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Abstract. TWINE is a recent lightweight block cipher based on a Feis-
tel structure. We �rst present two new attacks on TWINE-128 reduced
to 25 rounds that have a slightly higher overall complexity than the 25-
round attack presented by Wang and Wu at ACISP 2014, but a lower
data complexity.
Then, we introduce alternative representations of both the round func-
tion of this block cipher and of a sequence of 4 rounds. LBlock, another
lightweight block cipher, turns out to exhibit the same behaviour. Then,
we illustrate how this alternative representation can shed new light on
the security of TWINE by deriving high probability iterated truncated
di�erential trails covering 4 rounds with probability 2−16.
The importance of these is shown by combining di�erent truncated dif-
ferential trails to attack 23-rounds TWINE-128 and by giving a tighter
lower bound on the high probability of some di�erentials by clustering
di�erential characteristics following one of these truncated trails. A com-
parison between these high probability di�erentials and those recently
found in a variant of LBlock by Leurent highlights the importance of
considering the whole distribution of the coe�cients in the di�erence
distribution table of a S-Box and not only their maximum value.
Keywords: TWINE, LBlock, meet-in-the-middle, truncated di�erential,
cryptanalysis

1 Introduction

Lightweightness is currently one of the most investigated topics in symmetric
cryptography. As more and more appliances are expected to communicate with
each other as well as over the internet, the need for primitives capable of running
on low-power CPU's e.g. used in sensor networks as well as on small RFID tags
is becoming more pressing. Many lightweight primitives intended to be usable
in such constrained environment have been proposed during the last few years,
a review of which can be found in [1].

A possible approach to design a lightweight primitive is to use many rounds
with a simple structure. The Generalized Feistel Network (GFN), introduced
by Nyberg in [2], is a modi�cation of the regular Feistel Network which uses
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more than 2 branches. Having more branches allows the use of a simpler Feistel
function, the branch permutation taking care of the di�usion, hence the suit-
ability of this approach in a constrained context. However, the simple branch
rotation used in most GFN with b branches requires b rounds to obtain full di�u-
sion. To improve this number, more sophisticated permutations were introduced
in [3] and one such permutation has been used by the authors of TWINE [4], a
lightweight block cipher with a GFN structure: while TWINE uses 16 branches,
only 8 rounds are necessary for full di�usion. TWINE is therefore both a good
example of common trade-o�s in lightweight cryptography, e.g. it has a simple
round function iterated many times, and one of the only instances of a GFN
with improved di�usion layer. A similar block cipher is LBlock [5], a lightweight
block cipher which served as the basis for the design of LBlock-s, a variant with
a di�erent S-Box and key schedule used in the Lightweight Authenticated Ci-
pher (LAC) submitted to the CAESAR competition by a related team [6]. While
LBlock is described as a �regular� two-branched Feistel Network, the rotation
used in its permutation layer and the simplicity of its Feistel function make it
equivalent to a GFN similar to TWINE. The designers of TWINE pointed out
this resemblance in [4].

In this paper, we focused our e�orts on TWINE and tried di�erent ap-
proaches to cryptanalyze it. First, we study Meet-in-the-Middle (MitM) attacks
on TWINE-128 and describe an attack on 25 rounds1. It is based on the attack
strategy proposed by Demirci and Selçuk at FSE 2008 [9] to attack both the 192
and 256-bit version of the AES reduced to 8 rounds and which is the starting
point of the best attacks on the AES so far [10,11,12]. Then we study impos-
sible di�erential attacks and show that thanks to the framework described by
Boura et al. in [13] one can be mounted on 25 rounds with an overall complexity
below the natural bound of the exhaustive search. Our 25-round attacks have
a slightly higher time complexity than the 25-round attack presented by Wang
and Wu [14] at ACISP 2014 but a lower data complexity. Interestingly, three dif-
ferent cryptanalysis techniques (meet-in-the-middle, impossible di�erential and
zero-correlation linear) allow to break the same number of rounds with a similar
overall complexity.

The particular permutation layer of TWINE implies, as we will see, an observ-
able vulnerability of this block cipher against truncated di�erential cryptanal-
ysis, an attack introduced by Knudsen [15]. Unlike �normal� di�erential crypt-
analysis, this technique does not rely on studying fully speci�ed trails where each
bit of di�erence is supposed to have a particular value but instead on looking
at more general patterns where some bit di�erences may take both values 0 and
1. In the case of word oriented cipher, we can restrict the investigation to trails
where the di�erences are studied at the word level: either there is at least one
di�erence over the whole word or there is none. Trails where some of the bits
are not speci�ed are often used when adding rounds on top and on the bottom

1 While a MitM attack on 25-round TWINE-128 is already in the literature [7], it
has been shown in a note on eprint [8] that the complexity of this attack is actually
higher than brute-force.



of a di�erential distinguisher. However, using truncated di�erential covering all
the rounds can also yield powerful attacks. For example, such an approach has
been used recently by Lallemand et al. [16] to attack the lightweight block cipher
KLEIN [17]. Truncated di�erential have also been used to enhance the search
for high probability di�erentials. Two recent examples are the best attack on the
block cipher PRINCE [18] and a di�erential forgery attack on the authenticated
cipher LAC [19].

As we introduce new attacks on TWINE, we summarize the complexities of
the best attacks against this cipher in the single-key model in Table 1.

Description Complexity

Reference Type Version Data Time Memory

[20] Biclique
full TWINE-80 260 279.1 28

full TWINE-128 260 2126.82 28

[21] Impossible di�.
23r TWINE-80 257.85 279.09 278.04

24r TWINE-128 258.1 2126.78 2125.61

[14] Zero-Cor. Linear
23r TWINE-80 262.1 272.15 260

25r TWINE-128 262.1 2122.12 260

Section 3.1 MitM 25r TWINE-128 248 2124.7 2109

Section 3.2 Impossible di�. 25r TWINE-128 259.1 2124.5 278.1

Section 5.3 Truncated di�. 23r TWINE-128

258 2126.78

289262 2125.94

264 2124.35

Table 1: The best attacks on TWINE in the single-key model.

Our Contributions First, we describe in Section 3 our best attacks on TWINE-
128, namely both a Meet-in-the-Middle attack and an Impossible Di�erential
attack, leveraging the simplicity of the key schedule of this block cipher.

Then, we highlight in Section 4 a property of the permutation used in TWINE:
rounds of encryption can be grouped into blocks of 4 rounds in such a way that
two halves of the internal states of both ciphers evolve independently from one
another during the �rst 3 rounds of the block and exchange information only
during the fourth. We also discuss why LBlock and its simpler variant LBlock-s
exhibit the same 4-round behaviour. As a consequence of this observation, we
describe several high probability truncated di�erential trails for all these ciphers.
We then leverage them in Section 5 to attack 23 rounds of TWINE-128 using
comparatively low memory. Finally, we use these truncated trails to optimize a
search for high probability di�erentials and show that the conservative choice of
S-Box made by the designers of TWINE greatly limits the di�erential e�ect in
this primitive � unlike in LBlock-s for instance.



2 Descriptions of TWINE, LBlock and LBlock-s

2.1 Description of TWINE

This block cipher uses 16 branches of 4-bits and has a very simple round function
(see Figure 1): the Feistel function consists in a xor of a sub-key and a call to a
unique S-box based on the inverse function in GF (24). Then, the branches are
shu�ed using a sophisticated nibble permutation ensuring faster di�usion than
a simple shift [3]. One version of TWINE uses an 80 bits key, another uses a
128 bits key and we denote these versions TWINE-80 and TWINE-128. They
only di�er by their key-schedule and both have 36 rounds. Both key schedules
are sparse GFN's using only 2 S-Box calls per round for TWINE-80 and 3 for
TWINE-128. At each round, some �xed nibbles of the key-state are used as
round keys for the block cipher. One round of TWINE is depicted on Figure 1.

S S S S S S S S

RKr

xr[0..15]

xr+1[0..15]

Fig. 1: The round function of TWINE.

Notations. Given a collection of messages {P 0, . . .}, the nibble with index i
taken at round r of message m is denoted xmr [i]. The master key is denoted K
while the round key used at round r is denoted RKr.

Keyschedule. The keyschedule produces the 36 round keys from the master
key K. It is a variant of GFN with few Sboxes which is the same as the one used
in the round function of TWINE. Two key lengths are available: 80 and 128 bits.
In both cases, the subkey WK0 is �rst initialized to K and then next subkeys
are generated using round constants and the same round function: WKi+1 =
F (WKi, CON

i), for 0 ≤ i ≤ 31. Finally the round key RKi is obtained by
extracting 8 nibbles fromWKi. The function F used for 128-bit keys is depicted
on Figure 2. We refer the reader to [4] for the 80-bit version of the keyschedule.

2.2 Descriptions of LBlock and LBlock-s

LBlock [5] is a two-branched Feistel Network with a twist: a rotation is performed
on the branch being xor-ed with the output of the Feistel function. This leads
to a strong structural proximity with TWINE, as the authors of this cipher
acknowledged.

The Feistel function of LBlock is made of a key addition, a S-box layer S
made of 8 di�erent 4-bits S-boxes and a nibble permutation P . In addition to the
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Fig. 2: Keyschedule of TWINE-128.

usual Feistel structure, there is a rotation by 8 bits to the left on the right branch
before the xor. The complete round function is described in Figure 3. LBlock
only uses 80-bits keys. Its key-schedule is similar to that of present [22]: it
relies on a rotation of the 80-bits register used to store the master key and on
the application of two S-boxes. It uses 32 rounds to encrypt a plaintext.

LBlock-s, the block cipher used in the authenticated cipher LAC [6], is iden-
tical to LBlock except that the S-Box layer uses a unique S-Box instead of 8
di�erent ones and that its key-schedule is closer to the one of TWINE-80. The
S-Boxes of LBlock and that of LBlock-s all have similar di�erential properties.

Fig. 3: The round function of LBlock



3 New Attacks on 25-Round twine-128

In this section we present two new attacks on 25-round TWINE, increasing by
one the number of rounds broken if we omit biclique attacks.

3.1 Meet-in-the-Middle Attack on 25-Round twine-128

Our meet-in-the-middle attack follows the strategy used by Demirci and Selçuk
on AES in [9], later improved by Dunkelman et al. in [23], Derbez et al. in[11,10]
and by Li et al. in [12]. That is the �rst time that this kind of meet-in-the-middle
attack is applied to a Feistel Network and this shows that this technique is also
powerful on such ciphers.

First we give the de�nition of a δ-set which is a particular structure of mes-
sages used in our attack.

De�nition 1. Let a δ-set be a set of 16 TWINE-states that are all di�erent in
one state nibble (the active nibble) and all equal in the other state nibbles (the
inactive nibbles).

In the following we consider δ-sets such that the nibble 15 is the active one.
For such a particular set we made the following observation which is the core of
our new attack.

Observation 1 Consider the encryption of a δ-set {P 0, P 1, . . . , P 15}
through eleven full TWINE rounds. The ordered sequence[

x111[4]⊕ x011[4], x211[4]⊕ x011[4], . . . , x1511[4]⊕ x011[4],
x111[15]⊕ x011[15], . . . , x1511[15]⊕ x011[15]

]
is fully determined by the following 27 nibble parameters:

� y01 [14]
� y02 [14]
� y03 [2, 14]
� y04 [2, 4, 14]
� y05 [0, 2, 4, 14]

� y06 [0, 2, 8, 12, 14]
� y07 [0, 4, 6, 10, 14]
� y08 [2, 8, 12]
� y09 [4, 10]
� y010[2]

where ymr [2i] = xmr [2i]⊕RKr[i]. Consequently, there are at most 24×27 = 2108

possible sequences when we consider all the possible choices of keys and δ-sets
(out of the 24×2×15 = 2120 of the theoretically possible 30-nibble sequences).

Proof. The proof is straightforward and depicted on Figure 4. At the �rst step
we know the di�erences P 1 ⊕ P 0, . . . , P 15 ⊕ P 0. As we are considering a δ-set,
the di�erences in each sbox of the �rst round are null and thus we are able to
compute the di�erences x11⊕x01, . . . , x151 ⊕x01. So the knowledge of y01 [14] leads to



P x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Fig. 4: Encryption of a δ-set through 11 full TWINE rounds. Black nibbles
are the parameters given in Observation 1. Di�erences in coloured nibbles are
known. No di�erence in white nibbles.

the knowledge of this particular state variable for all the 16 messages and thus
we know the di�erences in each sbox of this round and are able to compute the
di�erences x12⊕x02, . . . , x152 ⊕x02. This procedure can be repeated until di�erences
in both x11[4] and x11[15] are reached since at each step di�erences in sboxes
are either null, not required or known.

Note that the actual value of the active nibble of P 0 does not a�ect the set
of all the possible sequences since only di�erences are used. Thus the choice of
P 0 is free but then the δ-set has to be ordered according to the di�erence in the
active nibble.

This observation on 11-round TWINE is used to mount an attack on 25-
round TWINE by adding 5 rounds at beginning and 9 at the end. The scenario
of the attack is the following:

� O�ine phase. Compute all the 2108 120-bit sequences given in Observa-
tion 1, and store them in a hash table.

� Online phase.

1. Pick a plaintext P 0.
2. Guess the state variables required to identify a δ-set containing P 0.
3. Ask for the corresponding ciphertexts.
4. Guess the state variables required to compute di�erences in both x11[4]

and x11[15] from the ciphertexts.
5. Build the sequence and check if it belongs to the table.



P x1 x2 x3 x4 x5

x16 x17 x18 x19 x20 x21 x22 x23 x24 C

Fig. 5: Online phase of the 25-round attack. Black nibbles have to be known to
compute di�erences in all coloured nibbles. No di�erence in white nibbles.

Steps 2 and 4 are similar to the proof of Observation 1: �rst we propagate
the di�erences from state x5 to the plaintext and then we propagate di�erences
from the ciphertexts to both x11[4] and x11[15]. Thus 58 state nibbles are needed
to perform the online phase as depicted on Figure 5. Hopefully, the keyschedule
equations reduce the amount of possible values from 24·58 = 2232 to 2124. Indeed,
knowing the full subkeyWK6 except nibble 26 leads to the knowledge of enough
key material to partially encrypt and decrypt the plaintext and the ciphertext



in order to obtain the value of the required state variables. This key material is
depicted on Figure 6.

WK0

WK1

WK6

WK24

RK[0]

RK[1]

RK[2]

RK[3]

RK[4]

RK[5]

RK[6]

RK[7]

Fig. 6: Subkeys of 25-round TWINE. Gray (resp. colored) nibbles are computed
from the full WK6 except nibbles 15 and 26 (resp. except nibble 26).

The data complexity of this attack is 248 chosen plaintexts, the time com-
plexity is 2124 · 16 partial encryptions/decryptions and the memory complexity
is around 2108 128-bit sequences. The probability for a false positive is approx-
imately 2108 · 2−120 = 2−12 and, as we try 2124 key guess, we expect that only
2116 remain after the last step. Thus, one can guess WK6[26] to fully recover
the master key and then test it against two plaintext/ciphertext pairs.

Note that some minor improvements can be applied to the attack. First we
can consider δ-set of 15 messages instead of 16 to save some memory and time
complexity while still providing enough �ltering to retrieve the master key with-
out increasing the overall complexity. Furthermore, knowing the subkey WK6

except nibbles 15 and 26 provides enough key material (gray colored on Figure 6)
to compute all the state variables required by step 2 together with all the ones re-
quired by step 4 except 21 of them. Those ones are y16[14], y17[6, 10], y18[2, 8, 10],
y19[0, 12], y20[2, 4, 6, 14], y21[2, 6, 8], y22[0, 2], y23[0, 4] and y24[6]. Hence, we esti-
mate the time complexity to be:

2120 · 15 · 37/200 + 2124 · 15 · 21/200 + 2 · 2120 ≈ 2124.7 encryptions,

where 200 is the number of sboxes for one encryption. The memory complexity
is approximately 2109 64-bit blocks.

3.2 Impossible Di�erential Attack on 25-Round twine-128

Impossible di�erential cryptanalysis simultaneously introduced by Knudsen [24]
and Biham et al. [25] is a powerful technique against a large variety of block



ciphers. Recently, Boura et al. [13] proposed a generic vision of impossible dif-
ferential attacks with the aim of simplifying and helping the construction and
veri�cation of this type of cryptanalysis. In particular, they provided a formula
to compute the complexity of such an attack according to its parameters. To un-
derstand the formula we �rst brie�y remain how an impossible di�erential attack
is constructed. It starts by splitting the cipher in three parts: E = E3 ◦E2 ◦E1

and by �nding an impossible di�erential (∆X 9 ∆Y ) through E2. Then ∆X

(resp. ∆Y ) is propagated through E−11 (resp. E3) with probability 1 to obtain
∆in (resp. ∆out). We denote by cin and cout the log2 of the probability of the
transitions ∆in → ∆X and ∆out → ∆Y respectively. Finally we denote by kin
and kout the key materials involved in those transitions. All in all the attack con-
sists in discarding the keys k for which at least one pair follows the characteristic
through E1 and E3 and in exhausting the remaining ones. The complexity of
doing so is the following:

� data: CNα
� memory: Nα
� time: CNα +

(
1 + 2|kin∪kout|−cin−cout

)
NαCE′ + 2|k|−α

where Nα is such that (1 − 2−cin−cout)Nα < 2−α, CNα is the number of chosen
plaintexts required to generate Nα pairs satisfying (∆in, ∆out), |k| is the key size
and CE′ is the ratio of the cost of partial encryption to the full encryption.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

Fig. 7: Impossible truncated di�erential on 13 TWINE-rounds. No di�erence
in white nibbles. Di�erences in black (resp. gray) nibbles are (resp. may be)
non-zero.

We used this framework to mount an impossible di�erential attack on 25-
round TWINE-128. First we found a truncated impossible characteristic through



13 rounds of TWINE which is described on Figure 7. It was extended by 4 rounds
at the start and by 8 rounds at the end in order to attack 25 rounds of the cipher.
It can be seen in Figure 8 that the di�erence in the plaintexts has to be zero in
11 nibbles such that cin + cout = 16 + 60 = 76. The key material kin ∪ kout is
composed of 7 + 45 = 52 round-key nibbles which can assume only 2124 thanks
to the keyschedule of TWINE-128. Indeed, they all can be computed from the
whole subkey WK24 except nibble 1 (see Figure 9).

P x1 x2 x3 x4

p = 2−16

x17 x18 x19 x20 x21 x22 x23 x24 C

p = 2−60

Fig. 8: Impossible di�erential attack on 25 rounds. No di�erence in white nibbles.

As a consequence, and according to the above formula, the complexity of our
attack is D = α · 275.5−39 · 220 = α · 256.5, M = α · 275.5 and T ≈ α · 2123.5 ·
CE′ + 2128−α. As we estimate the ratio CE′ to 52/200 ≈ 2−1.9, the value of α
minimizing the overall complexity is 5.87.

4 The 4-Round Structure of TWINE, LBlock and

LBlock-s

4.1 Alternative Representation of the Round Functions

The round functions of TWINE can be described using an equivalent repre-
sentation which allows a clearer representation of some di�erential paths. This
alternative representation is given in Figure 10a. Note that a similar representa-
tion of LBlock can be obtained, an observation which highlights the similarities
between these two designs.

For TWINE, we simply move all the branches �going� in the Feistel functions
to the left and those receiving its output to the right. This means we simply
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Fig. 9: Subkey nibbles obtained from WK24 except nibble 1. Hatched nibbles
are the ones required in the impossible di�erential attack.

(a) TWINE (b) LBlock(-s)

Fig. 10: Alternative representations of the round functions of TWINE and
LBlock(-s).

move branches with even indices on the left and those with odd ones on the
right, as described in Figure 10a.

The process leading to the alternative description of LBlock(-s) is more com-
plicated than for TWINE and is summarized in Figure 11. Since the S-boxes and
the permutation layer P both operate on nibbles, P ◦ S is equivalent to S′ ◦ P
where S′ is a reordered S-box layer. Then, instead of applying P within the Feis-
tel function, we apply it before entering it and then apply the inverse 1/P of P
on the same branch to compensate. Finally, we note that the rotation R and the
inverse permutation 1/P are applied on the same data, so we combine them into
one operation R ◦ (1/P ). If we replace the two 32-bit words making the internal
state of LBlock by eight 4-bits nibbles each, we obtain the representation given
in Figure 10b.



Fig. 11: How to obtain the alternative representation of LBlock(-s).

4.2 A 4-Round Cyclic Behavior

Using our alternative representation, we represent 4 rounds of TWINE easily
(see left of Figure 12). As we can see, the 16 branches can be grouped in two
disjoint components, gray and black, such that branches from one component
interact only with each other during 3 rounds out of 4. However, during the
last round, branches from each component interact only with branches from the
other component. Furthermore, these components are stable in the sense that
such groups of 4 iterations can be plugged together to cover any number of
rounds and remain separated for all rounds with index r with r 6≡ 3 mod 4.
Indeed, in Figure 12, the branches which are black at the output of the fourth
round are exactly those which are gray at the input of the �rst round. If we draw
these components separated from one another, we obtain another description of
4 rounds of TWINE given on the right of Figure 12. The same can be done with
LBlock(-s), see Figure 13.

5 Truncated Di�erential Cryptanalysis of TWINE

5.1 Truncated Di�erentials over 4 Rounds

Because of the particular structure it has over 4 rounds, TWINE exhibits some
truncated di�erential patterns with high probability. The simplest one implies
4 active branches in input and 4 active branches in the output of 4 rounds
at the cost of 4 di�erence cancellations at round 3. Let (x[0], x[2], x[6], x[10])
have non zero di�erences. Then these di�erences will propagate to the full black
component during the next two rounds. During round 3, if the di�erences in
(x[0], x[4], x[6], x[12]) cancel themselves with the di�erences in (x[1], x[5], x[7], x[13])
after going through the key addition and the S-box layer, then the di�erences do
not propagate to the red component. Hence, the di�erences remain contained in
the black component for another 3 round with probability 1. Since 4 cancella-
tions happen with probability 2−16 and since such truncated characteristics can
be �plugged� so as to cover as many rounds as we want, we have a truncated
di�erential covering 4r rounds with probability 2−16·r.

Other slightly di�erent characteristics involve three active branches in the
input and the output after 4 rounds in such a way that only 4 cancellations are
necessary, meaning that they also have a probability of 2−16. One of them is
described in Figure 14a and the others in the Appendix in Figure 17. Non-zero



Fig. 12: Alternative representation of 4 rounds of TWINE. S-boxes are not shown
and XOR's are represented by circles. On the left is the basic representation,
on the right one which highlights the two components. Numbers correspond to
nibble indices in the �regular� representation.

Fig. 13: Alternative representation of 4 rounds of LBlock(-s). S-boxes are not
shown and XOR's are represented by circles. On the left is the basic representa-
tion, on the right one which highlights the two components.



(a) L1 (black) and its counterpart L′1 (b) R1 (black) and its counterpart R′1

Fig. 14: 4-round truncated di�erentials for TWINE and their modi�ed versions.

di�erences are black and zero di�erences are gray. They all work by having one
cancellation during the second round and three during the third. As before, the
�rst and fourth rounds have probability 1. However, we can extend them for the
�rst 4 rounds by adding non-zero di�erences over all the components (which is
represented in a light blue dotted line in Figure 17). At the cost of one more
cancellation, hence a probability of 2−20, we can use structures made of 232

plaintext/ciphertext couples giving raise to
(
232

2

)
≈ 263 pairs with the correct

zero-di�erences.
As we can see, these di�erences move on to the right component after 4

rounds. There are similar trails covering it described in the appendix (Figure 18),
the �rst is also represented on Figure 14b. As before, gray represents zero di�er-
ences, black non-zero ones and black squares the cancellations which must occur
during encryption. It also represents in dotted light blue the di�erence propaga-
tion during the �rst 3 rounds without any constraints regarding the cancellations
so that this trail has probability 1. The green squares represent the cancellations
which must be observed when starting from the bottom and partially decrypting
a pair of ciphertext having the correct output di�erence.

It is therefore possible to cover as many rounds as we want using a charac-
teristic Li,Ri, ...,Li,Ri for any i ∈ [1, 4]. Such a trail would cover 4r rounds
with probability 2−16·r. We also denote L′i the trail Li extended on top so as to
have 8 non-zero input di�erences at the cost of one additional cancellation and
R′i the trail Ri reduced to 3 rounds and where no cancellations occur. Both L′i
and R′i correspond to the case where the dotted light blue lines contain non-zero
di�erences.

5.2 E�cient Key Recovery

The 4 cancellations (5 during the very �rst round) preventing the di�erence from
spreading to the other component can be grouped into 2 sets each depending on
a distinct set of 5 and 6 sub-keys. This phenomenon is illustrated on Figure 15



where zero di�erences are in gray, the �rst sub-component is represented with a
continuous line and the second with a dashed line. The cancellation during the
�rst round of the iterated trail is only relevant during the very �rst round of
encryption.

Fig. 15: Which S-boxes and sub-keys are involved in the 5 cancellations happen-
ing in L′1. Grey lines correspond to zero di�erences, squares to cancellations.

Starting from a pair of plaintexts separated by the correct input di�erence,
it is easy to generate the set of all the sub-keys combinations which would lead
to the trail we expect as follows:

1. Try all possible combinations of the sub-keys involved in the continuous (i.e.
�not dashed�) part of Figure 15 and store only those leading to the correct
cancellations. There are 24·5 = 220 possibilities, out of which 220−3·4 = 28

lead to the correct pattern.
2. Try all possible combinations of the sub-keys involved in the dashed part of

Figure 15 and store only those leading to the correct cancellations. There
are 24·6 = 224 possibilities, out of which 220−2·4 = 216 lead to the correct
pattern.

3. Combine the 28 and 216 independent sub-candidates to obtain 224 candidates
of 4 · (5 + 6) = 44 bits each.

A very similar algorithm can be used to recover the candidates yielding the
correct cancellations when partially decrypting the ciphertexts of the same pair.
Doing so generates another 224 candidates of 44 bits each.

5.3 Combining Truncated Di�erentials to Attack 23-Round

TWINE-128

General Principle The high level idea of this attack is to discard some com-
binations of values for the set made of the 12 sub-keys used to update the left
component during the �rst 3 rounds and the 12 sub-keys used to update the right



component during the last 3 rounds. These form of set of 24 nibbles, i.e. 96 bits.
The �rst and last 4-round blocks of the truncated di�erential trails described in
Figure 16 all depend on the sub-keys in this set, although each of the trails only
uses a di�erent set of 88 bits out of the 96 bits available. It is therefore easy
to combine the information deduced from each. A complete description of our
attack follows.

Using the trails described in the previous Section, we can cover 23 rounds
with probability p = 2−84 in four di�erent ways. The chaining of these di�erent
4-round characteristics is described in Figure 16 where a 0 means there is no
di�erence on this nibble and a xmeans any non-zero di�erence. Note that they all
require the same input truncated di�erence, all yield the same output truncated
di�erence and once a branch has been �selected� during the third round by
cancelling one of the di�erence, the truncated trail is �xed.

1. Data generation First of all, we need to generate the pairs from which we
are going to extract information about the sub-keys. For this purpose, we use
2s structures of 232 plaintext/ciphertext couples each. In these structures,
nibbles x0[0..3, 6, 7, 10, 11] take all possible values while the others are con-
stant. We thus obtain 2s+63 pairs with the correct input di�erence at a cost
of D = 232+s queries to an encryption oracle. We then obtain all the pairs
which also have the correct output di�erence, namely2 08x8, at the cost of 2s

sorting of arrays of 232 ciphertexts. Since this output di�erence has probabil-
ity f = 2−32, this leaves Np = 2s+63 · f = 2s+31 pairs with the correct input
and output di�erences. Among these, there are Nr = 2s+63 · p = 2s−21 right
pairs for each of the 4 truncated di�erential trails described in Figure 16 �
which means that s must be at least equal to 21. Note that Np = Nrf/p
and D = Nr/p.
Now that we have the data we need, we process as follows for each of the 4
trails, t being the index of the trail considered.

2. Counters increment For t ∈ [1, 4]

(a) Let Tt be an array of size 288. For each of the Np pairs which passed
the �lter, we run the algorithms described in Section 5.2 to recover 224

sub-candidates for the subset of 11 sub-keys used in the �rst 3 rounds
and 224 sub-candidates for the other subset of 11 sub-keys used in the
last 3 rounds. This leads to K = 248 candidates living in space of size
S = 288

3. Discarding candidates We now have 4 tables Tt, t ∈ [1, 4] of S counters.
In each table, each of the S candidates has been Np times incremented
with probability K/S = 2−40. We thus approximate the distribution of the
counters by a normal distribution with average value µwrong = NpK/S =
Nr(fK)/(pS) and variance σ2

wrong = Np(K/S)(1 −K/S) ≈ Nr(fK)/(pS).
However, the correct counter has also been incremented by each of the Nr
correct pairs, meaning that its average value is µright = NpK/S + Nr =

2 The order of the nibbles in this di�erence corresponds to the order of the nibbles in
our alternative representation.
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Fig. 16: The four distinct 23-round truncated di�erential trails we use to attack
TWINE. The nibbles are ordered as in the left side of Figure 12.

Nr
(
(fK)/(pS) + 1

)
. We de�ne µ0 in order to express µwrong, σ

2
wrong and

µright easily:

µ0 =
f ·K
p · S

, µwrong = Nrµ0, σ
2
wrong = Nrµ0, µright = Nr(µ0 + 1).

We then combine the information from these counters. To achieve this, we
recall that the indices in the tables Tt correspond to di�erent subsets of 88
bits of a set of sub-keys of 96 bits in total. Therefore, we can associate a
single representative in each table Tt to each candidate of 96 bits. Hence, we
can give a score to each 96-bits candidate by taking the average of the scores
of their representatives in each table. As a consequence, the score of a wrong



candidate follows a normal distribution with the following parameters:

N
(4 · µwrong

4
,
4 · σ2

wrong

42
)

= N
(
µwrong,

σ2
wrong

4

)
.

Similarly, the score of the right candidate is a sample from a distribution
N
(
µright, σ

2
right/4

)
. If we want a probability of keeping the right candidate

of about 1/2, we need to discard all the candidates having a score below
µright. We denote Pwrong the probability to keep a wrong candidate, i.e. the
probability that a wrong candidate has a score greater than µright. It is given
by:

Pwrong =
1

2

[
1− erf

(µright − µwrong√
2σ2

wrong/4

)]
=

1

2

[
1− erf

(√2Nr
µ0

)]
. (1)

As we can see and unsurprisingly, the amount of wrong candidates discarded
increases with the number Nr of right pairs for each trail. Table 2 gives the
value of the probability Pwrong to keep a wrong candidate depending on the
value of Nr as well as the corresponding data complexity knowing that µ0 =
2−32+56+84−96 = 212. Note also that the maximum value of Nr corresponds to
the full code-book, i.e. when we query all 232 possible structures, in which case,
Nr = 232−21 = 211.

Complexity Estimation The memory complexity of the truncated di�erential
attack described in the previous section is straight-forward to evaluate. We need
to store at most 263 plaintext/ciphertext pairs and 4 times 288 counters. These
counters are on average equal to Nr · 212 with Nr equal to at most 211. Hence,
32 bits are more than enough for each of them. Storing the counters is clearly
the dominating factor here, meaning that the memory complexity of this attack
is 4 · 288 = 290 counters of 32 bits or 289 internal states.

We needNr ·253 plaintext/ciphertext pairs, meaning that the data complexity
is Nr · 253.

This also implies that we need at least the time taken to generate these.
Furthermore, we also need to compute the possible candidates for each of the
Nr · 252 pairs which passed the �lter. As seen in Section 5.2, this can be done
in time 248 for each pair. Hence, we also need to perform a counter increment
4 · Nr · 252 · 248 = Nr · 2102 times. Finally, for all the candidates with a high
enough score, we need to brute-force the 32 remaining bits of the key. This
requires 2128 ·Pwrong encryptions. The complexities for di�erent values of Nr are
given in Table 2.

6 Optimizing the Search for High Probability

Di�erentials

While truncated di�erentials can be used directly to attack (round-reduced)
block ciphers directly, they can also be used to optimize the search for high



Nr Pwrong D T M

25 2−1.22 258 2126.78

289
27 2−1.47 260 2126.53

29 2−2.06 262 2125.94

211 2−3.67 264 2124.34

Table 2: Data, time and memory complexity of a truncated di�erential attack
on TWINE-128.

probability di�erentials. Indeed, by providing a "template" which di�erential
characteristics should follow, it can reduce the size of the search space signi�-
cantly and make the computation of a lower bound on a di�erential probability
tighter. A similar approach was used in [18] to identify high probability di�er-
entials for PRINCE which were then used in a multiple di�erential attack which
is the best attack on this cipher today. LAC [6], a lightweight candidate of the
CAESAR competition based on a simpli�ed version of LBlock called LBlock-
s, has been the target of another high probability di�erential search in a note
released online by Leurent [19].

In both cases, the method has been the same: �rst identify a high probability
di�erential trail and then use a heuristic method to compute a lower bound on the
probability of a di�erential by essentially clustering all characteristics following
said truncated di�erential. Since we have iterated truncated trails covering any
amount of rounds for TWINE, we apply this method on this cipher to identify
high probability di�erentials.

For a truncated characteristic T covering r rounds, we denote PT [δ → ∆] the
probability of the di�erential (δ → ∆) obtained by summing the probabilities of
all the di�erential trails mapping δ to ∆ which follow the truncated trail. Using
these probabilities, we build a matrix M(C) such that M(T )i,j = PT [i→ j]. To
obtain the distribution of ∆ given δ, we simply multiply a vector made of zeroes
everywhere except in position δ, where it is equal to 1, by M(T ). Note that the
sum of the probabilities of the ∆'s obtained in this fashion is not equal to 1 as
the truncated trail itself does not have a probability of 1. Given M(T ), �nding
the di�erential with the highest probability can be done easily by �nding the
maximum coe�cient in the matrix. The size of M(T ) is limited by only taking
into account the values of δ and ∆ which are coeherent with T .

In order to obtain the distribution of ∆ after two iterations of the trail T ,
we multiply the same vector by the matrix M(T ) ×M(T ), where "×" denotes
regular matrix multiplication. This construction can of course be iterated.

In the case of TWINE, we computed two matrices M(L1) and M(R1) cor-
responding to the truncated trails L1 and R1 described in Figures 14a and 14b
respectively. Both M(L1) and M(R1) are square matrices of size 212 × 212 be-
cause both trails have only 3 non-zero nibbles as both their input and output.



Using di�erent multiplications of these, we found the high probability di�eren-
tials given in Table 3.

Rounds Input di�erence Output di�erence Probability
# Active

S-Boxes ×2−2

4

10 20 00 60 00 00 00 00 00 00 20 00 60 00 00 60 2−17.496

2−1860 20 00 60 00 00 00 00 00 00 20 00 60 00 00 10 2−17.496

30 60 00 30 00 00 00 00 00 00 60 00 30 00 00 10 2−17.759

10 60 00 30 00 00 00 00 00 00 60 00 30 00 00 30 2−17.759

8

10 20 00 60 00 00 00 00 60 20 00 10 00 00 00 00 2−34.542

2−3610 20 00 60 00 00 00 00 60 20 00 f0 00 00 00 00 2−34.981

f0 20 00 60 00 00 00 00 60 20 00 10 00 00 00 00 2−34.981

d0 f0 00 80 00 00 00 00 80 f0 00 d0 00 00 00 00 2−34.994

12

10 20 00 10 00 00 00 00 00 00 20 00 60 00 00 10 2−52.083

2−5410 20 00 60 00 00 00 00 00 00 20 00 10 00 00 10 2−52.083

80 f0 00 80 00 00 00 00 00 00 f0 00 d0 00 00 80 2−52.144

80 f0 00 d0 00 00 00 00 00 00 f0 00 80 00 00 80 2−52.144

16

60 20 00 60 00 00 00 00 60 20 00 60 00 00 00 00 2−67.538

2−7230 60 00 30 00 00 00 00 30 60 00 30 00 00 00 00 2−67.595

90 30 00 90 00 00 00 00 90 30 00 90 00 00 00 00 2−67.626

80 f0 00 80 00 00 00 00 80 f0 00 80 00 00 00 00 2−67.762

Table 3: High probability di�erentials for round-reduced TWINE.

As we can see, the highest probability for a di�erential over 4 rounds is higher
than we might expect. Indeed, 9 S-Boxes are involved in it and the maximum
probability for a di�erential in the S-Box is 2−2. Hence, the maximum probability
of a characteristic is 2−18, which is smaller than the value of 2−17.5 our model
predicts and which we checked experimentally. The gain then increases as the
number of rounds increases. For 12 rounds, we have 27 active S-Boxes which
means that the probability of a characteristic cannot be higher than 2−54 and
yet the highest di�erential probability is at least 2−52.1.

Leurent obtained more impressive results for LBlock-s (e.g. a lower bound
of 2−29.8 for 8 rounds) which might be surprising at �rst glance since the linear
layer of these two ciphers are very similar and both use S-Boxes with a maximum
di�erential probability equal to 2−2. However, the distribution of the coe�cients
in the di�erence distribution tables of the S-Boxes of these ciphers are di�erent.
For instance, with SL and ST denoting the S-Boxes of LBlock-s and TWINE
respectively, we have P

[
SL(x + δ) + SL(x) = 4

]
= 2−2 for δ ∈ {4, 5, 6, 7} while

there exists only one δ such that P
[
ST (x + δ) + ST (x) = ∆

]
= 2−2 for any

∆ 6= 0. In other words, the distribution of the output di�erences is closer to being
uniform in TWINE than in LBlock-s (and LBlock). To study the consequences of



these variation in di�erential behaviour, we reiterated our di�erential search by
replacing the S-box of TWINE by that of LBlock-s. We obtained four distinct
di�erentials with probability at least 2−31.7 for 8 rounds.3 This result is 24.3

times better than what a wide-trail argument would give and 23 times higher
than for the TWINE S-Box.

Our �ndings highlight both how large truncated di�erentials can be leveraged
to prove tighter lower bounds on di�erential probabilities and how the distribu-
tion of the coe�cients in the di�erence distribution table of a S-Box as a whole
should be taken into account when designing a primitive in contrast to simply
looking at the maximum coe�cient, as is often the case when wide-trail argu-
ments are used. For n×n S-Boxes a�ne equivalent to monomials of GF (2n), this
distribution is fully described by the so-called di�erential spectrum [26] but, to
the best of our knowledge, there is no generalization of this concept to arbitrary
S-Boxes.

7 Conclusion

Suzaki et al. proposed a new type of permutation to be used in GFN's in [3] and
later applied it to design TWINE. We presented two new attacks on 25 rounds
out of 36 of this primitive which are, to the best of our knowledge, the best
attacks in the single-key model. We then shed new light on the way information
propagates in such a modi�ed GFN and showed that the mixing actually operates
in two phases: two halves of the internal state are mixed independently for three
rounds and only exchange information during the fourth round. This behaviour
is repeated ad in�nitum and can also be observed in LBlock and its variant,
LBlock-s. We used this observation to �nd high probability truncated di�eren-
tial trails and then leveraged these results to both attack 23-rounds TWINE-128
and give a tighter lower bound on the high probability of some di�erentials, high-
lighting di�erences between TWINE and LBlock-s with regards to di�erential
propagation in the process.
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A Appendix

A.1 Complete 4-Rounds Truncated Di�erential Characteristics for

TWINE

In this Section, we present all the 4-rounds truncated di�erential trails we use
to attack TWINE. Figure 17 describes trails on the left component and how
they can be extended, at the cost of an additional cancellation, to have a larger
input di�erence. Figure 18 describes trails on the right component and how they
behave during the �rst 3 rounds if no cancellation occur.



(a) Truncated characteristic L1 (b) Truncated characteristic L2

(c) Truncated characteristic L3 (d) Truncated characteristic L4

Fig. 17: Truncated di�erential characteristics on the left component of TWINE
and their extensions towards the top. Zero di�erences are represented in black
and squares correspond to places where cancellations are necessary.



(a) Truncated characteristic R1 (b) Truncated characteristic R2

(c) Truncated characteristic R3 (d) Truncated characteristic R4

Fig. 18: Truncated di�erential characteristics on the right component of TWINE
and their extensions towards the bottom.
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