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Abstract. Pairings are typically implemented using ordinary pairing-friendly elliptic curves.
The two input groups of the pairing function are groups of elliptic curve points, while the target
group lies in the multiplicative group of a large finite field. At moderate levels of security, at least
two of the three pairing groups are necessarily proper subgroups of a much larger composite-order
group, which makes pairing implementations potentially susceptible to small-subgroup attacks.
To minimize the chances of such attacks, or the effort required to thwart them, we put forward a
property for ordinary pairing-friendly curves called subgroup security. We point out that existing
curves in the literature and in publicly available pairing libraries fail to achieve this notion, and
propose a list of replacement curves that do offer subgroup security. These curves were chosen
to drop into existing libraries with minimal code change, and to sustain state-of-the-art per-
formance numbers. In fact, there are scenarios in which the replacement curves could facilitate
faster implementations of protocols because they can remove the need for expensive group ex-
ponentiations that test subgroup membership.
Keywords: Pairing-based cryptography, elliptic-curve cryptography, pairing-friendly curves, sub-
group membership, small-subgroup attacks.

1 Introduction

Imagine the following scenario: Alice agrees to adopt Barreto-Naehrig (BN) curves [4] pro-
vided by a transaction mediator to create BLS signatures [10] on online transactions. The
transaction mediator specifies the curve obtained from the parameter u = 262+1007132, such
that:

• the underlying field size is the 254-bit prime p = 36u4 + 36u3 + 24u2 + 6u+ 1,
• the curve order is the 254-bit prime n = 36u4 + 36u3 + 18u2 + 6u+ 1,
• the curve equation over Fp is E : y2 = x3 + 31,
• its correct sextic twist over Fp2 = Fp[ξ]/(ξ2 − 5) is E′ : y′2 = x′3 + (ξ + 6),
• points P = (−3, 2) ∈ E and Q = (−2,

√
ξ − 2) ∈ E′ are given.

Prudently, Alice makes sure that point pertinence tests are in place to thwart invalid-curve
attacks, i.e. she always checks that point coordinates satisfy the corresponding curve equa-
tion. She checks that a suitably implemented bilinear pairing e is non-degenerate on P and
Q, i.e. e(P,Q) 6= 1. She even ensures that the hardware platform is robust and arguably

fault-resistant. Finally, Alice chooses a private signing key s
$← Zn and computes her public

verification key V ← [s]Q. The public key is submitted to a standard certification process
to be distributed to third parties. Alice then starts using the system normally, only to find
out that her private key has been compromised, and a number of fake transactions have been
made and verifiably signed in her name.
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What could have possibly gone wrong? It turns out that Alice does not seem to have
checked the point orders. The fact that the implementation checks pertinence of points to
curves does not help here, and the problem is that the point Q ∈ E′ does not have prime
order n, but rather a composite order susceptible to the Pohlig-Hellman reduction [36]; and
so the above parameters only provide 246 security, instead of the expected 2126. Had Alice
have computed a scalar multiplication to check this, she would have detected that [n]Q is not
the identity on E′, and subsequently aborted the protocol.

This problem is not exclusive to BLS signatures, and could equally affect a large number
of pairing-based protocols. In addition, this attack is not specific to the BN curve instance
given above; even if the mediator sends Alice the most popular BN curve, BN254 [34, 2, 35,
38, 11, 15, 42], the security of her secret key decreases drastically under the analogous Pohlig-
Hellman reduction. In fact, the overwhelming majority of curve instances from any of the
popular parameterized families could fall victim to such an attack. In this particular instance,
a vulnerability was exploited in one of the groups, however for general ordinary pairing-
friendly curves, all three pairing groups are instantiated as subgroups of a larger elliptic curve
or finite field group, and are therefore potentially vulnerable to small-subgroup attacks.

The main contribution of this paper is the definition of a new property for pairing-friendly
curves, which we call subgroup security. A pairing-friendly curve is called subgroup-secure if
the cofactors of all three pairing groups, whenever they are of the same size as the prime group
order n or larger, only contain prime factors larger than n. This is a realistic scenario because
for curves targeting modern security levels, at least two of the pairing groups have very large
cofactors. We slightly relax the condition to allow small inevitable cofactors that are imposed
by the polynomial parametrizations in the popular constructions of pairing-friendly curves.
This means that this property distinguishes those curves in a given family that provide as
much resistance against small-subgroup attacks as possible.

We select subgroup-secure curves for four of the most efficient families of pairing-friendly
curves that can replace existing curves in pairing libraries with minimal code change. For
example, we find a low NAF-weight BN curve for which no (related) elliptic curve subgroup
of order smaller than n exists. Replacing BN254 with this one could allow implementers to
remove certain membership tests (via scalar multiplications): once a point Q is validated to
be on the correct curve, whether this be E or E′, the subgroup 〈Q〉 is guaranteed to meet the
requisite discrete logarithm security. While existing curves in the literature do not possess this
property and may therefore require expensive operations to guarantee discrete-log security in
all three groups, the subgroup-secure curves we propose can, wherever possible, maintain their
discete-log security even in the absence of some of the subgroup membership checks. Our
performance benchmarks show that replacing existing curves with subgroup-secure curves
incurs only a minor performance penalty in the pairing computation; on the other hand, all
group operations remain unaffected by this stronger security notion and retain their efficiency.

Related work. The comments made by Chen, Cheng and Smart [14] are central to the
theme of this work. We occasionally refer back to the following remark, which quotes [14,
§2.2] verbatim.

Remark 1 ([14]). “An assumption is [often] made that all values passed from one party to
another lie in the correct groups. Such assumptions are often implicit within security proofs.
However, one needs to actually:

(i) check that given message flows lie in the group,



(ii) force the messages to lie in the group via additional computation, or

(iii) choose parameters carefully so as the problem does not arise.

Indeed, some attacks on key agreement schemes, such as the small-subgroup attack [29],
are possible because implementors do not test for subgroup membership. For pairing-based
systems one needs to be careful whether and how one implements these subgroup membership
tests as it is not as clear as for standard discrete logarithm based protocols.”

The overall aim of this paper is to explore and optimize option (iii) above.

In the paper introducing small-subgroup attacks [29], Lim and Lee suggest that a strong
countermeasure is to ensure that the intended cryptographic subgroup is the smallest sub-
group within the large group. In the context of pairing-based cryptography, Scott [39] showed
a scenario in which a small-subgroup attack could be possible on elements of the third pairing
group GT , the target group, and subsequently he adapted the Lim-Lee solution to put for-
ward the notion of “GT -strong” curves. Our definition of subgroup security (see Definition 1)
applies this solution to all three of the pairing groups, the two elliptic curve input groups G1,
G2 as well as the target group GT , and therefore this paper can be seen as an extension and
generalization of Scott’s idea: while he gave an example of a BN curve that is GT -strong, we
give replacement curves from several families that are both GT -strong and G2-strong – this
is the optimal situation for the families used in practice3.

2 Pairing groups and pairing-friendly curves

For modern security levels, the most practical pairings make use of an ordinary elliptic curve
E defined over a large prime field Fp whose embedding degree (with respect to a large prime
divisor n of #E(Fp)) is k, i.e. k is the smallest positive integer such that n | pk − 1. In this
case, there exists a pairing e : G1 × G2 → GT , where G1 is the subgroup E(Fp)[n] of order
n of E(Fp), G2 is a specific subgroup of order n of E(Fpk) contained in E(Fpk) \ E(Fp), and
GT is the subgroup of n-th roots of unity, in other words, the subgroup of order n of the
multiplicative group F×

pk
.

Let t ∈ Z be the trace of the Frobenius endomorphism on E/Fp, so that #E(Fp) = p+1−t
and |t| ≤ 2

√
p . Write t2−4p = Dv2 for some square-free negative integer D and some integer

v. All of the pairing-friendly curves in this paper have D = −3 and 6 | k; together, these
two properties ensure that we can always write the curves as E/Fp : y2 = x3 + b, and that
we can make use of a sextic twist E′/Fpk/6 : y2 = x3 + b′ of E(Fpk) to instead represent
G2 by the isomorphic group G′2 = E′(Fpk/6)[n], such that coordinates of points in G′2 lie
in the much smaller subfield Fpk/6 of Fpk . Henceforth we abuse notation and rewrite G2 as
G2 = E′(Fpk/d)[n].

For a particular curve E/Fq : y2 = x3 + b with D = −3, where q = pe for some e ≥ 1,
there are six twists of E defined over Fq, including E itself. These twists are isomorphic to
E when considered over Fq6 . The following lemma (cf. [26, §A.14.2.3]) determines the group
orders of these twists over Fq, and is used several times in this work.

3 Our definition of subgroup security incorporates G1 for completeness, since for curves from the most popular
families of pairing-friendly curves the index of G1 in E(Fp) is both greater than one and much less than the
size of G1, thereby necessarily containing small subgroups. The only exceptions are the prime order families
like the MNT [30], Freeman [20], and BN [4] curve families, for which this index is 1.



Lemma 1. Let t be the trace of Frobenius of the elliptic curve E/Fq : y2 = x3 + b, and let
v ∈ Z such that t2 − 4q = −3v2. Up to isomorphism, there are at most six curves (including
E) defined over Fq with trace t′ such that t′2 − 4q = −3v′2 for some square-free v′ ∈ Z. The
six possibilities for t′ are t, −t, (t+ 3v)/2, −(t+ 3v)/2, (t− 3v)/2, and −(t− 3v)/2.

In this work, we focus on four of the most popular families of ordinary pairing-friendly curves:
the Barreto-Naehrig (BN) family [4] with k = 12 which is favorable at the 128-bit security
level; the Barreto-Lynn-Scott (BLS) cyclotomic family [3] with k = 12 and the Kachisa-
Schaefer-Scott (KSS) family [27] with k = 18, both of which are suitable at the 192-bit
security level; and the cyclotomic BLS family with k = 24, which is well suited for use at the
256-bit security level.

The above examples of pairing-friendly curves are all parameterized families. This means
that the parameters p, t and n of a specific curve from each family are computed via the
evaluation of univariate polynomials p(u), t(u) and n(u) in Q[u] at some u0 ∈ Z. The typical
way to find a good curve instance is to search over integer values u0 of low NAF-weight
(i.e. with as few non-zero entries in signed-binary, non-adjacent form (NAF) representation
as possible) and of a suitable size, until p(u0) and n(u0) are simultaneously prime. Since our
curves are all of the form E/Fp : y2 = x3 + b, and since Lemma 1 states that there are at most
6 isomorphism classes over Fp, the correct curve is quickly found by iterating through small
values of b and testing non-zero points P 6= O on E for the correct order, i.e. testing whether
[p(u0) + 1− t(u0)]P = O.

3 Subgroup-secure pairing-friendly curves

In this section we recall small-subgroup attacks and define the notion of subgroup security, a
property that is simple to achieve in practice and that strengthens the resistance of pairing-
friendly curves against subgroup attacks. After that, we discuss the four most popular choices
of pairing-friendly curve families, BN (k = 12), KSS (k = 18) and BLS (k = 12 and k = 24)
curves and provide examples of subgroup-secure curves suitable for efficient implementation
of optimal pairings at the 128-, 192-, and 256-bit security levels.

3.1 Small-subgroup attacks

Small-subgroup attacks against cryptographic schemes based on the discrete logarithm prob-
lem (DLP) were introduced by Lim and Lee [29]. The following is a brief description of the
basic idea in a general group setting.

Suppose that G is a group of prime order n (written additively), which is contained in a
larger, finite abelian group G, and let h be the index of G in G, |G| = h · n. Suppose that the
DLP is hard in any subgroup of G of large enough prime order. In particular, assume that
the prime n is large enough such that the DLP is infeasible in G. If the index h has a small
prime factor r, then there exists a group element P of order a multiple of r, and if r is small
enough, the DLP in 〈P 〉 can be easily solved modulo r. If an attacker manages to force a
protocol participant to use P for a group exponentiation involving a secret exponent, instead
of using a valid element from G, solving the DLP in 〈P 〉 provides partial information on the
secret exponent. If h has several small prime factors, the Pohlig-Hellman attack [36] may be
able to recover the full secret exponent.



Such small-subgroup attacks can be avoided by membership testing, i.e. by checking that
any point P received during a protocol actually belongs to the group G and cannot have a
smaller order (see point (i) in Remark 1). Another way to thwart these attacks is a cofactor ex-
ponentiation or cofactor multiplication (which is a solution to achieve point (ii) in Remark 1).
If every received element P is multiplied by the index h, which also means that the protocol
needs to be adjusted to work with the point [h]P instead of P , then points of small order are
mapped to O and any small-order component of P is cleared by this exponentiation.

3.2 Subgroup security

If h > 1 and it does not contain any prime factors smaller than n, then G is one of the
subgroups in G with the weakest DLP security. In other words, for any randomly chosen
element P ∈ G, the DLP in the group 〈P 〉 is guaranteed to be at least as hard as the DLP
in G, since even if |〈P 〉| = |G|, the Pohlig-Hellman reduction [36] requires the solution to a
DLP in a subgroup of prime order at least n. Depending on the protocol design, it might
be possible to omit membership testing and cofactor multiplication if parameters are chosen
such that h does not have prime factors smaller than n: this is one possibility that addresses
point (iii) in Remark 1.

One might consider omitting the test as to whether an element belongs to the group G
if this is a costly operation. For example, if testing membership for G requires a relatively
expensive group exponentiation, and testing membership for G is relatively cheap (i.e. costs
no more than a few group operations), one can replace the costly check by the cheaper one
given that the index h does not have any small factors. When the group G is the group
of Fq-rational points on an elliptic curve E, and G is a prime order subgroup, then testing
whether a point P belongs to G is relatively cheap, because it only requires to check validity of
the curve equation, while testing whether a point belongs to G additionally requires either a
scalar multiplication [n]P to check whether P has the right order, or a cofactor multiplication
[h]P to force the resulting point to have the right order. If the cofactor is small, the latter
cost is low, but for large cofactors, it might be more efficient to refrain from carrying out any
of the exponentiations when working with suitable parameters.

An attempt to define the notion of subgroup security could be to demand that the index
h (if it is not equal to 1) only contains prime factors of size n or larger, in which case both
exponentiations are very costly. However, in the case of elliptic curve cryptography (ECC),
such a definition does not make sense, since curves are chosen such that the cofactor is equal
to 1 or a very small power of 2 (such as 4 or 8) depending on the curve model that is selected
for efficiency and security reasons. Although there are good reasons to require cofactor h = 1,
it would unnecessarily exclude curve models which allow performance gains by having a small
cofactor (such as Montgomery [31] or Edwards [19] curve models). Therefore, demanding
only large prime factors in h only makes sense if the group inherently has large, unavoidable
cofactors by construction. This is the case for some of the groups that arise from pairing-
friendly curves.

For the three pairing (sub)groups G1, G2 and GT defined in Section 2, there are very
natural choices of three associated groups G1, G2 and GT for which testing membership is
easy. Namely, we define G1, G2, and GT as follows:

G1 ⊆ G1 = E(Fp), G2 ⊆ G2 = E′(Fpk/d), GT ⊆ GT = GΦk(p),



where GΦk(p) is the cyclotomic subgroup4 of order Φk(p) in F×
pk

. Scott also chose GT that

way when proposing GT -strong curves [39]. Note that testing membership in G1 or G2 simply
amounts to checking the curve equation for E(Fp) or E′(Fpk/d), respectively, and that testing
whether an element is in GT can also “be done at almost no cost using the Frobenius” [39,
§8.3]. We give more details on this check in §5.2, where we also discuss why GT is chosen as
the cyclotomic subgroup of order Φk(p), rather than the full multiplicative group F×

pk
.

Since |G1| = |G2| = |GT | = n, the relevant indices h1, h2, hT ∈ Z are defined as

h1 =
|G1|
n
, h2 =

|G2|
n
, hT =

|GT |
n
.

The sizes of these cofactors are determined by the properties of the pairing-friendly curve.
For all of the curves in this paper, both G2 and GT are groups of order n in the much larger
groups G2 and GT and the cofactors h2 and hT are at least of a similar size as n. The group
G1 is typically not that large, and comes closer to the case of a group used in plain ECC.
Therefore the cofactor h1 is smaller than n, and in almost all cases larger than 1.

The next attempt at a definition of subgroup security could demand that for any of
the three pairing groups for which the cofactor is of size similar to n or larger, it must
not have prime factors significantly smaller than n. This is a more useful definition since
it focuses on the case in which large cofactors exist. However, most pairing-friendly curves
are instances of parameterized families and their parameters are derived as the evaluation of
rational polynomials at an integer value. And for certain families, these polynomials may also
necessarily produce small factors in the indices (cf. Remark 2 below).

The following definition of subgroup security accounts for this fact in capturing – for a
given polynomial family of pairing-friendly curves – the best that can be achieved within that
family. We make use of the fact that, for the parameterized families of interest in this work,
the three cofactors above are also parameterized as h1(u), h2(u), hT (u) ∈ Q[u].

Definition 1 (Subgroup security). Let p(u), t(u), n(u) ∈ Q[u] parameterize a family of
ordinary pairing-friendly elliptic curves, and for any particular u0 ∈ Z such that p = p(u0)
and n = n(u0) are prime, let E be the resulting pairing-friendly elliptic curve over Fp of order
divisible by n. We say that E is subgroup-secure if all Q[u]-irreducible factors of h1(u), h2(u)
and hT (u) that can represent primes and that have degree at least that of n(u), contain no
prime factors smaller than n(u0) ∈ Z when evaluated at u = u0.

It should be pointed out immediately that the wording of “smaller” in Definition 1 can
be relaxed in cases where the difference is relatively close. Put simply, Definition 1 aims
to prohibit the existence of any unnecessary subgroups of size smaller than n inside the
larger groups for which validation is easy. We note that, for simplicity, Definition 1 says
that subgroup security is dependent on the pairing-friendly curve E. However, given that the
property is dependent on the three groups G1, G2 and GT , it would be more precise to say
that the property is based on the pairing that is induced by E and n.

In Table 1, we have collected popular pairing-friendly curves that have been used in the
literature and in pairing implementations because of their efficiency. We have evaluated all
such curves according to their subgroup security. This means that we had to (partially) factor
the indices h1, h2 and hT . Note that h1 is quite small in all cases, and since it is smaller than
n, there is no need to find its factorization in order to test for subgroup security. To find the

4 Here Φk denotes the k-th cyclotomic polynomial.



Table 1. Subgroup security for pairing-friendly curves previously used in the literature, considering curves
from the Barreto-Naehrig (BN) family [4] with k = 12; the Barreto-Lynn-Scott (BLS) cyclotomic families [3]
with k = 12 and k = 24 and the Kachisa-Schaefer-Scott (KSS) family [27] with k = 18. The columns for p
and n give the bitsizes of these primes. The column marked “where?” provides reference to the literature in
which the specific curves have been used in implementations. The column wt(u0) displays the NAF-weight of
the parameter u0. The symbols pm and cm in the columns that display factors of the indices h1, h2, and hT

are used to denote an unspecified prime of size m bits or a composite number of size m bits, respectively.

sec. family p n Curve choices sub.
level k (bits) (bits) where? wt(u0) h1 h2 hT sec.?

256 256 [33] 23 1 c17p239 c74c692 no
128 BN 254 254 [34, 2, 35, 38, 42] 3 1 c96p158 c79c681 no

12 254 254 Example 1 6 1 p254 p762 yes

638 427 [1] 4 c212 c48c802 c58c2068 no
192 BLS 635 424 [11] 4 c211 c15c831 c33c2082 no

12 635 425 Example 2 6 c211 p845 p2114 yes

511 378 [38] 8 c133 c50c1106 c26c2660 no
192 KSS 508 376 [1] 4 c133 c85c1063 c15c2656 no

18 508 376 Example 3 9 c133 3p1146 p2671 yes

639 513 [18] 4 c127 22c2040 c41c4556 no
256 BLS 629 505 [38] 4 c125 22p69c1940 c132c4392 no

24 629 504 Example 4 8 c125 p2010 p4524 yes

(partial) factorizations of h2 and hT , we used the implementation of the ECM method5 [28]
in Magma [12]. To illustrate the factorizations, we use pm and cm to denote some m-bit prime
and some m-bit composite number respectively.

It is important to note that the curves chosen from the literature in Table 1 were not
chosen strategically; none of them are subgroup secure, but the chances of a curve miraculously
achieving this property (without being constructed to) is extremely small. Thus, these curves
are a fair representation of all ordinary pairing-friendly curves proposed in previous works,
since we could not find any prior curve that is subgroup secure according to Definition 1
(the closest example being the BN curve given by Scott [39, §9], which is GT -strong but not
G2-strong).

In §3.3-§3.6, we focus on achieving subgroup security for the four popular parameterized
families of pairing-friendly curves mentioned in Section 2. Our treatment of each family fol-
lows the same recipe: the polynomial parameterizations of p, n and t immediately give us
parameterizations for hT as hT (u) = Φk(p(u))/n(u), but in each case it takes some more work
to determine the parameterization of the cofactor h2; this is done in Propositions 1-4. To find
a subgroup-secure curve instance from each family, we searched through u = u0 values of a
fixed length and of low NAF-weight, increasing the NAF-weight (and exhausting all possibil-
ities each time) until a curve was found with p(u0), n(u0), h2(u0) and hT (u0) all prime. In
theory we could have relaxed the search condition of h2(u0) and hT (u0) being prime to instead
having no prime factors smaller than n, but finding or proving such factorizations requires an
effort beyond the efforts of current factorization records. The fixed length of u0 was chosen
so that the parameter sizes closely match the sizes of curves already in the literature and
in online libraries; we also aimed to make sure the parameters matched in terms of efficient

5 We tweaked the parameters according to http://www.loria.fr/~zimmerma/records/ecm/params.html, un-
til enough factors were found.



constructions of the extension field towerings. In order to compare to previous curves, we have
included the subgroup-secure curves found in each family in Table 1.

3.3 BN curves with k = 12

The Barreto-Naehrig (BN) family [4] of curves is particularly well-suited to the 128-bit security
level. BN curves are found via the parameterizations

p(u) = 36u4+36u3+24u2+6u+1, t(u) = 6u2+1, n(u) = 36u4+36u3+18u2+6u+1.

In this case #E(Fp) = n(u), so G1 = G1 = E(Fp), meaning h1(u) = 1. The cofactor in
GT = GΦ12(p) is parameterized as hT (u) = (p(u)4−p(u)2+1)/(n(u)). The following proposition
gives the cofactor h2(u).

Proposition 1. With parameters as above, the correct sextic twist E′/Fp2 for a BN curve
has group order #E′(Fp2) = h2(u) · n(u), where

h2(u) = 36u4 + 36u3 + 30u2 + 6u+ 1.

Proof. [32, Rem. 2.13] says that BN curves always have h2(u) = p(u)− 1 + t(u). ut

Example 1. The BN curve E/Fp : y2 = x3+5 with u0 = 262+259+255+215+210−1 has both
p = p(u0) and n = n(u0) = #E(Fp) as 254-bit primes. A model for the correct sextic twist
over Fp2 = Fp[i]/(i2+1) is E′/Fp2 : y2 = x3+5(i+1), and its group order is #E′(Fp2) = h2 ·n,
where h2 = h2(u0) is also a 254-bit prime. Thus, once points are validated to be in G1 = E(Fp)
or G2 = E′(Fp2), no cofactor multiplications are required to avoid subgroup attacks on this
curve, i.e. there are no points of order less than n in E(Fp) or E′(Fp2). Furthermore, the
group GT has order |GT | = hT ·n, where hT = hT (u0) is a 762-bit prime, so once Fp12 elements
are validated to be in GT = GΦ12(p), no further cofactor multiplications are necessary for
discrete log security here either. For completeness, we note that Fp12 can be constructed as
Fp6 = Fp2 [v]/(v3 − (i + 1)) and Fp12 = Fp6 [w]/(w2 − v); E and E′ are then isomorphic over
Fp12 via Ψ : E′ → E, (x′, y′) 7→ (x′/v, y′/(vw)).

3.4 BLS curves with k = 12

The Barreto-Lynn-Scott (BLS) family [3] with k = 12 was shown to facilitate efficient pairings
at the 192-bit security level [1]. This family has the parameterizations

p(u) = (u− 1)2 · (u4 − u2 + 1)/3 + u, t(u) = u+ 1, n(u) = u4 − u2 + 1.

Here #E(Fp) = h1(u) ·n(u) with h1(u) = (u−1)2/3, so there is always a cofactor that is much
smaller than n in G1. Again, the cofactor in GT = GΦ12(p) is hT (u) = (p(u)4−p(u)2+1)/(n(u)).
The following proposition gives the cofactor h2(u).

Proposition 2. With parameters as above, the correct sextic twist E′/Fp2 for a k = 12 BLS
curve has group order #E′(Fp2) = h2(u) · n(u), where

h2(u) = (u8 − 4u7 + 5u6 − 4u4 + 6u3 − 4u2 − 4u+ 13)/9.



Proof. Write #E(Fp2) = p2 + 1 − t2, where p2 = p2 and t2 = t2 − 2p [9, Corollary VI.2].
The CM equation for E(Fp2) is t22 − 4p2 = −3v22, which gives v2 = (x− 1)(x+ 1)(2x2 − 1)/3.
Lemma 1 reveals that t′ = (t2 − 3v2)/2 gives rise to the correct sextic twist E′/Fp2 with
n | #E′(Fp2) = p2 + 1− t′, and the cofactor follows as h2 = (p2 + 1− t′)/n. ut

Example 2. The k = 12 BLS curve E/Fp : y2 = x3−2 with u0 = −2106−292−260−234+212−29

has p = p(u0) as a 635-bit prime and #E(Fp) = h1 · n, where n = n(u0) is a 425-bit prime
and the composite cofactor h1 = h1(u0) is 211 bits. A model for the correct sextic twist over
Fp2 = Fp[i]/(i2 + 1) is E′/Fp2 : y2 = x3 − 2/(i+ 1), and its group order is #E′(Fp2) = h2 · n,
where h2 = h2(u0) is an 845-bit prime. Furthermore, the group GT has order |GT | = hT · n,
where hT = hT (u0) is a 2114-bit prime. Thus, once elements are validated to be in either
G2 = E′(Fp2) or GT = GΦ12(p), no cofactor multiplications are required to avoid subgroup
attacks. On the other hand, a scalar multiplication (by either h1 or n) may be necessary to
ensure that points in E(Fp) have the requisite discrete log security, and this is unavoidable
across the k = 12 BLS family. For completeness, we note that Fp12 can be constructed as
Fp6 = Fp2 [v]/(v3 − (i + 1)) and Fp12 = Fp6 [w]/(w2 − v); E and E′ are then isomorphic over
Fp12 via Ψ : E′ → E, (x′, y′) 7→ (x′ · v, y′ · vw).

3.5 KSS curves with k = 18

The Kachisa-Schaefer-Scott (KSS) family [27] with k = 18 is another family that is suitable
at the 192-bit security level. This family has the parameterizations

p(u) = u8 + 5u7 + 7u6 + 37u5 + 188u4 + 259u3 + 343u2 + 1763u+ 2401,

t(u) = (u4 + 16u+ 7)/7, n(u) = (u6 + 37u3 + 343)/73.

Here #E(Fp) = h1(u) · n(u) with h1(u) = (49u2 + 245u + 343)/3, so again there is always a
cofactor much smaller than n in G1. The cofactor in GT = GΦ18(p) is hT (u) = (p(u)6− p(u)3 +
1)/(n(u)). The proposition below gives the cofactor h2(u).

Proposition 3. With parameters as above, the correct sextic twist E′/Fp3 for a k = 18 KSS
curve has group order #E′(Fp3) = h2(u) · n(u), where

h2(u) = (u18+15u17+96u16+409u15+1791u14+7929u13+27539u12+81660u11+256908u10+
757927u9 + 1803684u8 + 4055484u7 + 9658007u6 + 19465362u5 + 30860595u4 + 50075833u3 +
82554234u2 + 88845918u+ 40301641)/27.

Proof. Write #E(Fp3) = p3 + 1− t3, where p3 = p3 and t3 = t3− 3pt [9, Corollary VI.2]. The
CM equation for E(Fp3) is t23 − 4p3 = −3v23, which gives v3 = (x4 + 7x3 + 23x + 119)(5x4 +
14x3 + 94x+ 259)(4x4 + 7x3 + 71x+ 140)/3087. Lemma 1 reveals that t′ = (t3 + 3v3)/2 gives
rise to the correct sextic twist E′/Fp3 with n | #E′(Fp3) = p3 +1− t′, and the cofactor follows
as h2 = (p3 + 1− t′)/n. ut

Remark 2. The KSS parameterization requires u ≡ 14 mod 42. Under this condition, it is
straightforward to see that h2(u) ≡ 0 mod 3. Thus, there is always a factor of 3 in the
cofactor of G2 in this family.

Example 3. The k = 18 KSS curve E/Fp : y2 = x3+2 with u0 = 264+247+243+237+226+225+
219−213−27 has p = p(u0) as a 508-bit prime and #E(Fp) = h1·n, where n = n(u0) is a 376-bit
prime and the composite cofactor h1 = h1(u0) is 133 bits. A model for the correct sextic twist



over Fp3 = Fp[v]/(v3−2) is E′/Fp3 : y2 = x3 + 2/v, and its group order is #E′(Fp3) = 3 ·h2 ·n
(see Remark 2), where h2 = h2(u0) is a 1146-bit prime. Thus, once points are validated to be
in E′(Fp3), it may be necessary to multiply points by 3 to clear this cofactor. Furthermore,
a scalar multiplication by h1 or n may be necessary to ensure that random points in E(Fp)
are in G1 = E(Fp)[n] before any secret scalar multiplications take place. On the other hand,
once points are validated to be in GT = GΦ18(p), no cofactor multiplications are required to
avoid subgroup attacks since hT = hT (u0) is a 2671-bit prime in this case. For completeness,
we note that Fp18 can be constructed as Fp9 = Fp3 [v]/(w3 − v) and Fp18 = Fp9 [z]/(z3 −w); E
and E′ are then isomorphic over Fp18 via Ψ : E′ → E, (x′, y′) 7→ (x′ · w, y′ · wz).

3.6 BLS curves with k = 24

The Barreto-Lynn-Scott (BLS) family [3] with k = 24 is well suited to the 256-bit security
level. This family has the parameterizations

p(u) = (u− 1)2 · (u8 − u4 + 1)/3 + u, t(u) = u+ 1, n(u) = u8 − u4 + 1.

Here #E(Fp) = h1(u) · n(u) with h1(u) = (u− 1)2/3, so once more there is always a cofactor
which is much smaller than n in #G1. Here the cofactor for GT = GΦ24(p) is hT (u) = (p(u)8−
p(u)4 + 1)/(n(u)). The following proposition gives the cofactor h2(u).

Proposition 4. With parameters as above, the correct sextic twist E′/Fp4 for a k = 24 BLS
curve has group order #E′(Fp4) = h(u) · n(u), where

h2(u) = (u32 − 8u31 + 28u30 − 56u29 + 67u28 − 32u27 − 56u26 + 160u25 − 203u24 + 132u23 +
12u22 − 132u21 + 170u20 − 124u19 + 44u18 − 4u17 + 2u16 + 20u15 − 46u14 + 20u13 + 5u12 +
24u11 − 42u10 + 48u9 − 101u8 + 100u7 + 70u6 − 128u5 + 70u4 − 56u3 − 44u2 + 40u+ 100)/81.

Proof. Write #E(Fp4) = p4 + 1 − t4, where p4 = p4 and t4 = t4 − 4pt2 + 2p2 [9, Corollary
VI.2]. The CM equation for E(Fp4) is t24− 4p4 = −3v24, which gives v4 = (x− 1)(x+ 1)(2x4−
1)(2x10−4x9 + 2x8−2x6 + 4x5−2x4−x2−4x−1)/9. Lemma 1 reveals that t′ = (t4 + 3v4)/2
gives rise to the correct sextic twist E′/Fp4 with n | #E′(Fp3) = p4 + 1− t′, and the cofactor
follows as h2 = (p4 + 1− t′)/n. ut

Example 4. The k = 24 BLS curve E/Fp : y2 = x3 + 1 with u0 = −(263 − 247 − 231 − 226 −
224 + 28 − 25 + 1) has p = p(u0) as a 629-bit prime and #E(Fp) = h1 · n, where n = n(u0)
is a 504-bit prime and the composite cofactor h1 is 125 bits. If Fp4 is constructed by taking
Fp2 = Fp[i]/(i2 + 1) and Fp4 = Fp2 [v]/(v2 − (i+ 1)), then a model for the correct sextic twist
is E′/Fp4 : y2 = x3 + 1/v, and its group order is #E′(Fp4) = h2 · n, where h2 = h2(u0) is a
2010-bit prime. Furthermore, the group GT has order |GT | = hT · n, where hT = hT (u0) is
a 4524-bit prime. Thus, once elements are validated to be in either G2 = E′(Fp4) or GT =
GΦ24(p), no cofactor multiplications are required to avoid subgroup attacks. On the other
hand, once random points are validated to be on E(Fp), a scalar multiplication by h1 or n
is required to ensure points are in G1. In this case we note that Fp24 can be constructed as
Fp12 = Fp4 [w]/(w3 − v) and Fp24 = Fp12 [z]/(z2 − w); E and E′ are then isomorphic over Fp24
via Ψ : E′ → E, (x′, y′) 7→ (x′ · w, y′ · wz).



4 Performance comparisons: the price of subgroup security

As we saw in Table 1, subgroup-secure curves are generally found with a search parameter
of larger NAF-weight than non-subgroup-secure curves because of the additional (primality)
restrictions imposed in the former case6. Thus, pairings computed with the subgroup-secure
curves will naturally be more expensive. In this section, we give performance numbers that
provide a concrete comparison between our subgroup-secure curves and the speed-record
curves that have appeared elsewhere in the literature. Table 2 shows the approximate fac-
tor slowdowns incurred by choosing subgroup-secure curves. We stress that such slowdowns
only occur in the computation of the pairing; optimal methods for group exponentiations
are unrelated to the search parameter and will therefore remain unchanged when using a
subgroup-secure curve of the same size in the same curve family.

We used a pairing library written in C to obtain the performance numbers in Table 2,
benchmarked on an Intel Xeon E5-2620 clocked at 2.0GHz. We note that our library does not
perform as fast as some other pairing libraries as it was written entirely in C without using
any assembly-level optimizations. Nevertheless, it uses all of the state-of-the-art high-level
optimizations such as the optimal ate pairing [41] with a fast final exponentiation [40], as well
as taking advantage of efficient extension field towerings [5] and enhanced operations in the
cyclotomic subgroups [25]. Moreoever, comparison to speed-record implementations in the
literature is immaterial; our point here is to compare the price of a pairing on a subgroup-
secure curve to the price of a pairing on one of the popular curves used in the literature,
using the same implementation in order to get a fair performance ratio. The pairing functions
use the NAF representation of the loop parameter u0 for the Miller loop as well as the final
exponentiation. The implementation computes the runtime for pairings on the subgroup-
secure curves by only changing the value for u0 in the Miller loop and final exponentiation in
the implementation of the original curves, all other parameters remain the same. We note that
the fastest implementations of field arithmetic for ordinary pairing-friendly curves, e.g. [2], do
not take advantage of the NAF-weight of the prime p. The results therefore provide a gauge
as to the relative slowdown one can expect in the pairing when employing a subgroup-secure
curve, indicating that, in the worst case, a slowdown factor of 1.13 can be expected.

5 How to use subgroup-secure curves

In this section we discuss the implications of working with a subgroup-secure pairing-friendly
curve and point out possible efficiency improvements. As we have seen in Section 4, there
is a small performance penalty in the pairing algorithm when switching from the currently
used “speed-record curves” to subgroup-secure curves, which is incurred by the increase in the
NAF-weight of the parameter u0. Note that this penalty only affects the pairing computation;
it does not have any consequences for elliptic curve or finite field arithmetic in the groups
themselves.

As we discussed earlier, an important subtlety that is rarely7 factored into pairing-based
protocol papers is the notion of (testing) subgroup membership [14, §2.2]. Naturally then, the
cost for performing these checks is often not reflected in the pairing literature. When using a
subgroup-secure curve, there is the potential to reduce the cost for these checks as hinted to
in §3.2, and possibly to mitigate the performance penalty.

6 We note that Scott [39, §9] hinted at this “negative impact” when discussing a GT -strong curve.
7 Menezes and Chatterjee recently pointed out another interesting example of this [13].



Table 2. Benchmarks of the optimal ate pairing on non-subgroup-secure pairing-friendly curves used previously
compared to subgroup-secure curves (according to Definition 1) from the same family. Timings show the
rounded average over 10000 measurements for which Turbo Boost and Hyperthreading were disabled. The
experiments only reflect the difference in the NAF-weight of the parameter u0 leading to an increased number
of Miller steps in the Miller loop and multiplications in the final exponentiation. All other parameters are kept
the same.

sec. family p u NAF-weight where? optimal ate pairing subgroup
level k (bits) (bits) of param. u0 (in 106 clock cycles) secure

128 BN 254 63 3 [34, 2, 35, 38, 42] 7.68 no
12 254 63 6 Example 1 8.20 yes

approximate slowdown factor 1.07

192 BLS 635 106 4 [11] 51.00 no
12 635 107 6 Example 2 51.98 yes

approximate slowdown factor 1.02

192 KSS 508 65 4 [1] 85.10 no
18 508 65 9 Example 3 94.06 yes

approximate slowdown factor 1.11

256 BLS 629 63 3 [38] 123.79 no
24 629 63 8 Example 4 139.37 yes

approximate slowdown factor 1.13

5.1 Reducing the cost of subgroup membership checks

We emphasize that we do not recommend skipping subgroup membership checks. What we
do recommend, though, is that if such checks are in place to guarantee DLP security, then
protocols should be examined to see if these checks can be replaced by less expensive measures,
such as omitting costly scalar multiplications in the presence of a subgroup-secure curve. Next,
we discuss the different possibilities.

For the group G1, the index h1 of G1 is typically much smaller than n, which means that
we cannot select the parameters to avoid prime factors smaller than n in |G1|. Therefore, one
must carry out either a scalar multiplication by n to check for the correct order or by the
cofactor h1 to force points to have the right order. Let #E(Fp) = h1 · n for some cofactor h1
and recall that log2 h1 � log2 n for all of the above curve families. Thus, for a random point
P ∈ E(Fp), it is faster to compute R = [h1]P to guarantee that R ∈ G1 than it is to check
whether [n]P = O and was in G1 to begin with. However, this solution requires the protocol
to allow the point R to replace the orginal point P , and this might require slight changes to
the protocol; for example, it may require more than one party to perform the same scalar
multiplication by h1 such that it would have been less expensive (overall) for a single party
to check that [n]P = O.

In the group G2, the picture is different. Let #E′(Fpk/6) = h2 · n for some cofactor h2,
and recall from §3.2 that h2 > n for the families in this paper. In this case, guaranteeing
that a point is in the order n subgroup G2 through a cofactor multiplication by h2 is at least
as costly as checking that a point was in G2 to begin with; in particular, for the k = 18
and k = 24 families above, multiplication by h2 is around 3 and 4 times more expensive than
multiplication by n, respectively. For a curve that is not subgroup-secure, the cheaper solution
is to therefore check the condition [n]Q′ = O for a point Q′ ∈ E′(Fpk/6). On the other hand, if
the curve is subgroup-secure, one could check the curve equation to ensure that Q′ ∈ E′ and
omit the check that [n]Q′ = O at no risk of compromising the DLP security. However, not
every protocol might allow working with points of order different than n. Thus the application



of this optimization needs to be evaluated in every specific protocol. For example, the pairing
implementation might not be bilinear when applied to points of order other than n, or the
subgroup membership check may be in place for a reason different than discrete log security.

In the context of the Tate pairing, Scott [37, §4.4] pointed out that during the pairing
computation, one can check whether the first input P ∈ G1 to the pairing function actually
has order n, i.e. whether it is in G1. This is possible because the Miller loop in the Tate
pairing inherently computes [n]P alongside the pairing value, so there is no additional effort
required to assert that [n]P = O. However, when using optimal pairings [41], this is not true
anymore. Due to the shortening of the Miller loop and the swapping of the input groups,
optimal pairings only compute [λ]Q′ for λ much smaller than n, and for Q′ ∈ G2. The trick
outlined by Scott can therefore only help to save part of the exponentiation [n]Q′.

Elliptic curve scalar multiplications in both G1 and G2 can benefit from GLV/GLS decom-
positions [24, 23, 21]. In G1, one can use precomputed 2-dimensional GLV decompositions to
speed up the scalar multiplications by h1 and n. In G2, once can use even higher-dimensional
GLV+GLS decompositions of the scalar n. In both cases, since n and h1 are fixed system pa-
rameters, their decomposition can be computed offline. Moreover, these fixed multiplications
are not by secret scalars and therefore need not be implemented in constant time.

Finally, the index of GT in GT = GΦk(p) is hT = Φk(p)/n, which is at least three times
larger than n for the families in this paper. Thus, for a subgroup-secure curve, hT is prime
(up to possibly small factors given by the polynomial parameterization) and a subgroup
membership test for GT may be replaceable by a cheap membership test for GT (see §5.2
below). Again, this is contingent on the ability of the protocol to allow GT -elements of order
other than n. If membership tests can not be avoided, then the fixed exponentiation by n can
take advantage of several techniques that accelerate arithmetic in the cyclotomic subgroup
GT = GΦk(p); these include cyclotomic squarings [25], exponent decompositions [23], and
trace-based methods (cf. [39, §8.1]).

5.2 Checking membership in GT

We elaborate on Scott’s observation [39, §8.3] concerning the ease of checking membership in
GT = GΦk(p). For the k = 12 BN and BLS families, checking that g ∈ GT amounts to asserting

gp
4−p2+1 = 1, i.e. asserting that gp

4 · g = gp
2
. Here the required Frobenius operations are a

small cost compared to the multiplication that is needed, so this check essentially costs one
multiplication in Fp12 . Similarly, the tests for the k = 18 KSS and k = 24 BLS families check

that gp
6 · g = gp

3
and gp

8 · g = gp
4

respectively, which also cost around one extension field
multiplication.

The reason we take GT to be the subgroup of order Φk(p), rather than the full multiplicative
group F×

pk
, is because it is extremely difficult to achieve subgroup security in F×

pk
. As Scott

points out when k = 12, the number of elements in F×
p12

factors as p12 − 1 = (p − 1) · (p2 +

1) · (p2 + p + 1) · (p2 − p + 1) · (p + 1) · ((p4 − p2 + 1)/n) · n, so here there are 6 factors
(excluding n) that we would need to be almost prime if we were to deem F×

pk
as subgroup-

secure. Even if it were possible to find a u0 value such that these 6 factors were almost prime, it
would certainly no longer have a sparse NAF representation, and the resulting loss in pairing
efficiency would be drastic. On the other hand, taking GT = GΦk(p) means that we can search
for only one additional factor (i.e. (p4− p2 + 1)/n)) being almost prime, meaning that sparse
u0 values (and therefore state-of-the-art performance numbers) are still possible and the cost
of asserting membership in GT remains negligible.
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A Twist security

In this appendix, we briefly look at the notion of twist security, since it bears resemblance
to the notion of subgroup security described in this work; we discuss the similarities and
differences between the two in §A.3. Twist security has previously only been considered in
the context of elliptic curve cryptography (ECC); we give a brief overview in §A.1. In §A.2 we
put twist security in the context of pairing-based cryptography (PBC), where we discuss why
it may or may not be relevant, why it is difficult to achieve in practice, and an alternative
countermeasure.

A.1 Twist security in ECC

Bernstein [6] proposed the notion of twist security as a means to allow certain checks to be
omitted during cryptographic scalar multiplications using the Montgomery ladder [31]. On
elliptic curves of the form E/K : By2 = x3 +Ax2 + x, the Montgomery ladder can efficiently
compute scalar multiplications using only the x-coordinates of points. If x(P ) denotes the
x-coordinate of a point P ∈ E, then the Montgomery ladder is essentially a function f that
computes x([k]P ) ← f(x(P ), k, A) for some scalar k ∈ Z. The key point is that, so long
as A is fixed, the function f correctly computes scalar multiplications independently of the
curve constant B. However, there are only two isomorphism classes that can be obtained by
varying B, depending on whether or not B is a square in K; these two classes correspond
to the quadratic twists – E and E′ – of one another. Since all x′ ∈ K correspond to the
x-coordinate of a point lying on either8 twist, Bernstein’s solution is to ensure that E and E′

are both cryptographically strong. In the context of elliptic curve Diffie-Hellman, this allows
one to omit the check to which twist any particular x′ ∈ K corresponds to, and to successfully
establish a secure shared secret regardless [6].

A.2 Twist security in PBC

Twist security only offers a concrete and practical advantage when the possibility of x-
coordinate-only arithmetic is available, for if one has access to both the x-and-y coordinates,
then checking curve pertinence is a negligible computation. In this regard there are then two
main reasons why twist security is not likely to be as relevant in the context of PBC. Firstly,
the most popular constructions do not have the cofactor 4 that is required to facilitate the
Montgomery model (cf. [11, Table 2]), meaning that x-only arithmetic is rarely an option;
for example, BN curves can never have a Montgomery representation9. And secondly, even
if a Montgomery model is an option, pairing-friendly curves typically facilitate scalar de-
compositions [23], those of which are best performed via multiexponentiations that use both
coordinates.

Nevertheless, since having a curve with a strong quadratic twist does not necessarily come
at a price, one might consider employing this property in the context of PBC anyway10.
Moreover, Lemma 1 shows that all of the curves in this paper have six twists over the ground
field (rather than just two), so to be on the very safe side, one might try to find instances
in which all six of the twists have (almost-)prime order. In fact, in the context of fault

8 There actually are a few points lying on both, e.g. the point (0, 0), but this is unimportant here.
9 For E(Fp), n(u0) 6≡ 0 mod 4 is obvious, and the same argument for E′(Fp2) follows from Proposition 1.

10 As an aside, we note that the BN curve used to fool Alice in Section 1 was twist-secure.



attacks, which can even pose a threat in the presence of point validation checks [8], protecting
all six twists is a desirable property. To wit, we point out that just like the Montgomery
ladder function f in §A.1 that did not distinguish between twists, typical scalar multiplication
routines on the pairing-friendly curves in this paper will also work identically for all six twists.
This is because the standard formulas for scalar multiplication are independent of the constant
b, so for any pair (x̃, ỹ) ∈ F2

p, and for a general scalar k ∈ Z, the scalar multiplication routine

will correctly compute the multiple [k]P of the point P = (x̃, ỹ) on the curve Ẽ/Fp : y2 = x3+b̃
with b̃ = ỹ2 − x̃3 ∈ Fp. Since there are only six possible group orders for Ẽ/Fp : y2 = x3 + b̃
as b̃ ranges over [0, p), a fault attack that tries to prey on the correctness of the scalar
multiplication routine for weak curves could be thwarted completely if all six group orders
were strong.

Unfortunately, for all of the families in this paper, the parameterized versions of the six
possible group orders in Lemma 1 reveal that at least one of the six twists will always have a
weak group order. Even if five of the six twists are cryptographically strong, a sophisticated
fault attack [8] has a good chance of producing an altered point with coordinates on the weak
twist, and therefore a good chance of success.

Of course, the fault attack would have to be sophisticated indeed, if it were able to get
around point pertinence checks at both the beginning and end of a scalar multiplication
routine. Nevertheless, such an attack is not an impossibility, so we now discuss one potential
countermeasure. We propose employing explicit formulas that do distinguish between the six
twists. Recall from above that the affine schoolbook formulas for arithmetic on E : y2 = x3+b
are independent of the constant b, and therefore of any particular twist. Thus, it makes sense
that the fastest projective versions of these formulas are also independent of b. These formulas
use Jacobian coordinates [7] and require11 2M+5S for point doublings, 11M+5S for projective
additions and 7M + 4S for a projective-and-affine (a.k.a. “mixed”) addition. On the other
hand, the projective formulas for arithmetic on E in homogenous coordinates do incorporate
b; these require 3M + 5S for point doublings [17, §5], 12M + 2S for projective additions and
9M + 2S for mixed additions [16] (see also [7]). In this case point doublings are 1M slower
than in Jacobian coordinates, but the performance penalty here will be very minor given
the competitive homogenous addition formulas, and the higher density of such additions in
scalar multiplications exploiting decompositions – see [23, 11]. The incentive is that this set
of formulas only computes scalar multiplications correctly for the particular curve they are
intended for. This means that any fault attack that alters the input point (x, y) ∈ E to
(x̃, ỹ) ∈ Ẽ will almost certainly be returned a point that is neither on E or Ẽ, and even in
the case where the returned point is on a twist isomorphic to E or Ẽ, it will not correspond
to a multiplication by the secret scalar.

A.3 Subgroup security vs. twist security

In this section we briefly compare the notion of twist security in the context of ECC and
that of subgroup security in the context of PBC. Indeed, while neither of these properties are
absolutely necessary, they are both intended to maintain DLP security in certain scenarios
when checks are omitted for the sake of efficiency. In the case of x-coordinate-only ECC,
twist security comes at no price (a well-chosen twist-secure curve introduces no overhead),
while in the case of PBC, achieving subgroup security introduces a small but noticeable
overhead in the pairing (see Section 4). On the other hand, the potential savings offered by

11 Here M and S denote a field multiplication and field squaring respectively.



subgroup-secure curves are far greater in the context of PBC; here we can possibly save large
elliptic curve or finite field group exponentiations, while twist security for Montgomery curves
saves a relatively inexpensive Legendre symbol computation. Just like twist security in ECC,
subgroup security in PBC removes possible points of failure in practice. We believe that the
minor overhead in the pairing is a small price to pay for the assurance that all elements which
are asserted to be in E′(Fpk/d) or GΦ(k)(p) are guaranteed to have large prime order.


