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Abstract. We introduce internal differential boomerang distinguisher as a com-
bination of internal differentials and classical boomerang distinguishers. The new
boomerangs can be successful against cryptographic primitives having high-probability
round-reduced internal differential characteristics. The internal differential technique,
which follow the evolution of differences between parts of the state, is particularly
meaningful for highly symmetric functions like the inner permutation Keccak-f of
the hash functions defined in the future SHA-3 standard. We find internal differential
and standard characteristics for three to four rounds of Keccak-f , and with the use
of the new technique, enhanced with a strong message modification, show practical
distinguishers for this permutation. Namely, we need 212 queries to distinguish 7
rounds of the permutation starting from the first round, and approximately 218 queries
to distinguish 8 rounds starting from the fourth round. Due to the exceptionally
low complexities, all of our results have been completely verified with a computer
implementation of the analysis.

Keywords: SHA-3, Keccak, internal differential, boomerang, practical-complexity
distinguisher.

1 Introduction

The family of sponge functions Keccak [4] was one of the proposals for the hash
function competition organized by NIST [30]. In 2012, Keccak was announced as the
winner of this competition, and some hash functions from this family will officially
become part of the SHA-3 standard [31], to complement the SHA-2 hash standard.
As such, Keccak is among the most significant cryptographic primitives to date; its
security is therefore of crucial importance.

In the past several years, Keccak has received significant amount of attention from
the cryptographic community, both during the competition and after being announced
as the winning algorithm. Analyses of round-reduced versions have been proposed
for the hash function, for the underlying permutation, and for various secret-key
schemes based on this permutation. So far, the best attacks on the hash function
in the standard model reach five rounds [15,16], while in the keyed model reach up
to nine rounds [17]. For the underlying permutation, the best analysis in terms of
complexity reaches six rounds and requires 211 queries [23], while in terms of number
of rounds, the best is on eight rounds and requires 2491 queries [18].

In this paper, we present distinguishers for round-reduced versions of the permu-
tation Keccak-f used in Keccak based on a new analysis technique called internal
differential boomerang distinguishers. We stress that we propose distinguishers on
the round-reduced permutation: the paper does not target a keyed mode using it,
while the technique may encourage follow-up works. From a high-level perspective,
this technique resembles classical boomerangs, but in one part of the boomerang it



uses internal differentials, which consider differences between part of a state, rather
than a difference between two states. As a result, our boomerang produces pairs of
state values that have specific input internal and output differences, while classical
boomerangs produce quartets of inputs.

More precisely, on the one hand, the classical boomerang starts with an input pair
that has a specific internal difference, and the corresponding outputs are computed.
Then, a second output pair is produced by XORing a specific difference to both output
values, and finally, these values are inverted to a second input pair, and it is checked
if this pair has the same specific input difference. On the other hand, the internal
differential boomerang distinguisher framework depicted in this paper is slightly
different than this classical boomerang scenario since it considers internal differences,
which ultimately produces pairs of inputs rather than quartets. Specifically, an input
with particular internal difference generates an output to which we apply a specific
output difference. The second output is then inverted to a second input, and one
checks whether it has the given input internal difference.

For both these kinds of boomerangs, the time complexity required to generate
either a right quartet or a right pair depends on the probability of the differentials
(internal differentials or regular differentials) used in the two parts of the primitive.
Furthermore, in internal differential boomerangs, the part of the primitive covered by
the internal differential is passed twice, whereas the part covered by the standard
differential only once (in classical boomerang, both of the parts are passed twice).
Thus, our technique outperforms the classical boomerangs when high-probability
internal differentials exist for several rounds of the primitive. We further give an
evaluation of the time complexity required to generate right quartets and pairs for both
types of boomerangs, and discuss the use of the message modification technique to
greatly reduce this complexity when we have the ability to choose bits of intermediate
state values.

Interestingly, Dinur et al. [15] collision attacks on Keccak can be seen as an
instance of our boomerangs: as they perform only forward queries, their attacks are
in fact amplified version of our boomerangs. Thus, the boomerangs presented here
can be seen as a generalization of the work of Dinur et al.

We distinguish the round-reduced Keccak-f permutation by producing boomerang
pairs. First, we find internal differential and standard differential characteristics that
are used in the boomerangs. The characteristics span on three to four rounds and, as
in some rounds the differences are truncated, have very high probabilities. We combine
the characteristics according to the internal differential boomerang, and with the use
of an enhanced message modification (which allows to pass deterministically the two
low probability rounds in the middle of the boomerang), obtain boomerang pairs
with low and practical complexity. We also provide a rigorous bound on the query
complexity of producing such boomerang pairs in the case of a random permutation.
As this complexity is much higher than what we need for round-reduced Keccak-f ,
we claim distinguishers.

Our internal characteristics depend on the round constants, thus we give distin-
guishers on the round-reduced Keccak-f permutation for two different cases: when
the permutation starts1 at round 0, and when it starts at round 3. In the first case,

1Note that while the draft FIPS 202 [31] defines the r-round-reduced versions of Keccak-f as the
last r rounds of Keccak-f , this paper allows the reduced permutation to start at any round number.



we can distinguish the permutation reduced to 6 rounds with 25 queries, and 7 rounds
with 213 queries. In the second case, we can distinguish 7 rounds with 210.3 queries,
and 8 rounds with 218.3 queries.

We emphasize that the whole analysis, due to its exceptionally low complexity, has
been implemented and successfully verified. We refer the reader to the Appendix C for
the outputs produced by our computer experiments. We also stress that our results
do not threaten the security of the full-round Keccak-f permutation. A summary
of previous analysis of Keccak, along with our new results, are given in Table 1 and
Table 2.

Table 1: Summary of attacks on Keccak.
Rounds Complexity Type Technique Reference

2 233 Collision Differential [32]
2 233 Preimage Differential [32]
3 225 Near-Collision Differential [32]
4 2221 Preimage Rotational [27]
4 225 Distinguisher Differential [32]
4 practical Collision Differential [16]
4 practical Collision Differential [22]
4 2506 Preimage Rotational [27]
5 2115 Collision Int. differential [15]
5 235 Key recovery (MAC) Cube attack [17]
5 practical Near-Collision Differential [16]
6 252 Distinguisher Differential [13]
6 236 Key recovery (Stream) Cube attack [17]
8 2129 MAC forgery Cube attack [17]
9 2256 Keystream prediction Cube attack [17]

Table 2: Distinguishers of reduced-round versions of Keccak-f .
Rounds Complexity Type Technique Reference

5 28 Distinguisher Rebound [18]
6 25 Distinguisher Internal Diff. Boomerang Section 4
6 210 Distinguisher Zero-sum [1,10]
6 211 Distinguisher Self-symmetry [23]
6 232 Distinguisher Rebound [18]
6.5 unknown Distinguisher Cube tester [17]
7 210 Distinguisher † Internal Diff. Boomerang Section 4
7 213 Distinguisher Internal Diff. Boomerang Section 4
7 215 Distinguisher Zero-sum [1,10]
7 2142 Distinguisher Rebound [18]
8 218 Distinguisher † Internal Diff. Boomerang Section 4
8 218 Distinguisher Zero-sum [1,10]
8 2491 Distinguisher Rebound [18]
24 21590 Distinguisher Zero-sum [11]

†: Start from round 3.



Application of the internal differential boomerangs. The impact of this kind
of boomerangs depends on the analyzed framework. When the subject of analysis
is a block cipher, then the impact of the internal differential boomerangs is similar
to that of the classical boomerangs, i.e. they immediately lead to distinguishers and
possibly can be extended to key recovery attacks. On the other hand, in the framework
of hash/compression functions and permutations, their significance depends on the
quality of the internal differential and standard differential characteristics used to
produce the boomerang pairs. For instance, if the input internal difference complies
to the conditions of the input to the hash/compression function and the output
difference has a low hamming weight, then an internal differential boomerang pair
may lead to near collisions.

The internal differential boomerangs presented further in this paper only apply
to the round-reduced Keccak-f permutation, but not to Keccak. This is due to the
message modification used in the middle states, which results in inputs that do not
comply to the inputs conditions to the sponge construction of Keccak where the
values in the capacity part cannot be controlled. Similarly, it prevents applying the
distinguishers to other keyed constructions, such as Keyak [6] and Ketje [5]. Therefore,
our internal differential boomerangs only allow to distinguish round-reduced Keccak-f
from a random permutation. However, their impact relate to Keccak since it adopts
the hermetic sponge strategy as a design philosophy [3]. In its original formulation, this
consists of using the sponge construction (providing security against generic attacks)
and calling a permutation that should not have any properties (called structural
distinguishers) besides having a compact representation. Our results disprove this
requirement for the round-reduced Keccak-f permutation by showing a non-random
behavior.

2 Description of Keccak-f

In this section, we give a partial description of the hash functions that will be defined
in the future SHA-3 standard [31]. In particular, since the results in this paper only
deal with the inner permutation (further denoted by Keccak-f), we do not recall
the details of the sponge construction. For a complete description of this family of
functions, we refer the interested reader to [4, 31].

The Keccak-f permutation works on a state of b = 25 × 2l bits, where b ∈
{25, 50, 100, 200, 400, 800, 1600}, and has nr = 12 + 2l rounds. We count the rounds
starting from zero. The results in this paper consider round-reduced versions of
Keccak-f [1600], where the full permutation has nr = 24 rounds. As introduced
in [31], we define by Keccak-p a round-reduced version of the Keccak-f permutation,
where its n ≥ nr rounds are the n last ones of Keccak-f . In this paper, we leverage
the restriction on the starting round number and further introduce the notation
Keccak-pi,n to consider the n consecutive rounds of Keccak-f [1600] starting at round
i; that is, rounds i, . . . , i + n − 1. Using this notation, Keccak-f [1600] would be
Keccak-p0,24.

Each round of Keccak-f [b] is composed of five steps: the first three (θ, π and ρ,
in this order) are linear and further denoted together by λ = π ◦ ρ ◦ θ, the fourth step
is non-linear and denoted by χ, and the last step ι adds round-dependent constants
RC[i], 0 ≤ i < nr, to break symmetries. Each step applies to different parts of the



state, which is seen as a three-dimensional array of bits of dimension 5 × 5 × b. A
bit S[x, y, z] in a state S is addressed by its coordinates (x, y, z), 0 ≤ (x, y) < 5 and
0 ≤ z < b. Furthermore, for fixed x, y and z, S[x, y, •] refers to a lane of b bits, and
S[•, •, z] to a slice of 25 bits.

We now discuss the details of each of the five steps on a given input state S:

The θ step operates on the slices of the state by performing the following operation
at each coordinate (x, y, z):

S[x, y, z]← S[x, y, z]⊕
( 4⊕
y′=0

a[x− 1, y′, z]
)
⊕
( 4⊕
y′=0

a[x+ 1, y′, z − 1]
)
.

This linear step brings diffusion to the state. For instance, it expands a single bit
difference to 11 bits, while the inverse step θ−1 expands it to about b/2 bits.

The ρ step rotates the bits inside each lane. The rotation constants are independent
of the round numbers, and they are different for each of the 25 lanes (refer to [4] for
the actual values).

The π step operates on each slice independently by permuting the 25 bits. Namely,
at each coordinate (x, y, z), it applies:

S[x′, y′, z]← S[x, y, z], where:
(
x′

y′

)
=

(
0 1
2 3

)(
x
y

)
.

This step mixes the lanes and thus brings an additional diffusion to the state.

The χ step is the only non-linear operation in a round and it applies the same 5-bit
S-Box to each 5-bit row S[•, y, z] of the internal state. In total, b/5 independent S-
Boxes are applied, that is 320 in the case of Keccak-f [1600]. The S-Box has maximal
differential probability of pmax = 2−2.

The ι step XORs the b-bit round-dependent constant RC[i] at round i to the
lane S[0, 0, •], 0 ≤ i < nr. The 24 constants used in Keccak-f [1600] are given in
Appendix A.

3 The Internal Differential Boomerang Distinguisher

In this section, we introduce a new distinguisher called the internal differential
boomerang distinguisher. As it combines internal differentials and the boomerang
attack, we first give a brief overview of these two strategies, and then present the
new technique.

3.1 The Internal Differential Attack

In the internal differential attack, introduced by Peyrin [34] for analysis of hash
functions2, the adversary observes the propagation of the difference between the two
halves of the same state through the rounds of the cryptographic function/permutation.
Similar to the case of classical differential analysis, the goal of the adversary is to

2Later, the technique has been applied to the case of block ciphers [19].



show that the propagation of some particular internal difference happens with an
unusually high probability.

Let F be a permutation, and the n-bit state S is split into two halves SH

and SL. With this notation, it follows that |SH | = |SL| and S = SH‖SL. The
internal difference δ(S) of the state S is computed as the XOR of its two halves, i.e.
δ(S) = SH ⊕ SL. Then, an internal differential for F is a pair of internal differences
(∆,∇), and its probability is defined as:

Pr
S

(
δ(F (S)) = ∇

∣∣∣ δ(S) = ∆
)
.

In other words, this is the probability that a randomly chosen input state S with an
internal difference ∆, after the application of F , will result in an output state with
internal difference ∇. Similarly to the standard differential attacks, we can define
an internal differential characteristic as the propagation of the internal differences
through the rounds of the permutation. Obviously, to each such internal differential
characteristic, we can associate a probability that this propagation holds as expected.

3.2 The Boomerang Attack

In classical boomerang attacks [36]3, the permutation F is seen as a composition of
two permutations F = g ◦ f , where each of them covers some rounds at the beginning
and at the end of F . Even though a high-probability differential might not exist for
F , if high-probability differentials do exist for the two permutations f and g, then
one can attack F with the boomerang technique.

Let ∆→ ∆∗ be a differential for f that holds with a probability p and ∇ → ∇∗ be
a differential for g that holds with a probability q. According to Figure 1, the adversary
starts with a pair of inputs (P1, P2) = (P1, P1 ⊕∆) and, by applying F , produces
a pair of corresponding outputs (C1, C2) = (F (P1), F (P2)). Then, the adversary
produces a new pair of outputs (C3, C4) = (C1 ⊕ ∇∗, C2 ⊕ ∇∗). For this pair, the
adversary obtains the corresponding pair of inputs (P3, P4) = (F−1(C3), F

−1(C4)).
The main observation of the boomerang technique is that the difference P3 ⊕ P4

would be ∆ with a probability of at least p2q2 because:

1. The difference f(P1)⊕ f(P2) is ∆∗ with probability p.
2. The two differences g−1(C1)⊕ g−1(C3) and g−1(C2)⊕ g−1(C4) are both ∇ with

probability q2.
3. When 1. and 2. hold, then the difference g−1(C3)⊕g−1(C4) is ∆∗ (with probability
pq2), and therefore f−1(C3)⊕ f−1(C4) is ∆ with probability p2q2.

The quartet of states (P1, P2, P3, P4) fulfilling the conditions P1 ⊕ P2 = P3 ⊕
P4 = ∆ and F (P1) ⊕ F (P3) = F (P2) ⊕ F (P4) is called a boomerang quartet. As
shown above, the quartet can be found in time equivalent to (pq)−2 queries to the
permutations. On the other hand, finding the boomerang quartet in the case of
a random permutation requires about 2n queries. Consequently, the boomerang
approach yields a distinguisher for F as soon as the adversary can find the two
differentials for f and g such that (pq)−2 < 2−n, that is pq > 2−n/2.

It has been shown in [8,9] that when F is a public permutation, a block cipher
in the chosen-key attack framework, or a compression function, then the complexity

3The boomerang attack is closely related to higher-order differential techniques [21,24].



of producing the boomerang quartet can be reduced with the use of the message
modification technique. That is, the adversary can choose particular state words
to ensure that some probabilistic differential transitions hold with probability one.
Consequently, some rounds can be passed deterministically, so that their probabilities
do not contribute towards the total probability (pq)2. The number of such free rounds
depends on how efficiently the message modification can be applied. In general, the
modification is used in the rounds around the boomerang switch, i.e. the last few
rounds of f and the first few rounds of g.

3.3 The Internal Differential Boomerangs

In this section, we show that the internal differential attack can be used in the
boomerang setting: we call this combined analysis the internal differential boomerangs.
Although this new type of analysis shares similarity with the classical boomerangs
based on standard differentials, we emphasize that there are a few differences between
them. The first difference is in the number of differentials required to achieve the
boomerang: the classical boomerang uses four differentials, whereas the internal
differential boomerang works with only three. The second difference is in the type of
differentials: the classical boomerang can use (almost) any two differentials for f and
g, while for the internal differential boomerang, one of the differentials must have a
special type.

Let F be a permutation that (similarly to the classical boomerang) is seen as a
composition F = g ◦ f . Let (∆,∆∗) be an internal differential for f that holds with
probability p, and (∇,∇∗) be a standard differential for g that holds with probability
q, where the input difference ∇ has an internal difference of zero, i.e. δ(∇) = 0. Then,
the internal differential boomerangs can be described as:

1. Fix a random input P1 with an internal difference ∆, i.e. δ(P1) = ∆.
2. Produce the corresponding output C1 = F (P1).
3. Produce another output C2 such that C2 = C1 ⊕∇∗.
4. Produce the corresponding input P2 = F−1(C2).
5. Check if δ(P2) = ∆. If it holds, output (P1, P2), otherwise go to 1.

The probability that the condition at step 5 holds is at least p2q. This is based
on a reasoning illustrated in Figure 1. Let ∇ = ∇H‖∇H and ∇∗ = ∇H∗‖∇L∗
be the input and the output differences of the standard differential used in the
function g. For a random input P1 = PH1 ‖(PH1 ⊕∆), the output X = f(P1) will be
XH‖(XH ⊕∆∗) with probability p. Furthermore, for a pair of outputs (C1, C2) such
that C1 ⊕ C2 = ∇∗ = ∇H∗‖∇L∗, after the inversion of g, the output pair (X,Y ) will
satisfy X ⊕ Y = ∇ = ∇H‖∇H with probability q. Then,

Y = X ⊕∇ =
[
XH‖(XH ⊕∆∗)

]
⊕
[
∇H‖∇H

]
= Y H‖(Y H ⊕∆∗),

where Y H = XH ⊕∇H . Therefore, the internal difference in Y is ∆∗, and after the
inversion of f , it will become ∆ with probability p. As a result, this algorithm outputs
a pair of inputs with probability p2q. We call such a pair an internal differential
boomerang pair.
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Figure 1: The classical boomerangs on the left, and the internal differential boomerangs on the
right.

For a random n-bit permutation F , the pair can be found in around 2n/2 queries4

to F . Therefore, the internal differential boomerang yields a distinguisher if p2q >
2−n/2. Recall that the same condition for the classical boomerangs is pq > 2−n/2.
Consequently, it is beneficial to use the internal differential boomerang technique
over the classical boomerang strategy only if the internal differential for f has a much
higher probability than a differential for f .

Given a public permutation (or a compression function) F = g ◦ f , we can start
the internal differential boomerang in any round of f (but not in g), and from there
produce the pair of inputs and the pair of outputs. It is usually beneficial to start
at the end of f and, with the use of the message modification technique, to pass
a few rounds around the boomerang switch for free (deterministically). Then, the
formula for the probability of the boomerang becomes p2∗q∗, where p∗ and q∗ are
the differential probabilities of the non-linear parts of f and g respectively, that are
passed probabilistically.

Dinur et al. collision attack. In [15], Dinur et al. present a collision attack on
reduced variants of Keccak hash function by selecting message blocks in a small
subspace5 such that a high-probability characteristic might map them to a small
subspace after a certain number of rounds of Keccak-f . More precisely, they find
round-reduced internal characteristics and then they extend them for an additional
1.5 round. They call this extension bounding the size of the output subset and note
that this is possible because the differences are quite sparse and the χ step has a slow
diffusion.

We note that Dinur et al. collision attack is in fact based on the internal differential
boomerangs presented in this paper. Their internal differential characteristics corre-
sponds to the internal differential part of the boomerang, whereas the aforementioned
extension is the standard differential part of the boomerang. Furthermore, Dinur et
al. start the attack from the two inputs with specific internal differences and then
check if the difference of the two outputs is as expected. This is precisely the variant

4In a random permutation, the boomerang will return P2 with internal difference ∆ with a
probability 2−n/2.

5A related subspace problem has been discussed in [25].



of the boomerang attack called amplified boomerang [20], where the attacker only
makes forward queries. Thus, Dinur et al.’s collision attack succeeds as after the
amplification in the middle, the remaining 1.5 rounds are passed according to any
standard differential that at the output has no active bits among those that comprise
the hash value.

Truncated differences. We further analyze the case when the input internal dif-
ference ∆ and the output standard difference ∇∗ of the boomerang are not fully
determined, but are truncated. Namely, only some bits of these differences are de-
termined, whereas the remaining bits can have any value. The lemma given below
defines a lower bound on the complexity of finding such boomerang pair in the case
of a random permutation. Note, in the lemma, we assume the output difference to
be XOR difference, that is, the output difference is produced as an XOR of the two
outputs.

Lemma 1. For a random n-bit permutation π, the query complexity Q of producing
an internal differential boomerang pair, with truncated input internal difference ∆
determined in nI bits and truncated XOR output difference ∇∗ determined in nO bits,
satisfies:

Q ≥ min(2nI−2, 2
nO
2
− 3

2 ).

Proof. As the output difference is truncated XOR difference, ∇∗ can be seen as a
subset of {0, 1}n (has zeros in nO particular bits, while the remaining bits n− nO
bits take all possible values). We may partition the set {0, 1}n into output sets
O1, . . . , OnO such that |Oi| = 2n−nO for i = 1, . . . , nO. Furthermore, we may partition
the set {0, 1}n into two input subsets IG, IB (good input, bad input), where IG is
composed of all x with internal difference δ(x) = ∆ and IB = {0, 1}n \ IG. Obviously,
|IG| = 2n−nI . Then, (x, y) forms a boomerang pair, iff x, y ∈ IG and π(x), π(y) ∈ Oi
for some i.

Let us define a game G0: an adversary A has an access to a random permutation
oracle π : {0, 1} → {0, 1}n and its inverse π−1, making a total of q queries to these
two oracles. Starting from G0, we will build a chain of games which are similar until
bad is set (for details on this methodology, see [2]; our proof follows the proof given
in [33] for the case of standard difference). In the games Gk(k = 0, 1, 2), let Ek be
the following event: A finds x 6= y where x, y ∈ IG, π(x), π(y) ∈ Oi, for some i while
interacting with the game Gk. Further, we will show that

Pr(E0) ≤
q2

2n
+

q2

2nO
+

q

2nI
(1)

Before we give a formal proof, we remark that the intuition for this bound is as
follows. The first term q2

2n is the upper bound on the collision probability error due to
the fact that we simplify the problem by replacing the random permutation π with a
random function. The second term is the probability that two random outputs will
collide on nO bits. The third term is the probability that a random output, after the
inversion will result in an input from IG.

Let us define a game G1 that is similar to G0 except that the permutation π is
replaced by a relation P ⊂ {0, 1}n × {0, 1}n that is injective and functional, but not
necessary defined in the whole domain. According to the naming convention of [2],



the relation P is called a partial permutation, whereas injectivity and functional
conditions together are called permutation constraints. Initially, P is empty and
through execution of G1, its values are being sampled randomly with respect to
the permutation constraints. Whenever P (x) (respectively P−1(y)) is needed, first
it is checked if P (respectively P−1) is defined on x (respectively y). If this is the
case, then appropriate value is returned, otherwise P (x) (respectively P−1(y)) is
sampled uniformly at random from img(P ) (respectively img(P−1)), where img(P )
is complement of the image of P . Since the sampling is the same as in the game G0,
it follows that

Pr(E1) = Pr(E0). (2)

Next, we define a game G2, which is the same as G1, except that the permutation
constraint for P does not have to be fulfilled. That is, the values P (x) (respectively
P−1(y)) are sampled at random from {0, 1}n, but the game stops immediately when
the permutation constraint is not satisfied. Unless the permutation constraint is
violated by the occurrence of a collision between a new output value return by P and
a previous output value of P , or a collision between a new input P−1 and a previous
input, the games G1 and G2 proceed identically. Since at each query there are at
most q previous P (respectively P−1) output values already defined, it follows that

|Pr(E2)− Pr(E1)| ≤
q2

2n
. (3)

At this stage, we stop building chain of games and upper bound the probability
Pr(E2) directly. Among the q queries, the two queries required for the occurrence of
the event E2 can be either: 1) two queries to P , or 2) one of them is a query to P−1.
In the first case, the two queries to P on which the event E2 occurred, are among
the total q queries (either to P or to P−1). Assume that all q queries were to P
and for all of them belong to IG (this only increases the probability of the event E2,
and we are looking for an upper bound of Pr(E2)). The answers P (x) are sampled
uniformly at random from {0, 1}n, thus two queries P (x), P (y) will collide on some
Oi (where i = 1, . . . , 2nO) with a probability ≤ q2

2nO . In the second case, one of the
queries on which E2 occurred, is to P−1. As the answers P−1 are sampled at random,
the probability that a query P−1 belongs to IG is |IG||2n| = 2−nI . Hence, even if all q
queries were to P−1, the probability that one of them is in IG can be upper bounded
by q

2nI . As a result, we get

Pr(E2) ≤
q2

2nO
+

q

2nI
. (4)

Therefore, from (2), (3) and (4), it follows that:

Pr(E0) = Pr(E1) ≤
q2

2n
+ Pr(E2) ≤

q2

2n
+

q2

2nO
+

q

2nI
≤ 2

q2

2nO
+

q

2nI
, (5)

where the last inequality comes from n ≥ nO.
Let us show that (5) implies the claimed complexity bound. As usual, we want

Pr(E0) =
1
2 , hence, if each of the two terms at the right hand side of (5) has a value

of 1
4 , then the complexity bound will follow. For the first term, this happens when

q = 2
nO
2
− 3

2 , while for the second when q = 2nI−2. This concludes the proof. ut



4 Distinguishers for the Round-Reduced Keccak-f Permutation

In this section, we present internal differential boomerang distinguishers on the
round-reduced permutation Keccak-f [1600], further denoted Keccak-pi,n, where the
starting round i and the number of rounds n is specified in the text for each case.
In comparison to [31] where all the reduced variants simply called Keccak-p start at
the first round, we relax this constraint by allowing the permutation to start at any
number of round.

To describe our results, we first define the two differentials used in the boomerang:
the internal differential used in the first rounds, and the standard differential used in
the last rounds. Next, we show that a message modification can help to deterministi-
cally pass the two rounds that surround the boomerang switch. Finally, we present
the actual distinguishers.

4.1 Internal Differential Characteristics

The 1600-bit state S of Keccak is composed of 25 lanes of 64 bits. The internal
difference δ(S) of the state is defined as the XOR difference between the higher 32
bits and the lower 32 bits, for each lane – we stress out that the internal difference
is defined precisely the same as in the work of Dinur et al. [15]. Hence, the internal
difference is composed of 25 words of 32 bits, and can be seen as an 800-bit vector.

Let us scrutinize the behavior of the five round steps in regard to internal
differences. The linear step θ may introduce an increase in the hamming weight of the
internal difference, by a factor up to 11. The two steps ρ and π only permute the bits
in the internal differences, but maintain their hamming weight. The non-linear step
χ may increase the hamming weight of the internal difference. For instance, one-bit
difference at the input (resp. output) of the S-box, may become a difference in more
than 1 bit at the output (resp. input) of the S-box. However, a fixed 1-bit input
difference can affect only up to three bits in the output difference, while a fixed 1-bit
difference at the output of χ can affect up to 5 bits in the input difference. The ι
step that XORs round constants can increase the hamming weight of the internal
difference by at most the hamming weight of the rounds constant δ(RC[i]), which
are very sparse (see Appendix A for the actual values). Indeed, as already noted
in [14,16], the round constants used in Keccak-f play a crucial role in the existence
of high-probability internal differential characteristics in the inner permutation.

Due to the good diffusion of the round function of Keccak-f [1600], a state with
low-weight internal difference can be transformed into a state with a high weight in a
matter of a few rounds. To increase the number of rounds covered by the internal
differential characteristic, while maintaining a high and practical probability, we use
two approaches. First, we start in the middle of the characteristic with zero internal
difference and pass one round with probability one. Second, we consider truncated
characteristics (or differentials), i.e. the differences are not necessarily fully specified
in all bits.

By the first approach, which is often used for constructing standard differential
characteristics, the characteristics are built from inside out. First, a low-weight
difference in some middle round of the characteristic is fixed, and then, by propagating
the difference backwards and forwards, the input and the output differences of the
characteristic are obtained. Therefore, the middle rounds of the characteristic have a



high probability, while the rounds close to the input and to the output are of low
probability. However, the low-probability rounds can be passed for free if we use a
message modification or if we consider truncated characteristics, which is in fact the
second approach.

The internal characteristic I3. Let us focus on the following 3-round internal
differential characteristic I3, that starts at round 0, and that has been built with the
first approach:

[
429
800

]
λ−1

←−
[
1
800

]
χ−1

←−
[
1
800

]
ι−1
0←−
[

0
800

]
λ,χ−→
[

0
800

]
ι1−→
[

3
800

]
λ−→
[
33
800

]
χ,ι2−→
[

?
800

]
.

Round 0 Round 1 Round 2

The states are represented by the column vectors, where the upper number denotes
the hamming weight of the internal difference, and the lower number gives the amount
of bits in which the internal difference is fully determined. The numbers in bold
around the χ step of round 1 represent active S-Boxes for that step, which is passed
with a probability smaller than one. By ?, we represent an undetermined value.

The characteristic has been built by fixing a zero internal difference at the input
of round 1. In the forward direction, there are no active S-Boxes in round 1, and the
output difference is defined in all 800 bits after the linear step λ of round 2. The
following steps χ and ι2 produce some differences, but as we show later in Section 4.3,
the value of this internal difference is irrelevant. In the backward direction, RC[0]
of ι0 introduces only one bit difference, and thus the subsequent χ−1 has only one
active S-Box. After the inversion of the linear layer, we can fully compute the internal
difference at the input of the characteristic, so that each of the 800 bits are fully
determined. Therefore, the whole 3-round internal characteristic has 34 active S-
Boxes (probability 2−68), and in the first two rounds has only a single active S-Box
(probability 2−2). The characteristic is fully specified in Appendix B.

The internal differential ID4. We can construct a longer characteristic by going
backwards one additional round. However, in this round the hamming weight of the
internal difference at the input of χ−1 would be high (in the above I3, the weight is
429). To avoid significant reduction of probability, we switch to truncated internal
differences. That is, instead of trying to define completely the output difference of
this χ−1 (that would be obtained with an extremely low probability), we specify the
difference only in nI bits out of 800 bits. The internal difference in each of these nI
specific bits can be either 0 or 1, but the probability of this event must be one. As a
result, the probability of the first round of the characteristic would be one.

Once the truncated difference is fixed in nI bits at the output of χ−1, the remaining
three linear steps of the round will keep the truncated property: π−1 and ρ−1 will only
permute and rotate the truncated difference and thus at the output of these two steps
still it will be defined in nI bits, while at the output of θ−1 the internal difference will
belong to a subspace of dimension 800− nI . We note that with a minor modification
of Lemma 1, the obtained input internal difference can be used to compare the query
complexity to the generic case6 Therefore, to simplify the presentation of the input

6That is, we use the subspace to claim distinguisher for the permutation. This is in line with our
initial intention to show that the round-reduced permutation exhibits non-random properties.



internal difference, in the further analysis, we omit the three linear steps of the first
round.

The number of bits nI in which the truncated difference at the output of χ−1 is
defined with probability one depends on the round constants RCi. For instance, if we
start with round 0, then there is no bits in which the truncated difference is determined,
i.e. nI = 0. Only if we start with round 3, the number nI will be sufficiently large
to claim later (according to Lemma 1) that the complexity of producing boomerang
pairs for Keccak-p3,n is lower than the generic complexity, with n ∈ {7, 8}.

The resulting 4-round internal differential characteristic I4, that starts at round
3, is defined as:
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Round 3 Round 4 Round 5 Round 6

The characteristic has been built by fixing a zero internal difference at the input
of round 5. The forward propagation is similar to I3. Backwards, after the addition of
the constant RC[4], the weight of the internal difference is five. Hence, χ of round 4
has at most five active S-Boxes, that can be passed probabilistically and would result
in a state with internal difference of weight five. Then, the linear steps λ−1 in round
4 and the addition of RC[3] in round 3 increase the weight of the internal difference
to 398. In the following χ−1, we switch to truncated differences. Although the input
difference has a weight of 398 (possibly, all 320 S-Boxes are active), at the output
of χ−1, the internal difference is 0 in 55 specific bits, and 1 in 9 other bits. In other
words, nI = 55 + 9 = 64 bits of the internal difference are defined deterministically
and thus, the probability to pass this χ−1 is one. Note, the truncated characteristic
in the first round holds with probability one only when moving backwards through
the round.

The probability of the truncated internal differential characteristic I4 can be
evaluated as follows: in round 3 the probability is 1, in round 4 there are 5 active
S-Boxes, thus the probability is 2−10, in round 6 there are no active S-Boxes, while
in round 7 there are 22 active S-Boxes (probability is 2−44). Hence, when going
backwards through the rounds, the probability of the whole 4-round characteristic is
2−54. Furthermore, the probability of the first three rounds is 2−10.

Recall that the boomerangs can use differentials instead of characteristics. As the
probability of a differential may be higher than the probability of a single characteristic,
the complexity of producing boomerang pairs may be reduced. Therefore, let us build
a 4-round differential ID4 by using the same approach as for I4. That is, for all
of the characteristics that belong to ID4, we start at round 5 with zero internal
difference. In the forward direction, we move deterministically through round 5 and
at the input of χ in round 6, we have 22 active S-Boxes (i.e. all the characteristics
are equally defined in this part of the differential). In the backward direction, all the
characteristics are the same up to the input of χ−1 of round 4, but the five active
S-Boxes in each of the characteristics results in different outputs. Then, for each
of the outputs, we move through λ−1 of round 4, ι3, χ−1 of round 3, and at the
output of χ−1, we check if the truncated difference is defined in the same 64 bits
as I4. Therefore, all the characteristics of the differential ID4 have the same input



truncated difference, and the same difference at the input of χ in round 6 (the output
of this χ is irrelevant as before). We found experimentally the probability of ID4

for the first three rounds to be 2−4.6. This has to be compared to 2−10, which is the
probability of the first three rounds of the characteristic I4. The differential ID4 is
fully specified in Appendix B.

4.2 Standard Differential Characteristics

Along with internal differential characteristics, the boomerang technique described in
this paper uses standard differential characteristics. Recall that due to the special
requirement of our boomerang, the standard characteristic cannot be of any form
since it is connected to the two internal characteristics. This constraints the input
difference ∇ of the standard characteristics to be symmetric, i.e. ∇ = ∇H ||∇H ,
or δ(∇) = ∇H ⊕ ∇H = 0, Note, the standard characteristic (unlike the internal
characteristic) does not depend on the round number, hence further we omit ιi from
the description of the characteristic.

The standard characteristic that we use relies on the already-known concept of
parity kernels, which allows to minimize the number of S-Boxes in two consecutive
rounds of Keccak-f . This notion has been described in the submission document [4],
and has been used in cryptanalytic results [13,23,32]. The behavior is possible due to
two observations: first, a state-difference may be invariant of the θ step if there is
an even number of active bits in each of the 320 column of the internal state; and
second, an active S-Box in χ (or in χ−1) leaves unchanged a 1-bit difference with
probability 2−2.

The 4-round standard differential characteristic C4 that we use in the boomerangs
is defined as:

[
?

1600

]
λ−1

←−
[

?
1600

]
χ−1

←−
[
2 + 2
1600

]
λ−→
[
2 + 2
1600

]
χ−→
[
2 + 2
1600

]
λ−→
[
22 + 22
1600

]
χ−→
[

?
1278

]
λ χ−→
[
?
118

]
.

Round i Round i+ 1 Round i+ 2 Round i+ 3

Kernel

The notations used in the characteristic are the same as before. With “x+ x”, we
emphasize that the states are comprised of 2x active bits, but the actual difference is
symmetric, which implies that there are x active bits in each half of the state, with
equal differences.

This differential characteristic has been constructed by selecting a symmetric
difference of hamming weight four at the input of round i+1 (note, this is the smallest
possible weight of a symmetric parity kernel). In the backward direction, the step
χ−1 has only 4 active S-Boxes, and results in a difference that is irrelevant as we
further show in Section 4.3. In the forward direction, the selected 4-bit difference
acts as a kernel and thus, after the λ step of round i+ 1, results in a 4-bit difference.
The same behavior of the following χ step is expected with probability 2−8, so the
input difference to round i+ 2 still has a weight of four. The linear step in this round
expands the difference to 44 active bits. Then, we switch to truncated differences. As
a result, the difference in the following χ step is defined in 1278 bits, and after all
the steps of round i+ 3, the difference is still deterministically defined in 118 bits (78
zeros and 30 ones).



The differential characteristic C4 covers four full rounds of the permutation, and
holds with probability 2−16 in the forward direction since there are a total of 8 active
S-Boxes (four in each of the rounds i and i+ 1).

We can define a 3-round differential characteristic C3, which is basically the same
as the first three rounds of C4, but we start truncating from χ at round i+ 1. That
is, in C3, we begin with 4-bit difference at round i + 1 and the backward round i
is the same as C4. However, the 4-bit input difference at χ of round i+ 1 results in
truncated output difference (with probability 1, instead of 2−8), and after the steps λ
and χ of round i+ 2, the truncated difference can still be determined in 1278 bits.
Therefore, the probability of C3 in the forward direction is only 2−8 as it has only
four active S-Boxes in the first round.

The two characteristics are fully specified in Appendix B.

4.3 Message Modification, Matching, and Neutral Bits

In our distinguishers, we start constructing the internal differential boomerang pairs
from the middle by fixing some bits of the intermediate states, which allows to pass
low-probability events similarly to the rebound technique [26]. We define in particular
the boomerang switch as the “middle” where we start constructing the state pairs
to be the location where the two internal differential characteristics (or internal
differentials) meet with the standard differential characteristic (see Figure 2). Note
that the two surrounding χ steps (denoted χint in the internal characteristic and
χstd in the standard characteristic on Figure 2) usually have very low differential
probabilities. However, since we start in the middle, we can fix partial state values such
that these two steps are passed deterministically. Namely, this message modification
technique allows to go through these two non-linear steps χint and χstd without
considering their probability.

λ χint ιi

Round i

λ χstd ιi+1

Round i+ 1

S1

λ χint ιi λ χstd ιi+1S2

Boomerang switch

∆

∆

∇∇′

Figure 2: The boomerang switch: middle of distinguishing structure where the differentials on the
two halves of the primitive meet.

Freedom degrees. There are three conditions imposed on the state pair (S1, S2) at
the boomerang switch: the first two come from the internal differential characteristics,
i.e. δ(S1) = δ(S2) = ∆, while the third is from the standard characteristic, i.e.
S1⊕S2 = ∇. Therefore, in total, we have 800 bits of freedom; that is, once we fix the
first half of S1, then the second half of S1 is fully determined, as well as the whole S2.

The limited degrees of freedom may lead to contradictions. For instance, if there
is an active S-Box in the first halves of S1 and S2, then the symmetry imposes than
such S-Box must also be active in the second halves. If, in addition, these two halves



differ in the bits that belong to the S-Boxes (which can occur when there is a non-zero
internal difference at these bits), then it may not be possible to fix simultaneously
the inputs to the S-Boxes in both of the halves.

Matching. To avoid such contradictions, we first have to make sure that the internal
characteristics and the standard characteristic can be matched, i.e. there exist two
states S1 and S2 at the boomerang switch (Figure 2), that can pass the χint and
χstd steps and that can produce differences as specified by the characteristic. Our
extensive computer experiments have shown that if the differences at the boomerang
switch are not sparse, then the chance of a match is extremely low7.

To overcome this issue, we find (S1, S2) that produce the required differences ∆ at
the input of χint and ∇ at the output of the χstd, but not necessarily have the correct
differences right at the boomerang switch8. By relaxing the difference constraint at
the boomerang switch, and by trying different standard characteristics9, we are able
to match the characteristics.

Matching. This matching process is actually implemented by a message modification
to partially fix values of the two states S1 and S2 to ensure that the boomerang can
work by linking the two characteristics. As the output difference of χint is denser,
we start the matching in the boomerang switch right at the output of χint (see
Figure 2). First, from the fixed output difference ∇ of χstd, we produce all possible
input differences ∇′, which defines the standard difference at the boomerang switch.
We propagate each such difference to the output of χint, and then try to fix the values
of all active S-Boxes of χint. If all the S-Boxes can be fixed, then the matching for
χint is complete. During the matching, the values of some bits of the states S1 and S2
are being fixed, but there are still free (non-fixed) bits. We use the freedom of these
bits to check if the active S-Boxes of χstd can be passed. If so, then the matching is
complete.

Neutral bits. The above process fixes some bits of S1 and S2 but there are more
free bits and they can be used as neutral bits [7]. Namely, if S1 and S2 have fixed bits
according to the matching, then for any value of the free remaining bits, the active
S-Boxes of χint and χstd still produce the required differences.

4.4 Internal Differential Boomerang Distinguishers for Keccak-pi,n

We use the internal differential boomerang technique to distinguish the round-reduced
Keccak-f permutation. The boomerangs are based on the internal differentials and
characteristics from Section 4.1, and the standard differential characteristics from
Section 4.2. To produce a boomerang pair, we start at the boomerang switch, and
we first find the values of the fixed bits of S1 and S2 according to the message
modification, which allows to pass the two rounds that surround the boomerang

7This only confirms the fact that for boomerangs (both classical and internal differential), finding
the two characteristics for f and g does not guarantee that the boomerang will work – see [29] for
more details.

8This is the reason why we have omitted specifying the differences at the output of the internal
characteristics from Section 4.1, and at the input of the standard characteristics from Section 4.2.

9The internal characteristic cannot be changed as its difference propagation is completely defined
by the round constants RCi. On the other hand, there are many different standard characteristics
(built upon parity kernels) that hold with the same probability.



switch. Then, we randomize the remaining neutral bits of the states and finally, from
the two middle states, we produce the corresponding inputs and outputs. If the
internal differences of each of the two inputs and the difference of the two outputs are
as expected by the boomerang, then we have found the pair. Otherwise, we randomize
again the neutral bits and repeat the procedure. An example of the overall description
of the 8-round case is given in Figure 3.

λ χ ι3 λ χ ι4 λ χ ι5 λ χ ι6 λ χ ι7 λ χ ι8 λ χ ι9 λ χ ι10I1 O1

λ χ ι3 λ χ ι4 λ χ ι5 λ χ ι6 λ χ ι7 λ χ ι8 λ χ ι9 λ χ ι10I2 O2

M+MD+ND

Step 1

Probabilistic propagation (internal differences)

Step 2

Probabilistic propagation (regular differences)

Step 3

∆4 5 0 0 2

(22)

∆4

∆4 5 0 0 2 ∆4

(22)

∇4 4 4 4 ∇∗4

Figure 3: Example of the internal boomerang distinguisher in the case of Keccak-p3,8. In step 1,
we first perform the matching (M), then the message modification (MD) and we use neutral bits
(ND). We finish the construction of the pair of inputs (I1, I2) with the probabilistic propagations in
Step 2 and 3.

The query complexity of producing a pair is determined by the differential
probability of the characteristics in all the rounds but the middle two10. We claim
distinguishers for Keccak-pi,n for some (i, n) because the complexity of finding a
boomerang pair for Keccak-pi,n is significantly lower compared to the complexity
of producing a boomerang pair (with the same conditions on the input and output
differences) for a random permutation defined by Lemma 1. In the four boomerangs
below, the input internal difference is determined either in 800 bits (when I3 is
used) or in 64 bits (when ID4 is used), while the output difference is determined
either in 1278 bits (when C3 is used) or in 118 bits (when C4 is used). Therefore,
by Lemma 1, the query complexity of producing a boomerang pair in the case of a
random permutation requires at least 257.5 queries.

Depending on the starting round i of Keccak-pi,n, the boomerang pairs are
produced for two cases. First, when the permutation starts at round 0, for the
boomerang we use the first internal differential characteristic I3 given in Section 4.1
and the standard characteristics C3, C4 given in Section 4.2. We can produce the
boomerang pair for Keccak-p0,6 by using the internal characteristic I3 and the
standard characteristic C3. As the probability of I3 without χint is 2−2 and the
probability of C3 without χstd is 1 (recall both of these two χ steps are passed with
the message modification), we can produce the boomerang pair with 2 · 22 · 22 · 1 = 25

queries to the 6-round permutation. Similarly, we can produce boomerang pair for
Keccak-p0,7 (we combine I3 with C4) in 2 · 22 · 22 · 28 (the additional factor 28 is
required to pass the 4 active S-boxes in the second round of C4), or approximately
213 queries to the 7-round permutation.

Then, when the permutation starts at round 3, the boomerang uses the internal
differential ID4 given in Section 4.1, and the standard characteristics C3, C4 from

10The cost of the message modification can be ignored because it is executed once, but it can
be used for producing many boomerang pairs, thus on average it is negligible. The actual cost is
around 28.



Section 4.2. The boomerang on Keccak-p3,7, based on ID4 and C3, produces a pair
with 2 · 24.6 · 24.6 · 1 = 210.2 queries. For Keccak-p3,8 (see Figure 3), the boomerang is
based on ID4 and C4, and for producing a boomerang pair, we need 2 · 24.6 · 24.6 · 28 =
218.2 queries.

Examples of boomerang pairs produced by the technique presented in this paper
are given in Appendix C. We have also checked and confirmed the complexities of the
four boomerangs given above. A summary of the distinguishers is given in Table 3.

Table 3: The internal differential boomerangs for Keccak-pi,n for (i, n) ∈ {(0, 6), (0, 7), (3, 7), (3, 8)}.
Rounds Internal Standard Prob. of Prob. of Prob. of the Complexity

internal standard boomerang of finding a pair

6 I3 C3 2−68 2−8 2−140 25

7 I3 C4 2−68 2−16 2−148 213

7 ID4 C3 2−48.6 2−8 2−105.2 210.2

8 ID4 C4 2−48.6 2−16 2−113.2 218.2

5 Conclusions

We have presented the internal differential boomerang distinguishers, which are a com-
bination of internal differentials and the boomerang technique. The new boomerangs
can be used for cryptanalysis of functions and ciphers that have high-probability
internal differentials. We have used the boomerangs to show non-randomness of
reduced variants of the permutation Keccak-f . Based on truncated characteristics
that hold with exceptionally high probability, and combined with a strong message
modification, we have shown how to produce internal differential boomerang pairs
for Keccak-f reduced to 6 rounds with only 25 queries to the permutation, 7 rounds
with 213 queries, and up to 8 rounds with 218 queries.

Our results significantly outperform in terms of practical complexity all the
previous cryptanalysis of Keccak-f . We emphasize that the results do not pose threat
to the security of the future SHA-3 standard as there is no known way to date to extend
the proposed reduced-round permutation distinguishers to the full sponge construction
based on the full 24-round Keccak-f permutation. We were unable to extend our
distinguishers to larger number of rounds while maintaining practical complexity. On
the other hand, we leave as an open problem finding internal differential boomerang
distinguishers that cover more rounds and that require theoretical complexity.
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A Round Constants

Table 4: Rounds constants RC used in the Keccak-f permutation. The table also shows the
hamming weight wi of the internal difference δ(RC[i]) of the round constant RC[i] used in the ith
round.

i RC[i] δ(RC[i]) wi i RC[i] δ(RC[i]) wi
0 0x0000000000000001 0x00000001 1 12 0x000000008000808b 0x8000808b 6
1 0x0000000000008082 0x00008082 3 13 0x800000000000008b 0x8000008b 5
2 0x800000000000808a 0x8000808a 5 14 0x8000000000008089 0x80008089 5
3 0x8000000080008000 0x00008000 1 15 0x8000000000008003 0x80008003 4
4 0x000000000000808b 0x0000808b 5 16 0x8000000000008002 0x80008002 3
5 0x0000000080000001 0x80000001 2 17 0x8000000000000080 0x80000080 2
6 0x8000000080008081 0x00008081 3 18 0x000000000000800a 0x0000800a 3
7 0x8000000000008009 0x80008009 4 19 0x800000008000000a 0x0000000a 2
8 0x000000000000008a 0x0000008a 3 20 0x8000000080008081 0x00008081 3
9 0x0000000000000088 0x00000088 2 21 0x8000000000008080 0x80008080 3
10 0x0000000080008009 0x80008009 4 22 0x0000000080000001 0x80000001 2
11 0x000000008000000a 0x8000000a 3 23 0x8000000080008008 0x00008008 2

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html


B Internal and Standard Differentials for the Boomerangs

B.1 Internal differential and characteristic

The internal differential characteristic I3 has an input difference ∆3 fully specified in
all 800 bits. The output difference of this characteristic (as shown before) is irrelevant,
however, the difference at the input of the last χ must be fixed. We denote this
difference as ∆∗3 and note that it is defined in all 800 bits as well. See Table 5 for the
values of ∆3 and ∆∗3, where a dash (-) represents a zero bit difference.

Table 5: Internal differential characteristic I3.
a6bc4d78 2f135e26 44d789af b5e26bc4 f89af135
a6bc4d79 2f135e26 44d789af b5e26bc4 f89af135

∆3 a6bc4d79 2f135e26 44d789af b5e26bc4 f89af135
a6bc4d79 2f135e26 44d789af b5e26bc4 f89af135
a6bc4d79 2f135e26 44d789af b5e26bc4 f89af135
----8-82 -8-82--- -------- -------- 4-41----
-------- 1-4---1- -------- 1-1-4--- --------

∆∗3 ---1-1-4 -------- -------- -1-1-4-- --------
2----8-8 -------- -2-2-8-- -------- --------
-------- -------- --8-82-- -------- ---2-2-8

The internal differential ID4 has an input truncated difference ∆4 specified in 64
bits, more precisely, in 55 bits the difference is 0, and in 9 bits the difference is 1. We
use the mask ∆0

4 to show the bits that have values of 0, and the mask ∆1
4 for the bits

with difference 1. As before, with ∆∗4 we denote the difference defined in 800 bits at
the input of χ step of the last round of ID4. See Table 6 for the values of ∆0

4, ∆1
4

and ∆∗4.

Table 6: Internal differential ID4.
------38 ------38 ------38 ------38 ------38
------3- ------3- ------3- ------3- ------3-

∆0
4 ------3- ------3- ------3- ------3- ------3-

------3- ------3- ------3- ------3- ------3-
------3- ------3- ------3- ------3- ------3-
-------- -------4 -------- -------- --------
-------8 -------4 -------- -------- --------

∆1
4 -------8 -------4 -------- -------- --------

-------8 -------4 -------- -------- --------
-------8 -------4 -------- -------- --------
8------1 ----18-- -------- -------- ----c---
-------- --3----- -------- ----3--- --------

∆∗4 -------3 -------- -------- -----3-- --------
18------ -------- -----6-- -------- --------
-------- -------- -----18- -------- -------6

B.2 Standard differential characteristics

In the standard differential characteristic C3, the input difference is irrelevant, but
the difference at the input of χ−1 in the first round is fixed in all 1600 bits: we denote
it ∇3. The output difference of C3 is truncated, and with ∇∗03 (resp. ∇∗13 ), we denote
the masks of the bits that have 0 (resp. 1) difference. See Table 7 for the values of
∇3, ∇∗03 and ∇∗13 .



Table 7: Standard differential characteristic C3.
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

∇3 ---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ----8-------8--- ---------------- ----------------
---------------- ---------------- ----8-------8--- ---------------- ----------------
7cffe1ff7cffe1ff fcf7f1f9fcf7f1f9 faf7e9f9faf7e9f9 7bf7eff97bf7eff9 79ffe7ff79ffe7ff
fbfb7cfafbfb7cfa fbfb67fafbfb67fa e3ff63fbe3ff63fb e3ffe-ffe3ffe-ff e3fbf8fee3fbf8fe

∇∗03 ff73bf8eff73bf8e ff63ff8fff63ff8f bf6dff9fbf6dff9f bfedbfbebfedbfbe bff1bfcebff1bfce
fd7efd77fd7efd77 ef7e9df7ef7e9df7 ef3f9dcfef3f9dcf edbf9f4fedbf9f4f fdbeff47fdbeff47
cfd7f7c7cfd7f7c7 ffd7fec7ffd7fec7 ffd77eddffd77edd cfdf76fdcfdf76fd cfdf77e5cfdf77e5
----1-------1--- ---------------- -----4-------4-- -------4-------4 ----------------
-----2-------2-- ---4-------4---- ----8-------8--- ---------------- 1-------1-------

∇∗13 ---------------- ---------------- ---------------- ------4-------4- 4-------4-------
-2-------2------ ---1-------1---- ---------------- ----4-------4--- ------2-------2-
2-------2------- ------1-------1- ------2-------2- --2-------2----- ----------------

Finally, for C4 we use ∇4 to denote the difference at the input of χ−1 in the first
round, and ∇∗04 ,∇∗14 to denote the masks of bits that have 0 and 1. See Table 8 for
the values of ∇4, ∇∗04 and ∇∗14 .

Table 8: Standard differential characteristic C4.
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

∇4 ---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ----8-------8--- ---------------- ----------------
---------------- ---------------- ----8-------8--- ---------------- ----------------
---------------- ------8-------8- ---------------- ----2-------2--- ----6-------6---
---------------- -----8-------8-- 4-----2-4-----2- --2-4-2---2-4-2- ----------------

∇∗04 2--48---2--48--- ---------------- 1------11------1 9-------9------- 8-------8-------
88-4----88-4---- -8----4--8----4- -9---1---9---1-- -8---4---8---4-- 88-2---888-2---8
8---8-8-8---8-8- 4----8--4----8-- 4-------4------- ---------------- -4-------4------
---------------- ---------------- 2-------2------- ---------------- -----1-------1--
-----8-------8-- 4------44------4 ---------------- ---------------- ---8-------8----

∇∗14 ---------------- 1-------1------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- 8--88--88--88--8 ----------------
4------44------4 --4-------4----- ---------------- -4-------4------ ----------------



C Examples of Boomerang Pairs for the 7- and 8-Round
Permutations

Table 9: Example of one boomerang pair for the distinguisher on the 7-round Keccak-p0,7 permu-
tation.
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Table 10: Example of one boomerang pair for the distinguisher on the 8-round Keccak-p3,8
permutation.
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