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Abstract. A fundamental primitive in distributed computing is Reliable Message Trans-
mission (RMT), which refers to the task of correctly sending a message from a party to
another, despite the presence of byzantine corruptions. In this work we address the prob-
lem in the general adversary model of Hirt and Maurer, which subsumes earlier models
such as the global or local threshold adversaries. Regarding the topology knowledge, we
employ the recently introduced Partial Knowledge Model [13], which encompasses both
the full knowledge and the ad hoc model; the latter assumes knowledge of the local
neighborhood only.
Our main contributions are: (a) A necessary and sufficient condition for achieving RMT
in the partial knowledge model with a general adversary; in order to show sufficiency,
we propose RMT-PKA, a protocol that solves RMT whenever this is possible, therefore
it is a unique protocol (cf. [14]). To the best of our knowledge, this is the first unique
protocol for RMT in against general adversaries in the partial knowledge model. (b) A
study of efficiency in the case of the ad hoc network model: we show that either the
Z-CPA protocol [13] is fully polynomial or no unique fully polynomial protocol for RMT
exists, thus introducing a new notion of uniqueness with respect to efficiency that we call
poly-time uniqueness.
To obtain our results we introduce, among others, a joint view operation on adversary
structures, a new notion of separator (RMT-cut), appropriate for RMT in unreliable net-
works, and a self-reducibility property of the RMT problem, which we show by means of a
protocol composition. The latter plays a crucial role in proving the poly-time uniqueness
of Z-CPA.

Eligibility for best student paper award: Yes.

1 Introduction

Achieving reliable communication in unreliable networks is fundamental in distributed
computing. Of course, if there is an authenticated channel between two parties then
reliable communication between them is guaranteed. However, it is often the case that
certain parties are only indirectly connected, and need to use intermediate parties as
relays to propagate their message to the actual receiver. The Reliable Message Trans-
mission problem (RMT) is the problem of achieving correct delivery of a message m
from a dealer (sender) D to a receiver R even if some of the intermediate nodes are
corrupted and do not relay the message as agreed. In this work we consider the worst
case corruption scenario, in which the adversary is unbounded and may control several
nodes and be able to make them deviate from the protocol arbitrarily by blocking,
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rerouting, or even altering a message that they should normally relay intact to specific
nodes. An adversary with this behavior is referred to as Byzantine adversary.

The RMT problem has been initially considered by Dolev [2] in the context of
the closely related Reliable Broadcast (Byzantine Generals) problem, introduced by
Lamport, Shostak and Pease [10]. In Reliable Broadcast the goal is to achieve correct
delivery of the dealer’s D message to all parties in the network.

The problem of message transmission under Byzantine adversaries has been studied
extensively in various settings: secure or reliable transmission, general or threshold ad-
versary, perfect or unconditional security. Here we focus on perfectly reliable transmis-
sion under a general adversary and the partial knowledge model. Note that the general
adversary model, introduced by Hirt and Maurer [6], subsumes both the global [10]
and the local threshold adversary model [8]. Regarding the topology knowledge, the
recently introduced Partial Knowledge Model [13] encompasses both the full knowledge
and the ad hoc (unknown topology) models.

The motivation for partial knowledge considerations comes from large scale networks
(e.g. the Internet) where topologically local estimation of the power of the adversary
may be possible, while global estimation may be hard to obtain due to geographical or
jurisdiction constraints. Additionally, proximity in social networks is often correlated
with an increased amount of available information, further justifying the relevance of
the model.

1.1 Related work

The RMT problem under a threshold Byzantine adversary, where a fixed upper bound
t is set for the number of corrupted players was addressed in [3, 1], where additional
secrecy restrictions were posed and in [15] where a probability of failure was allowed.
Results for RMT in the general adversary model [6], where given in [9, 17, 16]. In general,
very few studies have addressed RMT or related problems in the partial knowledge
setting despite the fact that this direction was already proposed in 2002 by Kumar et
al. [9].

The approach that we follow here stems from a line of work which addresses the
Reliable Broadcast problem with an honest dealer in incomplete networks, initiated
by Koo [8]. Koo studied the problem in ad hoc networks under the t-locally bounded
adversary model, in which at most a certain number t of corruptions are allowed in
the neighborhood of every node. This work was generalized by Pelc, Peleg in [14] who
pointed out how full knowledge of the topology yields better solvability results. After a
series of works ([7, 11, 18]) tight conditions for the solvability of the problem were ob-
tained in the ad hoc case. Finally, in [13] the Partial Knowledge Model was introduced,
in which the players only have partial knowledge of the topology and the adversary
structure. Tight algorithms for the extreme cases of full topology knowledge and ad
hoc setting were also obtained in [13] and the results were extended to the general
adversary case as well. Trivially all the aforementioned results for Reliable Broadcast
with an honest dealer can be adapted for the RMT problem.

1.2 Our results

We study the RMT problem under general adversaries. Our contribution is twofold:
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(a) Feasibility of RMT in the Partial Knowledge model. We prove a necessary and
sufficient condition for achieving RMT in this setting, and present an algorithm that
achieves RMT whenever this condition is met. In terminology of [14, 13] this is a unique
algorithm for the problem, in the sense that whenever any safe algorithm achieves RMT
in a certain instance so does our algorithm. This settles an open question of [13] and
is, to the best of our knowledge, the first algorithm with this property.

A key notion that we define and use is the joint adversary structure of (a set of)
players which corresponds to the worst case adversary structure that conforms to each
player’s initial knowledge; this notion is crucial in obtaining the tight condition men-
tioned above. We also make use of the concept of local pair-cut technique, introduced
by Pelc and Peleg [14] in the context of Broadcast. This technique was later [13] ex-
tended in order to obtain characterizations of classes of graphs for which Broadcast is
possible for various levels of topology knowledge and type of corruption distribution.
However, an exact characterization for the partial knowledge setting was left as an
open question. Here we answer this question by proposing an adequate pair-cut for the
partial knowledge model together with a unique algorithm for RMT, the first unique
algorithm for this specific model proposed. This new algorithm is quite general and
encompasses earlier algorithms such as CPA [8], PPA and Z-CPA [13] as special cases.
A useful by- product of practical interest is that the new cut notion can be used to
determine the exact subgraph in which RMT is possible.

(b) Efficiency of RMT in the Ad Hoc network model, where each node’s knowledge
over the topology and the adversary structure is limited in its neighborhood.

We observe that a variation of Z-CPA [13] is unique for RMT as well, the first such
algorithm we have encountered, and examine whether and when it is fully polynomial.
We show that no unique fully polynomial protocol for RMT exists if Z-CPA is not
fully polynomial, thus introducing a new meaningful notion of poly-time uniqueness.
In particular, we prove that if Z-CPA is not fully polynomial in any class of instances
where RMT is solvable, then there exists a corresponding class of (solvable) simpler
instances in which any protocol that achieves RMT cannot be fully polynomial. We
obtain this result by showing that Z-CPA yields a polynomial time self-reduction for
the RMT problem. Therefore Z-CPA, despite its simplicity and minimal propagation,
proves to be at least as efficient (in the sense described above) as any other RMT
protocol.

More intuitively, we enhance the uniqueness property of Z-CPA by implicitly stat-
ing that, not only one cannot achieve better solvabililty by employing more complex
propagation schemes but one cannot even achieve significantly lower complexity in this
way. This restriction seems to be inherent in the ad hoc network setting where players’
knowledge strictly relies on the information received by their neighbors.

1.3 Model and definitions

In this work we address the problem of Perfectly Reliable Message Transmission, here-
after simply referred as Reliable Message Transmission (RMT) under the influence of
a general Byzantine adversary. In our model the players have partial knowledge of the
network topology and of the adversary structure.
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We assume a synchronous network represented by a graph G consisting of the player
(node) set V (G) and edge set E(G) which represents authenticated channels between
players. The problem definition follows.

Reliable Message Transmission. We assume the existence of a designated player D,
called the dealer, who wants to propagate a certain value xD ∈ X, where X is the
initial message space, to a designated player R, called the receiver. We say that a
distributed protocol achieves (or solves) RMT if by the end of the protocol the receiver
R has decided on xD, i.e. if it has been able to deduce that xD is the value originally
sent by the dealer and output it as the correct value.

The Adversary Model. The general adversary model was introduced by Hirt and Mau-
rer in [6]. In this work they study the security of multiparty computation protocols
with respect to an adversary structure, that is, a family of subsets of the players; the
adversary is able to corrupt one of these subsets. More formally, a structure Z for the
set of players V is a monotone family of subsets of V , i.e. Z ⊆ 2V , where all subsets of
a set Z are in Z if Z ∈ Z. In this work we obtain our results w.r.t. a general byzantine
adversary, i.e., a general adversary which can make all the corrupted players deviate
arbitrarily from the given protocol.

We assume that the instances of the problem contain the adversary structure Z and
say that an RMT protocol is resilient for an instance I if it achieves RMT on instance
I for any possible corruption set. An RMT protocol which never causes the receiver R
to decide on an incorrect value is called safe. Finally we say that an RMT protocol is
unique if it solves RMT in all instances where RMT is solvable.

The Partial Knowledge Model [13]. In this setting each player v only has knowledge
of the topology of a certain connected subgraph Gv of G which includes v. Namely
if we consider the family G of connected subgraphs of G we use the view function
γ : V → G, where γ(v) represents the subgraph over which player v has knowledge
of the topology. We extend the domain of γ by allowing as input a set S ⊆ G. The
output will correspond to the joint view of nodes in S. The extensively studied ad hoc
model can be seen as a special case of the Partial Knowledge Model, where we assume
that the topology knowledge of each player is limited to its own neighborhood, i.e.,
∀v ∈ V (G), γ(v) = N (v).

Considering the partial knowledge model under the existence of a general adversary,
we assume that given the actual adversary structure Z each player v only knows the
possible corruption sets in his view Zv = {A ∩ V (γ(v)) | A ∈ Z} (local adversary
structure).

Runs and Views. Given a run (execution) e of a distributed protocol, the view(v, e, k)
of player v consists of the messages exchanged by v and its neighbors until round k.
For simplification we will write view(v, e) to refer to all the messages exchanged by v
and its neighbors until the end of the run e. With view(v, e, k)|A (and view(v, e)|A) we
will denote the corresponding messages exchanged by v and the set A ⊆ N (v). The
decision of a player v in run e will be denoted by decisione(v); it is in fact completely
determined by player’s v view on run e. We will simply write decision(v) whenever the
run is implied by the context.
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In our study we will often make use of node-cuts (separators) which separate the
receiver R from the dealer, hence, node-cuts that do not include the dealer. From here
on we will simply use the term cut to denote such a separator.

2 Partial knowledge against a general adversary

Considering two players who have partial knowledge of the adversary, it would be
useful to define an operation to calculate their joint knowledge about the adversary. Let
E ,F ,H be adversary structures and A,B,C be sets of nodes. Let EA = {Z∩A | Z ∈ E}
denote the restriction of the adversary structure E to the set of nodes A. The joint
adversary structure from two restricted adversary structures can be obtained through
the ⊕ operator. We are interested on properties of this operation on different structures
because the adversary can pretend having a different structure than the real one.

Definition 1. Let TA = 22
A

denote the space of adversary structures on the set of
nodes A. Then operation ⊕ is a function of the form ⊕ : TA × TB → T(A∪B), for any
A,B and is defined as follows:

EA ⊕FB = {Z1 ∪ Z2 | (Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩B ⊆ Z2) ∧ (Z2 ∩A ⊆ Z1)}

Fact. An equivalent definition is EA⊕FB = {Z1∪Z2|(Z1 ∈ EA)∧(Z2 ∈ FB)∧(Z1∩B =
Z2 ∩A)}
We show some algebraic properties of this operation in the Appendix. The next theorem
shows the importance of the ⊕ operation in this work.

Lemma 1. For any adversary structures E ,F , node sets A,B and H = EA ⊕ FB, it
holds that HA = EA and HB = FB.

Theorem 1. For any adversary structures E ,F , node sets A,B and H = EA ⊕FB, it
holds that ∀H′ ∈ TA∪B : if H′A = EA and H′B = FB then H′ ⊆ H.

Proof. Suppose that there existed some H′ s.t. ∃Z ∈ H′ : Z ̸∈ H. For Z we have
Z1 = Z ∩A ∈ EA and Z2 = Z ∩B ∈ FB. Also Z1 ∩B = (Z ∩A)∩B ⊆ Z ∩B = Z2 and
symmetrically Z2 ∩ A ⊆ Z1. But then from definition Z ∈ H which is a contradiction
and no such H′ exists.

Corollary 1. For any adversary structure E and node sets A,B: E(A∪B) ⊆ EA ⊕ EB.

What Theorem 1 tells us is that the ⊕ operation gives the maximal possible adversary
structure that is indistinguishable between two agents that know EA and FB respec-
tively, i.e., it coincides with their knowledge of the adversary structures on sets A and B
respectively. Recall that Zu = ZV (γ(u)). The difference is that we use Zu to denote the
knowledge of a player and ZV (γ(u)) to denote a restriction of the adversary structure.
For a given adversary structure Z and a view function γ let

ZB =
⊕
v∈B

ZV (γ(v))

Then ZB exactly captures the maximal adversary structure possible, restricted in γ(B),
relative to the initial knowledge of players in B. Also notice that using corollary 1 we
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get ZV (γ(B)) ⊆ ZB. The interpretation of this inequality in our setting, is that what
nodes in B conceive as the worst case adversary structure indistinguishable to them,
it always contains the actual adversary structure in their scenario. For the rest of this
work we will use Zγ(v) and ZV (γ(v)) interchangeably.

3 Reliable message transmission in the partial knowledge model

In RMT we want the dealer D to send a message to some player R (the receiver) in the
network. We assume that the dealer knows the id of player R. We denote an instance of
the problem by the tuple (G,Z, γ,D,R). To analyze feasibility of RMT we introduce
the notion of RMT-cut.

Definition 2. Let (G,Z, γ,D,R) be an RMT instance and C = C1 ∪ C2 be a cut in
G, partitioning V \ C in two sets A,B ̸= ∅ where D ∈ A and R ∈ B. C is a RMT-cut
iff C1 ∈ Z and C2 ∈ ZB.

Theorem 2 (Necessity). Let (G,Z, γ,D,R) be an RMT instance. If there exists a
RMT-cut in G then no safe and resilient RMT algorithm exists for (G,Z, γ,D,R).

The proof adapts arguments from [14, 13] making use of the ⊕ operation and is deferred
to the Appendix.

3.1 The RMT-PKA protocol

We present the RMT-Partial Knowledge Algorithm (RMT-PKA), an RMT protocol
which succeeds whenever the condition of Theorem 2 is met, rendering it a tight condi-
tion on when RMT is possible. To prove this we need to define what a valid scenario is
for a set of messages that a node receives. In the definition below we refer to two types
of messages, namely type 1 and type 2, as defined in the description of the protocol.

Definition 3. Let M be a subset of the messages of type 1 and 2 that the receiver node
R receives at some round of the protocol on (G,Z, γ,D,R). We say that M corresponds
to a valid scenario for R if

– ∀m1,m2 ∈ M of type 1, their first part is the same. That is, all messages of type 1
agree on the value sent to R.

– ∀m1,m2 ∈ M of type 2, their first part is the same when they refer to the same
node. That is, all messages of type 2 that refer to the same node v should contain
exactly the same information, except possibly for the propagation path.

Notice that a valid scenario uniquely determines a dealer’s value xM (or ⊥ if no message
of type 1 exists in M), possibly not the correct one (xD). Additionally, a valid scenario
uniquely determines a part of a possible world conforming to the messages in M :
(GM ,ZM , xM ). So ZM for example is the joint adversary structure of all the structures
mentioned on the type 2 messages in M . In the same way GM is the joint view of all
the nodes mentioned on the first part of the type 2 messages in M .

Theorem 3. Let (G,Z, γ,D,R) be an RMT instance. If an RMT-cut exists, then
RMT-PKA does not make the receiver decide on an incorrect value.
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Proof. We will show that if an RMT -cut exists then R does not decide on any value.
Suppose that R decided on some value x′ ̸= xD. Then ∃C ⊆ V (G) : decision(R|C) = x′.

Let C1 be the set of corrupted nodes, C1 ∈ Z. Notice that C ∪ C1 is a separator
between R and D, or else R would receive the value xD from a path of honest nodes
not in C. Let B′ = {v | v ∈ G \ C1 ∧ ∃ path p in G \ (C ∪ C1) from v to R}. Since C1

is the actual corruption set, (C1 ∩ V (γ(B′))) ∈ ZB′ . So decision(R|C) = ⊥, which is a
contradiction.

Protocol 1: RMT-PKA

Input (for each node v): dealer’s label D, γ(v), Zv.
Message format : type 1 : pair (x, p) or type 2 : pair ((u, γ(u),Zu), p) , where x ∈ X
(message space), u the id of some node, γ(u) is the view of node u, Zu is the adversary
structure of node u, and p is a path of G (message’s propagation trail).

Code for D: send messages (value : xD, {D}) and ((D, γ(D),ZD), {D}) to all neigh-
bors and terminate.

Code for v ̸∈ {D,R}: send message ((v, γ(v),Zv), {v}) to all neighbors.
upon reception of type 1 or type 2 message (a, p) from node u do:

if (v ∈ p) ∨ (tail(p) ̸= u) then discard the message else send (a, p||v) 3 to all
neighbours.

Code for R: upon reception of (x, p) from node u do:

if decision(R) ̸= ⊥ then decide on decision(R) and terminate.

function decision(v)

if ∃C ⊆ V (G) s.t. decision(v|C) = x then return x
else return ⊥.

function decision(v|C)

M : the set of all messages with valid format that have been received via paths
that do not pass through nodes in C.

if M not valid (Def. 3) or C ̸∈ ZM then return ∅.
if ∃C ′ ⊂ V (GM )\C, s.t. C ′ is a cut between D,R on GM \C 4, B′ is the connected

component that u lies in and (C ′ ∩ V (γ(B′))) ∈ (ZM )B′ then return ⊥.
else return x.

Theorem 4 (Sufficiency). Let (G,Z, γ,D,R) be an RMT instance. If no RMT-cut
exists, then RMT-PKA achieves reliable message transmission.

Proof. Suppose that no RMT-cut exists in G and RMT-PKA does not achieve reliable
message transmission. Then R has not decided on xD.

3 By p||v we denote the path consisting of path p and node v, with the last node of p connected to v.
4 For simplicity, with G \ C we denote the node induced subgraph of G on the node set V (G) \ C.
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Let C1 be the set of corrupted nodes, C1 ∈ Z. We will show that R should have
decided on xD and we will arrive at a contradiction.

First we show that decision(R|C1) = xD. Node R has received messages from G\C1,
and the value sent from these paths is xD. Node R only uses information that he has
received from paths in G \ C1 e.g. only correct information. Now since no RMT -cut
exists in the graph, for every cut C2 of G \ C1 where B′ is the connected component
that R lies in, C2 /∈ ZB′ should hold. Otherwise C1 ∪ C2 would be an RMT -cut. So
decision(R|C1) = xD.

Now suppose that there exists a set C ′ s.t. decision(R|C ′) ̸∈ {xD, ∅}. This means
that the view that R makes from the messages that come from paths not crossing C ′

is valid. Additionally C ′ ∪ C1 should form a cut on G between D and R, or else the
scenario would not be valid.

Let B′ = {v | v ∈ G\C1∧∃ path p in G\(C ′∪C1) from v to R}. Since C ′ is a possible
adversary set for R, and nodes in B′ are considered honest and can communicate
through a fully honest path with R, C ′ ∩ γ(B′) ∈ ZB′ . Otherwise the scenario would
not be valid, since C ′ could no be a possible corruption set.

So C1 ∈ Z and C ′ ∩ γ(B′) ∈ ZB′ and C1 ∪C ′ is a RMT -cut, a contradiction, since
there is no RMT -cut in G. Therefore no set C ′ exists s.t. decision(R|C ′) ̸∈ {xD, ∅}.

It follows that decision(R) = xD, also a contradiction. So RMT-PKA achieves
reliable message transmission if no RMT -cut exists in G.

Note on termination of RMT-PKA. Due to the uncertainty of nodes about the topol-
ogy, the adversary can present them with a fake view of a huge graph and make them
terminate whenever he wants. To avoid this, a strategy must employed on the order
that the receiver checks the information she gets from other players.

First, to restrict the power of the adversary, we allow every player to send at most
b bytes at every round (where b is some constant). So if some player wants to send a
message that exceeds this size, she splits it in parts of size b and sends it in successive
rounds. Every player receives messages in a a round robin fashion, that is in every
round she receives a message only from one of her neighbors. Players forward messages,
prioritizing messages that they received earlier. This way we can guarantee first, that
R will get sufficient information to decide until some round t0 independently of the
behavior of the adversary, and secondly, that at time t0 there is an upper bound on the
information that R has received, namely bt0N(R).

With these modifications a simple strategy to achieve termination is to makeR check
the older scenarios first. So R first checks all possible scenarios using the information
that she received until round 1, then until round 2, and so on. But by the way messages
are forwarded as we argued before, there is a limited number of scenarios that have
to be checked, namely the maximum number of scenarios that can be generated from
bt0N(R) bytes. This way when RMT is possible, there exists an upper bound on the
time the protocol takes to terminate, independent of the behavior of the adversary.

Corollary 2. (RMT-PKA Protocol Uniqueness) Given an RMT instance (G,Z, γ,D,R),
if there exists any safe and resilient RMT algorithm for this instance, then RMT-PKA
also achieves reliable message transmission on this instance.
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4 RMT in ad hoc networks

In this section we consider the Reliable Message Transmission problem (RMT ) in ad
hoc networks. In the closely related problem of Reliable Broadcast the receiver is not
a single node but instead the whole set V (G). Reliable Broadcast in ad hoc networks
under the influence of a general Byzantine adversary was initially studied in [13] where
an algorithm for this model was presented and proven unique. The results can trivially
be adapted to the case of the RMT problem.

4.1 Ad hoc RMT

An instance of the RMT problem in the ad hoc setting consists of a tuple (G,Z, D,R) as
explained in previous sections. In the closely related problem of Reliable Broadcast with
an honest dealer [8, 14, 13], the notion of Z-pp cut (definition given in the Appendix)
was introduced in [13] and it was proved that a necessary and sufficient condition for the
solvability of the problem is that a Z-pp cut does not exist in the instance. Furthermore,
the protocol Z-CPA (Certified Propagation Algorithm) was given and proved that it
achieves Broadcast in every instance where Broadcast is possible, i.e., it is unique.

Since in the RMT problem we are only concerned about the decision of the receiver
R, we slightly modify the definition of the Z-pp cut in order to capture an analogous
cut (RMT Z-pp cut) between the dealer D and the receiver R,

Definition 4 (RMT Z-pp cut). Let C be a cut of G partitioning V \ C into sets
A,B ̸= ∅ s.t. D ∈ A and R ∈ B. C is an RMT Z-pp cut if there exists a partition
C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

The Z-CPA algorithm can be trivially adapted for solving the RMT problem. In this
algorithm the dealer first sends its initial value xD to all its neighbors and terminates.
After that the actions of any player v are defined as follows.

Z-CPA code for v

1. If v ∈ N (D) then upon reception of xD from the dealer, decide on xD.
2. If v /∈ N (D) then upon receiving the same value x from all neighbors in a set

N ⊆ N (v) s.t. N /∈ Zv, decide on value x.
3. If v = R and decided on x then output decision x and terminate, else if v ̸= R and

decided on x, send x to all neighbors N (v) and terminate.

Note that Z-CPA is safe, in a sense that, never causes any honest player to decide on an
incorrect value. Following an analysis identical to that of [13], where Z-CPA is proven
unique among safe Broadcast algorithms, we prove the uniqueness of Z-CPA (modified
as explained) among safe RMT algorithms. The following theorems are completely
analogous with those of [13]; for completeness, the proofs are given in the appendix.

Theorem 5 (Sufficient Condition). Given an RMT instance (G,Z, D,R), if no
RMT Z-pp cut exists on G, then Z-CPA achieves RMT in (G,Z, D,R).

Theorem 6 (Necessary Condition). Given an RMT instance (G,Z, D,R), if an
RMT Z-pp cut exists on G then no safe RMT algorithm exists for (G,Z, D,R).

Thus, Z-CPA, the first algorithm we have encountered for RMT in generic topology
ad hoc networks against general adversaries, proves to be unique.
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5 Protocol uniqueness with respect to efficiency

Up to now we have seen that Z-CPA is unique among the safe ad hoc RMT algorithms.
In terms of efficiency it is interesting to study whether Z-CPA is also the more efficient
one among unique RMT algorithms w.r.t. polynomial time. We will measure protocol
complexity with respect to the size of the graph |G| = n only, because we are mainly
interested in protocols that are fully polynomial (of polynomial round, bit and local
computations complexity) regardless of the size of the adversary structure description.
Note however that, if the adversary structure is given explicitly, Z-CPA is trivially fully
polynomial w.r.t. the total size of the input.

Definition 5 (Poly-time Uniqueness). We call a protocol A poly-time unique for
problem Π if it is unique (with respect to feasibility) and the existence of a unique fully
polynomial protocol for Π implies that A is also fully polynomial for Π.

In other words, either A is fully polynomial on all solvable instances or no fully
polynomial protocol that solves Π on all solvable instances exists.

In the main theorem of this section we prove that Z-CPA is poly-time unique for
the RMT problem, and thus show that Z-CPA is at least as efficient (in the sense
described above) as any other RMT protocol. To show that, we build a self reduction
for RMT based on Z-CPA.

Under this approach, we need to take into account the complexity of membership
check for Z, due to the second decision rule of Z-CPA. Indeed, we may observe that Z-
CPA is fully polynomial if the membership check for Z can be performed in polynomial
time w.r.t. |G|. In the sequel, we essentially show that if a unique fully polynomial
RMT algorithm exists, it must be able to answer the membership question for Z in
polynomial time w.r.t. |G| and therefore can be used as a subroutine to make Z-CPA
fully polynomial.

5.1 Self-reducibility of RMT

Consider the family of instances G where achieving RMT is possible. By Theorems 5,6:

G = {(G,Z, D,R) | ∄RMT Z-pp cut in G }
Also consider the family of basic instances G′ ⊆ G which contains the tuples (G,Z, D,R)
where G is of the form shown in Figure 1 and RMT is solvable. More specifically, G
contains the two distinguished nodes D,R and a “middle set” which we call A(G). The
only edges appearing are those which connect each player in the set A(G) with the
dealer D and the receiver-node R and in the resulting graph there does not exist a
RMT Z-pp cut. Finally for any G1 ⊆ G we define the family of instances I(G1) ⊆ G′

which consists of all the instances (G′,Z ′, D′, R′) ∈ G′ such that graph’s G′ middle-set
A(G′) is a subset of a neighborhood of a node v in a graph contained in family G1, as
a part of the instance tuple (G,Z, D,R), and Z ′ = Zv

5. More precisely,

I(G1) = {(G′,Z ′, D′, r′) ∈ G′ | ∃(G,Z, D,R) ∈ G1, ∃v ∈ V (G)\{D} s.t. A(G′) ⊆ N (v),Z ′ = Zv}
5 In this point we slightly abuse the terminology, for ease of exposition, and use Z ′ = Zv instead of
Z ′ = {S ∩A(G′) | S ∈ Zv}. The second statement is more accurate in the case where A(G′) ⊊ N (v)
because we defined Z as a subset of the powerset of the nodes in the instance. This however does not
affect our study because we can add the extra nodes N (v) \A(G′) in our instance (G′,Z ′, D′, R′) as
isolated nodes.
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...D r

A(G)G

Fig. 1. Family of instances G′. No RMT Z-pp cut exists.

Intuitively the above family consists of the decomposition of every graph G in the G1

family into “small” graphs of the family G′ whose middle sets appear in G as (partial)
neighborhoods of nodes, the adversary structures are subsets of the original structure,
and the RMT problem is solvable.

We next show that the RMT problem in any family of instances G1 ⊆ G (denoted
RMT |G1), also referred to as the RMT problem with promise set G1 (cf. [5]), reduces
in polynomial time w.r.t. the size of the graph n to the RMT |I(G1) problem. That is,
if there exists an algorithm for solving RMT in I(G1) in fully polynomial time it can
be used, as a subroutine of Z-CPA, to solve RMT in G1 in fully polynomial time.

Theorem 7. If there exists a fully polynomial (in n) algorithm Π for solving RMT |I(G1)

then there exist a fully polynomial algorithm (in n) that solves RMT |G1.

Proof. We will use Z-CPA to solve RMT |G1 . Z-CPA has been proven unique, i.e.,
solves RMT in all instances where it is solvable, hence also for the family of instances
G1 that we consider in this theorem.

We will show that Z-CPA with protocol Π as a subroutine yields a fully polyno-
mial algorithm for RMT |G1 . Namely, the decision rule of Z-CPA which consists of a
membership check for Zv will be answered through simulations of protocol Π in time
poly(n). Since the subroutine protocol Π will only be used in the local computations
phase of Z-CPA, the round and bit complexity of Z-CPA will be maintained in the
resulting algorithm.

First, from the description of Z-CPA observe that the round complexity is linear in
n because at least one new player decides in every round and each player terminates
after decision. Thus the receiver R will decide in at most n rounds. Second, one can
see that the bit complexity of Z-CPA is also of order poly(n) due to the fact that
each player sends one message to all of its neighbors. For deducing the latter we can
reasonably assume that the messages sent by honest players are of size poly(n) or, to
drop any such assumption, consider the space X of the messages exchanged as a part
of the input of size n. It thus remains to show that in Z-CPA, the local computations
complexity, can be of order poly(n) if we use Π as subroutine.

For an arbitrary run e of Z-CPA in some instance of G1, we can define D(i) to be the
set of players that decide in round i of Z-CPA. Moreover since run e is on an instance
in the family G1 ⊆ G, i.e., the RMT problem is solvable, it should be the case that
∃i ∈ {1, . . . , n}, R ∈ D(i). Observe that the function D is well defined as we can assume
that we use an arbitrary algorithm, e.g. exhaustive search, to answer the membership
check for Zv (possibly in exponential time).
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We next show that if we use Π as a subroutine for the local computations of the run
e of Z-CPA, we can achieve RMT in time poly(n). Namely, we show by induction that
for every round i, each player v ∈ D(i) will decide in poly(n). Since ∃i ∈ {1, . . . , n}, R ∈
D(i) RMT will be achieved.

For round i = 1 all v ∈ N (D) receive the dealer’s value xD from the dealer and
trivially decide on it in poly(n) time.

Assume that, for every round i ≤ k every v ∈ D(i) decides in poly(n)-time. Consid-
ering any v ∈ D(k+1) and the Z-CPA message propagation, the latter means that by
the end of round k, v will have received sufficient information view(v, e, k) to decide,
from players in

∪
i=1,...,k D(i), in poly(n)-time, i.e., v will have received the same value

x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv. All valid messages exchanged
in Z-CPA consist of a single value x ∈ X which corresponds to a possible dealer’s
value, and each player transmits only once to all its neighbors. Messages of different
form, which we call erroneous, can be recognized by the recipient in poly(n) time since
|X| = poly(n). Given view(v, e, k), player v, in poly(n)-time, can create a partition of

its neighborhood N (v) =

m+1∪
i=0

Ai such that

A0 ={u ∈ N (v) | u sent nothing}
Ai ={u ∈ N (v) | u sent value ai ∈ X}, i = {1, . . .m}

Am+1 ={u ∈ N (v) | u sent erroneous messages}

Since sets A0, Am+1 do not affect our study we let A =
∪

i={1,...m}Ai. Denote with
H,Z ⊆ V the sets of actual honest and corrupted players of run e. Also consider the
sets of honest and corrupted neighbors of v, Hv = H ∩ N (v) and Zv = Z ∩ N (v)
respectively. Given view(v, e, k), observe that

∃! h ∈ {1, . . . ,m} s.t. Hv \A0 ⊆ Ah

else there exists an honest player which sends an incorrect value, a contradiction
because Z-CPA is safe. Subsequently Zv ⊇ A \ Ah. Note that all u ∈ Ah transmit the
correct value ah (regardless of whether they are honest or not) and all u ∈ A \ Ah

transmit false values. Since, by assumption, view(v, e, k) is sufficient for v to decide
through Z-CPA, it holds that Ah /∈ Zv due to the decision rule of Z-CPA. Moreover
∀i ∈ {1, . . . ,m} \ {h} it holds that Ai ∈ Zv since A \Ah ⊆ Zv. Consequently

∃! h ∈ {1, . . . ,m} s.t. Ah /∈ Zv and A \Ah ∈ Zv (1)

We next show how player v can decide which is the actual value of h in poly(n) time
using the protocol Π, and thus decide on the correct value ah.

For l = 1, . . .m, we define the following runs of Π that can be simulated by v.

– Run el0 is on the instance (G,Zv, D, v) ∈ G′ with V (G) = A ∪ {D} ∪ {v}, dealer’s
value xD = 0, and corruption set Zv = A \Al; in each round, all players in Zv send
the messages that send in the respective round of run el1 (where A \ Al is a set of
honest players which runs Π). The latter means that v exchanges with Zv messages
that consist the view(el1, v)|A\Al

.

– Run el1, is on the same graph G, with dealer’s value xD = 1, and corruption set Zv =
Al; Analogously with e0 player v exchanges with Zv the messages view(el0, v)|Al

.
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D v

Al

Zv = A \ Al

xD = 0

executes Π

executes Π
with xD = 1

view(e0, v)|Al

view(e1, v)|A\Al

Run e0

(e1)

D v

A \ Al

Zv = Al

xD = 1

executes Π

executes Π
with xD = 0

view(e0, v)|Al

view(e1, v)|A\Al

Run e1

(e0)

Fig. 2. Runs e0 and e1.

Player v simulates run el1 in order to determine the behavior of the corrupted players in
el0. Observe that for every l exactly one of el0, e

l
1 is not in the family of instances I(G1)

(due to the selection of the corruption set) and thus the local computations complexity
might not be polynomial. Since protocol Π is fully polynomial in I(G1), it means that
there is an explicit bound B on the local computations complexity of Π in the family
I(G1). Assuming that arbitrary player v knows such a bound 6 we modify the above
runs such that if the local computations complexity of a player w in a round i of el0 or
el1 exceeds the bound B then v halts the simulation of the round i local computations
of w and sends nothing on behalf of player w in round i. Such a modification of the
run is necessary to obtain the desired result.

Player v runs the following protocol in order to decide on the value of the dealer of
run e.
(Decision Protocol.) Player v simulates, in parallel, 2m = poly(n) runs (el0, e

l
1)l∈{1,...m}

and halts all parallel simulations with decision al if run el0 terminates with decision(v) =
0.

We next show that v terminates run el0 with decision(v) = 0 if and only if Al /∈ Zv.
More concretely

Al /∈ Zv ⇔ decisionel0
(v) = 0

“⇒”: Al /∈ Zv ⇒ Zv = A \ Al ∈ Zv. Since by assumption Π solves RMT |I(G1), for

any adversarial behavior, that of Zv in el0 included, v will decide on the correct value
xD = 0, i.e., decisionel0

(v) = 0.

“⇐”: Let Al ∈ Zv and decisionel0
(v) = 0. This by equation (1) means that Zv = A\Al /∈

Zv. Observe now that the run el0 is not a valid run for the instance (G,Zv, D, v) because
the adversarial behavior of Zv /∈ Zv is not valid for the adversary structure Zv. But the
view of v is the same as the valid run el1 in which xD = 1 and Zv = Al ∈ Zv. Since Π
solves RMT |I(G1), for any adversarial behavior, that of Zv in el1 included, v will decide

on the correct value xD = 1 in the run el1 i.e., decisionel1
(v) = 1. But since the decision

6 Although this assumption is natural and often used, it is possible to avoid it if we consider family
I(G1) consisting of directed graphs (with edges from dealer to A(G) and from A(G) to v). In this
case the view of all players in Al, A \ Al would be the same as that of some run in I(G1) and thus
their local computations complexity would be polynomial.
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is a function of the view and player v receives exactly the same messages in runs el0, e
l
1,

it holds that decisionel0
(v) = 1, a contradiction.

The latter shows that the decision of player v in run e, which is acquired through
the Decision Protocol, is correct and uniquely defined. Moreover all parallel simulations
halt when the simulated run el0, l = h of Π terminates. Thus we have to show that run
eh0 can be be simulated in polynomial time.

The problem is that run eh1 , which is simulated to determine the behavior of the
corrupted players in el0, is not a run of RMT in the family I(G1) due to the selection
of the corruption set. Therefore we lose guarantee of full polynomiality in that run.
Non-polynomiality of the round complexity is not an obstacle since the simulations are
done in parallel. Local computations’ polynomial complexity of eh1 is ensured by the
fact that we halt any local computations that exceed the explicit bound B previously
mentioned. Finally it is easy to see that the bit complexity of the simulated runs is
polynomial if the round and local computations complexity is polynomial. Thus the
simulated run el0 remains fully polynomial.

Therefore it follows that v will decide in run e in polynomial time because the
simulation of a fully polynomial protocol can be done in polynomial time.

6 Open questions

Regarding the partial knowledge model, RMT-PKA makes players exchange informa-
tion about the topology. Although topology discovery was not our motive, techniques
used here (e.g. the ⊕ operation) may be applicable to that problem under a Byzan-
tine adversary ([12],[4]). A comparison with the techniques used in this field might
give further insight on how to efficiently extract information from maliciously crafted
topological data.

The unique protocol proposed for the partial knowledge model only answers the
feasibility question. A natural question is whether and when we can devise a unique and
also efficient algorithm for this setting. The techniques used so far in the bibliography
to reduce the communication complexity [9] do not seem to be directly applicable to
this model. So exploring this direction might give new insights on message delivery in
partially known graphs.

It would also be interesting to argue about uniqueness with respect to efficiency for
RMT in the partial knowledge model by extending our analysis of the ad hoc case.

Finally, it is possible to define a stronger type of poly-time uniqueness: we call
a protocol A strongly poly-time unique for problem Π if the existence of any fully-
polynomial protocol for a class of instances I implies that A is also fully polynomial
for all instances in I. We conjecture that Z-CPA is in fact strongly poly-time unique
for RMT in the ad hoc model.
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Appendix

A The ⊕ operation

Theorem 8. Operator ⊕ is commutative.

Proof. A binary operation ∗ is called commutative if a ∗ b = b ∗ a. For any adversary
structures E ,F and node sets A,B:

EA ⊕FB = {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩B ⊆ Z2) ∧ (Z2 ∩A ⊆ Z1)}
= {Z2 ∪ Z1|(Z2 ∈ FB) ∧ (Z1 ∈ EA) ∧ (Z2 ∩A ⊆ Z1) ∧ (Z1 ∩B ⊆ Z2)}
= FB ⊕ EA

So operator ⊕ is commutative.

To prove that ⊕ is also associative we will need the following lemma.

Lemma 2. For any node sets A,B,C it holds that

(Z1 ∩B ⊆ Z2) ∧ (Z2 ∩A ⊆ Z1)∧(Z1 ∪ Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩A ∪B ⊆ Z1 ∪ Z2)

⇔
(Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩B ⊆ Z2)∧(Z2 ∪ Z3 ∩A ⊆ Z1) ∧ (Z1 ∩B ∪ C ⊆ Z2 ∪ Z3)

Proof. First we prove the ⇒ direction. From (Z1 ∪ Z2 ∩ C ⊆ Z3) it follows that:

(Z1 ∪ Z2) ∩ C ⊆ Z3 ⇒ (Z1 ∩ C) ∪ (Z2 ∩ C) ⊆ Z3

⇒ (Z1 ∩ C) ⊆ Z3 ∧ (Z2 ∩ C) ⊆ Z3

From (Z3 ∩ (A ∪B) ⊆ Z1 ∪ Z2) it follows that:

Z3 ∩ (A ∪B) ⊆ Z1 ∪ Z2 ⇒ (Z3 ∩A) ∪ (Z3 ∩B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩B) ∩B ⊆ (Z1 ∪ Z2) ∩B

⇒ (Z3 ∩B) ⊆ (Z1 ∩B) ∪ (Z2 ∩B)

⇒ (Z3 ∩B) ⊆ (Z2 ∩B)

⇒ (Z3 ∩B) ⊆ Z2

Z3 ∩ (A ∪B) ⊆ Z1 ∪ Z2 ⇒ (Z3 ∩A) ∪ (Z3 ∩B) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩A) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩A) ⊆ Z1 ∪ Z2

⇒ (Z3 ∩A) ∩A ⊆ (Z1 ∪ Z2) ∩A

⇒ (Z3 ∩A) ⊆ (Z1 ∩A) ∪ (Z2 ∩A)

⇒ (Z3 ∩A) ⊆ (Z2 ∩A)

⇒ (Z3 ∩A) ⊆ Z2
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Also :

(Z2 ∪ Z3) ∩A ⊆ (Z2 ∩A) ∪ (Z3 ∩A)

⊆ Z1 ∪ Z1

⊆ Z1

And

(Z1 ∩ (B ∪ C)) ⊆ (Z1 ∩B) ∪ (Z1 ∩ C)

⊆ Z2 ∪ Z3

The proof for the ⇒ direction is complete. The other direction follows from sym-
metry.

Theorem 9. Operator ⊕ is associative.

Proof. A binary operation ∗ is called associative if (a ∗ b) ∗ c = a ∗ (b ∗ c) for any well
defined a, b, c. For any adversary structures E ,F ,H and node sets A,B,C:

(EA ⊕FB)⊕HC = {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z1 ∩B ⊆ Z2) ∧ (Z2 ∩A ⊆ Z1)} ⊕HC

= {Z1 ∪ Z2 ∪ Z3|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z1 ∩B ⊆ Z2)

∧ (Z2 ∩A ⊆ Z1) ∧ (Z1 ∪ Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩A ∪B ⊆ Z1 ∪ Z2)}

EA ⊕ (FB ⊕HC) = EA ⊕ {Z2 ∪ Z3|(Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z2 ∩ C ⊆ Z3) ∧ (Z3 ∩B ⊆ Z2)}
= {Z1 ∪ Z2 ∪ Z3|(Z1 ∈ EA) ∧ (Z2 ∈ FB) ∧ (Z3 ∈ HC) ∧ (Z2 ∩ C ⊆ Z3)

∧ (Z3 ∩B ⊆ Z2) ∧ (Z2 ∪ Z3 ∩A ⊆ Z1) ∧ (Z1 ∩B ∪ C ⊆ Z2 ∪ Z3)}

But from lemma 2 it follows that:

EA ⊕ (FB ⊕HC) = (EA ⊕FB)⊕HC

So operator ⊕ is associative.

Theorem 10. Operation ⊕ is idempotent.

Proof. Given some operation ∗ we say that it is idempotent iff a∗a = a for any possible
a.

EA ⊕ EA = {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ EA) ∧ (Z1 ∩A ⊆ Z2) ∧ (Z2 ∩A ⊆ Z1)}
= {Z1 ∪ Z2|(Z1 ∈ EA) ∧ (Z2 ∈ EA) ∧ (Z1 = Z2)}
= {Z1|(Z1 ∈ EA)}
= EA

So operation ⊕ is idempotent.

Theorem 11. Let V be a finite set and S = {(E , A)|E ⊆ 2A∧A ⊆ V }. Then < S,⊕ >
is a semilattice.

Proof. A set L with some operations ∗ is a semilattice if the operation ∗ is commutative,
associative and idempotent. From the previous theorem all these properties hold for
the ⊕ operation and the set S.
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B Proof of Theorem 2

Proof. Let C = C1 ∪ C2 be the RMT-cut which partitions V \ C in sets A,B ̸= ∅ s.t.
D ∈ A and R ∈ B. Then there exists a different scenario where Z ′ = ZB and all other
parameters are the same. From lemma 1, nodes in B have the same initial knowledge
in both scenarios, since ZB = Z ′

B.
Suppose R could decide correctly with Z being the actual adversary structure.

Then using a standard argument employed in [14, 13], an attack on the safeness of the
algorithm would be possible in the same setting with Z ′ being the actual adversary
structure. The details of the proof are similar and are based on the difficulty of the
honest players in B to distinguish which scenario they participate in, with respect to
the actual adversary structure: the one with Z or the one with Z ′.

C Definition of Z-pp cut

Definition 6 (Z-partial pair cut). Let C be a cut of G partitioning V \C into sets
A,B ̸= ∅ s.t. D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there exists a partition
C = C1 ∪ C2 with C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

D Proof of Theorem 5

Proof. Suppose that Z-CPA does not achieve RMT in (G,Z, D, r). Then we can split
the graph in 3 parts: A being the honest decided nodes, B being the honest undecided
nodes with R ∈ B and C being the corrupted nodes. Now since every node in B is
undecided we have that ∀u ∈ B : N(u) ∩ A ∈ Zu (otherwise u would have decided).
But then C ∪A is an RMT Z-pp cut which is a contradiction. Hence, Z-CPA achieves
RMT in (G,Z, D,R).

E Proof of Theorem 6

Proof. Let C = C1 ∪C2 be the RMT Z-pp cut which partitions V \C in sets A,B ̸= ∅
s.t. D ∈ A and R ∈ B. Let Z ′ = {

∪
u∈B Z ∩ N(u) : Z ∈ Z} ∪ {C2}. We have

that Z ′
u = {Z ∩ N(u) : Z ∈ Z ′} ∪ {C2 ∩ N(u)} = {(

∪
v∈B Z ∩ N(v)) ∩ N(u) : Z ∈

Z}∪{C2∩N(u)} = {Z∩N(u) : Z ∈ Z}∪{C2∩N(u)} but since ∀u ∈ B : N(u)∩C2 ∈ Zu,
for every node u in B: Zu = Z ′

u. So far we have established that (a) nodes in B cannot
tell whether Z or Z ′ is the adversary structure since ∀u ∈ B : Zu = Z ′

u and (b) C2 is
an admissible corruption set in Z ′.

Suppose that there exists a safe algorithm A which achieves RMT in instance
(G,Z, D, r). We consider the following runs e and e′ of A :

– Run e is on the instance (G,Z, D,R), with dealer’s value xD = 0, and corruption
set C1; in each round, all players in C1 perform the actions that perform in the
respective round of run e′ (where C1 is a set of honest players).

– Run e′ is on the the instance (G,Z ′, D,R), with dealer’s value xD = 1, and corrup-
tion set C2; in each round, all players in C2 perform the actions that perform in the
respective round of run e (where C2 is a set of honest players).
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Note that C1, C2 are admissible corruption sets in instances (G,Z, D,R), (G,Z ′, D,R)
respectively. Since C1 ∪ C2 is a cut which separates D from R in both (G,Z, D,R),
(G,Z ′, D,R) and the actions of every node of this cut are identical in both runs e, e′,
the messages that R receives are the same in both runs, i.e., view(v, e) = view(v, e′).
Therefore the decision of R ∈ B must be identical in both runs. Since, by assumption,
algorithm A achieves RMT in instance (G,Z, D,R), R must decide on the dealer’s
message 0 in run e on (G,Z, D,R), and must do the same in run e′ on (G,Z ′, D,R).
However, in run e′ the dealer’s message is 1. Therefore Amakes R decide on an incorrect
message in (G,Z ′, D,R). This contradicts the assumption that A is safe.


