rejects. Yet, this
does not matter, because auditing suffices to detect problems.
To summarise:

• Election verifiability and global verifiability, using goal
δGV , both guarantee that anyone can check whether the
tally is properly computed.

• Election verifiability guarantees that collisions can be
detected on every run of a protocol, whereas global ver-
ifiability using goal δGV only guarantees that collisions
can be detected on runs in which an auditor accepts.

Thus, election verifiability is strictly stronger than global
verifiability using goal δGV . We defer formal results to Ap-
pendix P. It is an open problem as to whether election
verifiability coincides with global verifiability for some other
goal.

One concern that might be raised is whether there still
lurk any “gaps” in our decomposition into individual and
universal (and eligibility) verifiability. Indeed, there might be.
But the definition of global verifiability does not rule out the
possibility of gaps, either: any gap in the formal statement of a
goal will lead to a vulnerability. That is, if the analyst forgets to
include some necessary facet of verifiability when stating the
formal goal, then global verifiability will not detect any attacks
against that facet. Indeed, Cortier et al. [49, §1] state that
some goals have “severe limitations and weaknesses.” Global
verifiability does not guarantee a lack of gaps. Although we
cannot guarantee the absence of gaps either, we have proved a
relationship between election and global verifiability. So, any
gap in our definition implies the existence of a gap in the
definition of global verifiability using goal δGV .

VIII. NEW CLASSES OF ATTACK

Our definitions of election verifiability improve upon ex-
isting definitions by detecting three previously unidentified
classes of attack:

39. Ralf Küsters, email communication, 24 June 2014.
40. Ralf Küsters, email communication, October/November 2014.
41. Veronique Cortier, David Galindo, Ralf Küsters, Johannes Müller,

Tomasz Truderung, & Andreas Vogt, email communication, 18 Oct 2016.
42. Ralf Küsters & Johannes Müller, email communication, 25 Apr 2018.
43. Johannes Müller, email communication, 22 May 2018.
44. In the context of universal verifiability, an auditor accepts when they are

satisfied that the tally of recorded ballots is computed properly.
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• Collusion attacks. An election scheme’s tallying and
verification algorithms might be designed such that they
collude to accept incorrect tallies.

• Biasing attacks. An election scheme’s verification algo-
rithm might be designed to reject some legitimate tallies.

• Revelation attacks. An election scheme’s verification al-
gorithm might be designed to accept incorrect tallies
when coins used to construct some ballots are leaked.

Although a well-designed election scheme would hopefully
not exhibit vulnerabilities to these attacks, it is the job of
verifiability definitions to detect malicious schemes, regardless
of whether vulnerabilities are due to malice or errors. So
definitions of election verifiability should preclude them.

A. Collusion Attacks

Here are two examples of potential collusion attacks:
• Vote stuffing. Tally behaves normally, but adds κ votes

for candidate β. Verify subtracts κ votes from β, then
proceeds with verification as normal. Elections thus verify
as normal, except that candidate β receives extra votes.

• Backdoor tally replacement. Tally and Verify behave
normally, unless a backdoor value is posted on the
bulletin board BB . For example, if (SK T ,X

∗) appears
on BB , then Tally and Verify both ignore the correct
tally and instead replace it with tally X∗. Value SK T is
the backdoor here; it cannot appear on BB (except with
negligible probability) unless the tallier is malicious.

Vote stuffing is detected by our definitions of Correctness
(§II-A and §IV-A), because these definitions require that the
tally produced by Tally corresponds to the choices encapsu-
lated in ballots on the bulletin board. Note that vote stuffing
is not a failure of eligibility verifiability, because the stuffed
votes do not correspond to any ballots on the bulletin board.
Backdoor tally replacement is detected by our definitions
of universal verifiability (§II-B2 and §IV-B2), because those
definitions require Verify to accept only those tallies that
correspond to a correct tally of the bulletin board.

We show, next, that the definition of election verifiability
by Juels et al. [87] fails to detect vote stuffing and backdoor
tally replacement, and that the definition by Cortier et al. [47]
fails to detect backdoor tally replacement.

Juels et al. [87] formalize definitions that we name JCJ-
correctness and JCJ-verifiability. JCJ-correctness is intuitively
meant to capture that “A cannot pre-empt, alter, or cancel the
votes of honest voters [and] that A cannot cause voters to cast
ballots resulting in double voting” [87, p. 45]; it is formalized
in terms of whether the adversary can post ballots on the
bulletin board that cause the tally to be computed incorrectly.
JCJ-verifiability is intuitively “the ability for any player to
check whether the tally. . . has been correctly computed” [87,
p. 46]; it is formalized in terms of whether Verify will accept
a tally that differs from the output of Tally. We restate the
formal definitions in Appendix L.

To show that the JCJ definitions fail to detect collu-
sion attacks, we first formalize the vote stuffing attack. An

election scheme Π = (. . . ,Tally,Verify) can be modified
to derive a vote-stuffing election scheme Stuff(Π, β, κ) =
(. . . ,TallyS ,VerifyS), which adds κ votes to β, as follows:45

• TallyS(. . .) computes (X, P ) ← Tally(. . .) and outputs
(Add(X, β, κ), P ).46

• VerifyS(. . . ,X, P, . . .) computes v ← Verify(. . . , Add(
X, β,−κ), P, . . .) and outputs v.

Proposition 11. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability, and integers β and κ, it
holds that Stuff(Π, β, κ) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in Appendix M.
Second, we formalize the backdoor tally replacement attack.

An election scheme Π = (. . . ,Tally,Verify) can be modified
to derive an election scheme Backdoor(Π) = (. . . ,TallyB ,
VerifyB), as follows:
• TallyB(. . . ,SK T ,BB , . . .) checks whether there exists a

unique X∗ such that (SK T ,X
∗) ∈ BB . If so, TallyB

outputs (X∗,⊥). Otherwise, TallyB computes (X, P )←
Tally(. . . ,SK T ,BB , . . .) and outputs (X, P ).

• VerifyB(PK T , . . . ,BB , . . . ,X, P, . . .) checks whether
there exists a unique X∗ such that (SK T ,X

∗) ∈ BB .47

If so, VerifyB outputs 1. Otherwise, VerifyB computes
v ← Verify(PK T , . . . ,BB , . . . ,X, P, . . .) and outputs v.

Proposition 12. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability that does not leak the tal-
lier’s private key, it holds that Backdoor(Π) satisfies JCJ-
correctness and JCJ-verifiability.

A formal proof appears in Appendix M, where we also
formally define key leakage.

Cortier et al. [47] propose definitions similar to JCJ-
verifiability and insist that election schemes must satisfy their
notions of correctness and partial tallying. Vote stuffing is
detected by their correctness property, but backdoor tally
replacement is not. The ideas remain the same, so we omit
formalized results. We have reported these findings to the
original authors.48,49

B. Biasing attacks
Here are three formalizations of biasing attacks, derived

from an election scheme Π = (. . . ,Verify).
• Reject All. Let Reject(Π) be (. . . ,VerifyR), where

VerifyR always outputs 0. VerifyR therefore always re-
jects, hence no election can ever be considered valid.

45. We omit many of the parameters of Tally and Verify here for simplicity;
see Appendix M for details.
46. Let Add(X, β, κ) = (X[1], . . . ,X[β − 1],X[β] + κ,X[β +

1], . . . ,X[|X|]). And let |X| denote the length of vector X.
47. VerifyB also needs to check that SKT is the private key corresponding

to PKT . We omit formalizing this detail, but note that it is straightforward
for real-world encryption schemes such as El Gamal and RSA.
48. Véronique Cortier and David Galindo, personal communication, Nancy,

France, 13 June 2013.
49. David Galindo and Véronique Cortier, email communication, 19 June

2013 & Summer/Autumn 2014.
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• Selective Reject. Let ε be a distinguished
value that would not be posted on the bulletin
board by honest voters. Let Selective(Π, ε) be
(. . . ,VerifyR), where VerifyR(. . . ,BB , . . .) computes
v ← Verify(. . . ,BB , . . .) and outputs 1 if both v = 1
and ε 6∈ BB . Otherwise, VerifyR outputs 0. VerifyR
therefore rejects if ε appears on the bulletin board, hence
some elections can be invalidated.

• Biased Reject. Suppose Z is a set of tallies. Let
Bias(Π, Z) be (. . . ,VerifyR), where VerifyR(. . . ,X, . . .)
computes v ← Verify(. . . ,X, . . .) and outputs 1 if both
v = 1 and X ∈ Z. Otherwise, VerifyR outputs 0. VerifyR
therefore only accepts a subset of the tallies accepted by
Verify, hence biases tallies toward Z.

These formalizations do not satisfy our definitions of Com-
pleteness (§II-B2 and §IV-B2), hence, our definitions of veri-
fiability detect these biasing attacks.

The definition of verifiability by Juels et al. [87] fails to
detect all three of the above attacks, because that definition
has no notion of Completeness. For example, it is vulnerable
to Biased Reject attacks:

Proposition 13. Given an election scheme Π satisfying JCJ-
correctness and JCJ-verifiability, and given a multiset Z,
it holds that Bias(Π, Z) satisfies JCJ-correctness and JCJ-
verifiability.

A formal proof appears in Appendix M.
The definition of verifiability by Kiayias et al. [91] fails

to detect Selective Reject attacks, because (like JCJ) the
definition has no notion of Completeness. Their notion of
Correctness does rule out Reject All and Biased Reject attacks.

Similarly, the definition of verifiability by Cortier et al. [47]
detects Biased Reject and Reject All attacks, but fails to detect
Selective Reject attacks, because that definition’s notion of
Completeness does not quantify over all bulletin boards.

C. Revelation attacks

Here are two formalizations of revelation attacks, derived
from an election scheme Π = (. . . ,Verify) with ballots that
do not leak coins.
• Replace choices. Let Replace(Π) be (. . . ,VerifyR),

where VerifyR(PK T ,BB , nC ,X, P, k) proceeds as fol-
lows. The algorithm checks whether BB = {b1, . . . ,
b`, (β1, β

′
1, r1), . . . , (βk, β

′
k, rk)} such that

∧
1≤i≤k bi =

Vote(PK T , nC , βi, k; ri) ∧ 1 ≤ βi, β
′
i ≤ nC . If so,

the algorithm computes v ← Verify(PK T ,BB , nC ,X
∗,

P, k), where tally X∗ is derived from X by replacing
choices β′1, . . . , β

′
k with β1, . . . , βk. Otherwise, the al-

gorithm computes v ← Verify(PK T ,BB , nC ,X, P, k).
Finally, the algorithm outputs v.

• Drop choices. Let Drop be a variant of Replace that
derives tally X∗ from X by adding choices β1, . . . , βk.

These revelation attacks do not satisfy our definitions of uni-
versal verifiability (§II-B2 and §IV-B2), because the adversary
constructs the ballots posted on the bulletin board, hence, can
also post the coins used to construct those ballots. Similarly,

these attacks do not satisfy global verifiability instantiated with
goal δGV .

Global verifiability fails to detect the above attacks when
instantiated with the goal by Küsters et al. [101], because
coins are implicitly assumed never to leak, even when the
software, hardware, voter, etc., that selected those coins has
the ability to leak them. Consequently, voters may verify that
their correctly constructed ballot has been recorded, yet their
vote can be excluded from the tally. We defer a formal result
to Appendix O, where we also formally define coin leakage.
Global verifiability fails similarly when instantiated with the
goal by Cortier et al. [49].

IX. RELATED WORK

Kiayias [90] & Schoenmakers [121] present overviews
of security properties for election schemes. Many election
schemes in the literature state properties called correctness,
accuracy, or (universal) verifiability without formally defining
those terms.

In the computational model, Juels et al. [85]–[87] and
Cortier et al. [47] give game-based definitions of verifiability.
Those definitions fail to detect biasing and collusion attacks
(cf. §VIII). Definitions of universal verifiability (which is just
one aspect of election verifiability) in the computational model
seem to originate with Benaloh and Tuinstra [17], who define
a correctness property that says every participant is convinced
that the tally is accurate with respect to the votes cast, and
with Cohen and Fischer [44], who define verifiability to mean
that there exists a check function that returns good iff the
announced tally of the election corresponds to the cast votes.

Kiayias et al. [91] define a property they name E2E verifia-
bility (E2E abbreviates “end-to-end”). This property combines
our intuitive notions of individual and universal verifiability
into a single definition. Their definition fails to detect Selective
Reject attacks (cf. §VIII). Their definitions, like ours, do
not address voter intent—that is, verification by humans that
ballots correctly encode candidate choices—as we discuss in
Section X.

Cortier et al. [49], [50] survey definitions of verifiability
and cast them into the context of global verifiability. In
particular, they express goals intended to capture definitions
of verifiability by Cohen and Fischer [14], [44], Kiayias et
al. [91], and Cortier et al. [47]. They also express goals
intended to capture our definitions of individual and universal
verifiability. Using these goals, Cortier et al. compare different
notions of verifiabilty.

Cortier et al. [49, §8.5 & §10.1] claim that our definition of
election verifiability admits an election scheme which it should
not: the election scheme in which “Vote always [outputs
error symbol ⊥] for some dishonestly generated public key
[and Tally behaves normally].” We believe our definition
should admit this scheme, because it is verifiable. Indeed,
ballot construction will result in an error, alerting voters to
malice. Cortier et al. [49, §10.1] also claim that we trust the
bulletin board and assume all voters will run the correct Vote
algorithm, we do not (cf. §II-B1 and §II-B2).
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Küsters & Müller claim “it is often believed that individ-
ual [verifiability] together with universal verifiability implies
[global] verifiability...However, [we] have demonstrated that
individual and universal verifiability are neither sufficient nor
necessary for [global verifiability].” They state their claim
shortly after an explicit reference to our definitions of individ-
ual and universal verifiability [95, §2.2]. Yet, those definitions
are proven to be strictly stronger than global verifiability,
which seemingly contradicts their claim. We contacted Küsters
& Müller for clarification.50 They stated that their claim only
holds for the goal by Küsters et al. [101, §5.2] and the goal
they proposed in collaboration with Cortier et al. [49, §10.2].51

But, those goals are uninteresting, since they omit attacks
(§VIII-C).

Also in the computational model, Groth [74], and Moran
and Naor [105], state definitions of verifiability in terms
of universal composability [31]. These definitions involve
defining an ideal functionality; part of that is similar to our
correct-tally function. Groth’s definition does not guaran-
tee universal verifiability [74, p. 2], but Moran and Naor’s
does [105, p. 386].

In the symbolic model, Smyth et al. [139] define the first
definition of election verifiability. This definition is amenable
to automated reasoning, but is stronger than necessary and
cannot be satisfied by many election schemes, including Helios
and Civitas. Kremer et al. [94] overcome this limitation
with a weaker definition that sacrifices amenability to auto-
mated reasoning, and Smyth [123, §3] extends this definition.
Additionally, the scope of automated reasoning, using the
definition by Smyth et al., is limited by analysis tools (e.g.,
ProVerif [26]), because the function symbols and equational
theory used to model cryptographic primitives might not be
suitable for automated analysis (cf. [8], [61], [110], [130]).
Cortier et al. [45] overcome this limitation with an alternative
definition based on refinement type systems.

Also in the symbolic model, Kremer and Ryan [93] and
Backes et al. [9] formalize definitions of eligibility. These
definitions are not intended to provide assurances if the
election authorities are dishonest (cf. [104, §1]). For example,
the definition of Kremer and Ryan does not detect whether
corrupt election authorities insert votes [93, §5.2]. Likewise,
the definition of Backes et al. assumes that election authorities
are honest [9, §3].

Our definition of election verifiability has been adapted to
auction schemes by Quaglia & Smyth [116]. And the definition
of election verifiability by Kremer et al. [94] has been adapted
to auction [63] and examination [62], [64] schemes. Moreover,
McCarthy et al. [103] have shown that auction schemes can
be constructed from Helios and JCJ. Thus, our results are
applicable beyond voting.

Our definition of election verifiability follows Smyth et
al. [94], [123], [139] by deconstructing it into individual,
universal, and eligibility verifiability. Other deconstructions of
election verifiability are possible. For example, Adida and Neff
[6, §2] identify four aspects of verifiability:
• Cast as intended: the ballot is cast at the polling station

as the voter intended.
• Recorded as cast: cast ballots are preserved with integrity

through the ballot collection process.
• Counted as recorded: recorded ballots are counted cor-

rectly.
• Eligible voter verification: only eligible voters can cast a

ballot in the first place.
Those definitions are not mathematical, so we cannot attempt
a precise comparison. Nonetheless, eligibility verifiability and
eligible voter verification seem to be addressing similar con-
cerns. Likewise, individual and universal verifiability together
seem to be addressing concerns similar to that of recorded
as cast and counted as recorded together. We postpone a
discussion of cast as intended to Section X.

Privacy properties [60], [87], [98], [99], [126], [131],
[133]—such as ballot secrecy,52 receipt freeness, and coer-
cion resistance—complement verifiability. Chevallier-Mames
et al. [40], [41] and Hosp and Vora [80], [81] show an in-
compatibility result: election schemes cannot unconditionally
satisfy privacy and universal verifiability. But weaker versions
of these properties can hold simultaneously, as can be wit-
nessed from Theorems 5 and 10 coupled with existing privacy
results such as the ballot secrecy proofs for Helios’12 [23,
Theorem 3], [20, Theorem 6.12], and the coercion resistance
proof for JCJ [87, §5].

Cortier & Lallemand claim privacy implies individual ver-
ifiability [51]. But, they assume a trusted tallier. For privacy,
this assumption is necessary to ensure ballots cannot be
tallied individually, which would reveal votes. By comparison,
the assumption is counter-intuitive for individual verifiability,
because attacks by malicious talliers must be detected. Our
definition of individual verifiability detects such attacks and
Smyth proves it is not implied by privacy [129, Appendix C].

In an analysis of Helios, Küsters et al. [100] use goal γ
to conclude that global verifiability is satisfied. Yet Bern-
hard et al. [23] and Chang-Fong & Essex [32] demonstrate
vulnerabilities against verifiability, and in Appendix E we
show that Ver-Ext detects these vulnerabilities. This seeming
discrepancy arises because the analysis in [100] does not for-
malize all the cryptographic primitives used by Helios, hence
the vulnerabilities go unnoticed. So another contribution of
our own work is to correctly distinguish between unverifiable
and verifiable variants of Helios by rigorously analyzing the
cryptography used in Helios.

X. CONCLUDING REMARKS

When we began this work, we were studying the Juels et
al. [87] definition of election verifiability. We discovered that
the definition fails to detect biasing and collusion attacks.
While attempting to improve the Juels et al. definition to

50. Ralf Küsters & Johannes Müller, email communication, 25 April 2018.
51. Ralf Küsters & Johannes Müller, email communication, 22 May 2018.
52. Quaglia & Smyth [114] and Smyth [127] provide overviews of ballot-

secrecy definitions and provide comparisons between definitions. Smyth [126,
§7] and Bernhard et al. [21], [22] provide more detailed comparisons.
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rule out those attacks, we discovered that factoring it into
individual, universal, and eligibility verifiability led to an
elegant decomposition of (mostly) orthogonal properties. We
later sought to apply our new definitions to existing electronic
voting systems, and Helios [5] and JCJ [87] were natural
choices. But they treat authentication differently—Helios out-
sources authentication, whereas JCJ does not—so we were
led to separate our definitions into variants for external and
internal authentication. We were at first surprised to discover
that JCJ does not satisfy the strong definition of eligibility
verifiability. But upon reflection, it became apparent that an
adversary who knows the tallier’s private key can easily forge
ballots that appear to be from eligible voters. Helios-C [47],
however, avoids this problem by employing digital signatures.

Our definitions of verifiability have not addressed the issue
of voter intent—that is, verification by a human that the ballot
submitted by a voter corresponds to the candidate choice the
voter intended to make. Adida and Neff call this property
“cast as intended” [6]. Many election schemes (e.g., [67],
[79], [87], [91]) do not satisfy cast as intended, because the
schemes implicitly or explicitly assume that voters can them-
selves verify the cryptographic operations required to construct
ballots. Nevertheless, schemes by Chaum [35], Neff [107],
and Benaloh [15], [16] introduce cryptographic mechanisms to
verify voter intent. It would be natural to explore strengthening
our definitions to address voter intent.

The goal of this research is to enable verifiability of the
voting systems we use in real-life, rather than merely trusting
them. Research on verifiability can generalize beyond voting
to other systems that must guarantee strong forms of integrity.
Verifiable voting systems thus have the potential to contribute
to the science of security, to democracy, and to broader society.
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DEDICATION53

Ben Smyth dedicates his contribution to the loving memory
of Anne Konishi, 1971 – 2015. What matters most of all is
the dash. We had a great time.

He writes for Christina Mai Konishi. Smile like your
mother, for good fortune seeks those who smile (warau kado
niwa fuku kitaru, says the Japanese proverb).

APPENDIX A
CRYPTOGRAPHIC PRIMITIVES

A. Basic definitions

Definition 12 (Negligible function [70]). A function µ : N→
R is negligible if for every positive polynomial function p(·),
there exists an N , such that for all n > N ,

µ(n) <
1

p(n)
.

An event E(k), where k is a security parameter, occurs with
negligible probability if Pr[E(k)] ≤ µ(k) for some negligible
function µ. The event occurs with overwhelming probability if
the complement of the event occurs with negligible probability.

Definition 13 (Asymmetric encryption scheme [88]). An
asymmetric encryption scheme is a tuple of PPT algorithms
(Gen,Enc,Dec) such that:
• Gen, denoted (pk , sk ,m) ← Gen(k), takes a security

parameter k as input and outputs a key pair (pk , sk)
and message space m.

• Enc, denoted c← Enc(pk ,m), takes a public key pk and
message m ∈ m as input, and outputs a ciphertext c.

• Dec, denoted m← Dec(sk , c), takes a private key sk , and
ciphertext c as input, and outputs a message m or error
symbol ⊥. We assume ⊥ 6∈ m and Dec is deterministic.

Moreover, the scheme must be correct: there exists a neg-
ligible function µ, such that for all security parameters k
and messages m, we have Pr[(pk , sk ,m) ← Gen(k); c ←
Enc(pk ,m) : m ∈ m⇒ Dec(sk , c) = m] > 1− µ(k).

Our definition of asymmetric encryption schemes differs from
Katz and Lindell’s definition [88, Definition 10.1] in that we
formally state the plaintext space.

Definition 14 (Homomorphic encryption). An asymmetric
encryption scheme Γ = (Gen,Enc,Dec) is homomorphic, with
respect to ternary operators �, ⊕, and ⊗,54 if there exists a
negligible function µ, such that for all security parameters
k, we have the following.55 First, for all messages m1 and
m2 we have Pr[(pk , sk ,m) ← Gen(k); c1 ← Enc(pk ,m1);
c2 ← Enc(pk ,m2) : m1,m2 ∈ m ⇒ Dec(sk , c1 ⊗pk c2)
= Dec(sk , c1) �pk Dec(sk , c2)] > 1 − µ(k). Secondly, for
all messages m1 and m2, and coins r1 and r2, we have
Pr[(pk , sk ,m) ← Gen(k) : m1,m2 ∈ m ⇒ Enc(pk ,m1; r1)
⊗pk Enc(pk ,m2; r2) = Enc(pk ,m1 �pk m2; r1 ⊕pk r2)]
> 1− µ(k).

We say Γ is additively homomorphic, respectively multi-
plicatively homomorphic, if for all security parameters k,
key pairs pk , sk , and message spaces m, such that there

53. The dedication references Linda Ellis (1996) The Dash.
54. We shall implicitly bind ternary operators occasionally—i.e., we write

Γ is a homomorphic asymmetric encryption scheme as opposed to the more
verbose Γ is a homomorphic asymmetric encryption scheme, with respect to
ternary operators �, ⊕, and ⊗.
55. We write X ◦pk Y for the application of ternary operator ◦ to inputs X ,
Y , and pk . We occasionally abbreviate X ◦pk Y as X ◦Y , when pk is clear
from the context.
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exists coins r and (pk , sk ,m) = Gen(k; r), we have �pk is
the addition operator, respectively multiplication operator, in
group (m,�pk ).

Indistinguishability under chosen-plaintext attack
(IND-CPA) [10], [12], [13], [71], [72] is a standard
definition of security for encryption schemes. Intuitively, if
an encryption scheme satisfies IND-CPA, then an adversary
without access to a decryption oracle is unable to distinguish
ciphertexts. A variant (IND-PA0) allows the adversary a
parallel decryption query—i.e., it requests the decryption of
a vector of ciphertexts.

Definition 15 (IND-PA0 [12]). An asymmetric encryp-
tion scheme satisfies IND-PA0, if for all probabilistic
polynomial-time adversaries A, there exists a negligible func-
tion µ, such that for all security parameters k, we have
Succ(IND-PA0(Π,A, k)) ≤ 1/2 + µ(k), where experiment
IND-PA0 is defined as follows:56

IND-PA0(Π,A, k) =

(pk , sk ,m)← Gen(k);1

(m0,m1)← A(pk ,m, k);2

β ←R {0, 1};3

c← Enc(pk ,mβ);4

c← A(c);5

m← (Dec(sk , c[1]), . . . ,Dec(sk , c[|c|]);6

g ← A(m);7

return g = β ∧
∧

1≤i≤|c| c 6= c[i] ∧m0,m1 ∈ m ∧8
|m0| = |m1|;

Definition 16 (Signature scheme [88]). A signature scheme is
a tuple (Gen,Sign,Ver) of PPT algorithms such that:

• Gen, denoted (pk , sk) ← Gen(k), takes a security
parameter k as input and outputs a key pair (pk , sk).

• Sign, denoted σ ← Sign(sk ,m), takes a private key sk
and message m as input, and outputs a signature σ.

• Verify, denoted v ← Ver(pk ,m, σ), takes a public key
pk , message m, and signature σ as input, and outputs a
bit v, which is 1 if the signature successfully verifies and
0 otherwise. We assume Ver is deterministic.

Moreover, the scheme must be correct: there exists a neg-
ligible function µ, such that for all security parameters k
and messages m, we have Pr[(pk , sk) ← Gen(k);σ ←
Sign(sk ,m); Ver(pk ,m, σ) = 1] > 1− µ(k).

Definition 17. A signature scheme Γ = (Gen,Sign,Ver) sat-
isfies strong unforgeability if for all PPT adversaries A, there
exists a negligible function µ, such that for all security pa-
rameters k, we have Succ(Exp-StrongSign(Γ,A, k)) ≤ µ(k),
where experiment Exp-StrongSign is defined as follows:

Exp-StrongSign(Γ,A, k) =

(pk , sk)← Gen(k);1

Msg ← ∅;2

(m,σ)← AO(pk , k);3

if Ver(pk ,m, σ) = 1 ∧ (m,σ) 6∈ Msg then4

return 15

else6

return 07

The experiment defines an oracle O.57 On invocation O(m),
oracle O computes a signature σ ← Sign(sk ,m), records the
request and response (m,σ) by updating Msg to be Msg ∪
{(m,σ)}, and outputs σ.

B. Proof systems

A proof system (originally known as an interactive proof
system [73]) is a two-party protocol between a prover and a
verifier. The prover convinces the verifier that a string x is in
a language L. Here, we assume that there is a witness relation
R, such that s ∈ L iff there exists a witness w, such that
(s, w) ∈ R. For any (s, w) ∈ R, it must also hold that the
length of w is at most polynomial in the length of s. Proof
systems ensure that a prover can convince a verifier of any
valid claim (completeness), and that a verifier cannot be fooled
into accepting a false claim (soundness).

A sigma protocol [28], [58], [77], [120] is a proof system
with a particular three-move structure: commit, challenge,
respond.

Definition 18 (Sigma protocol). A sigma protocol for a
relation R is a tuple (Comm,Chal,Resp,Verify) of PPT
algorithms such that:
• Comm, denoted (comm, t) ← Comm(s, w, k), is exe-

cuted by a prover. Comm takes a statement s, witness
w and security parameter k as input, and outputs a
commitment comm and some state information t.

• Chal, denoted chal ← Chal(s, comm, k), is executed by
a verifier. Chal takes a statement s, a commitment comm
and a security parameter k as input, and outputs a string
chal.

• Resp, denoted resp ← Resp(chal, t, k), is executed by a
prover. Resp takes a challenge chal, state information t
and security parameter k as input, and outputs a response
resp.

• Verify, denoted v ← Verify(s, (comm, chal, resp), k) is
executed by a verifier. Verify takes a statement s, a
transcript (comm, chal, resp) and a security parameter k
as input, and outputs a bit v, which is 1 if the transcript
successfully verifies and 0 otherwise. We assume Verify
is deterministic.

Moreover, the sigma protocol must be complete: there
exists a negligible function µ, such that for all state-

56. Let x←R S denote assignment to x of an element chosen uniformly at
random from set S.
57. The oracle in experiment Exp-Sign may access parameter sk . Hence-

forth, we continue to allow oracles to access experiment parameters without
explicitly mentioning them.
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ments and witnesses (s, w) ∈ R and security parame-
ters k, we have Pr[(comm, t) ← Comm(s, w, k); chal ←
Chal(s, comm, k); resp ← Resp(chal, t, k) : Verify(s, (comm,
chal, resp), k) = 1] > 1− µ(k).

Some sigma protocols ensure special soundness and special
honest-verifier zero-knowledge. We will make use of a result
by Bernhard et al. that requires these properties, but we will
not need the details of those definitions in our proofs, so we
omit them here; see Bernhard et al. [23] for a formalization.

C. Non-interactive proof systems

A proof system is non-interactive if a single message is sent
from the prover to the verifier.

Definition 19 (Non-interactive proof system). A non-interac-
tive proof system for a relation R is a tuple of PPT algorithms
(Prove,Verify) such that:
• Prove, denoted σ ← Prove(s, w, k), is executed by a

prover to prove (s, w) ∈ R.
• Verify, denoted v ← Verify(s, σ, k), is executed by

anyone to check the validity of a proof. We assume Verify
is deterministic.

Moreover, the system must be complete: there exists a negli-
gible function µ, such that for all statement and witnesses
(s, w) ∈ R and security parameters k, we have Pr[σ ←
Prove(s, w, k) : Verify(s, σ, k) = 1] > 1− µ(k).

We can derive non-interactive proof systems from sigma
protocols using the Fiat-Shamir transformation [66], which
replaces the verifier’s challenge with a hash of the prover’s
commitment, concatenated with the prover’s statement.

Definition 20 (Fiat-Shamir transformation [66]). Given a
sigma protocol Σ = (Comm,Chal,Resp,VerifyΣ) for relation
R and a hash function H, the Fiat-Shamir transformation,
denoted FS(Σ,H), is the tuple (Prove,Verify) of algorithms,
defined as follows:

Prove(s, w, k) =

(comm, t)← Comm(s, w, k);1

chal← H(comm, s);2

resp← Resp(chal, t, k);3

return (comm, resp)4

Verify(s, (comm, resp), k) =

chal← H(comm, s);1

return VerifyΣ(s, (comm, chal, resp), k)2

It is straightforward to check that FS produces non-interactive
proof systems. In particular, given sigma protocol Σ for
relation R, and a hash function H, we have FS(Σ,H) is a
non-interactive proof system for relation R.

Some applications of the Fiat-Shamir transformation pro-
duce non-interactive proof systems satisfying zero-knowledge:
anything a verifier can derive about a witness can be derived
without interaction with a prover—that is, the prover can be
simulated by a PPT algorithm called a simulator. We will not
need the details of zero-knowledge in our proofs, so we omit

them here; see Bernhard et al. [23] or Quaglia & Smyth [116]
for formalizations.

In addition, some applications of the Fiat-Shamir transfor-
mation produce non-interactive proof systems satisfying simu-
lation sound extractability: an extractor can recover witnesses
from proofs by rewinding the prover, as discussed below. (We
use extractors in our proofs of theorems, to obtain witnesses
from proofs.) We define simulation sound extractability in
the random oracle model [11]. A random oracle can be
programmed or patched. We will not need the details of how
patching works in our proofs, so we omit them here; see
Bernhard et al. [23] for a formalization.

Definition 21 (Simulation sound extractability [23], [75]).
Suppose Σ is a sigma protocol for relation R, H is a random
oracle, and (Prove,Verify) is a non-interactive proof system,
such that FS(Σ,H) = (Prove,Verify). Further suppose S
is a simulator for (Prove,Verify) and H can be patched
by S. Proof system (Prove,Verify) satisfies simulation sound
extractability if there exists a PPT algorithm K, such that for
all PPT adversaries A and coins r, there exists a negligible
function µ, such that for all security parameters k, we have:58

Pr[P← ();Q← AH,P(—; r);W← KA
′
(H,P,Q) :

|Q| 6= |W| ∨ ∃j ∈ {1, . . . , |Q|} . (Q[j][1],W[j]) 6∈ R ∧
∀(s, σ) ∈ Q, (t, τ) ∈ P . Verify(s, σ, k) = 1 ∧ σ 6= τ ] ≤ µ(k)

where A(—; r) denotes running adversary A with an empty
input and coins r, where H is a transcript of the random
oracle’s input and output, and where oracles A′ and P are
defined below:
• A′(). Computes Q′ ← A(—; r), forwarding any of A’s

oracle calls to K, and outputs Q′. By running A(—; r),
K is rewinding the adversary.

• P(s). Computes σ ← S(s, k);P ← (P[1], . . . ,P[|P|],
(s, σ)) and outputs σ.

Algorithm K is an extractor for (Prove,Verify).

Our definition of simulation sound extractability in the random
oracle model is an analogue of Groth’s definition in the
common reference string model [75, §2]. (See Bernhard et
al. [23, §1] for a detailed comparison.) Our presentation of
simulation sound extractability differs from the presentation
by Bernhard et al. [23] by formalizing some of the details.

Bernhard et al. [23] show that non-interactive proof systems
derived using the Fiat-Shamir transformation satisfy zero-
knowledge and simulation sound extractability:

Theorem 14 (from [23]). Let Σ be a sigma protocol for
relation R, and let H be a random oracle. If Σ satisfies
special soundness and special honest verifier zero-knowledge,
then FS(Σ,H) satisfies zero-knowledge and simulation sound
extractability.

The Fiat-Shamir transformation can be generalized to in-
clude an optional string m in the hashes produced by functions

58. We extend set membership notation to vectors: we write x ∈ x if x is
an element of the set {x[i] : 1 ≤ i ≤ |x|}.
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Prove and Verify. We write Prove(s, w,m, k) and Verify(s,
(comm, resp),m, k) for invocations of Prove and Verify which
include an optional string. When m is provided, it is included
in the hashes in both algorithms. That is, given FS(Σ,H) =
(Prove,Verify), the hashes are computed as follows in both
algorithms: chal ← H(comm, s,m). Theorem 14 can be
extended to this generalization.

APPENDIX B
VARIANTS OF Exp-IV

Our individual verifiability experiment with external au-
thentication (§II-B1) can be equivalently formulated as an
experiment that challenges A to predict the output of Vote:

Exp-IV-Ext′(Π,A, k) =

(PK T , nC , β, b)← A(k);1

b′ ← Vote(PK T , nC , β, k);2

if b = b′ ∧ b′ 6= ⊥ then3

return 14

else5

return 06

Proposition 15. Given an election scheme Π, we have

∀A ∃µ ∀k . Succ(Exp-IV-Ext(Π,A, k)) ≤ µ(k)

⇔ ∀A′ ∃µ′ ∀k′ . Succ(Exp-IV-Ext′(Π,A′, k′)) ≤ µ′(k′),

where A and A′ are PPT adversaries, µ and µ′ are negligible
functions, and k and k′ are security parameters.

Intuitively, if A can predict the output of Vote, then A can use
that prediction to generate a collision. And if A can generate
collisions, then A can use them to predict outputs.

Proof. For the forward implication, suppose A′ is a PPT
adversary such that Succ(Exp-IV-Ext′(Π,A′, k′)) > 1

p(k′)

for some polynomial function p and security parameter k′.
We construct an adversary A against Exp-IV-Ext. On input
k′, adversary A computes (PK T , nC , β, b) ← A′(k′) and
outputs (PK T , nC , β, β). Since A′ wins Exp-IV-Ext′ with
non-negligible probability, we have

Pr[b′ ← Vote(PK T , nC , β, k
′) : b = b′ ∧ b 6= ⊥] >

1

p(k′)
.

Moreover, since calls to algorithm Vote are independent, we
have

Pr[b1 ← Vote(PK T , nC , β, k
′);

b2 ← Vote(PK T , nC , β, k
′)

: b1 = b ∧ b2 = b ∧ b1 6= ⊥ ∧ b2 6= ⊥] >
1

p(k′)2
.

It follows that Succ(Exp-IV-Ext(Π,A, k′)) > 1
p(k′)2 .

For the reverse implication, suppose A is a PPT adver-
sary such that Succ(Exp-IV-Ext(Π,A, k)) > 1

p(k) for some
polynomial function p and security parameter k. We con-
struct an adversary A′ against Exp-IV-Ext′. On input k,
adversary A′ computes (PK T , nC , β1, β2) ← A(k); b1 ←

Vote(PK T , nC , β1, k) and outputs (PK T , nC , β2, b1). Since
A wins Exp-IV-Ext with probability no less than 1

p(k) , we have

Pr[b2 ← Vote(PK T , nC , β2, k) : b1 = b2 ∧ b1 6= ⊥] >
1

p(k)
.

It follows that Succ(Exp-IV-Int′(Π,A′, k)) > 1
p(k) .

Our individual verifiability experiment with internal authen-
tication (§IV-B1) can also be reformulated as an experiment
that challenges A to predict the output of Vote algorithms:

Exp-IV-Int′(Π,A, k) =

(PK T , nV )← A(k);1

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);2

L← {pk1, . . . , pknV
};3

Crpt ← ∅;4

(nC , β, i, b)← AC(L);5

b′ ← Vote(ski,PK T , nC , β, k);6

if b = b′ ∧ b′ 6= ⊥ ∧ sk i 6∈ Crpt then7

return 18

else9

return 010

Similarly to Section IV-B1, the adversary is given access to
oracle C and the voter index output on line 5 must be legal
with respect to nV .

Experiment Exp-IV-Int′ is strictly stronger than our original
experiment Exp-IV-Int, since predicting the output of Vote
does not imply the existence of collisions, whereas collisions
can be used to predict the output of Vote. For instance,
consider the following variant of Nonce (Definition 5):

Definition 22. Election scheme Nonce′ is defined as follows:

• Setup(k) outputs (⊥,⊥,∞,∞).
• Register(PK T , k) computes r ∈ Z2k and outputs (r, r).
• Vote(r,PK T , nC , β, k) outputs (r, β).
• Tally(SK T ,BB , L, nC , k) computes a vector X of length
nC , such that X is a tally of the votes on BB for which
the nonce is in L, and outputs (X,⊥).

• Verify(PK T ,BB , L, nC ,X, P, k) outputs 1 if (X, P ) =
Tally(⊥,⊥,BB , L, nC , k) and 0 otherwise.

Intuitively, an adversary can predict the output of Vote,
because the algorithm is deterministic and the electoral roll
lists private credentials. However, the Register algorithm en-
sures that voters’ credentials are distinct with overwhelming
probability, hence, instantiations of the Vote algorithm with
distinct voter credentials will never collide.

Proposition 16. Given an election scheme Π, PPT adver-
sary A, negligible function µ, and security parameter k, if
Succ(Exp-IV-Int′(Π,A, k)) ≤ µ(k), then there exists a PPT
adversary B such that Succ(Exp-IV-Int(Π,B, k)) ≤ µ(k).

The proof of Proposition 16 is similar to the reverse implica-
tion proof of Proposition 15.
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APPENDIX C
GENERALIZED HELIOS SCHEME

We formalize a generic construction for Helios-like election
schemes (Definition 24). Our construction is parameterized on
the choice of homomorphic encryption scheme and sigma pro-
tocols for the relations introduced in the following definition.

Definition 23. Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for a
binary relation R.59

• Σ proves correct key construction if ((k, pk ,m), (sk ,
s)) ∈ R⇔ (pk , sk ,m) = Gen(k; s).

Suppose (pk , sk ,m) = Gen(k; s), for some security parameter
k and coins s.
• Σ proves plaintext knowledge in a subspace if ((pk , c,

m′), (m, r)) ∈ R⇔ c = Enc(pk ,m; r)∧m ∈ m′ ∧m′ ⊆
m.

• Σ proves correct decryption if ((pk , c,m), sk) ∈ R ⇔
m = Dec(sk , c).

Definition 24 (Generalized Helios). Suppose Γ = (Gen,Enc,
Dec) is an additively homomorphic asymmetric encryption
scheme, Σ1 proves correct key construction, Σ2 proves plain-
text knowledge in a subspace, Σ3 proves correct decryption,
and H is a hash function. Let FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,
H) = (ProveDec,VerDec). We define generalized Helios as
Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,Tally,Verify):
• Setup(k). Select coins s uniformly at random, compute

(pk , sk ,m) ← Gen(k; s); ρ ← ProveKey((k, pk ,m), (sk ,
s), k);PK T ← (pk ,m, ρ);SK T ← (pk , sk), let m be
the largest integer such that {0, . . . ,m} ⊆ {0} ∪m, and
output (PK T ,SK T ,m,m).

• Vote(PK T , nC , β, k). Parse PK T as a vector (pk ,m, ρ).
Output ⊥ if parsing fails or VerKey((k, pk ,m), ρ, k) 6=
1 ∨ β 6∈ {1, . . . , nC}. Select coins r1, . . . , rnC−1 uni-
formly at random and compute:

for 1 ≤ j ≤ nC − 1 do
if j = β then mj ← 1; else mj ← 0;
cj ← Enc(pk ,mj ; rj);
σj ← ProveCiph((pk , cj , {0, 1}), (mj , rj), j, k);

c← c1 ⊗ · · · ⊗ cnC−1;
m← m1 � · · · �mnC−1;
r ← r1 ⊕ · · · ⊕ rnC−1;
σnC
← ProveCiph((pk , c, {0, 1}), (m, r), nC , k);

Output ballot (c1, . . . , cnC−1, σ1, . . . , σnC
).

• Tally(SK T ,BB , nC , k). Initialize vectors X of length nC
and P of length nC − 1. Compute for 1 ≤ j ≤ nC
do X[j] ← 0. Parse SK T as a vector (pk , sk). Output
(X,P) if parsing fails. Let {b1, . . . , b`} be the largest
subset of BB such that b1 < · · · < b` and for all 1 ≤
i ≤ ` we have bi is a vector of length 2 · nC − 1 and∧nC−1
j=1 VerCiph((pk , bi[j], {0, 1}), bi[j+nC−1], j, k) =

1 ∧ VerCiph((pk , bi[1] ⊗ · · · ⊗ bi[nC − 1], {0, 1}), bi[2 ·
nC − 1], nC , k) = 1. If {b1, . . . , b`} = ∅, then output

(X,P), otherwise, compute:
for 1 ≤ j ≤ nC − 1 do

c← b1[j]⊗ · · · ⊗ b`[j];
X[j]← Dec(sk , c);
P[j]← ProveDec((pk , c,X[j]), sk , k);

X[nC ]← `−
∑nC−1
j=1 X[j];

Output (X,P).
• Verify(PK T ,BB , nC ,X,P, k). Parse X as a vector of

length nC , parse P as a vector of length nC − 1,
parse PK T as a vector (pk ,m, ρ). Output 0 if parsing
fails or VerKey((k, pk ,m), ρ, k) 6= 1. Let {b1, . . . , b`}
be the largest subset of BB satisfying the conditions
given by the tally algorithm and let mB be the largest
integer such that {0, . . . ,mB} ⊆ m. If {b1, . . . , b`} =
∅ ∧

∧nC

j=1 X[j] = 0 or
∧nC−1
j=1 VerDec((pk , b1[j]⊗ · · · ⊗

b`[j],X[j]),P[j], k) = 1 ∧X[nC ] = ` −
∑nC−1
j=1 X[j] ∧

1 ≤ ` ≤ mB , then output 1, otherwise, output 0.
The above algorithms assume nC > 1 and we define special
cases of Vote, Tally and Verify when nC = 1:
• Vote(PK T , nC , β, k). Parse PK T as a vector (pk ,m, ρ).

Output ⊥ if parsing fails or VerKey((k, pk ,m), ρ, k) 6=
1 ∨ β 6= 1. Select coins r uniformly at random, compute
m ← 1; c ← Enc(pk ,m; r);σ ← ProveCiph((pk , c,
{0, 1}), (m, r), k), and output ballot (c, σ).

• Tally(SK T ,BB , nC , k). Initialize X and P as vectors
of length 1. Compute X[1] ← 0. Parse SK T as a
vector (pk , sk). Output (X,P) if parsing fails. Let
{b1, . . . , b`} be the largest subset of BB such that
for all 1 ≤ i ≤ ` we have bi is a vector of
length 2 and VerCiph((pk , bi[1], {0, 1}), bi[2], k) = 1. If
{b1, . . . , b`} = ∅, then output (X,P). Otherwise, com-
pute c← b1[1]⊗ · · · ⊗ b`[1];X[1]← Dec(sk , c);P[1]←
ProveDec((pk , c,X[1]), sk , k) and output (X,P).

• Verify(PK T ,BB , nC ,X,P, k). Parse X and P as vec-
tors of length 1, and parse PK T as a vector (pk ,m, ρ).
Output 0 if parsing fails or VerKey((k, pk ,m), ρ, k) 6= 1.
Let {b1, . . . , b`} be the largest subset of BB satisfying
the conditions given by the tally algorithm and let mB

be the largest integer such that {0, . . . ,mB} ⊆ m. If
{b1, . . . , b`} = ∅∧X[1] = 0 or VerDec((pk , b1[1]⊗· · ·⊗
b`[1],X[1]),P[1], k) = 1 ∧ 1 ≤ ` ≤ mB , then output 1,
otherwise, output 0.

Generalized Helios works as follows. Setup generates the
tallier’s key pair. The public key includes a non-interactive
proof demonstrating that the key pair is correctly constructed.
Vote takes a choice β ∈ {1, . . . , nC} and outputs ciphertexts
c1, . . . , cnC−1 such that if β < nC , then ciphertext cβ contains
plaintext 1 and the remaining ciphertexts contain plaintext 0,
otherwise, all ciphertexts contain plaintext 0. Vote also outputs
proofs σ1, ..., σnC

so that this can be verified. In particular,

59. Given a binary relation R, we write ((s1, . . . , sl), (w1, . . . , wk)) ∈
R ⇔ P (s1, . . . , sl, w1, . . . , wk) for (s, w) ∈ R ⇔
P (s1, . . . , sl, w1, . . . , wk) ∧ s = (s1, . . . , sl) ∧ w = (w1, . . . , wk),
hence, R is only defined over pairs of vectors of lengths l and k.
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proof σj demonstrates ciphertext cj contains 0 or 1, for all
1 ≤ j ≤ nC − 1. And proof σnC

demonstrates that the
homomorphic combination of ciphertexts c1 ⊗ · · · ⊗ cnC−1

contains 0 or 1. (It follows that the voter’s ballot contains a
vote for exactly one candidate.) Tally homomorphically com-
bines ciphertexts representing votes for a particular candidate
and decrypts the homomorphic combinations. The number of
votes for a candidate β ∈ {1, . . . , nC − 1} is simply the
homomorphic combination of ciphertexts representing votes
for that candidate. The number of votes for candidate nC is
equal to the number of votes for all other candidates subtracted
from the total number of valid ballots on the bulletin board.
Verify checks that each of the above steps has been performed
correctly.

Lemma 17 demonstrates that generalized Helios is a con-
struction for election schemes.

Lemma 17. Helios(Γ,Σ1,Σ2,Σ3,H) satisfies Correctness,
where Γ, Σ1, Σ2, Σ3 and H satisfy the preconditions of
Definition 24.

APPENDIX D
PROOF: HELIOS 2.0 IS NOT VERIFIABLE

Chang-Fong & Essex [32] demonstrate that Helios 2.0 is
not verifiable and we prove that Helios 2.0 does not satisfy
Ver-Ext. Our proof formalizes the attack by Chang-Fong &
Essex [32, §4.1] in the context of our Completeness definition
using the adversary we define in Figure 1. Intuitively, that
adversary computes a ciphertext with a masked term (Line 1)
and falsifies a proof of correct construction in a manner that
hides malice (Lines 2–12). In particular, the proof ensures
c1 6≡ 0 (mod 2), which causes cancellation of the mask
during verification. A ballot is constructed from that ciphertext
and proof, and added to a bulletin board (Line 14). The ballot
is valid, hence, it will be decrypted during tallying, yet correct
decryption cannot be proved, due to the masked ciphertext,
thus, verification will fail and Completeness is not satisfied.

Definition 25 (Weak Fiat-Shamir transformation [23]). The
weak Fiat-Shamir transformation is a function wFS that is
identical to FS, except that it excludes statement s in the
hashes computed by Prove and Verify, as follows: chal ←
H(comm).

Definition 26 (Helios 2.0). Let Ĥelios be Helios after replacing
all instances of the Fiat-Shamir transformation with the weak
Fiat-Shamir transformation and excluding the (optional) mes-
sages input to ProveCiph—i.e., ProveCiph should be used as a
ternary function. Helios 2.0 is Ĥelios(Γ,Σ1,Σ2,Σ3,H), where
Γ is additively homomorphic El Gamal [56, §2], Σ1 is the
sigma protocol for proving knowledge of discrete logarithms
by Chaum et al. [37, Protocol 2], Σ2 is the sigma protocol
for proving knowledge of disjunctive equality between discrete
logarithms by Cramer et al. [55, Figure 1], Σ3 is the sigma
protocol for proving knowledge of equality between discrete
logarithms by Chaum and Pedersen [38, §3.2], and H is SHA-
256 [108].

Fig. 1 Adversary against Helios 2.0
Given a public key PK T and security parameter k as input,
adversary A parses PK T as a vector (pk ,m, ρ) and pk as
(p, q, g, h), computes a generator g′ of a sub-group of order 2
such that g′ | p− 1, selects coins r, and computes:
e← (g′ · gr mod p, hr · g mod p);1

do2

(c0, f0)←R Z2
q;3

A0 ← gf0 · e[1]−c0 (mod p);4

B0 ← hf0 · e[2]−c0 (mod p);5

w ←R Zq;6

A1 ← gw (mod p);7

B1 ← hw (mod p);8

c1 ← H(A0, B0, A1, B1)− c0 (mod q);9

while c1 6≡ 0 (mod 2) ;10

f1 ← w + c1 · r (mod q);11

σ ← (A0, B0, c0, f0, A1, B1, c1, f1);12

nC ← 2;13

BB ← {(e, σ, σ)};14

return (nC ,BB)15

We assume the sigma protocols used by Helios 2.0 satisfy the
preconditions of generalized Helios—that is, [37, Protocol 2]
is a sigma protocol for proving correct key construction, [55,
Figure 1] is a sigma protocol for proving plaintext knowledge
in a subspace, and [38, §3.2] is a sigma protocol for proving
decryption. We leave formally proving this assumption as
future work. Under this assumption, Lemma 17 demonstrates
that Helios 2.0 is an election scheme.

Proof of Proposition 2. Let Setup, Tally and Verify be the
setup, tallying and verification algorithms defined by He-
lios 2.0. Moreover, let Γ = (Gen,Enc,Dec), wFS(Σ1,
H) = (ProveKey,VerKey), and wFS(Σ3,H) = (ProveDec,
VerDec). We construct an adversary A (Figure 1) against the
Completeness experiment.

Suppose k is a security parameter, (PK T ,SK T ,mB ,mC )
is an output of Setup(k), and (BB , nC) is an output of
A(PK T , k), such that |BB | ≤ mB ∧nC ≤ mC . By definition
of Setup, we have PK T parses as (pk ,m, ρ) and SK T parses
as (pk , sk), such that (pk , sk ,m) = Gen(k; s) and ρ is an
output of ProveKey((k, pk ,m), (sk , s), k) for some coins s
chosen uniformly at random by Setup. By definition of Gen,
we have pk parses as (p, q, g, h). And by definition of A,
we have nC = 2 and BB = {(e, σ, σ)}, where e and σ
are computed by the adversary. Further suppose (X,P) is an
output of Tally(SK T ,BB , nC , k).

Let us recall the definition of VerCiph (cf. [55, Figure 1],
Definition 25, and Helios 2.0 source code) and consider
whether VerCiph((pk , e, {0, 1}), σ, k) = 1:

• VerCiph((pk , e, {0, 1}), σ, k). Parses pk as (p, q, g, h),
e as (R,S), and σ as (A0, B0, c0, f0, A1, B1, c1, f1),
outputting 0 if parsing fails. If gf0 ≡ A0 ·Rc0 (mod p)∧
hf0 ≡ B0·Sc0 (mod p)∧gf1 ≡ A1·Rc1 (mod p)∧hf1 ≡
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B1 · (S/g)c1 (mod p) ∧ H(A0, B0, A1, B1) ≡ c0 + c1
(mod q), then output 1, otherwise, output 0.

By definition of A, we have σ = (A0, B0, c0, f0, A1, B1, c1,
f1). Moreover, we have e[1] ≡ g′ · gr (mod p), e[2] ≡ hr · g
(mod p), A0 ≡ gf0 · e[1]−c0 (mod p), and B0 ≡ hf0 · e[2]−c0

(mod p), where g′ is a generator of a sub-group of order 2
such that g′ | p − 1 and c0, f0 and r are coins. Hence, we
trivially have

gf0 ≡ gf0 · e[1]−c0 · e[1]c0 ≡ A0 · e[1]c0 (mod p)

hf0 ≡ hf0 · e[2]−c0 · e[2]c0 ≡ B0 · e[2]c0 (mod p)

By definition of A, we also have A1 ≡ gw (mod p), B1 ≡ hw
(mod p), c1 ≡ H(A0, B0, A1, B1) − c0 (mod q), and f1 ≡
w + c1 · r (mod q), such that c1 ≡ 0 (mod 2), where w are
coins. Hence, we have

gf1 ≡ gw · gc1·r (mod p)

and, since c1 ≡ 0 (mod 2), we have g′c1 ≡ 1 (mod p),
thus,

≡ gw · g′c1 · gc1·r (mod p)

≡ gw · (g′ · gr)c1 (mod p)

≡ gw · e[1]c1 (mod p)

Moreover, we trivially have

hf1 ≡ hw ·hc1·r ≡ hw ·(hr ·g/g)c1 ≡ B1·(e[2]/g)c1 (mod p)

Furthermore, we have H(A0, B0, A1, B1) ≡ c0 +c1 (mod q).
Hence, VerCiph((pk , e, {0, 1}), σ, k) = 1. It follows that BB
is the largest subset of BB satisfying the conditions defined
by algorithm Tally. Thus, X = (Dec(sk , e), 1 − Dec(sk , e))
and P is an output of ProveDec((pk , e,X[1]), sk , k). It re-
mains to show Verify(PK T ,BB , nC ,X, P, k) 6= 1 with non-
negligible probability. By definition of Verify, it suffices to
show VerDec((pk , e,X[1]),P[1], k) 6= 1.

Let us recall definitions of ProveDec and VerDec (cf. [38,
§3.2], Definition 25, and Helios 2.0 source code):

• ProveDec((pk , e,m), sk , k). Parses pk as (p, q, g, h), out-
putting 0 if parsing fails. Computes w ←R Zq;A ←
gw (mod p);B ← e[1]w (mod p); c ← H(A,B)
(mod q); f ← w+c ·sk (mod q). And outputs (A,B, f)

• VerDec((pk , e,m), τ, k). Parses pk as (p, q, g, h) and τ
as (A,B, f), outputting 0 if parsing fails. If gf ≡ A · hc
(mod p) and e[1]f ≡ B · (e[2]/gm)c (mod p), then
output 1, otherwise, output 0, where c ≡ H(A,B)
(mod q).

Hence, we have P = (A,B, f) such that B ≡ e[1]w (mod p)
and f ≡ w + c · sk (mod q), where c ≡ H(A,B) (mod q)
and coins w were selected by ProveDec. Thus, e[1]f 6≡ B ·
(e[2]/gX[1])c (mod p), concluding our proof.

APPENDIX E
PROOF: HELIOS 3.1.4 IS NOT VERIFIABLE

Helios 2.0 is vulnerable to attacks because it does not
check the suitability of cryptographic parameters, nor does
it check that all elements of ballots are constructed using the
correct parameters. Chang-Fong & Essex [32] address these
vulnerabilities by performing the necessary checks.

Definition 27 (Helios 3.1.4). Election scheme Helios 3.1.4 is
Helios 2.0 after modifying the sigma protocols to perform the
checks proposed by Chang-Fong & Essex [32, §4].

Bernhard et al. [23] demonstrate that Helios 2.0 is not verifi-
able and we prove that Helios 3.1.4 does not satisfy Ver-Ext.
Our proof formalizes the attack by Bernhard et al. [23, §3]
in the context of our universal verifiability experiment using
the adversary we define in Figure 2. That adversary computes
the challenge hash (Line 9) before computing a ciphertext.
(This is possible because weak Fiat-Shamir does not include
statements in hashes, hence, ciphertexts are not included in
hashes.) Moreover, the adversary computes: a private key as a
function of that hash (Line 11), challenges as functions of the
hash and the private key (Lines 13 & 14), and responses as
functions of the challenges and some coins (Lines 18 & 19).
Furthermore, the adversary computes a public key from the
private key (Line 23) and a proof of correct key generation
(Line 25). That proof is valid, because the private key could
have been correctly computed. The adversary encrypts a
plaintext m (such that m > 1) using the aforementioned
coins (Line 27) and proves correct decryption of that ciphertext
(Line 33). That proof is valid, because the ciphertext is well-
formed. Finally, the adversary claims (m,m−1) is the election
outcome corresponding to the ballot containing the ciphertext
and falsified proof of correct construction. The verification
procedure will accept that outcome, because all proofs hold,
yet the election outcome is clearly invalid, hence, universal
verifiability is not satisfied.

Proof of Proposition 3. Let Vote and Tally be the vote
and tallying algorithms defined by Helios 3.1.4. More-
over, let wFS(Σ1,H) = (ProveKey,VerKey), wFS(Σ2,
H) = (ProveCiph,VerCiph) and wFS(Σ3,H) = (ProveDec,
VerDec). We construct an adversary A (Figure 2) against the
universal verifiability experiment.

Suppose an execution of Exp-UV-Ext computes

(PK T ,BB , nC ,X, P )← A(k);

Y ← correct-tally(pk ,BB , nC , k)

Since m > 1, there is no choice β ∈ {1, 2} nor coins r such
that Vote(PK T , nC , β, k; r) ∈ BB . By definition of function
correct-tally , we have Y = (0, 0). Moreover, since X =
(m, 1 −m), we have X 6= Y and X[2] = 1 −X[1]. Let us
show that Verify(PK T ,BB , nC ,X, P, k) = 1.

By definition of A, we have PK T is a vector (pk ,m, ρ).
Moreover, by the completeness of (ProveKey,VerKey) and
(ProveDec,VerDec), we have VerKey((k, pk ,m), ρ, k) = 1
and VerDec((pk , e,X[1]),P[1], k) = 1. It remains to show

23



Fig. 2 Adversary against Helios 3.1.4
Given a security parameter k as input, adversary A computes
primes p and q such that p = 2 · q + 1 and q is of length k,
and also computes a generator g of the multiplicative group
Z∗p. Let nC ← 2 and m← Nq−1, moreover, let m > 1 be an
element of m. The adversary proceeds as follows:
%coins1

(a0, b0, a1, b1)←R Z4
q;2

%witnesses3

A0 ← ga0 (mod p);4

B0 ← gb0 (mod p);5

A1 ← ga1 (mod p);6

B1 ← gb1 (mod p);7

%challenge hash8

c← H(A0, B0, A1, B1) (mod q);9

%private key10

x← (b0+c·m)·(1−m)−b1·m
a0·(1−m)−a1·m (mod q);11

%challenges12

c1 ← b1−a1·x
1−m (mod q);13

c0 ← c− c1 (mod q);14

%coins15

r ←R Zq;16

%responses17

f0 ← a0 + c0 · r (mod q);18

f1 ← a1 + c1 · r (mod q);19

%proof of plaintext knowledge20

σ ← (A0, B0, c0, f0, A1, B1, c1, f1);21

%public key22

h← gx (mod p); pk ← (p, q, g, h);23

%proof of correct key construction24

ρ← ProveKey((k, pk ,m), (x, r′), k);25

%ciphertext26

e← (gr mod p, hr · gm mod p);27

%bulletin board28

BB ← {(e, σ, σ)};29

%tally30

X← (m, 1−m);31

%proof of decryption32

P← (ProveDec((pk , e,m), x, k));33

return ((pk ,m, ρ),BB , nC ,X, P )34

where r′ is computed such that (pk , x,m) = Gen(k; r′).

that BB is the largest subset of BB satisfying the conditions
given by the Tally algorithm. Since BB = {(e, σ, σ)} and
(e, σ, σ) is a vector of length 2 ·nC−1, it suffices to show that
VerCiph((pk , e, {0, 1}), σ, k) = 1. Let us recall the definition
of VerCiph (cf. [55, Figure 1], Definition 25, and Helios source
code) with the additional checks proposed by Chang-Fong &
Essex [32, §4]:

• VerCiph((pk , e, {0, 1}), σ, k). Parses pk as (p, q, g, h),
e as (R,S), and σ as (A0, B0, c0, f0, A1, B1, c1, f1),
outputting 0 if parsing fails or R, S, A0, B0, A1 or B1

belong to the wrong group. If gf0 ≡ A0 ·Rc0 (mod p)∧

hf0 ≡ B0·Sc0 (mod p)∧gf1 ≡ A1·Rc1 (mod p)∧hf1 ≡
B1 · (S/g)c1 (mod p) ∧ H(A0, B0, A1, B1) ≡ c0 + c1
(mod q), then output 1, otherwise, output 0.

By definition of A, we have R, S, A0, B0, A1 and B1 belong
to the right group. And we have

gf0 ≡ ga0+c0·r ≡ ga0 · (gr)c0 ≡ A0 ·Rc0 (mod p)

gf1 ≡ ga1+c1·r ≡ ga1 · (gr)c1 ≡ A1 ·Rc1 (mod p)

Moreover, we have hf0 ≡ gx(a0+c0·r) (mod p) and B0 ·Sc0 ≡
gb0+c0(x·r+m) (mod p), hence, to show hf0 ≡ B0 · Sc0
(mod p), it is sufficient to show (b0+c0 ·m) ≡ x·a0 (mod q):

b0 + c0 ·m
≡ b0 + c ·m−m · c1
≡ b0 + c ·m− b1·m−a1·m·x

1−m
≡ (b0+c·m)(1−m)−b1·m+a1·m·x

1−m

≡
(b0+c·m)(1−m)−b1·m+

a1·m·((b0+c·m)(1−m)−b1·m)

a0(1−m)−a1·m
1−m

≡ (a0(1−m)−a1·m)((b0+c·m)(1−m)−b1·m)
(1−m)(a0(1−m)−a1·m)

+a1·m((b0+c·m)(1−m)−b1·m)
(1−m)(a0(1−m)−a1·m)

≡ a0(1−m)((b0+c·m)(1−m)−b1·m)
(1−m)(a0(1−m)−a1·m)

≡ a0·((b0+c·m)(1−m)−b1·m)
a0(1−m)−a1·m

≡ x · a0 (mod q)

Similarly, hf1 ≡ gx(a1+c1·r) (mod p) and B1 · (S/g)c1 ≡
gb1+c1(x·r+m−1) (mod p), hence, to show hf1 ≡ B1 ·(S/g)c1

(mod p), it is sufficient to show b1 + c1(m − 1) ≡ a1 · x
(mod q):

b1 + c1(m− 1)

≡ b1 + (m−1)(b1−a1·x)
1−m

≡ b1(1−m)+(m−1)(b1−a1·x)
1−m

≡ a1·x(1−m)
1−m

≡ a1 · x (mod q)

Furthermore, we have

H(A0, B0, A1, B1) ≡ c0 + c1 ≡ c− c1 + c1

≡ H(A0, B0, A1, B1)− c1 + c1 (mod q)

It follows that VerCiph((pk , e, {0, 1}), σ, k) = 1, concluding
our proof.

APPENDIX F
PROOF: HELIOS’16 IS VERIFIABLE

Elections schemes constructed from generalized Helios
satisfy individual (§F-A) and universal (§F-B) verifiability,
assuming cryptographic primitives satisfy certain properties
that we identify. It follows that Helios’16 satisfies election
verifiability with external authentication (§F-C).

A. Individual verifiability

Definition 28 (Collision-free). Suppose Γ = (Gen,Enc,
Dec) is an asymmetric encryption scheme, Σ1 proves correct
key construction, H is a hash function, and m and m′

are message spaces such that m ⊆ m′. Let FS(Σ1,H) =
(ProveKey,VerKey). If for all security parameters k, public
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keys pk , proofs ρ, messages m1,m2 ∈ m, and coins r1 and
r2, we have

VerKey((k, pk ,m′), ρ, k) = 1 ∧ (m1 6= m2 ∨ r1 6= r2)

⇒ Enc(pk ,m1; r1) 6= Enc(pk ,m2; r2)

Then we say Γ is collision-free for m.

Proposition 18. Suppose Γ, Σ1, Σ2, Σ3 and H satisfy the
preconditions of Definition 24. Further suppose that Γ is
collision-free for {0, 1}. We have Helios(Γ,Σ1,Σ2,Σ3,H)
satisfies individual verifiability.

Proof. Let Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,Tally,
Verify), Γ = (Gen,Enc,Dec), and FS(Σ1,H) = (ProveKey,
VerKey). Suppose k is a security parameter, PK T is a public
key, nC is an integer, and β and β′ are choices. Further
suppose b is an output of Vote(PK T , nC , β, k) and b′ is
an output of Vote(PK T , nC , β

′, k) such that b 6= ⊥ and
b′ 6= ⊥. By definition of Vote, we have PK T parses as a
vector (pk ,m, ρ) and VerKey((k, pk ,m), ρ, k) = 1. Moreover,
b[1] is an output of Enc(pk ,m), and b′[1] is an output
of Enc(pk ,m′), where m,m′ ∈ {0, 1}. Furthermore, the
ciphertexts are constructed using coins chosen uniformly at
random—i.e., the coins used by b[1] and b′[1] will be distinct
with overwhelming probability. Since Γ is collision-free for
{0, 1}, we have b[1] 6= b′[1] and b 6= b′ with overwhelming
probability, concluding our proof.

B. Universal verifiability

Lemma 19. Suppose Γ, Σ1, Σ2, Σ3 and H satisfy the
preconditions of Definition 24. Further suppose Γ is collision-
free for {0, 1}. We have Helios(Γ,Σ1,Σ2,Σ3,H) satisfies
Injectivity.

The proof of Lemma 19 is similar to the proof of Proposi-
tion 18.

Proof. Let Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,Tally,
Verify), Γ = (Gen,Enc,Dec), and FS(Σ1,H) = (ProveKey,
VerKey). Suppose k is a security parameter, PK T is a public
key, nC is an integer, and β and β′ are choices such that β 6=
β′. Further suppose b is an output of Vote(PK T , nC , β, k)
and b′ is an output of Vote(PK T , nC , β

′, k) such that b 6= ⊥
and b′ 6= ⊥. By definition of Vote, we have PK T is a vector
(pk ,m, ρ) and VerKey((k, pk ,m), ρ, k) = 1. Moreover, there
exist coins r and r′ such that

b[1] = Enc(pk ,m; r), where m =

{
1 if β = 1
0 otherwise

and

b′[1] = Enc(pk ,m′; r′), where m′ =

{
1 if β′ = 1
0 otherwise

Since β 6= β′, we have m 6= m′. And, since Γ if collision-
free for {0, 1}, we have b[1] 6= b′[1] and, therefore, b 6= b′,
concluding our proof.

Proposition 20. Suppose Γ, Σ1, Σ2, Σ3 and H satisfy the
preconditions of Definition 24. Further suppose Γ is perfectly
correct, perfectly homomorphic, and collision-free for {0, 1},
Σ1, Σ2 and Σ3 satisfy special soundness and special honest
verifier zero-knowledge, and H is a random oracle. We have
Helios(Γ,Σ1,Σ2,Σ3,H) satisfies universal verifiability.

Proof. Let Π = Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,
Tally,Verify), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,
H) = (ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,
VerDec). By Theorem 14, each of the non-interactive proof
systems satisfies simulation sound extractability.

Suppose k is a security parameter and A is a PPT adversary.
Further suppose that an execution of Exp-UV-Ext(Π,A, k)
computes

(PK T ,BB , nC ,X, P )← A(k);

Y ← correct-tally(PK T ,BB , nC , k)

such that Verify(PK T ,BB , nC ,X, P, k) = 1. (If Verify(
PK T ,BB , nC ,X, P, k) 6= 1, then we can conclude imme-
diately.) We focus on the case nC > 1; the case nC = 1 is
similar.

By definition of the verification algorithm, vector X is of
length nC and P is a vector of length nC−1. Moreover, PK T
is a vector (pk ,m, ρ). Let {b1, . . . , b`} be the largest subset of
BB such that for all 1 ≤ i ≤ ` we have bi is a vector of length
2 ·nC − 1 and

∧nC−1
j=1 VerCiph((pk , bi[j], {0, 1}), bi[j+nC −

1], j, k) = 1∧VerCiph((pk , bi[1]⊗· · ·⊗bi[nC−1], {0, 1}), bi[2·
nC − 1], nC , k) = 1.

We have for all choices β ∈ {1, . . . , nC}, coins r and
ballots b = Vote(PK T , nC , β, k; r) that b 6∈ BB \{b1, . . . , b`}
with overwhelming probability, since such an occurrence
would imply a contradiction: {b1, . . . , b`} is not the largest
subset of BB satisfying the conditions given by the tally
algorithm, because b is a vector of length 2 · nC − 1 such
that

∧nC−1
j=1 VerCiph((pk , b[j], {0, 1}), b[j + nC − 1], j, k) =

1 ∧ VerCiph((pk , b[1] ⊗ · · · ⊗ b[nC − 1], {0, 1}), b[2 · nC −
1], nC , k) = 1 with overwhelming probability, but b 6∈
{b1, . . . , b`}. It follows that:

correct-tally(PK T ,BB , nC , k)

= correct-tally(PK T , {b1, . . . , b`}, nC , k) (1)

A proof of (1) follows from the definition of function
correct-tally . If {b1, . . . , b`} = ∅, then Y is a vector of
length nC such that

∧nC

j=1 Y[j] = 0 by definition of function
correct-tally and (1), and, since

∧nC

i=jX[j] = 0, we have
X = Y by definition of the verification algorithm, hence,
Exp-UV-Ext(Π,A, k) outputs 0 with overwhelming probabil-
ity and Succ(Exp-UV-Ext(Π,A, k)) is negligible, concluding
our proof. Otherwise ({b1, . . . , b`} 6= ∅), we proceed as
follows.

By definition of the verification algorithm, we have
VerKey((k, pk ,m), ρ, k) = 1. Moreover, by simulation sound
extractability, we are assured that pk is an output of Gen with
overwhelming probability—i.e., there exists s and sk such that
(pk , sk ,m) = Gen(k; s).
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By simulation sound extractability, with overwhelming
probability, for all 1 ≤ i ≤ ` there exists messages mi,1,
. . . ,mi,nC−1 ∈ {0, 1} and coins ri,1, . . . , ri,2·nC−2 such that
for all 1 ≤ j ≤ nC − 1 we have

bi[j + nC − 1] = ProveCiph((pk , bi[j], {0, 1}),
(mi,j , ri,j), j, k; ri,j+nC−1)

and
bi[j] = Enc(pk ,mi,j ; ri,j).

Moreover, for all 1 ≤ i ≤ ` we have
∑nC−1
j=1 mi,j ∈ {0, 1}

and there exist coins ri,2·nC−1 such that

bi[2 · nC − 1] = ProveCiph(pk , c, {0, 1}),
(m, r), nC , k; ri,2·nC−1)

with overwhelming probability, where c← bi[1]⊗· · ·⊗bi[nC−
1], m← mi,1� · · · �mi,nC−1, and r ← ri,1⊕ · · · ⊕ ri,nC−1.

By inspection of Vote, for all 1 ≤ i ≤ ` there exists βi, ri
such that

bi = Vote(PK T , nC , βi, k; ri)

and either βi = nC ∧
∧nC−1
j=1 mi,j = 0 or βi ∈ {1, . . . , nC −

1} ∧ mi,βi
= 1 ∧

∧
j∈{1,...,βi−1,βi+1,...,nC−1}mi,j = 0. It

follows for all 1 ≤ i ≤ ` and 1 ≤ j ≤ nC − 1 that:

mi,j = 0⇐⇒ βi = nC ∨ βi 6= j (2)

mi,j = 1⇐⇒ βi = j (3)

Moreover, for all 1 ≤ i ≤ ` we have:
nC−1∑
j=1

mi,j = 0⇐⇒ βi = nC (4)

Furthermore, we have the following facts:

Fact 1. For all integers β and n such that 1 ≤ β ≤ nC , we
have:

∃=nb ∈ ({b1, . . . , b`} \ {⊥}) :

∃r : b = Vote(PK T , nC , β, k; r)

⇐⇒ ∃=ni ∈ {1, . . . , `} : β = βi

Fact 2. For all integers j and n such that 1 ≤ j ≤ nC − 1,
we have:

∃=ni ∈ {1, . . . , `} : βi = j ⇐⇒ n =
∑̀
i=1

mi,j

Proof of Fact 2. For the forward implication, suppose j, n are
integers such that 1 ≤ j ≤ nC − 1 and ∃=ni ∈ {1, . . . , `} :
βi = j. We proceed by induction on `. In the base case (` = 0),
we have n = 0, hence, n =

∑`
i=1mi,j . In the inductive case,

we distinguish two cases. Case I: ∃=ni ∈ {1, . . . , ` − 1} :
βi = j holds. We have β` 6= j by definition of the counting
quantifier and, hence, mi,j = 0 by (2). By our induction
hypothesis, we derive n =

∑`−1
i=1 mi,j =

∑`
i=1mi,j . Case II:

∃=ni ∈ {1, . . . , `−1} : βi = j does not hold. We have β` = j
by definition of the counting quantifier and, hence, mi,j = 1

by (3). Moreover, we have ∃=n−1i ∈ {1, . . . , `− 1} : βi = j
holds. By our induction hypothesis, we derive n − 1 =∑`−1
i=1 mi,j , that is, n =

∑`
i=1mi,j .

For the reverse implication, suppose j, n are integers such
that 1 ≤ j ≤ nC − 1 and n =

∑`
i=1mi,j . We proceed by

induction on `. In the base case (` = 0), we have n = 0,
hence, ∃=ni ∈ {1, . . . , `} : βi = j. In the inductive case,
we distinguish two cases. Case I: n =

∑`−1
i=1 mi,j . We have

m`,j = 0, hence, β` 6= j by (2). By our induction hypothesis,
we have ∃=ni ∈ {1, . . . , ` − 1} : βi = j. Since β` 6= j, the
result follows. Case II: n 6=

∑`−1
i=1 mi,j . Since m`,j ∈ {0, 1},

we have m`,j = 1, hence, β` = j by (3). Moreover, we have
n − 1 =

∑`−1
i=1 mi,j . By our induction hypothesis, we derive

∃=n−1i ∈ {1, . . . , `− 1} : βi = j. The result follows.

Fact 3. For all integers n, we have

∃=ni ∈ {1, . . . , `} : βi = nC ⇐⇒ n = `−
nC−1∑
j=1

∑̀
i=1

mi,j

Proof of Fact 3. For the forward implication, suppose ∃=ni ∈
{1, . . . , `} : βi = nC . We proceed by induction on `.
In the base case (` = 0), we have n = 0, hence,
n = ` −

∑nC−1
j=1

∑`
i=1mi,j . In the inductive case, we

distinguish two cases. Case I: ∃=ni ∈ {1, . . . , ` − 1} :
βi = nC holds. We have β` 6= nC by definition of
the counting quantifier and we derive

∑nC−1
j=1 m`,j 6= 0

by (4). Moreover, since
∑nC−1
j=1 m`,j ∈ {0, 1}, we have∑nC−1

j=1 m`,j = 1. By our induction hypothesis, we derive
n = ` − 1 −

∑nC−1
j=1

∑`−1
i=1 mi,j = ` −

∑nC−1
j=1

∑`
i=1mi,j .

Case II: ∃=ni ∈ {1, . . . , ` − 1} : βi = nC does not hold.
We have β` = nC by definition of the counting quantifier
and we derive

∑nC−1
j=1 mi,j = 0 by (4). Moreover, we have

∃=n−1i ∈ {1, . . . , ` − 1} : βi = nC holds. By our induction
hypothesis, we derive n−1 = `−1−

∑nC−1
j=1

∑`−1
i=1 mi,j , that

is, n = `−
∑nC−1
j=1

∑`−1
i=1 mi,j = `−

∑nC−1
j=1

∑`
i=1mi,j .

For the reverse implication, suppose n = ` −∑nC−1
j=1

∑`
i=1mi,j . We proceed by induction on `. In the base

case (` = 0), we have n = 0, hence, ∃=ni ∈ {1, . . . , `} : βi =
nC . In the inductive case, we distinguish two cases. Case I:
n = ` − 1 −

∑nC−1
j=1

∑`−1
i=1 mi,j . We have

∑nC−1
j=1 m`,j = 1.

Since m`,1, . . . ,m`,nC−1 ∈ {0, 1}, there exists j such that
1 ≤ j ≤ nC − 1 and m`,j = 1, moreover, β` = j by
(3), hence, β` 6= nC . By our induction hypothesis, we derive
∃=ni ∈ {1, . . . , `− 1} : βi = nC . The result follows. Case II:
n 6= `− 1−

∑nC−1
j=1

∑`−1
i=1 mi,j . Since

∑nC−1
j=1 m`,j ∈ {0, 1},

we have
∑nC−1
j=1 m`,j = 0, and we derive βi = nC by (4).

Moreover, we have n − 1 = ` − 1 −
∑nC−1
j=1

∑`−1
i=1 mi,j . By

our induction hypothesis, we derive ∃=n−1i ∈ {1, . . . , `− l} :
βi = nC . The result follows.

We proceed the proof of Proposition 20 using the above facts.
By definition of the verification algorithm, we have∧nC−1
j=1 VerDec((pk , b1[j] ⊗ · · · ⊗ b`[j],X[j]), P [j], k) = 1 ∧

X[nC ] = `−
∑nC−1
j=1 X[j]. By simulation sound extractability,

we have for all 1 ≤ j ≤ nC − 1 that X[j] = Dec(sk , b1[j]⊗
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· · · ⊗ b`[j]) with overwhelming probability. Although, public
key pk may not have been constructed using coins chosen uni-
formly at random, we nevertheless have for all 1 ≤ j ≤ nC−1
that b1[j] ⊗ · · · ⊗ b`[j] is a ciphertext with overwhelming
probability, because Γ is perfectly homomorphic. Similarly,
for all 1 ≤ j ≤ nC − 1, although ciphertext b1[j]⊗ · · · ⊗ b`[j]
may not have been constructed using coins chosen uniformly at
random nor using a public key that was constructed using coins
chosen uniformly, and although private key sk may not have
been constructed using coins chosen uniformly, we have Dec(
sk , b1[j]⊗· · ·⊗b`[j]) = m1,j�· · ·�m`,j with overwhelming
probability, because Γ is perfectly correct. Let mB be the
largest integer such that {0, . . . ,mB} ⊆ m. By definition of
the verification algorithm, we have ` ≤ mB . It follows that
m1,j � · · · �m`,j =

∑`
i=1mi,j , hence,

X[j] =
∑̀
i=1

mi,jr

with overwhelming probability. By definition of function
correct-tally , (1) and Fact 1, we have Y is a vector of length
nC such that for all 1 ≤ β ≤ nC we have

Y[β] = n if ∃=ni ∈ {1, . . . , `} : β = βi

It follows by Facts 2 and 3 that for all 1 ≤ β ≤ nC
we have X[β] = Y[β] with overwhelming probability,
hence, X = Y with overwhelming probability, therefore,
Exp-UV-Ext(Π,A, k) outputs 0 with overwhelming probabil-
ity and Succ(Exp-UV-Ext(Π,A, k)) is negligible, concluding
our proof.

Proposition 21. Suppose Γ, Σ1, Σ2, Σ3 and H satisfy the
preconditions of Definition 24. Further suppose Σ2 satisfies
special soundness and special honest verifier zero-knowledge,
and H is a random oracle. We have Helios(Γ,Σ1,Σ2,Σ3,H)
satisfies Completeness.

Proof. Let Helios(Γ,Σ1,Σ2,Σ3,H) = (Setup,Vote,Tally,
Verify), FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) =
(ProveCiph,VerCiph), and FS(Σ3,H) = (ProveDec,
VerDec). Suppose k is a security parameter and A is a
PPT adversary. Further suppose (PK T ,SK T ,mB ,mC ) is an
output of Setup(k), (BB , nC) is an output of A(PK T , k),
and (X, P ) is an output of Tally(SK T ,BB , nC , k). Moreover,
suppose |BB | ≤ mB . We focus on the case nC > 1;
the case nC = 1 is similar. By definition of Setup, there
exist coins s such that (pk , sk ,m) = Gen(k; s), PK T =
(pk ,m, ρ), SK T = (pk , sk) and mB is the largest integer
such that {0, . . . ,mB} ⊆ {0} ∪ m, where ρ is an output
of ProveKey((k, pk ,m), (sk , s), k). By definition of Tally,
we have X is a vector of length nC and P is a vector
of length nC − 1. It follows that Verify can successfully
parse X, P , and PK T . Moreover, by the completeness of
(ProveKey,VerKey), we have VerKey((k, pk ,m), ρ, k) = 1
with overwhelming probability. Let {b1, . . . , b`} be the largest
subset of BB satisfying the conditions given by the tally
algorithm. If {b1, . . . , b`} = ∅, then X is a zero-filled vector

and Verify outputs 1, concluding our proof, otherwise, we
proceed as follows. Since {b1, . . . , b`} is a subset of BB , we
have ` ≤ mB . By definition of Tally, we have for all 1 ≤ i ≤ `
that

∧nC−1
j=1 VerCiph((pk , bi[j], {0, 1}), bi[j+nC − 1], j, k) =

1. By Theorem 14, we have (ProveCiph,VerCiph) satisfies
simulation sound extractability, hence, for all 1 ≤ i ≤ `
and all 1 ≤ j ≤ nC − 1 we have bi[j] is a ciphertext with
overwhelming probability. And, because Γ is homomorphic,
we have b1[j] ⊗ · · · ⊗ b`[j] is also a ciphertext with over-
whelming probability. By definition of Tally and completeness
of (ProveDec,VerDec), we have

∧nC−1
j=1 VerDec((pk , b1[j]⊗

· · · ⊗ b`[j],X[j]), P [j], k) = 1 ∧ X[nC ] = ` −
∑nC−1
j=1 X[j]

with overwhelming probability, hence, Verify outputs 1 with
overwhelming probability, concluding our proof.

C. Proof: Theorem 5

By Propositions 18, 20 & 21 and Lemma 19, election
schemes constructed from generalized Helios satisfy election
verifiability with external authentication:

Corollary 22. Suppose Γ, Σ1, Σ2, Σ3 and H satisfy the
preconditions of Definition 24. Further suppose that Γ is
perfectly correct, perfectly homomorphic and collision-free for
{0, 1}, Σ1, Σ2 and Σ3 satisfy special soundness and special
honest verifier zero-knowledge, and H is a random oracle. We
have Helios(Γ,Σ1,Σ2,Σ3,H) satisfies election verifiability
with external authentication.

Proof of Theorem 5. Let Helios’16 be the set of election
schemes derived from Helios(Γ,Σ1,Σ2,Σ3,H), where primi-
tives Γ, Σ1, Σ2, Σ3 and H satisfy the conditions identified in
Corollary 22. Hence, Theorem 5 is an immediate consequence
of Corollary 22

A non-interactive proof system (ProveKey,VerKey) derived
from a sigma protocol for proving correct key construction is
sufficient to ensure that additively homomorphic El Gamal [56,
§2] is collision-free (Lemma 23), assuming algorithm VerKey
guarantees that public keys are constructed from suitable
parameters: if VerKey((k, pk ,m), ρ, k) = 1, then there exists
p, q, g and h such that pk = (p, q, g, h) and (p, q, g) are
cryptographic parameters—i.e., p = 2 · q + 1, |q| = k, and
g is a generator of Z∗p of order q. Thus, since El Gamal
is perfectly correct and perfectly homomorphic, we have
additively homomorphic El Gamal is a suitable asymmetric
encryption scheme to instantiate Helios’16.

Lemma 23. Suppose Σ1 is a sigma protocol that proves
correct key construction and H is a hash function. Let FS(Σ1,
H) = (ProveKey,VerKey). Further suppose for all security
parameters k, public keys pk , message spaces m, and proofs
ρ, we have VerKey((k, pk ,m), ρ, k) = 1 implies h 6= 0
and there exists p, q, g and h such that pk = (p, q, g, h)
and (p, q, g) are cryptographic parameters. It follows that
additively homomorphic El Gamal is collision-free for {0, 1}.

Proof. Suppose k is a security parameter, pk is a public key,
ρ is a proof, m1,m2 ∈ {0, 1} are messages and r1 and
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r2 are coins such that VerKey((k, pk ,m), ρ, k) = 1, m1 6=
m2∨ r1 6= r2, pk = (p, q, g, h) and (p, q, g) are cryptographic
parameters, for some p, q, g and h. Further suppose that
c1 and c2 are ciphertexts such that c1 = Enc(pk ,m1; r1),
c2 = Enc(pk ,m2; r2), and Enc is El Gamal’s encryption
algorithm. If r1 6= r2, then we proceed as follows. By def-
inition of Enc, we have c1[1] = gr1 (mod p) and c2[1] = gr2

(mod p). Since r1 and r2 are distinct, we have gr1 6≡ gr2

(mod p). (We implicitly assume that coins r1 and r2 are
selected from the coin space Z∗q , hence, gr1 = gr1 mod p
and gr2 = gr2 mod p.) It follows that c1 6= c2. Otherwise
(r1 = r2), we have m1 6= m2 and we proceed as follows.
By definition of Enc, we have c1[2] = hr1 · gm1 (mod p) and
c2[2] = hr2 · gm2 (mod p). Since (p, q, g) are cryptographic
parameters and h 6= 0, we have hr1 6≡ hr1 ·g (mod p), which
is sufficient to conclude, because m1,m2 ∈ {0, 1}.

The sigma protocol for proving knowledge of discrete
logarithms by Chaum et al. [37, Protocol 2] does not ex-
plicitly require the suitability of cryptographic parameters to
be checked, hence, Lemma 23 is not immediately applicable.
Nonetheless, we can trivially make the necessary checks
explicit and, hence, the non-interactive proof system derived
from the sigma protocol for proving knowledge of discrete
logarithms by Chaum et al. is sufficient to ensure that El
Gamal is collision-free for {0, 1}. We can also trivially include
the checks proposed by Chang-Fong & Essex [32, §4]. These
modificiations should suffice to ensure special soundness and
special honest verifier zero-knowledge. Similarly, it should be
possible to modify the sigma protocols for proving knowledge
of disjunctive equality between discrete logarithms by Cramer
et al. [55, Figure 1] and for proving knowledge of equality
between discrete logarithms by Chaum and Pedersen [38, §3.2]
to ensure that they satisfy special soundness and special honest
verifier zero-knowledge. Thus, the modified sigma protocols
should be suitable to instantiate Helios’16.

APPENDIX G
PROOF: Exp-EV-Int⇒ Exp-IV-Int

Our eligibility verifiability experiment (§IV-B3) asserts that
no one can construct a ballot that appears to be associated
with public credential pk unless they know private credential
sk . It follows that a voter can uniquely identify their ballot
on the bulletin board, because no one else knows their private
credential. Eligibility verifiability therefore implies individual
verifiability (Theorem 7).

Our proof of Theorem 7 is reliant on distinct credentials,
which is an consequence of eligibility verifiability:

Lemma 24. If an election scheme Π satisfies strong eligibility
verifiability, then there exists a negligible function µ, such that
for all security parameters k, we have

Pr [(PK T ,SK T ,mB ,mC )← Setup(k);

(pk0, sk0)← Register(PK T , k);

(pk1, sk1)← Register(PK T , k) :

sk0 = sk1] ≤ µ(k)

Proof. Suppose an election scheme Π satisfies Exp-EV-Int,
but

Pr [(PK T ,SK T ,mB ,mC )← Setup(k);

(pk0, sk0)← Register(PK T , k);

(pk1, sk1)← Register(PK T , k) :

sk0 = sk1] ≥ 1

p(k)

for some polynomial function p and security parameter k.
Then we can construct an adversary A that wins Exp-EV-Int
as follows. Adversary A is given input k and runs Setup
to obtain a key pair (PK T ,SK T ), chooses some positive
integer nV , and outputs (PK T , nV ). The challenger then
generates nV key pairs and gives the set L of public keys
to A. Now A simply runs Register(PK T , k) to get a key
pair (pk , sk), chooses some positive integers nC and β such
that 1 ≤ β ≤ nC , computes b ← Vote(sk ,PK T , nC , β, k),
and outputs (nC , b). We know that secret keys generated by
Register collide with probability at least 1

p(k) , so Register

must generate a particular secret key sk ′ with probability
1

p(k) . Therefore, this sk ′ will correspond to one of the public
keys in L with probability nV

p(k) . Furthermore, the key sk

generated by the adversary will be sk ′ with probability 1
p(k) .

Therefore, b will be a vote constructed under a voter’s secret
key with probability nV

p(k)2 , so A wins the experiment with
non-negligible probability.

A. Proof: Theorem 7

Suppose there exists an adversary A′ that wins
Exp-IV-Int(Π,A′, k) with probability 1

p(k) for some poly-
nomial function p. Then we can construct an adversary A
that wins Exp-EV-Int(Π,A, k) with non-negligible probability.
Adversary A is given k as input, which it passes to A′. Adver-
sary A′ may ask for secret keys from its oracle C, in which
case A forwards these queries to its own, identical oracle. Ad-
versary A then forwards the oracle’s response back to A′. Ad-
versary A′ then outputs (PK T , nV ), which is then output by
A. Next, A is given the public keys (pk1, . . . , pknV

). Adver-
sary A passes these keys to A′, which returns (nC , β, β

′, i, j).
Any oracle queries made by A′ are handled exactly as be-
fore. Now A queries its oracle C on i. The oracle returns
ski. Adversary A computes b = Vote(sk i,PK T , nC , β) and
outputs (nC , β

′, j, b). Adversary A′ wins Exp-IV-Int(Π,A,
k) with non-negligible probability, so with non-negligible
probability b = Vote(sk j ,PK T , nC , β

′) and A′ (and therefore
A) did not query the oracle on input j. Adversary A only
makes one additional oracle query on input i, so again, A
does not query the oracle on j. Furthermore, by Lemma 24,
ski = skj with only negligible probability. Therefore A wins
Exp-EV-Int(Π,A, k) with probability 1

p(k) − negl(k).

APPENDIX H
VARIANT OF Exp-EV-Int-Weak
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Our weak election verifiability experiment with internal
authentication (§VI) can be equivalently formulated as an
experiment with just one voter:

Exp-EV-Int-Weak′(Π,A, k) =

(PK T ,SK T ,mB ,mC)← Setup(k);1

(pk , sk)← Register(PK T , k);2

Rvld ← ∅;3

(nC , β, b)← AR
′
(PK T , pk , k);4

if ∃r : b = Vote(sk ,PK T , nC , β, k; r) ∧ b 6= ⊥ ∧5

b 6∈ Rvld then
return 16

else7

return 08

Oracle R′ is similar to oracle R in Exp-EV-Int-Weak.
On invocation R′(β, nC), oracle R′ computes b ←
Vote(sk ,PK T , nC , β, k);Rvld ← Rvld ∪ {b} and outputs b.

Lemma 25. Given an election scheme Π, we have

∀A ∃µ ∀k . Succ(Exp-EV-Int-Weak(Π,A, k)) ≤ µ(k)

⇔ ∀A′ ∃µ′ ∀k′ . Succ(Exp-EV-Int-Weak′(Π,A′, k′)) ≤ µ′(k′),

where A and A′ are PPT adversaries, µ and µ′ are negligible
functions, and k and k′ are security parameters.

A proof of the forward implication is straightforward, so we
omit formalzing a proof. The reverse implication is formally
proved below.

Proof. Suppose there exists an adversary A that wins
Exp-EV-Int-Weak with non-negligible probability. Let us con-
struct an adversary B against Exp-EV-Int-Weak′.
• B(PK T , pk , k) computes

nV ← A(PK T , k);
i∗ ←R {1, . . . , nV };
pk i∗ ← pk ;
for i ∈ {1, . . . , i∗ − 1, i∗ + 1, . . . , nV } do

(pk i, sk i)← Register(PK T , k);

L← {pk1, . . . , pknV
};

(nC , β, i, b)← A(L);
return (nC , β, b)

responding to A’s oracle calls R(i, β, nC) by computing
if i = i∗ then b ← R′(β, nC) else b ← Vote(sk i,
PK T , nC , β, k) and returning b, and oracle calls C(i)
by returning ski if i 6= i∗ and aborting otherwise.

We prove that B wins Exp-EV-Int-Weak′ with non-negligible
probability.

Suppose (PK T ,SK T ,mB ,mC) is an output of Setup(k)
and (pk , sk) is an output of Register(PK T , k). Further sup-
pose we compute B(PK T , pk , k). If B does not abort, then
it is trivial to see that B wins Exp-EV-Int-Weak′ with non-
negligible probability, because B simulates A’s challenger and
oracles to A. Hence, it suffices to prove that B does not
abort with non-negligible probability. Suppose nV is an output
of A(PK T , k). If nV = 1, then B aborts with negligible

probability, otherwise, B aborts with probability less than
1
nV

. Thus, B does not abort with non-negligible probability,
concluding our proof.

APPENDIX I
GENERALIZED JCJ SCHEME

We formalize a generic construction for JCJ-like election
schemes (Definition 30). Our construction is parameterized
on the choice of homomorphic encryption scheme and sigma
protocols, using the relations introduced in the following
definition.60

Definition 29. Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for a
binary relation R. Suppose (pk , sk ,m) = Gen(k; r), for some
security parameter k and coins r.

• Σ proves conjunctive plaintext knowledge if ((pk , c1,
. . . , ck), (m1, r1, . . . ,mk, rk)) ∈ R ⇔

∧
1≤i≤k ci =

Enc(pk ,mi; ri) ∧ mi ∈ m.
• Σ is a plaintext equivalence test (PET) if ((pk , c, c′, i),

sk) ∈ R ⇔
((
i = 0 ∧ Dec(sk , c) 6= Dec(sk , c′)

)
∨(

i = 1 ∧Dec(sk , c) = Dec(sk , c′)
))
∧Dec(sk , c) 6= ⊥∧

Dec(sk , c′) 6= ⊥.
• Σ is a mixnet if ((pk , c, c′), (r, χ)) ∈ R ⇔∧

1≤i≤|c| c
′[i] = c[χ(i)] ⊗ Enc(pk , e; r[i]) ∧ |c| = |c′| =

|r|, where r is a vector of coins, χ is a permutation on
{1, . . . , |c|}, and e is an identity element of the encryption
scheme’s message space with respect to �.

Definition 30 (Generalized JCJ). Suppose Γ = (Gen,Enc,
Dec) is a multiplicatively homomorphic asymmetric encryp-
tion scheme with a message space over Z∗m for some in-
teger m that is super-polynomial in the security param-
eter, e is an identity element of Γ’s message space with
respect to �, Σ1 proves correct key construction, Σ2 proves
plaintext knowledge in a subspace, Σ3 proves conjunctive
plaintext knowledge, Σ4 proves correct decryption, Σ5 is
a PET, Σ6 is a mixnet, and H is a hash function. Let
FS(Σ1,H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,
VerCiph), FS(Σ3,H) = (ProveBind,VerBind), FS(Σ4,H) =
(ProveDec,VerDec), FS(Σ5,H) = (ProvePET,VerPET),
and FS(Σ6,H) = (ProveMix,VerMix). We define generalized
JCJ as JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,H) = (Setup,Register,
Vote,Tally,Verify):

• Setup(k). Select coins r uniformly at random, compute
(pkT , skT ,m) ← Gen(k; r); ρ ← ProveKey((k, pkT ,m),
(skT , r), k);PK T ← (pkT ,m, ρ);SK T ← (pkT , skT );
mC ← |m|, and output (PK T ,SK T , poly(k),mC).

• Register(PK T , k). Parse PK T as (pkT ,m, ρ), out-
putting (⊥,⊥) if parsing fails or VerKey((k, pkT ,m),
ρ, k) 6= 1. Compute d ←R m; pd ← Enc(pkT , d) and
output (pd, d).

60. For brevity, the encryption scheme’s message space m is assumed to be
{1, . . . , |m|}.
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• Vote(d,PK T , nC , β, k). Parse PK T as a vector (pkT ,
m, ρ), outputting ⊥ if parsing fails or VerKey((k, pkT ,
m), ρ, k) 6= 1 ∨ β 6∈ {1, . . . , nC} ∨ {1, . . . , nC} 6⊆ m.
Select coins r1 and r2 uniformly at random, and compute
c1 ← Enc(pkT , β; r1);
c2 ← Enc(pkT , d; r2);
σ ← ProveCiph((pkT , c1, {1, . . . , nC}), (β, r1), k);
τ ← ProveBind((pkT , c1, c2), (β, r1, d, r2), k);

Output ballot (c1, c2, σ, τ).
• Tally(SK T ,BB , L, nC , k). Parse SK T as (pkT , skT ).

Initialize X as a zero-filled vector of length nC , and P
as a vector of length 9. Proceed as follows.

1) Remove invalid ballots: Let {b1, . . . , b`} be the largest
subset of BB such that b1 < · · · < b` and for
all 1 ≤ i ≤ ` we have bi is a vector of length 4
and VerCiph((pkT , bi[1], {1, . . . , nC}), bi[3], k) = 1 ∧
VerBind((pkT , bi[1], bi[2]), bi[4], k) = 1. If {b1, . . . ,
b`} = ∅, then output (X,P).

2) Eliminating duplicates: Initialize Pdupl as a vec-
tor of length `. For each 1 ≤ i ≤ `, if there
exists j ∈ {1, . . . , i− 1, i+ 1, . . . , `} such that
VerPET((pkT , bi[2], bj [2], 1), σ, k) = 1 for some out-
put σ of ProvePET((pkT , bi[2], bj [2], 1), skT , k), then
assign Pdupl[i] ← (j, σ), otherwise, compute σj ←
ProvePET((pkT , bi[2], bj [2], 0), skT , k) for each j ∈
{1, . . . , i− 1, i+ 1, . . . , `} and assign Pdupl[i] ←
(0, σ1, . . . , σi−1, σi+1, . . . , σ`). Initialize BB as the
empty vector and compute for 1 ≤ i ≤ ` ∧
Pdupl[i][1] = 0 do BB ← BB ‖ (bi), where
BB ‖ (bi) denotes the concatenation of vectors BB
and (bi)—i.e., BB ‖ (bi) = (BB[1], . . . ,BB[|BB|],
bi).

3) Mixing: Suppose BB = (b′1, . . . , b
′
|BB|), select a

permutation χ on {1, . . . , |BB|} uniformly at random,
initialize C1, C2, r1 and r2 as vectors of length |BB|,
and fill r1 and r2 with coins chosen uniformly at
random. Compute

for 1 ≤ i ≤ |BB| do
C1[i]← b′χ(i)[1]⊗ Enc(pkT , e; r1[i]);
C2[i]← b′χ(i)[2]⊗ Enc(pkT , e; r2[i]);

BB1 ← (b′1[1], . . . , b′|BB|[1]);
BB2 ← (b′1[2], . . . , b′|BB|[2]);
Pmix,1 ← ProveMix((pkT ,BB1,C1), (r1, χ), k);
Pmix,2 ← ProveMix((pkT ,BB2,C2), (r2, χ), k);

Similarly, suppose L = {pd1, . . . , pd|L|} such that
pd1 < · · · < pd|L|, select a permutation χ′ on
{1, . . . , |L|} uniformly at random, initialize C3 and
r3 as vectors of length |L|, fill r3 with coins chosen
uniformly at random, and compute

for 1 ≤ i ≤ |L| do
C3[i]← pdχ′(i) ⊗ Enc(pkT , e; r3[i]);

pd← (pd1, . . . , pd|L|);
Pmix,3 ← ProveMix((pkT ,pd,C3), (r3, χ

′), k);

4) Remove ineligible ballots: Initialize Pinelig as a vector
of length |C2|. For each 1 ≤ i ≤ |C2|, if there
exists j ∈ {1, . . . , |C3|} such that VerPET((pkT ,
C2[i],C3[j], 1), σ, k) = 1 for some output σ of
ProvePET((pkT ,C2[i],C3[j], 1), skT , k), then com-
pute Pinelig[i] ← (j, σ), otherwise, compute σj ←
ProvePET((pkT ,C2[i],C3[j], 0), skT , k) for each j ∈
{1, . . . , |C3|} and assign Pinelig[i] ← (0, σ1, . . . ,
σ|C3|). Initialize C′1 as the empty vector and compute
for 1 ≤ i ≤ ` ∧ Pinelig[i][1] 6= 0 do C′1 ← C′1 ‖
(C1[i]).

5) Decrypting: Initialize Pdec as the empty vector. Com-
pute

for 1 ≤ i ≤ |C′1| do
β ← Dec(skT ,C

′
1[i]);

σ ← ProveDec((pkT ,C
′
1[i], β), skT , k);

X[β]← X[β] + 1;
Pdec ← Pdec ‖ (β, σ);

Assign P ← (Pdupl,C1, Pmix,1,C2, Pmix,2,C3,
Pmix,3,Pinelig,Pdec) and output (X,P).

• Verify(PK T ,BB , L, nC ,X,P, k). Parse PK T as a vec-
tor (pkT ,m, ρ), X as a vector of length nC , and P
as a vector (Pdupl,C1, Pmix,1,C2, Pmix,2,C3, Pmix,3,
Pinelig,Pdec), outputting 0 if parsing fails, VerKey((k,
pkT ,m), ρ, k) 6= 1, or |m| < nC . Perform the following
checks and output 0 if any check does not hold.

1) Check removal of invalid ballots: Compute {b1, . . . , b`}
as per Step 1 of the tallying algorithm. Check that {b1,
. . . , b`} = ∅ implies X is a zero-filled vector.

2) Check duplicate elimination: Check that Pdupl is a
vector of length ` and that for all 1 ≤ i ≤ `, either:
i) Pdupl[i] parses as a vector (j, σ), VerPET((pkT ,
bi[2], bj [2], 1), σ, k) = 1, and j ∈ {1, . . . , i −
1, i + 1, . . . , `}, or ii) Pdupl[i] parses as a vec-
tor (0, σ1, . . . , σi−1, σi+1, . . . , σ`) and for all j ∈
{1 . . . , i−1, i+1, . . . , `} we have VerPET((pkT , bi[2],
bj [2], 0), σj , k) = 1.

3) Check mixing: Compute BB as per Step 2 of the
tallying algorithm. Suppose BB = (b′1, . . . , b

′
|BB|)

and L = {pd1, . . . , pd|L|} such that pd1 < · · · <
pd|L|. Check VerMix((pkT , (b

′
1[1], . . . , b′|BB|[1]),C1),

Pmix,1, k) = 1 ∧ VerMix((pkT , (b
′
1[2], . . . , b′|BB|[2]),

C2), Pmix,2, k) = 1 ∧ VerMix((pkT , (pd1, . . . , pd|L|),
C3), Pmix,3, k) = 1.

4) Check removal of ineligible ballots: Check that Pinelig

is a vector of length |C2| and that for all 1 ≤
i ≤ |C2|, either: i) Pinelig[i] parses as a vector
(j, σ), VerPET((pkT ,C2[i],C3[j], 1), σ, k) = 1, and
j ∈ {1, . . . , |C3|}, or ii) Pinelig[i] parses as a vector
(0, σ1, . . . , σ|C3|) and for all 1 ≤ j ≤ |C3| we have
VerPET((pkT ,C2[i],C3[j], 0), σj , k) = 1.

5) Check decryption: Compute C′1 as per Step 4 of the
tallying algorithm. Check that Pdec parses as a vector
((β1, σ1), . . . , (β|C′1|, σ|C′1|)) such that for all 1 ≤ i ≤
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|C′1| we have VerDec((pkT ,C
′
1[i], βi), σi, k) = 1 and

for all 1 ≤ β ≤ nC we have ∃=X[β]j ∈ {1, . . . , |C′1|} :
β = βj .

Output 1 if all the above checks hold.

The specification of algorithms Setup, Register and Vote
follow from our informal descriptions (§VI). The tallying
algorithm performs the following steps:

1) Remove invalid ballots: The tallier discards any ballots
from the bulletin board for which proofs do not hold.

2) Eliminating duplicates: The tallier performs pairwise
PETs on the encrypted credentials and discard any ballots
for which a test holds, that is, ballots using the same
credential are discarded.61

3) Mixing: The tallier mixes the ciphertexts in the ballots
(i.e., the encrypted choices and the encrypted credentials),
using the same secret permutation for both mixes, hence,
the mix preserves the relation between encrypted choices
and credentials. Let C1 and C2 be the vectors output by
these mixes. The tallier also mixes the public credentials
published by the registrar. Let C3 be the vector output
by this mix.

4) Remove ineligible ballots: The tallier discards ciphertexts
C1[i] from C1 if there is no ciphertext c in C3 such that
a PET holds for c and C2[i], that is, ballots cast using
ineligible credentials are discarded.

5) Decrypting: The tallier decrypts the remaining encrypted
choices in C1 and proves that decryption was performed
correctly. The tallier identifies the winning candidate from
the decrypted choices.

The Verify algorithm checks that each of the above steps has
been performed correctly.

Lemma 26 demonstrates that generalized JCJ is a construc-
tion for election schemes.

Lemma 26. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6 and
H satisfy the preconditions of Definition 30. We have
JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,H) satisfies Correctness.

Proof. Let JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,H) = (Setup,
Register,Vote,Tally,Verify), Γ = (Gen,Enc,Dec), FS(Σ1,
H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,
VerCiph), and FS(Σ3,H) = (ProveBind,VerBind).

Suppose k is a security parameter, nB and nC are inte-
gers, and β1, . . . , βnB

∈ {1, . . . , nC} are choices. Further
suppose (PK T ,SK T ,mB ,mC) is an output of Setup(k).
Moreover, for all 1 ≤ i ≤ nB suppose (pdi, di) is
an output of Register(PK T , k) and bi is an output of
Vote(di,PK T , nC , βi, k). Further suppose Y is derived by
initializing Y as a zero-filled vector of length nC and com-
puting for 1 ≤ i ≤ nB do Y[βi] ← Y[βi] + 1. If
nB 6≤ mB ∨ nC 6≤ mC , then Correctness is trivially satisfied,
otherwise (nB ≤ mB ∧ nC ≤ mC), we proceed as follows.

By definition of Setup, we have PK T = (pkT ,m, ρ),
SK T = (pkT , skT ), mB = poly(k), and mC = |m|, where
(pkT , skT ,m) = Gen(k; r) and ρ is an output of ProveKey((k,
pkT ,m), (skT , r), k) for some coins r chosen uniformly at

random by Setup. By completeness of (ProveKey,VerKey),
we have VerKey((k, pkT ,m), ρ, k) = 1. And, since Γ has
a message space over Z∗m for some integer m and since
nC ≤ |m|, we have {1, . . . , nC} ⊆ m. Therefore, by defi-
nition of Vote, we have for all 1 ≤ i ≤ nB that bi[1] =
Enc(pkT , βi; ri,1), bi[2] = Enc(pkT , di; ri,2), bi[3] is an out-
put of ProveCiph((pkT , bi[1], {1, . . . , nC}), (βi, ri,1), k), and
bi[4] is an output of ProveBind((pkT , bi[1], bi[2]), (βi, ri,1, d,
ri,2), k), where ri,1 and ri,2 are coins chosen uniformly at
random by Vote. Let us consider the computation of (X, P )
by Tally(SK T , {b1, . . . , bnB

}, {pd1, . . . , pdnB
}, nC , k).

Suppose a subset of {b1, . . . , bnB
} is computed as per Step 1

of algorithm Tally. By completeness of (ProveCiph,VerCiph)
and (ProveBind,VerBind), that subset is {bπ(1), . . . , bπ(nB)},
where π is a permutation on {1, . . . , nB} such that bπ(1) <
· · · < bπ(nB). If nB = 0, then X and Y are both zero-filled
vectors of length nC , and we conclude immediately, otherwise,
we proceed as follows.

Suppose BB is computed as per Step 2 of algorithm Tally.
By definition of Register, we have d1, . . . , dnB

are chosen
uniformly at random from m, where nB ≤ poly(k) and
|m| is super-polynomial in the security parameter. Thus, for
all distinct integers i, j ∈ {1, . . . , nB} we have di 6= dj ,
with overwhelming probability. It follows for all 1 ≤ i ≤
`, all j ∈ {1, . . . , i− 1, i+ 1, . . . , `}, and outputs σ of
ProvePET((pkT , bi[2], bj [2], 1), skT , k) that VerPET((pkT ,
bi[2], bj [2], 1), σ, k) 6= 1, with overwhelming probability.
Thus, BB = (bπ(1), . . . , bπ(nB)).

Suppose C1, C2 and C3 are computed as per Step 3 of
algorithm Tally. We have for all 1 ≤ i ≤ nB that C1[i] =
b′χ(π(i))[1] ⊗ Enc(pkT , e; r1[i]) and C2[i] = b′χ(π(i))[2] ⊗
Enc(pkT , e; r2[i]). Moreover, since Γ is a homomorphic asym-
metric encryption scheme and e is an identity element, we have
for all 1 ≤ i ≤ nB that

C1[i] = Enc(pkT , βχ(π(i)); rχ(π(i)),1 ⊕ r1[i])

C2[i] = Enc(pkT , dχ(π(i)); rχ(π(i)),2 ⊕ r2[i])

Similarly, we have for all 1 ≤ i ≤ nB that

C3[i] = Enc(pkT , dχ′(π′(i)); rχ′(π′(i)) ⊕ r3[i])

where coins r1, . . . , rnB
were used to construct pd1, . . . , pdnB

and π′ is a permutation on {1, . . . , nB} such that pdπ′(1) <
· · · < pdπ′(nB).

Suppose C′1 is computed as per Step 4 of algorithm
Tally. We have for all 1 ≤ i ≤ nB that there exists
j ∈ {1, . . . , nB} such that VerPET((pkT ,C2[i],C3[j], 1),
σ, k) = 1 for some output σ of ProvePET((pkT ,C2[i],
C3[j], 1), skT , k), because C2, respectively C3, is a vec-
tor of ciphertexts on plaintexts dχ(π(1)), . . . , dχ(π(nB)), re-
spectively dχ′(π′(1)), . . . , dχ′(π′(nB)), that is, C2 and C3

61. JCJ defines discarding ballots in accordance with a revoting policy [87,
§4.1]. However, we have shown that JCJ fails to satisfy universal verifiability
when the policy proposed by Juels et al. is adopted (§IV-B2). So, we consider
a policy that discards ballots using the same credential—i.e., choices by voters
that cast multiple ballots will be discarded.
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contain ciphertexts on the same plaintexts. Thus, C′1 =
(C1[1], . . . ,C1[nB ]).

Suppose X is computed as per Step 5 of algorithm Tally,
namely, for 1 ≤ i ≤ nB do β ← Dec(skT ,C

′
1[i]); X[β]←

X[β] + 1. By correctness of Γ, we have for all 1 ≤ i ≤ nB
that Dec(skT ,C

′
1[i]) = βχ(π(i)). Hence, X can be equivalently

computed as for 1 ≤ i ≤ nB do X[βχ(π(i))]← X[βχ(π(i))]+
1. And, since Y is derived by initializing Y as a zero-filled
vector of length nC and computing for 1 ≤ i ≤ nB do
Y[βi] ← Y[βi] + 1, we have X = Y, concluding our proof.

APPENDIX J
PROOF: JCJ IS NOT VERIFIABLE

Generalized JCJ can be instantiate to derive JCJ:

Definition 31 (JCJ [87]). JCJ is JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,
Σ6,H), where Γ is a modified version of El Gamal [65]
invented by Juels et al. [87, §4] that can be seen as a sim-
plified version of Cramer–Shoup [57], Σ1 is the proof of key
construction by Gennaro et al. [69], Σ4 is the conjunction [54]
of two Schnorr proofs [119], Σ5 is the PET by MacKenzie et
al. [102], and H is a random oracle. Juels et al. leave Σ2,
Σ3 and Σ6 unspecified.

Juels et al. [87] do not mandate particular cryptographic prim-
itives, so Definition 31 might be seen more as an instantiation
of their scheme than an exact recollection of it. We assume
that the primitives in Definition 31 satisfy the properties
required by generalized JCJ. We leave formally proving this
assumption as future work. Under this assumption, Lemma 26
demonstrates that JCJ is an election scheme.

Proof of Proposition 9. Let JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,
Σ6,H) = (Setup,Register,Vote,Tally,Verify), FS(Σ1,
H) = (ProveKey,VerKey), FS(Σ2,H) = (ProveCiph,
VerCiph), FS(Σ3,H) = (ProveBind,VerBind), FS(Σ4,H) =
(ProveDec,VerDec), FS(Σ5,H) = (ProvePET,VerPET),
and FS(Σ6,H) = (ProveMix,VerMix). Moreover, let β1 = 1
and β2 = 2. We construct an adversary A (Figure 3) against
the universal verifiability experiment.

Let k be a security parameter such that Γ has a message
space over Z∗m for some integer m such that 1, 2 ∈ Z∗m.
Suppose an execution of Exp-UV-Int computes

(PK T )← A(k);
for 1 ≤ i ≤ nV do (pk i, sk i)← Register(PK T , k);
L← {pk1, . . . , pknV

};
M ← {(pk1, sk1), . . . , (pknV

, sknV
)};

(BB , nC ,X,P)← A(M);
Y ← correct-tally(PK T ,BB ,M, nC , k);

By definition of function correct-tally , we have Y = (1, 0).
Thus, X 6= Y. Let us prove that Verify(PK T ,BB , L, nC ,X,
P, k) = 1.

By definition of A, we have PK T parses as (pkT ,m,
ρ), where ρ is constructed by the adversary using algorithm
ProveKey. It follows by completeness of (ProveKey,VerKey)
that VerKey((k, pkT ,m), ρ, k) = 1. By definition of A, we

Fig. 3 Adversary against JCJ
Given a security parameter k as input, adversary A computes
(PK T ,SK T ,mB ,mC) ← Setup(k);nV ← 1 and outputs
(PK T , nV ). Moreover, given a set of credentials M , adversary
A parses M as set {(pd1, d1)}, PK T as a vector (pkT ,m, ρ),
and SK T as a vector (pkT , skT ), computes
%number of candidates1

nC ← 2;2

%authorized ballot for choice 13

b1 ← Vote(d1,PK T , nC , β1, k);4

%unauthorized ballot for choice 25

(pd2, d2)← Register(PK T , k);6

b2 ← Vote(d2,PK T , nC , β2, k);7

%bulletin board8

BB ← {b1, b2};9

selects permutation π on {1, 2} such that bπ(1) < bπ(2),
initializes vectors C1, C2, r1 and r2 of length 2, initializes
vectors C3 and r3 of length 1, fills r1, r2 and r3 with coins,
selects permutations χ and χ′ on {1, 2} such that χ is the
identity function and χ′ is not, be coins, computes
%proof of duplicate elimination10

σ1 ← ProvePET((pkT , bπ(1)[2], bπ(2)[2], 0), skT , k);11

σ2 ← ProvePET((pkT , bπ(2)[2], bπ(1)[2], 0), skT , k);12

Pdupl ← ((0, σ1), (0, σ2));13

%mix ciphertexts in ballots with14

%distinct permutations15

C1[1]← bχ(π(1))[1]⊗ Enc(pkT , e; r1[1]);16

C1[2]← bχ(π(2))[1]⊗ Enc(pkT , e; r1[2]);17

Pmix,1 ← ProveMix((pkT , (bπ(1)[1], bπ(2)[1]),C1), (r1,18

χ), k);
C2[1]← bχ′(π(1))[2]⊗ Enc(pkT , e; r2[1]);19

C2[2]← bχ′(π(2))[2]⊗ Enc(pkT , e; r2[2]);20

Pmix,2 ← ProveMix((pkT , (bπ(1)[2], bπ(2)[2]),C2), (r2,21

χ′), k);
%mix public crendetials22

C3[1]← pd1 ⊗ Enc(pkT , e; r2[1]);23

Pmix,3 ← ProveMix((pkT , (pd1),C3), (r3, χ), k);24

%proof of ineligible ballots25

τ1 ← ProvePET((pkT ,C2[1],C3[1], π(1)− 1), skT , k);26

τ2 ← ProvePET((pkT ,C2[2],C3[1], π(2)− 1), skT , k);27

Pinelig ← ((π(1)− 1, τ1), (π(2)− 1, τ2));28

%tally29

X← (0, 1);30

%proof of decryption31

σ ← ProveDec((pkT ,C1[π(2)], β2), skT , k);32

Pdec ← ((β2, σ));33

%proof of tallying34

P← (Pdupl,C1, Pmix,1,C2, Pmix,2,C3, Pmix,3,35

Pinelig,Pdec);

and outputs (BB , nC ,X,P).

also have nC = 2, and, since 1 and 2 are elements of Γ’s
message space, we have nC ≤ |m|. Moreover, X parses as
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a vector of length nC and P parses as a vector (Pdupl,
C1, Pmix,1,C2, Pmix,2,C3, Pmix,3,Pinelig,Pdec). Thus, the
initial checks performed by algorithm Verify succeed and we
proceed by proving that checks performed in Steps 1–5 of
Verify also succeed.

By definition of A, we have BB = {b1, b1}, where b1,
respectively b2, is computed using algorithm Vote on inputs
including private crendential d1 and choice β1, respectively
d2 and β2, where d2 is the private credential constructed by
adversary A. Therefore, by definition of Vote, for all i ∈
{1, 2} we have:

bi[1] = Enc(pkT , βi; ri,1),

bi[2] = Enc(pkT , di; ri,2),

bi[3] is an output of ProveCiph((pkT , bi[1], {1, 2}), (βi, ri,1),
k), and b[4] is an output of ProveBind((pkT , bi[1], bi[2]),
(βi, ri,1, di, ri,2), k), where ri,1 and ri,2 are coins chosen
uniformly at random by Vote.

Suppose a subset of BB is computed as per Step 1 of
algorithm Tally. By completeness of (ProveCiph,VerCiph)
and (ProveBind,VerBind), that subset is {bπ(1), bπ(2)}, where
permutation π is selected by adversary A. Thus, the check
holds in Step 1 of Verify.

We have Pdupl is a vector of length 2 such that
Pdupl[1] parses as a vector (0, σ1), where σ1 is an out-
put of ProvePET((pkT , bπ(1)[2], bπ(2)[2], 0), skT , k). By cor-
rectness of Γ, we have Dec(skT , bπ(1)[2]) = dπ(1) and
Dec(skT , bπ(2)[2]) = dπ(2). And, since d1 and d2 were
selected uniformly at random from m, we have d1 6= d2,
with probability greater than negligible, because nC ≤ |m|.
Hence, Dec(skT , bπ(1)[2]) 6= Dec(skT , bπ(2)[2]), with prob-
ability greater than negligible. Moreover, by completeness
of (ProvePET,VerPET), we have VerPET((pkT , bπ(1)[2],
bπ(2)[2], 0), σ1, k) = 1, with probability greater than neg-
ligible. Similarly, Pdupl[1] parses as a vector (0, σ2) and
VerPET((pkT , bπ(2)[2], bπ(1)[2], 0), σ2, k) = 1, with probabil-
ity greater than negligible. Thus, checks hold in Step 2 of
Verify, with probability greater than negligible.

Suppose BB is computed as per Step 2 of the tally-
ing algorithm. Hence, BB = (bπ(1), bπ(2)). By complete-
ness of (ProveMix,VerMix), we have VerMix((pkT , (bπ(1)[1],
bπ(2)[1]),C1), Pmix,1, k) = 1, VerMix((pkT , (bπ(1)[2],
bπ(2)[2]),C2), Pmix,2, k) = 1, and VerMix((pkT , (pd1),C3),
Pmix,3, k) = 1. Thus, checks hold in Step 3 of Verify.

We have for all i ∈ {1, 2} that C2[i] = bχ′(π(i))[2] ⊗
Enc(pkT , e; r2[i]). And, since Γ is homomorphic and e is
an identity element, we have C2[i] = Enc(pkT , dχ′(π(i));
rπ(i),1⊕ r2[i]), hence, Dec(skT ,C2[i]) = dχ′(π(i)). Similarly,
we have C3[1] = pd1⊗Enc(pkT , e; r2[1]), where pd1 is a ci-
phertext on d1 ∈ m constructed by algorithm Register. Hence,
Dec(skT ,C3[1]) = d1. It follows that Dec(skT ,C2[1]) 6=
Dec(skT ,C3[1]) ∧ Dec(skT ,C2[2]) = Dec(skT ,C3[1]) iff
π is an identity function. We have Pinelig = ((π(1) −
1, τ1), (π(2)− 1, τ2)), where τ1 and τ2 are constructed by the
adversary. It follows by completeness of (ProvePET,VerPET)

that VerPET((pkT ,C2[1],C3[1], π(1) − 1), τ1, k) = 1 and
VerPET((pkT ,C2[2],C3[1], π(2) − 1), τ2, k) = 1. Thus,
checks hold in Step 4 of Verify.

Suppose C′1 is computed as per Step 4 of the tallying
algorithm. Hence, C′1 = (C1[π(2)]). We have Pdec = parses
as a vector ((β2, σ)), where σ is constructed by the adversary
using algorithm ProveDec on inputs including C1[π(2)] and
β2. Moreover, since π is a permutation on {1, 2} and χ is
an identity function, we have χ(π(π(2))) = 2, therefore,
C1[π(2)] = b2[1] ⊗ Enc(pkT , e; r1[2]). And, since Γ is ho-
momorphic and e is an identity element, we have C1[π(2)] =
Enc(pkT , β2; r2,1 ⊕ r1[2]), hence, Dec(skT ,C1[π(2)]) = β2.
Therefore, by completeness of (ProveDec,VerDec), we have
VerDec((pkT ,C1[π(2)], β2), σ, k) = 1. Furthermore, since
X = (0, 1), we have for all 1 ≤ β ≤ nC that ∃=X[β]β = β2.
Thus, checks hold in Step 5 of Verify.

We have shown that checks performed in Steps 1–5 of
algorithm Verify all succeed, thus, Verify(PK T ,BB , L, nC ,
X,P, k) = 1, concluding our proof.

APPENDIX K
PROOF: JCJ’16 IS VERIFIABLE

We formalize a variant of the generic construction for JCJ-
like election schemes that uses a mixnet capable of proving
that the relation between encrypted choices and encrypted
credentials is maintained.

Definition 32. Let (Gen,Enc,Dec) be a homomorphic asym-
metric encryption scheme and Σ be a sigma protocol for
a binary relation R. Suppose (pk , sk ,m) = Gen(k; r), for
some security parameter k and coins r. We say Σ is a
mixnet on pairs if ((pk , c1, c

′
1, c2, c

′
2), (r1, r2, χ)) ∈ R ⇔∧

1≤i≤|c1|,j∈{1,2} c
′
j[i] = cj[χ(i)] ⊗ Enc(pk , e; rj[i]) ∧ |c1| =

|c′1| = |c2| = |c′2| = |r1| = |r2|, where c1, c′1, c2 and c′2
are vectors of ciphertexts encrypted under pk , r1 and r2 are
vectors of coins, χ is a permutation on {1, . . . , |c1|}, and e is
an identity element of the encryption scheme’s message space
with respect to �.

Definition 33. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, and H
satisfy the preconditions of Definition 30. Further suppose
Σ7 is a mixnet on pairs. Let Γ = (Gen,Enc,Dec), FS(Σ6,
H) = (ProveMix,VerMix), and FS(Σ7,H) = (ProveMixPair,
VerMixPair). Moreover, let e be an identity element of Γ’s
message space with respect to �. We define ĴCJ(Γ,Σ1,Σ2,
Σ3,Σ4,Σ5,Σ6,Σ7,H) as JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,
H) = (Setup,Register,Vote,Tally,Verify) after the following
modifications. First, Tally computes Pmix,1 as Pmix,1 ←
ProveMixPair((pkT , (b

′
1[1], . . . , b′|BB|[1]),C1), (b′1[2], . . . ,

b′|BB|[2]),C2), (r1, r2, χ), k), and Pmix,2 as Pmix,2 ← ⊥.
Secondly, Verify replaces checks using VerMix with the
following check VerMixPair((pkT , (b

′
1[1], . . . , b′|BB|[1]),C1,

(b′1[2], . . . , b′|BB|[2]),C2), Pmix,1, k) = 1 ∧ VerMix((pkT ,
(pd1, . . . , pd|L|),C3), Pmix,3, k) = 1.

Lemmata 26 can be adapted to show that ĴCJ is a construc-
tion for election schemes.
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Election schemes constructed from ĴCJ satisfy individual
(§K-A), universal (§K-B) and eligibility (§K-C) verifiability,
hence, such schemes satisfy election verifiability with internal
authentication (§K-D), assuming that the cryptographic prim-
itives satisfy certain properties that we identify.

A. Individual verifiability

Proposition 27. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7

and H satisfy the preconditions of Definition 33. Further
suppose that Γ is collision-free for its message space. We have
ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) satisfies individual ver-
ifiability.

Proof. Let ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) = (Setup,
Register,Vote,Tally,Verify), Γ = (Gen,Enc,Dec), and FS(
Σ1,H) = (ProveKey,VerKey). Suppose k is a security param-
eter, PK T is a public key, nC is an integer, and β and β′ are
choices. Further suppose (pk , sk) and (pk ′, sk ′) are outputs of
Register(PK T , k), b is an output of Vote(sk ,PK T , nC , β, k),
and b′ is an output of Vote(sk ′,PK T , nC , β

′, k), such that
b 6= ⊥ and b′ 6= ⊥. By definition of Vote, we have PK T
is a vector (pkT ,m, ρ) and VerKey((k, pkT ,m), ρ, k) = 1.
Moreover, b[2] is an output of Enc(pkT , sk) and b′[2] is an
output of Enc(pkT , sk

′), where sk , sk ′ ∈ m. Furthermore, the
ciphertexts are constructed using coins chosen uniformly at
random—i.e., the coins used by b[2] and b′[2] will be distinct
with overwhelming probability. Since Γ is collision-free for
m, we have b[2] 6= b′[2] and b 6= b′ with overwhelming
probability, concluding our proof.

B. Universal verifiability.

Lemma 28. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7,
and H satisfy the preconditions of Definition 30. Further
suppose Γ is collision-free for its message space. We have
JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) satisfies Injectivity.

The proof of Lemma 28 is similar to the proof of Lemma 19.

Proof sketch. Generalized JCJ ballots contain encrypted
choices, hence, collision-freeness of the encryption scheme
ensures that distinct choices are not mapped to the same
ballot.

Proposition 29. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7,
and H satisfy the preconditions of Definition 33. Further
suppose that Γ is perfectly correct, perfectly homomorphic,
and collision-free for its message space, the sigma pro-
tocols satisfy special soundness and special honest veri-
fier zero-knowledge, and H is a random oracle. We have
ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) satisfies universal ver-
ifiability.

Proof. Let ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) = (Setup,
Register,Vote,Tally,Verify), FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), FS(Σ3,
H) = (ProveBind,VerBind), FS(Σ4,H) = (ProveDec,
VerDec), FS(Σ5,H) = (ProvePET,VerPET), FS(Σ6,H) =
(ProveMix,VerMix), and FS(Σ7,H) = (ProveMixPair,
VerMixPair).

Suppose an execution of Exp-UV-Int(Π,A, k) computes

(PK T , nV )← A(k);

for 1 ≤ i ≤ nV do (pdi, di)← Register(PK T , k);

L← {pd1, . . . , pdnV
};

M ← {(pd1, d1), . . . , (pdnV
, dnV

)};
(BB , nC ,X,P)← A(M);

Y ← correct-tally(PK T ,BB ,M, nC , k);

such that Verify(PK T ,BB , L, nC ,X,P, k) = 1. By def-
inition of algorithm Verify, we have PK T parses as
a vector (pkT ,m, ρ), X parses as a vector of length
nC , and P parses as a vector (Pdupl,C1, Pmix,1,
C2, Pmix,2,C3, Pmix,3,Pinelig,Pdec). Moreover, VerKey(
(k, pkT ,m), ρ, k) = 1 and nC ≤ |m|. By simulation sound
extractability, we are assured that pkT is an output of Gen
with overwhelming probability—i.e., there exists r and SK T
such that (pkT ,SK T ,m) = Gen(k; r). By definition of
Register, we have for all 1 ≤ i ≤ nV that di is chosen
uniformly at random from m and there exists coins si such
that pdi = Enc(pkT , di; si).

Let {b1, . . . , b`} be the largest subset of BB such that
for all 1 ≤ i ≤ ` we have bi is a vector of length
4 and VerCiph((pkT , bi[1]{1, . . . , nC}), bi[3], k) = 1 ∧
VerBind((pkT , bi[1], bi[2]), bi[4], k) = 1. We have for all
choices β ∈ {1, . . . , nC}, private credentials d, coins
r, and ballots b = Vote(d,PK T , nC , β, k; r) that b 6∈
BB\{b1, . . . , b`} with overwhelming probability, since such
an occurence would imply a contradiction: {b1, . . . , b`} is not
the largest subset of BB satisfying the conditions of the Tally
algorithm. It follows that:

correct-tally(PK T ,M,BB , nC , k)

= correct-tally(PK T ,M, {b1, . . . , b`}, nC , k) (5)

A proof of (5) follows from the definition of function
correct-tally .

By Step 1 of algorithm Verify, if {b1, . . . , b`} = ∅, then
X is a zero-filled vector. And, by definition of function
correct-tally and (5), Y is a vector of length nC such
that

∧nC

j=1 Y[j] = 0. Thus, X = Y, concluding our proof.
Otherwise ({b1, . . . , b`} 6= ∅), we proceed as follows.

By simulation sound extractability, we have, with over-
whelming probability, that for all 1 ≤ i ≤ ` there exists choice
βi ∈ {1, . . . , nC}, message d′i ∈ m, and coins ri,1 and ri,2,
such that

bi[1] = Enc(pkT , βi; ri,1),

bi[2] = Enc(pkT , d
′
i; ri,2),

bi[3] is an output of ProveCiph((pkT , bi[1], {1, . . . , nC}), (βi,
ri,1), k), and bi[4] is an output of ProveBind((pkT , bi[1],
bi[2]), (βi, ri,1, d

′
i, ri,2), k). Moreover, by inspection of Vote,

we have

∀i ∈ {1, . . . , `},∃r : bi = Vote(d′i,PK T , nC , βi, k; r) (6)
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Thus, {b1, . . . , b`} is a set of ballots, and we will now consider
which ballots are authorized.

By Step 2 of algorithm Verify, we have Pdupl is a vector
of length ` and for all 1 ≤ i ≤ ` either: i) Pdupl[i] parses as a
vector (j, σ), VerPET((pkT , bi[2], bj [2], 1), σ, k) = 1, and j ∈
{1, . . . , i− 1, i+ 1, . . . , `}, therefore, by simulation sound ex-
tractability, we have Dec(skT , bi[2]) = Dec(skT , bj [2]), or ii)
Pdupl[i] parses as a vector (0, σ1, . . . , σi−1, σi+1, . . . , σ`) and
for all j ∈ {1, . . . , i− 1, i+ 1, . . . , `} we have VerPET((pkT ,
bi[2], bj [2], 0), σj , k) = 1 and, by simulation sound extractabil-
ity, we have Dec(skT , bi[2]) 6= Dec(skT , bj [2]). Although,
key pair pkT and skT may not have been constructed with
coins chosen uniformly at random, and similarly ciphertexts
b1[2], . . . , b`[2] may not have been constructed with coins
chosen uniformly at random, we nevertheless have for all
1 ≤ i ≤ ` that if Pdupl[i] parses as a vector (j, σ)
such that j ∈ {1, . . . , i − 1, i + 1, . . . , `}, then d′i = d′j ,
otherwise, d′i 6= d′j for all j ∈ {1, . . . , i− 1, i+ 1, . . . , `},
with overwhelming probability, because Γ is perfectly correct.
Let BB be computed as per Step 2 of the tallying algorithm.
Suppose BB = (b′1, . . . , b

′
|BB|). Hence, there trivially exists

an injective function λ : {1, . . . , |BB|} → {1, . . . , `} such
that for all 1 ≤ i ≤ |BB| we have b′i = bλ(i), moreover, for
all j ∈ {1, . . . , i− 1, i+ 1, . . . , |BB|} we have d′λ(i) 6= d′λ(j).
It follows that

∀i ∈ λ({1, . . . , |BB|}) :

¬∃j, β, r : bj = Vote(di,PK T , nC , β, k; r)

∧ j ∈ {1, . . . , i− 1, i+ 1, . . . , `} (7)

Moreover,

∀i ∈ {1, . . . , `} \ λ({1, . . . , |BB|}) :

∃j, β, r : bj = Vote(di,PK T , nC , β, k; r)

∧ j ∈ {1, . . . , i− 1, i+ 1, . . . , `} (8)

Thus, {bi | i ∈ λ({1, . . . , |BB|})} is the largest subset of
ballots from {b1, . . . , b`} such that each ballot was constructed
using a distinct private credential.

By Step 3 of algorithm Verify, we have VerMixPair((pkT ,
(b′1[1], . . . , b′|BB|[1]),C1, (b

′
1[2], . . . , b′|BB|[2]),C2), Pmix,1,

k) = 1 ∧ VerMix((pkT , (pdπ(1), . . . , pdπ(|L|)),C3), Pmix,3,
k) = 1, where π is a permutation on {1, . . . , |L|} such
that pdπ(1) < · · · < pdπ(|L|). And, by simulation
sound extractability, there exists vectors r1, r2, r3, a
permutation χ on {1, . . . , |BB|}, and a permutation
χ′ on {1, . . . , nV }, such that for all 1 ≤ i ≤ |BB|
we have C1[i] = b′χ(i)[1] ⊗ Enc(pkT , e; r1[i]) and
C2[i] = b′χ(i)[2]⊗ Enc(pkT , e; r2[i]), and for all 1 ≤ i ≤ nV
we have C3[i] = pdχ′(π(i)) ⊗ Enc(pkT , e; r3[i]). Although,
key pair pkT may not have been constructed with coins
chosen uniformly at random, we nevertheless have for all
1 ≤ i ≤ |BB| that

C1[i] = Enc(pkT , βλ(χ(i)); rλ(χ(i)),1 ⊕ r1[i])

C2[i] = Enc(pkT , d
′
λ(χ(i)); rλ(χ(i)),2 ⊕ r2[i])

and for all 1 ≤ i ≤ nV that

C3[i] = Enc(pkT , dχ′(π(i)); sχ′(π(i)) ⊕ r3[i])

because Γ is perfectly homomorphic, and e is an identity
element.

By Step 4 of algorithm Verify, we have Pinelig is a vector
of length |C2| and for all 1 ≤ i ≤ |C2| either: i) Pinelig[i]
parses as a vector (j, σ), VerPET((pkT ,C2[i],C3[j], 1), σ,
k) = 1, and j ∈ {1, . . . , |C3|}, therefore, by simulation sound
extractability, we have Dec(skT ,C2[i]) = Dec(skT ,C3[j]),
or ii) Pinelig[i] parses as a vector (0, σ1, . . . , σ|C3|) and for
all 1 ≤ j ≤ |C3| we have VerPET((pkT ,C2[i],C3[j], 0), σj ,
k) = 1, therefore, by simulation sound extractability, we have
Dec(skT ,C2[i]) 6= Dec(skT ,C3[j]). Although, key pair pkT
and skT may not have been constructed with coins chosen
uniformly at random, and similarly ciphertexts C2[1], . . . ,
C2[|BB|],C3[1], . . . ,C3[nV ] may not have been constructed
with coins chosen uniformly at random, we nevertheless have
for all 1 ≤ i ≤ |C2| that if Pinelig[i] parses as a vector
(j, σ) such that j ∈ {1, . . . , |C3|}, then d′λ(χ(i)) = dχ′(π(j),
otherwise, d′λ(χ(i)) 6∈ {d1, . . . , dnV

}, with overwhelming prob-
ability, because Γ is perfectly correct. Let C′1 be computed as
per Step 4 of algorithm Tally. Hence, there trivially exists an
injective function λ′ : {1, . . . , |C′1|} → {1, . . . , |C1|} such
that for all 1 ≤ i ≤ |C′1| we have C′1[i] = C1[λ′(i)],
moreover, d′λ(χ(λ′(i))) ∈ {d1, . . . , dnV

} It follows that

∀i ∈ λ
(
χ
(
λ′({1, . . . , |C′1|})

))
: di ∈ {d1, . . . , dnV

} (9)

Moreover,

∀i ∈ {1, . . . , `} \ λ
(
χ
(
λ′({1, . . . , |C′1|})

))
:

di 6∈ {d1, . . . , dnV
} (10)

Thus,
{
bi | i ∈ λ

(
χ
(
λ′({1, . . . , |C′1|})

))}
is the largest

subset of ballots from {b1, . . . , b`} such that each ballot was
constructed using a distinct private credential from M .

By (6) – (10), the set of authorized ballots in {b1, . . . , b`}
is

BB∗ =
{
bi | i ∈ λ

(
χ
(
λ′({1, . . . , |C′1|})

))}
therefore, since ⊥ 6∈ {b1, . . . , b`}, we have

authorized(PK T , {b1, . . . , b`} \ {⊥},M, nC , k)

= authorized(PK T , {b1, . . . , b`},M, nC , k)

= authorized(PK T ,BB
∗,M, nC , k)

= BB∗

Hence, by (5) and definition of correct-tally , and since Y =
correct-tally(PK T ,BB ,M, nC , k), it follows for all β ∈ {1,
. . . , nC} that ∃=Y[β]b ∈ BB∗ : ∃sk , r : b = Vote(sk ,PK T ,

nC , β, k; r), therefore, ∃=Y[β]i ∈ λ
(
χ
(
λ′({1, . . . , |C′1|})

))
:

β = βi and, equivalently,

∃=Y[β]i ∈ {1, . . . , |C′1|} : β = βλ(χ(λ′(i))) (11)
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Thus, βλ(χ(λ′(1))), . . . , βλ(χ(λ′(|C′1|))) are the choices used to
construct authorized recorded ballots.

By Step 5 of algorithm Verify, we have Pdec is a vector
((β′1, σ1), . . . , (β′|C′1|

, σ|C′1|)) such that for all 1 ≤ i ≤ |C′1|
we have VerDec((pkT ,C

′
1[i], β′i), σi, k) = 1 and for all 1 ≤

β ≤ nC we have ∃=X[β]j ∈ {1, . . . , |C′1|} : β = β′j . And,
by simulation sound extractability, we have β′j = βλ(χ(λ′(j))).
Thus, we have X = Y by (11), concluding our proof.

Proposition 30. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7

and H satisfy the preconditions of Definition 30. Further
suppose Γ is perfectly correct and Σ2 and Σ5 satisfy special
soundness and special honest verifier zero-knowledge. We have
JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) satisfies Completeness.

Proof. Let JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) = (Setup,
Register,Vote,Tally,Verify), FS(Σ1,H) = (ProveKey,
VerKey), FS(Σ2,H) = (ProveCiph,VerCiph), FS(Σ4,H) =
(ProveDec,VerDec), FS(Σ5,H) = (ProvePET,VerPET),
FS(Σ6,H) = (ProveMix,VerMix), and FS(Σ7,H) =
(ProveMixPair,VerMixPair).

Suppose k is a security parameter and A is a PPT
adversary. Further suppose (PK T ,SK T ,mB ,mC) is an
output of Setup(k), nV is an output of A(PK T , k),
(pd1, d1), . . . , (pdnV

, dnV
) are outputs of Register(PK T , k),

L = {pd1, . . . , pdnV
}, M = {(pk1, sk1), . . . , (pknV

, sknV
)},

(BB , nC) is an output of A(M), and (X,P) is an output of
Tally(SK T ,BB , L, nC , k). If |BB | 6≤ mB ∨ nC 6≤ mC , then
we conclude immediately, otherwise (|BB | ≤ mB ∧ nC ≤
mC), we proceed as follows.

By definition of Setup, PK T = (pk ,m, ρ), SK T =
(pk , sk), and mC = |m|, where (pk , sk ,m) = Gen(k; r) and
ρ is an output of ProveKey((k, pk ,m), (sk , r), k) for some
coins r chosen uniformly at random by algorithm Setup.
By definition of algorithm Tally, X is a vector of length
nC and P is a vector (Pdupl,C1, Pmix,1,C2, Pmix,2,C3,
Pmix,3,Pinelig,Pdec). It follows that algorithm Verify can
parse PK T , X and P successfully. Moreover, by complete-
ness of (ProveKey,VerKey), we have VerKey((k, pk ,m), ρ, k)
= 1, with overwhelming probability.

Suppose subset {b1, . . . , bl} is computed as per Step 1 of
algorithm Tally. Hence, {b1, . . . , b`} is the largest subset of
BB such that b1 < · · · < bl and for all 1 ≤ i ≤ ` we have
bi is a vector of length 4, VerCiph((pkT , bi[1], {1, . . . , nC}),
bi[3], k) = 1, and VerBind((pkT , bi[1], bi[2]), bi[4], k) = 1.
(Condition b1 < · · · < bl ensures that algorithms Tally and
Verify compute b1, . . . , bl in the same order, which is necessary
to ensure that proofs constructed by Tally in relation to a
particular ballot, are checked by Verify in relation to that
ballot.) We have {b1, . . . , b`} = ∅ implies X is a zero-filled
vector, because X is initialized as a zero-filled vector. Thus,
the check holds in Step 1 of Verify.

Since Σ2 satisfies special soundness and special honest
verifier zero-knowledge, we have by simulation sound ex-
tractability that for all 1 ≤ i ≤ ` there exists messages

βi, d
′
i ∈ m and coins ri,1 and ri,2, such that

bi[1] = Enc(pkT , βi; ri,1)

bi[2] = Enc(pkT , d
′
i; ri,2)

with overwhelming probability.
Suppose Pdupl is computed as per Step 2 of algorithm

Tally. Hence, Pdupl is a vector of length ` such that for
all 1 ≤ i ≤ ` we have either: i) Pdupl[i] is a vector
(j, σ), VerPET((pkT , bi[2], bj [2], 1), σ, k) = 1, and j ∈ {1,
. . . , i− 1, i+ 1, . . . , `} or ii) for all j ∈ {1, . . . , i− 1, i+ 1,
. . . , `} we have VerPET((pkT , bi[2], bj [2], 1), σ, k) 6= 1 for
some output σ of ProvePET((pkT , bi[2], bj [2], 1), skT , k), and
Pdupl[i] is a vector (0, σ1, . . . , σi−1, σi+1, . . . , σ`) such that
σj is an output of ProvePET((pkT , bi[2], bj [2], 0), skT , k) for
all j ∈ {1, . . . , i− 1, i+ 1, . . . , `}. In the former case, relevant
checks trivially hold in Step 2 of Verify. Let us show that
relevant checks hold in the latter case too. Although ciphertexts
b1[2], . . . , b`[2] may not have been constructed with coins
chosen uniformly at random, we nevertheless have for all
1 ≤ i ≤ ` that Dec(sk , bi[2]) 6= ⊥, because Γ is perfectly
correct. Suppose Pdupl[i] = (0, σ1, . . . , σi−1, σi+1, . . . , σ`) in
the latter case. Since Σ5 satisfies special soundness and special
honest verifier zero-knowledge, we have by simulation sound
extractability that Dec(sk , bi[2]) 6= Dec(sk , bj [2]) for all inte-
gers j ∈ {1, . . . , i− 1, i+ 1, . . . , `}, with overwhelming prob-
ability. Therefore, by completeness of (ProvePET,VerPET),
we have VerPET((pkT , bi[2], bj [2], 0), σj , k) = 1 for all
j ∈ {1 . . . , i−1, i+1, . . . , `}, with overwhelming probability.
Thus, the relevant checks hold in Step 2 of Verify, with
overwhelming probability.

Suppose BB is computed as per Step 2 of algorithm Tally.
Moreover, suppose BB = (b′1, . . . , b

′
|BB|). Further suppose

vectors C1 and C2 are computed as per Step 3 of algorithm
Tally. Hence, for all 1 ≤ i ≤ |BB| we have

C1[i] = b′χ(i)[1]⊗ Enc(pkT , e; r1[i]) and

C2[i] = b′χ(i)[2]⊗ Enc(pkT , e; r2[i]),

where χ is a permutation on {1, . . . , |BB|}, and r1 and r2
are vectors of coins. Let BB1 = (b′1[1], . . . , b′|BB|[1]) and
BB2 = (b′1[2], . . . , b′|BB|[2]). Suppose Pmix,1 is computed as
per Step 3 of algorithm Tally. Hence, Pmix,1 is an output of
ProveMixPair((pkT ,BB1,C1,BB2,C2), (r1, r2, χ), k). By
the completeness of (ProveMixPair,VerMixPair), we have
VerMixPair((pkT ,BB1,C1,BB2,C2), Pmix,1, k) = 1, with
overwhelming probability. Similarly, suppose L = {pd1, . . . ,
pd|L|} such that pd1 < · · · < pd|L|. Moreover, suppose vector
C3 is computed as per Step 3 of algorithm Tally. Hence, for
all 1 ≤ i ≤ |L| we have

C3[i] = pdχ′(i) ⊗ Enc(pkT , e; r3[i]),

where χ′ is a permutation on {1, . . . , |L|} and r3 is
a vector of coins chosen uniformly at random by al-
gorithm Tally. Suppose Pmix,3 is also computed as
per Step 3 of algorithm Tally. Hence, Pmix,3 is an
output of ProveMix((pkT , (pd1, . . . , pd|L|),C3), (r3, χ

′), k).
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By the completeness of (ProveMix,VerMix), we have
VerMix((pkT , (pd1, . . . , pd|L|),C3), Pmix,3, k) = 1, with
overwhelming probability. It follows that checks hold in Step 3
of Verify, with overwhelming probability.

Suppose Pinelig is computed as per Step 4 of algorithm
Tally. Hence, Pinelig is a vector of length |C2| such that
for all 1 ≤ i ≤ |C2| we have either: i) Pinelig[i] is a
vector (j, σ), VerPET((pkT ,C2[i],C3[j], 1), σ, k) = 1, and
j ∈ {1, . . . , |C3|}, or ii) for all j ∈ {1, . . . , |C3|} we have
VerPET((pkT ,C2[i],C3[j], 1), σ, k) 6= 1 for some output σ
of ProvePET((pkT ,C2[i],C3[j], 1), skT , k), and Pinelig[i] is
a vector (0, σ1, . . . , σ|C3|) such that for all j ∈ {1, . . . , |C3|}
we have σj is an output of ProvePET((pkT ,C2[i],C3[j], 0),
skT , k). In the former case, relevant checks trivially hold in
Step 4 of Verify. Let us show that relevant checks hold in the
latter case too. We have for all 1 ≤ i ≤ |L| that pdχ′(i) is a ci-
phertext on dχ′(i) ∈ m constructed using some coins ri chosen
uniformly at random by algorithm Register. Thus, for all 1 ≤
i ≤ |L| we have C3[i] = Enc(pkT , dχ′(i); ri⊕r3[i]), therefore,
Dec(sk ,C3[j]) 6= ⊥, with overwhelming probability, because
Γ is homomorphic and e is an identity element. Moreover, we
have for all 1 ≤ i ≤ |BB| that C2[i] = Enc(pkT , d

′
λ(χ(i));

rλ(χ(i)),2 ⊕ r2[i]), with overwhelming probability, because Γ
is homomorphic and e is an identity element. And, since Γ is
perfectly correct, we have Dec(sk ,C2[i]) 6= ⊥ for all 1 ≤ i ≤
|BB|. (The homomorphic property of Γ is insufficient to infer
Dec(sk ,C2[i]) 6= ⊥, because ciphertext b′χ(i)[2] may not have
been constructed using coins chosen uniformly at random.)
Suppose Pinelig[i] = (0, σ1, . . . , σ|C3|) in the latter case.
Since Σ5 satisfies special soundness and special honest verifier
zero-knowledge, we have by simulation sound extractability
that Dec(sk ,C2[i]) 6= Dec(sk ,C3[j]) for all 1 ≤ j ≤ |L|,
with overwhelming probability. Therefore, by completeness of
(ProvePET,VerPET), we have VerPET((pkT ,C2[i],C3[j],
0), σj , k) = 1 for all 1 ≤ j ≤ |L|, with overwhelming
probability. Thus, the relevant checks hold in Step 4 of Verify,
with overwhelming probability.

Suppose C′1 is computed as per Step 4 of algorithm Tally.
And Pdec is computed as per Step 5 of algorithm Tally.
Hence, Pdec is a vector ((β1, σ1), . . . , (β|C′1|, σ|C′1|)) such
that for all 1 ≤ i ≤ |C′1| we have βi = Dec(skT ,
C′1[i]) and σi is an output of ProveDec(pkT ,C

′
1[i], βi), skT ,

k), therefore, by completeness of (ProveDec,VerDec), we
have VerDec((pkT ,C

′
1[i], βi), σi, k) = 1, with overwhelming

probability. Moreover, since X is derived by initializing X as
a zero-filled vector of length nC and computing for 1 ≤ i ≤
|C′1| do X[β]← X[β] + 1, we have for all 1 ≤ β ≤ nC that
∃=X[β]j ∈ {1, . . . , |C′1|} : β = βj . It follows that checks hold
in Step 5 of Verify, with overwhelming probability.

Since all the above checks succeed, Verify outputs 1, with
overwhelming probability, concluding our proof.

C. Eligibility Verifiability

We derive an asymmetric encryption scheme from gener-
alized JCJ (Definition 34) which satisfies IND-PA0 (Proposi-

tion 31), and prove that eligibility verifiability follows (Propo-
sition 32).

Definition 34. Suppose Γ = (Gen,Enc,Dec) is a multiplica-
tively homomorphic asymmetric encryption scheme, Σ3 proves
conjunctive plaintext knowledge, and H is a random oracle.
Let FS(Σ3,H) = (ProveBind,VerBind). We define Γ-JCJ(Γ,
Σ3,H) = (Gen′,Enc′,Dec′) as follows:
• Gen′(k) selects coins r uniformly at random, computes

(pk , sk ,m) ← Gen(k; r);m′ ← {(m1,m2) | m1,m2 ∈
m}, and outputs (pk , sk ,m′).

• Enc′(pk ,m) parses m as a vector of length 2, outputting
⊥ if parsing fails; selects coins r1 and r2 uniformly
at random; computes c1 ← Enc(pk ,m[1]; r1); c2 ←
Enc(pk ,m[2]; r2); τ ← ProveBind((pk , c1, c2), (m[1],
r1,m[2], r2), k); and outputs (c1, c2, τ).

• Dec′(sk , c) parses c as (c1, c2, τ), outputting ⊥ if parsing
fails or VerBind((pk , c1, c2), τ, k) 6= 1; computes m1 ←
Dec(sk , c1);m2 ← Dec(sk , c2); and outputs (m1,m2).

Proposition 31. Let Γ be a multiplicatively homomorphic
asymmetric encryption scheme, Σ3 be a sigma protocol that
proves conjunctive plaintext knowledge, and H be a random
oracle. Suppose Γ satisfies IND-CPA and Σ3 satisfies special
soundness and special honest verifier zero-knowledge. We have
Γ-JCJ(Γ,Σ3,H) satisfies IND-PA0.

A proof of Proposition 31 is similar to the proof of [24,
Theorem 5.1], so we omit formalizing a proof.

Proposition 32. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6,
Σ7 and H satisfy the preconditions of Definition 33. Fur-
ther suppose that satisfies IND-CPA, and Σ1 and Σ3 sat-
isfy special soundness and special honest verifier zero-
knowledge. We have JCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H)
satisfies Exp-EV-Int-Weak.

Proof. Let Γ = (Gen,Enc,Dec), Γ-JCJ(Γ,Σ3,H) = (Gen′,
Enc′,Dec′), FS(Σ2,H) = (ProveCiph,VerCiph), and FS(Σ3,
H) = (ProveBind,VerBind). By Theorem 14, there ex-
ists a simulator for proof system (ProveBind,VerBind).
Let SimProveBind be such a simulator. Similarly, let
SimProveKey be a simulator for FS(Σ1,H). Moreover, let e
be an identity element of Γ’s message space with respect to
�.

By Lemma 25, it suffices to show that Exp-EV-Int-Weak′

is satisfied. We proceed by contradiction. Suppose
Exp-EV-Int-Weak′ is not satisfied, hence, there exists a
PPT adversary A that wins Exp-EV-Int-Weak′ with non-
negligible probability. We construct an adversary B against
Γ-JCJ(Γ,Σ3,H).
• B(pk ,m, k) computes d0 ←R m; d1 ←R m and outputs

((e, d0), (e, d1)).
• B(c) parses c as a vector of length 3, computes
ρ ← SimProveKey((k, pk ,m), k);PK T ← (pk ,m, ρ);
(nC , β, b) ← A(PK T , c[2], k), and outputs ((b[1], b[2],
b[4])), responding to A’s oracle calls R′(β, nC) as fol-
lows, namely, if β 6∈ {1, . . . , nC} ∨ {1, . . . , nC} 6⊆ m,
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then return ⊥, otherwise, select coins r1 uniformly at
random, compute
c1 ← Enc(pk , β; r1);
c2 ← Enc(pk , ε)⊗ c[2];
σ ← ProveCiph((pk , c1, {1, . . . , nC}), (β, r1), k);
τ ← SimProveBind((pk , c1, c[2]), k);
b← (c1, c2, σ, τ);

and return b.
• B(m) parses m[1] as a vector (β, d) and if d = d0, then

outputs 0, otherwise, outputs 1.

We prove B wins IND-PA0 with non-negligible probability.
Suppose (pk , sk ,m) is an output of Gen(k), (m0,m1) is

an output of B(pk ,m, k), and c is an output of Enc′(pk ,mα),
for some bit α chosen uniformly at random. By definition of
B and Enc′, we have c is a vector such that c[2] is an output
of Enc′(pk ,mα[2]), where mα[2] ∈ m was chosen uniformly
at random by B. Further suppose we run B(c). Hence, we
compute ρ ← SimProveKey((k, pk ,m), k);PK T ← (pk ,m,
ρ); (nC , β, b)← A(PK T , c[2], k). It is straightforward to see
that B simulates A’s challenger to A, because proofs output
by SimProveKey are indistinguishable from proofs produced
by proof system FS(Σ1,H) and c[2] corresponds to a public
credential. Let us assume that B simulates A’s oracle to A
too. Hence, since A is a winning adversary, we have b is an
output of Vote(mα[2],PK T , nC , β, k) such that b 6= ⊥ and b
was not simulated by B in response to an oracle call by A.
By definition of Vote, we have b[1] = Enc′(pk , β; r1), b[2] =
Enc′(pk ,mα[2]; r2), and b[4] is an output of ProveBind((pk ,
c[1], c[2]), (β, r1,mα[2], r2), k), for some coins r1 and r2.
Moreover, we have β ∈ {1, . . . , nC} and {1, . . . , nC} 6⊆ m,
hence, β ∈ m. Suppose the run of B(c) concludes by
outputting ((b[1], b[2], b[4])). By completeness of (ProveBind,
VerBind), we have VerBind((pk , b[1], b[2]), b[4], k) = 1.
Hence, Dec(sk , (b[1], b[2], b[4])) = (β,mα[2]). Further sup-
pose g is an output of A(((β,mα[2]))). Thus, by definition of
A, we have g = α. Moreover, we have c 6= (b[1], b[2], b[4]),
because c[1] is not revealed to A, hence, A cannot construct
c[1], due to the precondition that Γ satisfies IND-CPA. It
remains to prove that B simulates A’s oracle to A.

An oracle call R′(β, nC) outputs ⊥ if β 6∈ {1, . . . , nC}
∨ {1, . . . , nC} 6⊆ m, and it is trivial to see that B simulates
A’s oracle to A in this case. Otherwise, R′(β, nC) computes
b← Vote(mα[2],PK T , nC , β, k) and outputs b. By definition
of Vote, we have b is a vector of length 4. It is trivial to see
that B simulates the computation of b[1] and b[3]. Moreover, if
B simulates the computation of b[2], then B simulates the com-
putation of b[4] too, because proofs output by SimProveBind
are indistinguishable from proofs output by ProveBind. Thus,
it remains to prove that B simulates the computation of b[2].
It suffices to show that selecting coins r2 uniformly at random
and computing c2 ← Enc′(pk ,mα[2]; r2) is indistinguishable
from computing c2 ← Enc′(pk , ε)⊗ c[2], i.e., c2 ← Enc′(pk ,
ε; r′2)⊗Enc′(pk ,mα[2]; r), where coins r′2 and r are selected
uniformly at random. Since Γ is a homomorphic asymmetric
encryption scheme and e is an identity element, we have

c2 ← Enc′(pk , ε; r′2)⊗Enc′(pk ,mα[2]; r) is indistinguishable
from c2 ← Enc′(pk ,mα[2]; r′2⊕r), which is indistinguishable
from c2 ← Enc′(pk ,mα[2]; r2), because coins r′2 ⊕ r are
indistinguishable from coins (e.g., r2) selected uniformly at
random, thereby concluding our proof.

D. Proof: Theorem 10

By Propositions 27, 29, 30, & 32 and Lemma 28, election
schemes constructed from ĴCJ satisfy election verifiability
with internal authentication:

Corollary 33. Suppose Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7

and H satisfy the preconditions of Definition 33. Further
suppose that Γ is perfectly correct, perfectly homomorphic,
and collision-free for its message space. Moreover, suppose
Γ satisfies IND-CPA. Furthermore, suppose the sigma pro-
tocols satisfy special soundness and special honest veri-
fier zero-knowledge, and H is a random oracle. We have
ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H) satisfies election veri-
fiability with internal authentication.

Proof of Theorem 10. Let JCJ’16 be the set of election
schemes derived from ĴCJ(Γ,Σ1,Σ2,Σ3,Σ4,Σ5,Σ6,Σ7,H),
where primitives Γ, Σ1, Σ2, Σ3, Σ4, Σ5, Σ6, Σ7 and H satisfy
the conditions identified in Corollary 33. Hence, Theorem 10
is an immediate consequence of Corollary 33.

APPENDIX L
JUELS ET AL. DEFINITIONS

Juels et al. [87, §2] define an election scheme as a tuple of
(Register,Vote,Tally,Verify) PPT algorithms:
• Register, denoted (pk , sk) ← Register(SKR, i, k1), is

executed by the registrars. Register takes as input the
private key SKR of the registrars, a voter’s identity i,
and security parameter k1. It outputs a credential pair
(pk , sk).

• Vote, denoted b ← Vote(sk ,PK T , nC , β, k2), is exe-
cuted by voters. Vote takes as input a voter’s private
credential sk , the public key PK T of the tallier, the
number of candidates nC , the voter’s choice β, and
security parameter k2. It outputs a ballot b.

• Tally, denoted (X, P )← Tally(SK T ,BB , nC , {pk i}
nV
i=1,

k3), is executed by the tallier. Tally takes as input the
private key SK T of the tallier, the bulletin board BB ,
the number of candidates nC , the set containing voters’
public credentials, and security parameter k3. It outputs
the tally X and a proof P that the tally is correct.

• Verify, denoted v ← Verify(PKR,PK T ,BB , nC ,X,
P ), can be executed by anyone to audit the election.
Verify takes as input the public key PKR of the registrars,
the public key PK T of the tallier, the bulletin board BB ,
the number of candidates nC , and a candidate proof P
of correct tallying. It outputs a bit v, which is 1 if the
tally successfully verifies and 0 on failure.

The above definition fixes an apparent oversight in JCJ’s
presentation: we supply the registrars’ public key as input to
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the verification algorithm, because that key would be required
by Verify to check the signature on the electoral roll.

Juels et al. [87, §3] formalize correctness and verifiability to
capture their notion of election verifiability. We rename those
to JCJ-correctness and JCJ-verifiability to avoid ambiguity.
For readability, the definitions we give below contain subtle
differences from the original presentation. For example, we
sometimes use for loops instead of pattern matching.

JCJ-correctness asserts that an adversary cannot modify
or eliminate votes of honest voters, and stipulates that at
most one ballot is tallied per voter. Intuitively, the security
definition challenges the adversary to ensure that verification
succeeds and the tally62 does not include some honest votes
or contains too many votes. The definition of JCJ-correctness
fixes apparent errors in the original presentation: the adversary
is given the credentials for corrupt voters and distinct security
parameters are supplied to the Register and Vote algorithms.
An implicit assumption is also omitted: {βi}i∈V\V′ is a
multiset of valid votes, that is, for all β ∈ {βi}i∈V\V′ we have
1 ≤ β ≤ nC . Without this assumption the security definition
cannot be satisfied by many election schemes, including the
election scheme by Juels et al.

Definition 35 (JCJ-correctness). An election scheme Π =
(Register,Vote,Tally,Verify) satisfies JCJ-correctness if for
all PPT adversary A, there exists a negligible function µ,
such that for all positive integers nC and nV , and security
parameters k1, k2, and k3, we have Succ(Exp-JCJ-Cor(Π,A,
nC , nV , k1, k2, k3)) ≤ µ(k1, k2, k3), where Exp-JCJ-Cor is
defined as follows:63

Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3) =

V ← {1, . . . , nV };1

for i ∈ V do (pk i, sk i)← Register(SKR, i, k1);2

V ′ ← A({pk i}
nV
i=1);3

for i ∈ V \ V ′ do βi ← A();4

BB ← {Vote(sk i,PK T , nC , βi, k2)}i∈V\V′ ;5

(X, P )← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);6

BB ← BB ∪ A(BB , {(pk i, sk i)}i∈V∩V′);7

(X′, P ′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);8

if Verify(PKR,PK T ,BB , nC ,X
′, P ′) = 19

∧
(
{βi}i∈V\V′ 6⊆ 〈X′〉 ∨ |〈X′〉| − |〈X〉| > |V ′|

)
then

return 110

else11

return 012

The JCJ-correctness definition implicitly assumes that the
tally and associated proof are honestly computed using
the Tally algorithm. By comparison, the definition of JCJ-
verifiability (Definition 36) does not use this assumption,
hence, JCJ-verifiability is intended to assert that voters and
auditors can check whether votes have been recorded and tal-
lied correctly. Intuitively, the adversary is assumed to control
the tallier and voters, and the security definition challenges
the adversary to concoct an election (that is, the adversary
generates a bulletin board BB , a tally X, and a proof of

tallying P ) such that verification succeeds and tally X differs
tally X′ derived from honestly tallying the bulletin board BB .
It follows that there is at most one verifiable tally that can be
derived.

Definition 36 (JCJ-verifiability). An election scheme Π =
(Register,Vote,Tally,Verify) satisfies JCJ-verifiability if for
all PPT adversary A, there exists a negligible function µ,
such that for all positive integers nC and nV , and security
parameters k1 and k3, we have Succ(Exp-JCJ-Ver(Π,A,
nC , nV , k1, k2, k3)) ≤ µ(k1, k2, k3), where Exp-JCJ-Ver is
defined as follows:

Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3) =

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(SKR, i, k1);1

(BB ,X, P )← A(SK T , {(pk i, sk i)}
nV
i=1);2

(X′, P ′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);3

if Verify(PKR,PK T ,BB , nC ,X, P ) = 1 ∧ X 6= X′4

then
return 15

else6

return 07

APPENDIX M
PROOFS: JUELS ET AL. ADMIT ATTACKS

This appendix contains proofs demonstrating that the def-
inition of election verifiability by Juels et al. [87] admits
collusion and biasing attacks (§VIII). We have reported these
findings to the original authors.64,65

A. Proof: Proposition 11

Suppose Π = (Register,Vote,Tally,Verify) is an elec-
tion scheme satisfying JCJ-correctness and JCJ-verifiability.
Further suppose Stuff(Π, β, κ) = (Register,Vote,TallyS ,
VerifyS), for some integers β, κ ∈ N. We prove that
Stuff(Π, β, κ) satisfies JCJ-correctness and JCJ-verifiability.

We show that Stuff(Π, β, κ) satisfies JCJ-correctness by
contradiction. Suppose Succ(Exp-JCJ-Cor(Stuff(Π, β, κ),A,
nC , nV , k1, k2, k3)) is non-negligible for some k1, k2, k3, nC ,
nV , and A. Hence, there exists an execution of the experiment

Exp-JCJ-Cor(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3)

that satisfies

VerifyS(PKR,PK T ,BB , nC ,X
′, P ′) = 1

∧
(
{βi}i∈V\V′ 6⊂ 〈X′〉 ∨ |〈X′〉| − |〈X〉| > |V ′|

)
with non-negligible probability, where {βi}i∈V\V′ is the set
of honest votes, (X, P ) is the tally of honest votes, (X′, P ′)

62. Juels et al. translate tallies X into a multisets 〈X〉 representing the tally
as follows: 〈X〉 =

⋃
1≤j≤|X|{ j, . . . , j︸ ︷︷ ︸

X[j] times

}.

63. We write µ(k1, k2, k3) for the smallest value in {µ(k1), µ(k2), µ(k3)}
(cf. [87, pp45]).
64. Dario Catalano, personal communication, Paris, France, 10 October 2013.
65. Markus Jakobsson, personal communication, New Orleans, USA, 27 June

2013.
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is the tally of all votes, V ′ is a set of corrupt voter identities,
and BB is the bulletin board. Further suppose BB0 is the
bulletin board BB before adding stuffed ballots. By definition
of TallyS , there exist computations

(Y, Q)← Tally(SK T ,BB0, nC , {pk i}
nV
i=1, k3)

and

(Y′, Q′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3)

such that X = Add(Y, β, κ), X′ = Add(Y′, β, κ), and P ′ =
Q′. Since κ ∈ N, we have 〈Y′〉 ⊆ 〈X′〉. Moreover, |〈X〉| =
|〈Y〉|+ κ and |〈X′〉| = |〈Y′〉|+ κ, hence,

|〈Y′〉| − |〈Y〉| = |〈X′〉| − |〈X〉|.

By definition of VerifyS and since Y′ = Sub(X′, β, κ), there
exists a computation

v ← Verify0(PKR,PK T ,BB , nC ,Y
′, Q′)

such that v = 1. It follows that

Verify(PKR,PK T ,BB , nC ,Y
′, Q′) = 1

∧
(
{βi}i∈V\V′ 6⊂ 〈Y′〉 ∨ |〈Y′〉| − |〈Y〉| > |V ′|

)
with non-negligible probability and, furthermore, we
have Succ(Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3)) is non-
negligible, thereby deriving a contradiction.

We show that Stuff(Π, β, κ) satisfies JCJ-verifiability by
contradiction. Suppose Succ(Exp-JCJ-Ver(Stuff(Π, β, κ),A,
nC , nV , k1, k2, k3)) is non-negligible for some k1, k3, nC ,
nV , and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Stuff(Π, β, κ),A, nC , nV , k1, k2, k3) which sat-
isfies

Verify(PKR,PK T ,BB , nC ,X, P ) = 1 ∧X 6= X′

with non-negligible probability, where (BB ,X, P ) is an elec-
tion concocted by the adversary and (X′, P ′) is produced by
tallying BB . By definition of TallyS , there exists a computa-
tion

(Y′, Q′)← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3)

such that X′ = Add(Y′, β, κ) and P ′ = Q′. By definition of
VerifyS , there exists a computation

v ← Verify(PKR,PK T ,BB , nC , Sub(X, β, κ), P )

such that v = 1. Let the adversary B be defined as follows:
given input K and S, the adversary B computes

(BB ,X, P )← A(K,S)

and outputs (BB , Sub(X, β, κ), P ). We have an execution
of the experiment Exp-JCJ-Ver(Stuff(Π, β, κ),B, nC , nV , k1,
k2, k3) that concocts the election (BB , Sub(X, β, κ), P ) and
tallying BB produces (Y′, Q′) such that

Verify(PKR,PK T ,BB , nC , Sub(X, β, κ), P ) = 1

with non-negligible probability. Moreover, since X 6= X′

and Y′ = Sub(X′, β, κ), we have Sub(X, β, κ) 6= Y′ with

non-negligible probability. It follows immediately that Succ(
Exp-JCJ-Cor(Π,B, nC , nV , k1, k2, k3)) is non-negligible, thus
deriving a contradiction and concluding our proof.

B. Proof: Proposition 12

We define key leakage before proving Proposition 12.

Definition 37 (Key leakage). An election scheme Π =
(Register,Vote,Tally,Verify) does not leak the tallier’s pri-
vate key if for all positive integers nC and nV , se-
curity parameters k1 and k3, and PPT adversary A,
we have Succ(Exp-leak(Π,A, k1, k3, nC , nV )) is negligible,
where Exp-leak(·) is defined as follows:

Exp-leak(Π,A, k1, k3, nC , nV ) =

for 1 ≤ i ≤ nV do (pk i, sk i)← Register(SKR, i, k1);1

BB ← A(sk1, . . . , sknV
);2

(X, P )← Tally(SK T ,BB , nC , {pk i}
nV
i=1, k3);3

if A(X, P ) = SK T then4

return 15

else6

return 07

Proof of Proposition 12. Suppose Π = (Register,Vote,Tally,
Verify) is an election scheme satisfying JCJ-correctness
and JCJ-verifiability that does not leak the tallier’s private
key, and Backdoor(Π) = (Register,Vote,TallyB ,VerifyB).
Since Π does not leak the tallier’s private key, the experi-
ment Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3) produces a bul-
letin board BB such that SK T ∈ BB with negligible probabil-
ity, for all k1, k2, k3, nC , nV and A. It follows that an execu-
tion of the experiment Exp-JCJ-Cor(Backdoor(Π),A, nC , nV ,
k1, k2, k3) is an execution of the experiment Exp-JCJ-Cor(
Π,A, nC , nV , k1, k2, k3) with non-negligible probability and,
hence, Backdoor(Π) satisfies JCJ-correctness.

We show that Backdoor(Π) satisfies JCJ-verifiability by
contradiction. Suppose Succ(Exp-JCJ-Ver(Backdoor(Π),A,
nC , nV , k1, k2, k3)) is non-negligible for some k1, k3, nC ,
nV , and A. Hence, there exists an execution of the experiment
Exp-JCJ-Ver(Backdoor(Π),A, nC , nV , k1, k2, k3) which sat-
isfies

Verify(PKR,PK T ,BB , nC ,X, P ) = 1 ∧X 6= X′

with non-negligible probability, where (BB ,X, P ) is an elec-
tion concocted by the adversary and (X′, P ′) is produced
by tallying BB . If there is one and only one Y such that
(SK T ,Y) ∈ BB , then X′ = Y by definition of Tally and
X = Y by definition of Verify, otherwise, the execution of
the experiment Exp-JCJ-Cor(Backdoor(Π),A, nC , nV , k1, k2,
k3) is an execution of the experiment Exp-JCJ-Cor(Π,A, nC ,
nV , k1, k2, k3) and, hence,

Succ(Exp-JCJ-Ver(Backdoor(Π),A, nC , nV , k1, k2, k3))

= Succ(Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3)).

In both cases we derive a contradiction, thereby concluding
our proof.
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C. Proof sketch: Proposition 13

Suppose Π = (Register,Vote,Tally,Verify) is an election
scheme satisfying JCJ-correctness and JCJ-verifiability. Fur-
ther suppose Bias(Π, Z) = (Register,Vote,Tally,VerifyR),
for some set of vectors Z. By definition of VerifyR, we have

VerifyR(PKR,PK T ,BB , nC ,X, P ) = 1

implies the existence of a computation

v ← Verify(PKR,PK T ,BB , nC ,X, P )

such that v = 1 with non-negligible probability, for all PK T ,
BB , nC , X, and P . It follows that

Succ(Exp-JCJ-Cor(Bias(Π),A, nC , nV , k1, k2, k3))

≤ Succ(Exp-JCJ-Cor(Π,A, nC , nV , k1, k2, k3))

and

Succ(Exp-JCJ-Ver(Bias(Π),A, nC , nV , k1, k2, k3))

≤ Succ(Exp-JCJ-Ver(Π,A, nC , nV , k1, k2, k3))

for all k1, k2, k3, nC , nV , and A. Hence, Bias(Π, Z) satisfies
JCJ-correctness and JCJ-verifiability.

APPENDIX N
GLOBAL VERIFIABILITY

Küsters et al. [97] propose a definition, called Protocols,
to describe any kind of protocol, not just electronic voting
protocols. Their definition is independent of any particular
computational model, assuming the model provides a notion
of processes. These processes must be able to perform internal
computation and communicate with each other, and must
define a family of probability distributions over runs, indexed
by a security parameter. 66

A. Protocols

We consider the following simplified definition of Protocols.

Definition 38 (Protocol). A Protocol is a tuple of sets of pro-
cesses Π1, . . . ,Πn and processes π̂1, . . . , π̂n. Protocols must
satisfy the following conditions: each process in π̂1, . . . , π̂n
has a special output channel which no process can input on,
and Πi = {π̂1} or Πi = Π(π̂i) for all 1 ≤ i ≤ n.67

Processes π̂1, . . . , π̂n capture protocol participants. And sets
of processes Π1, . . . ,Πn capture adversarial behavior. In par-
ticular, if Πi = {π̂i}, then an adversary following the protocol
is captured. Otherwise, an adversary controlling the channels
in π̂i is captured.68,69

An instance of Protocol (Π1, . . . ,Πn, π̂1, . . . , π̂n) is the
composition of processes π1, . . . , πn, where πi ∈ Πi. Process
πi is honest in such an instance, if π̂i = πi. Each instance of a
Protocol defines a set of runs. We say an instance of a Protocol
produces a run, if the run belongs to that set. A process is
honest in a run produced by an instance of a Protocol, if the
process is honest in the instance.

a) Comparison with the original definition: Definition 38
modifies the original definition [97, §2] as follows. First, we
omit agents, since they are only used to refer to a process’s
owner. Secondly, we omit the finite set of channels used by
agents and we omit functions to compute the channels of a par-
ticular agent, because these sets can be derived from processes.
Thirdly, we restrict Protocols to some processes π̂1, . . . , π̂n,
whereas the original definition considers sets of processes
Π̂1, . . . , Π̂n. Fourthly, we require a stronger assumption on
the sets of processes: we require Πi = {π̂1} or Πi = Π(π̂i),
whereas the original definition requires Πi ⊆ Π(π̂i). Fifthly,
we forbid the sets of processes from using special channels.
(This restriction does not appear in the original definition, but
it is necessary to ensure that global verifiability is satisfiable
by interesting protocols.70) Finally, we permit channels to
be shared between processes. (Thus, we drop the implicit
assumption that communication is authenticated. And we
permit broadcast channels.71)

B. Global verifiability

A goal of a Protocol is a subset of the sets of runs produced
by instances of the Protocol. Processes can accept runs by
outputting on their special channels. Global verifiability is
intended to ensure that processes only accept runs when
the goal has been achieved in those runs. We consider the
following simplified definition of global verifiability.72

66. Neither syntax nor semantics are defined for processes, leading to
informality that prohibits rigourous analsyis [88, §1.4], [92].
67. Let In(π) denote the input channels of process π and Out(π) denote the

output channels of process π, excluding π’s special output channel. Moreover,
let Π(I,O) denote the set of all processes with input channels in I and output
channels in O. We abbreviate Π(In(π),Out(π)) as Π(π).
68. The adversary model captured by Protocols is unrealistic. In particular,

communication between a process in Πi and a process in Πj is prohibited,
if process π̂i cannot input (respectively output) on a channel that process
π̂j can output (respectively input) on. Consequently, the definition of global
verifiability cannot detect some attacks. For instance, given a Protocol
P = (..., π̂), let Accept(P ) = (..., π̂′) such that process π̂′ awaits input on a
channel that is not used by any other process in P , if an input is received, then
the process outputs on π̂’s special channel, otherwise, the process executes π̂.
Hence, Accept(P ) accepts all runs that input on the public channel introduced
by Accept. Thus, Accept(P ) should not satisfy any definition of verifiability.
Yet, the adversary model prohibits input on the channel introduced by Accept,
therefore, Protocols P and Accept(P ) are identical from the adversary’s
perspecive. It follows that: given a Protocol P = (..., π̂) and goal γ of
P , such that γ is globally verifiable by π̂, it holds that γ is globally verifiable
by Accept(P ). This problem can be overcome by assuming a single, shared
broadcast channel between all processes.
69. Analysts must take care to avoid unnecessarily restricting the adversary.

For instance, a Protocol could define sets of processes {π̂1}, . . . , {π̂n}, which
restricts the adversary to following the protocol.
70. A goal is not globally verifiable, if the Protocol produces a run that does

not achieve the goal, but is nevertheless accepted. Given that acceptance is
captured by outputting on special channels and the original definition permits
the adversary to output on such channels, global verifiability is unsatisfiable
for interesting protocols. Insisting that Out(π) excludes π’s special output
channel suffices to overcome this problem.
71. Broadcast channels are necessary to ensure a realistic adversary model.
72. We omit the definition’s notion of Completeness for brevity.
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Definition 39 (Global verifiability). Given a Protocol P , goal
γ of P , and process π̂ of P , we say γ is globally verifiable by
π̂, if for all instances Λ of P parameterized by k, there exists
a negligible function µ such that for all security parameters
k and (efficient) runs r of Λ that include an output on π̂’s
special channel, we have r 6∈ γ, with probability less than or
equal to µ(k).

Our simplified definition refines the original definition by
incorporating our simplified syntax and considering a tighter
security bound. Moreover, we require that runs are efficient.
(This is necessary to ensure that global verifiability is satisfi-
able by interesting protocols.)

C. Protocols generalize election schemes

We propose a translation from election schemes to Proto-
cols.73

Definition 40. Suppose Π = (Setup,Vote,Tally,Verify) is an
election scheme. Let processes Auditor,Board,Tallier,Voter
that depend upon security parameter k, integer nC , and well-
formed choice β, be defined as follows.
• Tallier. Computes (PK T ,SK T ,mB ,mC ) ← Setup(k)

and outputs public key PK T to all other pro-
cesses. (We omit explicitly inputting the public key
in other processes for brevity.) Inputs a bulletin
board BB from process Board, computes (X, P ) ←
Tally(PK T ,SK T ,BB , nC , k), and outputs (X, P ) to
process Auditor.

• Voter. Computes b← Vote(PK T , nC , β, k) and outputs
b to process Board.

• Board. Initializes a bulletin board as the empty set—
i.e., computes BB ← ∅. Inputs ballots from Voter
processes and adds ballots to the bulletin board—i.e.,
computes BB ← BB ∪ {b} for every ballot b input.
And, concurrently, outputs bulletin boards to processes
Auditor, Tallier, and Voter.

• Auditor. Inputs tally and proof (X, P ) from process
Tallier and a bulletin board BB from process Board, com-
putes v ← Verify(PK T ,BB , nC ,X, P, k), and outputs
on its special channel if v = 1.

Let Voter1, . . . ,VoternV
be nV instances of process Voter.

We assume a single, shared broadcast channel.74 We de-
fine function Alg2Prot such that Alg2Prot(Π) outputs sets
of processes {Auditor},Π(Board),Π(Tallier),Π(Voter1), . . . ,
Π(VoternV

) and processes Auditor,Board,Tallier,Voter1,
. . . ,VoternV

.

We can use function Alg2Prot to derive Protocols representing
Helios and Nonce.

APPENDIX O
GOAL γGV BY KÜSTERS ET AL.

We consider a simplified case of a goal proposed by Küsters
et al. [101, §5.2].

Definition 41. Suppose r is a run of some instance of a
Protocol. Let nh be the number of honest voters in r and

β1, . . . , βnh
be the choices of honest voters in r. Let nd be the

number of dishonest voters in r. We say that we are satisfied
with r, if a tally is published in r and that tally contains
nd + nh choices including β1, . . . , βnh

.
Given a Protocol, we define γGV as the following set of

runs: for all instances Λ of the Protocol and for each run r
produced by Λ, we include r in γGV , if we are satisfied with
r.

Our simplified definition is a special case of the original: set
γGV contains runs in which no choices of honest voters may
be excluded from the tally.75 Hence, goal γGV is a slightly
more formal presentation of goal γl for l = 0 (§IX).

A. Unsatisfiable by Helios’16 and Nonce

In Section VII, we claimed that Helios’16 and Nonce do
not satisfy global verifiability using goal γGV . We now prove
the validity of our claims.

Proposition 34. Suppose Π is Helios’16 and Alg2Prot(Π) =
({Auditor},Π(Board),Π(Tallier),Π(Voter), . . . ), we have
γGV is not globally verifiable by Auditor.

We prove Proposition 34 by demonstrating that a voter may
not participate.

Proof. Let Voter be the process that inputs a public key
from process Tallier and terminates.76 We have Board ∈
Π(Board), Tallier ∈ Π(Tallier), and Voter ∈ Π(Voter), hence,
Auditor,Board,Tallier,Voter is an instance of Alg2Prot(Π).
Let us consider the following run r of this instance:

1) Tallier computes (PK T ,SK T ,mB ,mC )← Setup(k).
2) Tallier sends public key PK T to all other processes.
3) Board initializes bulletin board BB ← ∅.
4) Board sends BB to Auditor and Tallier.
5) Tallier computes (X, P ) ← Tally(PK T ,SK T ,BB , nC ,

k).
6) Tallier sends (X, P ) to Auditor.
7) Auditor computes v ← Verify(PK T ,BB , nC ,X, P, k).

By definition of Tally, we have X is a zero-filled vector of
length nC . Moreover, P is a vector such that |P| = 1∧nC = 1
or |P| = nC−1∧nC > 1. It follows that v = 1, by definition
of Verify, hence,

8) Auditor outputs on its special channel.
Since this is a run with one (dishonest) voter, goal γGV teaches
us to expect tally X to contain one choice. Given that X
does not contain any choices, we have γGV is unsatisfied in
r, hence, r 6∈ γGV , but, nonetheless, Auditor outputs on its
special channel. Thereby concluding our proof.

73. We should not expect a translation from Protocols to election schemes,
because Protocols are more general.
74. Thus, we avoid constructing Protocols that consider unrealistic adver-

saries.
75. We remark that Küsters et al. only define when we are satisfied with

run r and do not define γGV as a set. Nonetheless, we believe our definition
captures their intent.
76. Inputting prevents a deadlock that can occur when communication is

symmetric.
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Proposition 35. Suppose Alg2Prot(Nonce) = ({Auditor},
Π(Board),Π(Tallier),Π(Voter), . . . ), we have γGV is not
global verifiable by Auditor.

We prove Proposition 35 by demonstrating that a malicious
bulletin board can inject ballots.

Proof. Let Board be the process that inputs a public key from
process Tallier, computes b← Vote(PK T , nC , β, k) for some
well-formed choice β, initializes bulletin board BB ← {b},
and outputs BB to processes Auditor and Tallier. We have
Board ∈ Π(Board), hence, Auditor,Board,Tallier,Voter is an
instance of Alg2Prot(Nonce), when nV = 1. Let us consider
the following run r of this instance:

1) Tallier computes (PK T ,SK T ,mB ,mC )← Setup(k).
2) Tallier sends public key PK T to all other processes.
3) Board computes b ← Vote(PK T , nC , β, k) for some

well-formed choice β and initializes bulletin board
BB ← {b}.

4) Board sends BB to Auditor and Tallier.
5) Tallier computes (X, P ) ← Tally(PK T ,SK T ,BB , nC ,

k).
6) Tallier sends (X, P ) to Auditor.
7) Auditor computes v ← Verify(PK T ,BB , nC ,X, P, k).

By definition of Tally and Verify, we have v = 1. It follows
that:

8) Auditor outputs on its special channel.
Since this is a run with one honest voter, goal γGV teaches
us to expect tally X to contain the honest voter’s vote β′.
It follows that γGV is unsatisfied in r if β 6= β′, which
occurs with non-negligible probability for nC > 1, thereby
concluding our proof.

B. Admitting attacks

In Section VIII-C, we claimed that global verifiability
instantiated with goal γGV admits revelation attacks. We now
prove the validity of our claim.

Definition 42 (Coin leakage). An election scheme Π =
(Setup,Vote,Tally,Verify) does not leak coins used to con-
struct ballots, if for all PPT adversaries A, there exists a
negligible function µ, such that for all security parameters
k, we have Pr[(PK T , nC , β) ← A(k); b ← Vote(PK T , nC ,
β, k); r ← A(b) : 1 ≤ β ≤ nC ∧ b = Vote(PK T , nC , β, k; r)]
≤ µ(k).

Intuitively, the definition captures the idea that ballots do not
leak coins. Of course, coins may be leaked indirectly. For
example, by the software, hardware, or voter that constructed
the ballot.

Proposition 36. Suppose Π = (. . . ,Verify) is an elec-
tion scheme that does not leak coins used to con-
struct ballots, Alg2Prot(Π) = ({A}, . . . ), and Alg2Prot(
Replace(Π)) = ({Auditor},Π(Board),Π(Tallier),Π(Voter1),
. . . ,Π(VoternV

), . . . ). If γGV is globally verifiable by A, then
γGV is globally verifiable by Auditor.

Proof. Suppose γGV is not globally verifiable by Auditor,
hence, there exists an instance of protocol Alg2Prot(
Replace(Π)) such that for all negligible functions µ there
exists a security parameter k and run r 6∈ γGV of the instance
that includes an output on the special channel belonging
to process Auditor, with probability greater than µ(k). By
definition of goal γGV , either no tally is published in run r
or the run publishes a tally that does not contain nd + nh
choices including β1, . . . , βnh

, where nh is the number of
honest voters, β1, . . . , βnh

are the choices of honest voters, and
nd is the number of dishonest voters. By definition of function
Alg2Prot, process Auditor only outputs on its special channel
if a tally is published, hence, we consider only the latter case.
Moreover, the process only outputs on its special channel if
VerifyR(PK T ,BB , nC ,X, P, k) = 1, where VerifyR is the
algorithm introduced by function Replace, PK T , X and P
are outputs of a process in Π(Tallier), BB is an output of a
process in Π(Board), and nC is the number of candidates.

It follows from the definition of function Replace that
protocols Alg2Prot(Π) and Alg2Prot(Replace(Π)) are equiv-
alent (which would permit an immediate conclusion), unless
BB = {b1, . . . , b`, (α1, α

′
1, r1), . . . , (αk, α

′
k, rk)} such that∧

1≤i≤k bi = Vote(PK T , nC , αi, k; ri) ∧ 1 ≤ αi, α
′
i ≤ nC .

Moreover, we have Verify(PK T ,BB , nC ,X
∗, P, k) = 1,

where tally X∗ is derived from X by replacing choices
α′1, . . . , α

′
k with α1, . . . , αk. Since γGV is globally veri-

fiable by A, tally X∗ contains nd + nh choices includ-
ing the choices of honest voters, namely, β1, . . . , βnh

. By
comparison, X does not. Since X and X∗ contain the
same number of choices, there exists an honest choice
β ∈ {β1, . . . , βnh

} which is replaced by a distinct choice
α ∈ {α′1, . . . , α′k}. Suppose that honest choice belongs to
a process Voter ∈

⋃
1≤i≤nV

Π(Voteri). By definition of
process Voter, the choice is encapsulated inside a ballot b =
Vote(PK T , nC , β, k; r), where coins r are chosen uniformly
at random. Since Π does not leak coins used to construct
ballots, it follows that coins r cannot appear on bulletin
board BB , thereby deriving a contradiction and concluding
our proof.

Proposition 37. Suppose Π is an election scheme that does
not leak coins used to construct ballots, Alg2Prot(Π) = ({A},
. . . ), and Alg2Prot(Drop(Π)) = ({B}, . . . ). If γGV is glob-
ally verifiable by A, then γGV is globally verifiable by B.

A proof of Proposition 37 can be constructed on the basis
that algorithm Vote does not leak coins. That idea has already
been demonstrated in our proof of Proposition 36, so we omit
a formal proof.

APPENDIX P
GOAL δGV AND RELATION WITH ELECTION VERIFIABILITY

The definition below expresses the goal introduced in Sec-
tion VII: the goal that is satisfied in a run if ballots b1, . . . , bn
for choices β1, . . . , βn appear in the run, such that b1, . . . , bn
are included on the bulletin board and no further ballots are
included, and the run produces a tally for choices β1, . . . , βn.
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Definition 43. Suppose r is a run of some instance of a
Protocol. Further suppose BB is the bulletin board in r and
b1, . . . , bn are ballots for well-formed choices β1, . . . , βn in
r, such that b1, . . . , bn ∈ BB \ {⊥} and no further ballots
appear in BB . We say that we are satisfied with r, if a tally
is published in r and that tally is for choices β1, . . . , βn.

Given a Protocol, we define δGV as the following set of
runs: for all instances Λ of the Protocol and for each run r
produced by Λ, we include r in δGV , if we are satisfied with
r.

We show election verifiability implies global verifiability
using goal δGV (Proposition 38). It follows that Helios’16,
respectively Nonce, satisfy global verifiability using goal δGV

by Theorem 5, respectively Proposition 1. We also show
that global verifiability implies universal verifiability (Propo-
sition 39), but not individual verifiability, with that goal.

Proposition 38. Suppose Π is an election scheme and
Alg2Prot(Π) = ({Auditor}, . . . ). If Π satisfies Ver-Ext, then
δGV is globally verifiable by Auditor.

Proof. Suppose δGV is not globally verifiable by Auditor.
Hence, there exists an instance Λ of Alg2Prot(Π) parame-
terized by k, such that for all negligible functions µ, there
exists a security parameter k and an (efficient) run r 6∈ γ of
Λ that includes an output on Auditor’s special channel, with
probability greater than µ(k). The instance Λ of Alg2Prot(Π)
is a composition of processes that includes Auditor. Since
process Auditor outputs on its special channel, run r constructs
public key PK T , bulletin board BB , tally X, and proof
P , and inputs these values to process Auditor such that
Verify(PK T ,BB , nC ,X, P, k) = 1, where nC is an integer.
Let b1, . . . , bn be ballots for well-formed choices β1, . . . , βn
in r such that b1, . . . , bn ∈ BB and no further ballots appear
in BB . (We implicitly assume that ballots are outputs of
algorithm Vote.) We proceed by distinguishing two cases.

• Case I: Π satisfies individual verifiability. In this case,
ballots b1, . . . , bn are pairwise distinct. It follows that
correct-tally(PK T ,BB ,M, nC , k) is a tally for choices
β1, . . . , βn. Yet, since δGV is not globally verifiable by
Auditor, tally X is not for choices β1, . . . , βn. Thus,
the adversary that constructs PK T , BB , X and P in
the same way as they are constructed in r, and outputs
(PK T ,BB , nC ,X, P ), wins the universal verifiability
game.

• Case II: Π satisfies universal verifiability. In this case,
X = correct-tally(PK T ,BB ,M, nC , k). Yet, since δGV

is not globally verifiable by Auditor, tally X is not for
choices β1, . . . , βn. Hence, there exists distinct integers
i and j such that bi = bj ∧ bi 6= ⊥ ∧ bj 6= ⊥. Thus, the
adversary that constructs PK T in the same was as it is
constructed in r and outputs (PK T , nC , βi, βj), wins the
individual verifiability game.

Proposition 39. Suppose Π is an election scheme and
Alg2Prot(Π) = ({Auditor},Π(Board),Π(Tallier),Π(Voter1),

. . . ,Π(VoternV
), . . . ). If δGV is globally verifiable by

Auditor, then Π satisfies Exp-UV-Ext.

Proof. Suppose Π does not satisfy universal verifiability.
Hence, there exists a PPT adversary A, such that for all
negligible functions µ, there exists a security parameter k and
Succ(Exp-UV-Ext(Π,A, k)) > µ(k).

Let Tallier be the process that computes
(PK T ,BB , nC ,X, P ) ← A(k), outputs PK T to all
other processes and outputs BB and (X, P ) to process
Auditor (given that the channel is shared, process Auditor
will input BB as if it were output by Board). We have
Tallier ∈ Π(Tallier), hence, Auditor,Board,Tallier,Voter1,
. . . ,VoternV

is an instance of Alg2Prot(Π). Let us
consider the following run r of this instance. Suppose
Tallier computes (PK T ,BB , nC ,X, P ) ← A(k), sends
PK T to all other processes, and sends BB and (X, P )
to process Auditor. Further suppose Auditor computes
v ← Verify(PK T ,BB , nC ,X, P, k). Since A is a winning
adversary, we have Verify(PK T ,BB , nC ,X, P, k) = 1
and X 6= correct-tally(PK T ,BB , nC , k). Hence, Auditor
outputs on its special channel. Suppose A produces ballots
b1, . . . , bn ∈ BB for well-formed choices β1, . . . , βn. Without
loss of generality, we can assume b1, . . . , bn are pairwise
distinct, since there exists an equivalent adversary that can
simulate A’s output if this assumption does not hold. It
follows that correct-tally(PK T ,BB , nC , k) is the tally of
choices β1, . . . , βn. Yet, tally X is not for the choices in
correct-tally(PK T ,BB , nC , k). Thereby concluding our
proof.

To show global verifiability using goal δGV does not imply
individual verifiability, we adapt our toy scheme from nonces
(§II-C) such that nonces are chosen from a space parametrised
by the public key, rather than the security parameter, and
verification fails when the public key is not equal to the secu-
rity parameter. It follows that the two schemes are equivalent
when the public key is the security parameter. Yet, there exists
the possibility to cause collisions using maliciously generated
public keys.

Definition 44. Election scheme Nonce′ is defined as follows:
• Setup(k) outputs (k, k, p1(k), p2(k)), where p1 and p2

may be any polynomial functions.
• Vote(k, nC , β, k

′) selects a nonce r uniformly at random
from Z2k and outputs (r, β).

• Tally(k,BB , nC , k
′) computes a vector X of length nC ,

such that X is a tally of the votes on BB for which the
nonce is in Z2k , and outputs (X,⊥).

• Verify(k,BB , nC ,X, P, k
′) outputs 1 if (X, P ) =

Tally(k,BB , nC , k
′) ∧ k = k′ and 0 otherwise.

Collisions resulting from maliciously generated public keys
cannot be detected by global verifiability using goal δGV ,
because global verifiability only requires the properties of goal
δGV to hold on runs in which auditing succeeds. Thus, Nonce′

satisfies global verifiability using goal δGV , but not individual
verifiability. We prove a more general result: for any goal
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such that Nonce satisfies global verifiability, we have Nonce′

satisfies global verifiability too.

Proposition 40. Suppose Alg2Prot(Nonce) = ({Auditor},
. . . ), Alg2Prot(Nonce′) = ({Auditor′}, . . . ), and γ is a goal.
If γ is globally verifiable by Auditor, then γ is globally
verifiable by Auditor′.

Proof sketch. By definition of global verifiability, we need
only consider runs produced by instances of Alg2Prot(Nonce′)
that include an output on the special channel of process
Auditor′. In these runs, the public key input by Auditor′ is
equal to the security parameter. And Alg2Prot(Nonce′) is
equivalent to Alg2Prot(Nonce) on such runs, concluding our
proof.

Corollary 41. Given Alg2Prot(Nonce′) = ({Auditor′}, . . . ),
we have δGV is globally verifiable by Auditor′.

Proof sketch. Given that Nonce satisfies Ver-Ext (Proposi-
tion 1), we have δGV is globally verifiable by Auditor (Propo-
sition 38). Hence, δGV is globally verifiable by Auditor′ too
(Proposition 40).

Proposition 42. Nonce′ does not satisfy Exp-IV-Ext.

Proof sketch. An adversary that outputs (1, 1, 1, 1) can cause
a collision with non-negligible probability.
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