
How to Construct UC-Secure Searchable Symmetric

Encryption Scheme

Kaoru Kurosawa Yasuhiro Ohtaki

Ibaraki University, Japan
E-mail. {kurosawa, y.ohtaki}@mx.ibaraki.ac.jp

Abstract

A searchable symmetric encryption (SSE) scheme allows a client
to store a set of encrypted files on an untrusted server in such a way
that he can efficiently retrieve some of the encrypted files containing
(or indexed by) specific keywords keeping the keywords and the files
secret. In this paper, we first extend the model of SSE schemes to
that of verifiable SSE schemes, and formulate the UC security. We
then prove its weak equivalence with privacy and reliability. Finally
we show an efficient verifiable SSE scheme which is UC-secure. 1

Keywords: searchable symmetric encryption, UC-security, symmetric-
key encryption

1 Introduction

In the model of searchable symmetric encryption (SSE) schemes, a client
stores a set of encrypted files Cj on an untrusted server in the store phase.
Later in the search phase, he can efficiently retrieve some of the encrypted
files containing (or indexed by) specific keywords, keeping the keywords and
the files secret (ideally without leaking any information to the server).

The first SSE scheme was proposed by Song, Wagner, Perrig [18]. Since
then, single keyword search SSE schemes [11, 9, 6, 14], dynamic SSE schemes
[17, 16, 15], multiple keyword search SSE schemes [12, 3, 4, 19, 8, 13] and
more [10] have been studied extensively by many researchers.

In particular, for single keyword search SSE schemes, Curtmola, Garay,
Kamara and Ostrovsky [6, 7] showed a rigorous definition of privacy of the

1A preliminary version of this paper appeared in [14].

1

client 2 after a series of works [18, 11, 1, 9]. They also constructed SSE-2,
and claimed that it satisfies their definition of privacy.

However, privacy is not sufficient. A malicious server may return incor-
rect search results to the client. Chang and Mitzenmacher showed how to
detect such cheating by assuming that the client can always tell whether
a file Dj is associated with a given keyword wi or not by checking Dj [9,
Sec.5].

On the other hand, even if a protocol Π is secure in a “stand-alone”
setting where only a single protocol instance runs in isolation, it may not
be secure in a more complex setting. To this problem, Canetti introduced
a notion of universal composability (UC), and proved the UC composition
theorem which states that if a protocol Π is UC secure, then its security is
preserved under a general protocol composition operation [5].

In this paper,

• We first extend the model of SSE schemes to that of verifiable SSE
schemes, and define the reliability without assuming the assumption
that Chang and Mitzenmacher made in [9, Sec.5].

Note that their assumption does not hold if the files are pictures or
videos, for example. Also if a malicious server replaces (Ci, MAC(Ci))
with some (Cj , MAC(Cj)) in the search phase, then their method cannot
detect such cheating.

• We next formulate the UC security of verifiable SSE schemes, and
prove its weak equivalence with privacy and reliability.

• Finally we show an efficient verifiable SSE scheme, and prove that it
is UC-secure.

We also point out a flaw of SSE-2, and show how to fix the flaw.

2 Preliminaries

2.1 Notation

If X is a string, then |X| denotes the bit length of X. If X is a set, then |X|
denotes the cardinality of X. Let x

$← X denote sampling an element from
X at random and assigning it to x. PPT means probabilistic polynomial
time.

2“adaptive semantic security” [7, Definition 4.11]

2

Let λ be the security parameter. We say that a function ϵ(λ) is negligible
if it vanishes faster than the inverse of any polynomial in λ.

2.2 Pseudorandom Permutation and Function

Let Perm(X) be the set of all permutations on a set X . We say that a poly-
nomial time computable function f : {0, 1}λ × X → X is a pseudorandom
permutaton if f(k, ·) is a permutation on X for any k ∈ {0, 1}λ and

|Pr(Bf(k,·) = 1 : k
$← {0, 1}λ)− Pr(Bπ = 1 : π

$← Perm(X))|

is negligible for any PPT distinguisher B. We also say that π is a random

permutation if π
$← Perm(X).

We say that a polynomial time computable function f : {0, 1}λ×{0, 1}ℓ1 →
{0, 1}ℓ2 is a pseudorandom function if

|Pr(Bf(k,·) = 1 : k
$← {0, 1}λ)− Pr(BRO = 1)|

is negligible for any PPT distinguisher B, where RO : {0, 1}ℓ1 → {0, 1}ℓ2 is
the random oracle.

We sometimes write fk(·) instead of f(k, ·), where k is a key.

2.3 Symmetric-Key Encryption

Let SKE = (G,E,E−1) be a symmetric-key encryption scheme, where G is
a key generation algorithm, E is an encryption algorithm and E−1 is the
decryption algorithm. Let left(m0,m1) = m0 and right(m0,m1) = m1.
We say that SKE is Left-or-Right (LOR) secure [2] if

|Pr(AEk(left(·,·)) = 1)− Pr(AEk(right(·,·)) = 1)|

is negligible for any PPT adversary A who queries (m0,m1) such that |m0| =
|m1| to the oracle, where k

$← G(1λ).
It is known that the counter mode is LOR secure if the underlying block

cipher (say, AES) is a pseudorandom permutation [2].

3 Verifiable Searchable Symmetric Encryption

In this section, we extend the model of searchable symmetric encryption
(SSE) schemes to that of verifiable SSE schemes. We also define its reliability
as well as its privacy.

3

Let D = {D1, · · · , Dn} be a set of files, and W = {w1, · · · , wm} be a set
of keywords. Let Index = (ei,j) be an m× n binary matrix such that

ei,j =

{
1 if a keyword wi is contained in a file Dj

0 otherwise
. (1)

Let D(w) be the set of files Dj which contain a keyword w, and C(w) be
the set of ciphertexts Cj of Dj ∈ D(w), and List(w) be the set of indexes j
of Dj ∈ D(w). Namely

List(wi) = {j | ei,j = 1}
D(wi) = {Dj | j ∈ List(wi)}
C(wi) = {Cj | j ∈ List(wi)}

Example 3.1 Let D = {D1, · · · , D5}, W = {w1, w2} and

Index =

(
1 0 1 0 1
0 1 0 1 0

)
(2)

Then

List(w1) = {1, 3, 5}
D(w1) = {D1, D3, D5}
C(w1) = {C1, C3, C5}

and

List(w2) = {2, 4}
D(w2) = {D2, D4}
C(w2) = {C2, C4}

3.1 Verifiable SSE

A verifiable SSE scheme consists of six polynomial time algorithms

vSSE = (Gen, Enc, Trpdr, Search, Dec, Verify)

such that

• K ← Gen(1λ): is a probabilistic algorithm which generates a key K.

4

• (C, I)← Enc(K,D,W, Index): is a probabilistic encryption algorithm
which outputs an encrypted index I and the set of ciphertexts C =
(C1, · · · , Cn), where D = (D1, · · · , Dn) and Cj is a ciphertext of Dj for
j = 1, . . . , n.

We assume that I includes an authenticator Tagi related to a keyword
wi for i = 1, . . . ,m.

• t(w) ← Trpdr(K,w): is a deterministic algorithm which outputs a
trapdoor t(w) for a keyword w.

• (C(w), Tag) ← Search(I, C, t(w)): is a deterministic search algo-
rithm.

•

� �
accept/reject← Verify(K, t(w), C′(w), Tag′): is a deterministic
verification algorithm which checks the validity of (C′(w), Tag′).� �

• Dj ← Dec(K,Cj): is a deterministic decryption algorithm.

(Correctness) Suppose that

K ← Gen(1λ), (C, I)← Enc(K,D,W, Index),

t(w)← Trpdr(K,w), (C(w), Tag)← Search(I, C, t(w)).

Then it must be that� �
accept← Verify(K, t(w), C(w), Tag)� �

and
D(w) = {Dj | Dj = Dec(K,Cj), Cj ∈ C(w)}.

The definition and the correctness of SSE schemes [6, 7] are obtained by
deleting the boxed parts.

We next translate a verifiable SSE scheme into a protocol Π = (client, server)
which consists of a store phase and a search phase. The store phase is shown
in Fig.1 and is executed once. The search phase is shown in Fig.2 and is
executed polynomially many times.

5

Store phase:� �
1. On input (D,W, Index), the client generates a key K ← Gen(1λ).

He computes
(C, I)← Enc(K,D,W, Index)

and sends them to the server.

2. The server receives (C, I) and then stores them.� �
Figure 1: Store Phase

3.2 Privacy

In this subsection, we formulate privacy based on the work of Curtmola,
Garay, Kamara and Ostrovsky [6, 7].

In the store phase of any (verifiable) SSE scheme, the number of keywords
m, the number of files n and |Dj | for j = 1, . . . , n are leaked to the server
from (C, I). In each search phase, List(w) is leaked to the server, where w
is the search keyword, because otherwise the server cannot return C(w) to
the client.

Further suppose that the client sends t(w1) to the server in the first
search phase and the tenth search phase. Then the server sees that the
keywords the client searched in the first search phase and in the tenth search
phase are the same.

We call these leaked information the minimum leakage. The notion of
privacy requires that the server should not be able to learn any more infor-
mation.

Formally, we consider a real game Gamereal and a simulation game Gamesim.
The real game Gamereal is played by two PPT players, a distinguisher B and
a challenger, as follows.

(Gamereal: Store phase)

1. A distinguisher B chooses (D,W, Index) and sends them to the chal-
lenger.

2. The challenger generates K ← Gen(1λ), and

sends (C, I)← Enc(K,D,W, Index) to B.

(Gamereal: Search phase) For i = 1, · · · , q, do:

6

Search phase:� �
1. On input a keyword w, the client computes a trapdoor t(w) ←

Trpdr(K,w) and sends it to the server.

2. The server computes (C(w), Tag) ← Search(I, C, t(w)) and re-
turns them to the client.

3. If the client receives (C′(w), Tag′) from the server,

then the client computes

accept/reject← Verify(K, t(w), (C′(w), Tag′)).

• If the result is accept, then the client decrypts

Dj ← Dec(K,Cj)

for each Cj ∈ C′(w), and outputs D(w) = {Dj | Cj ∈ C′(w)}
• Otherwise the client outputs reject.� �

Figure 2: Search Phase

Figure 3: Verifiable SSE scheme

1. B chooses a keyword w̃i and sends it to the challenger.

2. The challenger sends a trapdoor t(w̃i)← TrpdrK(w̃i) to B.

Finally B outputs a bit b. (See Fig.4 and Fig.5.)
The simulation game Gamesim is played by three PPT players, a distin-

guisher B and a challenger and a simulator Sim, as described below.

7

Figure 4: Gamereal: Store phase Figure 5: Gamereal: Search phase

(Gamesim: Store phase)

1. B chooses (D,W, Index) and sends them to the challenger.

2. The challenger sends m,n, |D1|, · · · , |Dn| to Sim.

He sets c0 ← 0 and J ← ∅.

3. Sim computes (C′, I ′) from m,n and |D1|, · · · , |Dn|,
and sends them to the challenger.

4. The challenger returns (C′, I ′) to B.

(Gamesim: Search phase) For i = 1, · · · , q, do:

1. B chooses a keyword w̃i and sends it to the challenger.

2. If (w̃i, c) ∈ J for some c, then the challenger sends c to Sim.

Otherwise he sends List(w̃i) to Sim. He then sets c0 ← c0 + 1 and
J ← J ∪ {(w̃i, c0)}.

3. Sim returns t′(w̃i) to the challenger.

4. The challenger returns t′(w̃i) to B.

Finally B outputs a bit b. (See Fig.6 and Fig.7.)

Then we define the advantage of privacy as

AdvprivSim (B) = |Pr(b = 1 in Gamereal)− Pr(b = 1 in Gamesim)|. (3)

Further let
AdvprivSim = max

B
AdvSim(B).

8

Figure 6: Gamesim: Store phase
Figure 7: Gamesim: Search phase

Definition 3.1 We say that a (verifiable) SSE scheme satisfies privacy if
there exists a PPT simulator Sim such that AdvprivSim is negligible.

“Adaptive semantic security” of Curtmola et al. [7, Definition 4.11]
requires that for any PPT distinguisher B, there exists a PPT Sim such
that eq.(3) is negligible. On the other hand, our definition requires that
there exists a PPT Sim such that for any PPT distinguisher B, eq.(3) is
negligible. Hence our definition is slightly stronger. This small change is
important when we prove the relationship with UC-security.

3.3 Reliability

In this subsection, we formulate reliability of verifiable SSE schemes. Sup-
pose that a malicious server returned an incorrect search result. Then the
reliability requires that the client can detect this cheating.

Consider the following attack game among three PPT algorithms, the
client, A1 and A2, where A = (A1, A2) is an adversary. (See Fig.8.) We
assume that A1 and A2 can communicate freely.

（Store phase）

1. A1 chooses (D,W, Index) and sends them to the client.

2. The client generates K ← Gen(1λ), and then

sends (C, I)← Enc(K,D,W, Index) to A2.

(Search phase) For i = 1, · · · , q, do:

1. A1 chooses a keyword w̃i and sends it to the client.

2. The client sends a trapdoor t(w̃i)← TrpdrK(w̃i) to A2.

9

Figure 8: Attack game on reliability

3. A2 returns (C(w̃i)
′, Tag′i) to the client.

4. The client returns D(w̃i)
′ or reject to A1 according to Fig.2.

We say that the adversary (A1, A2) succeeds if A1 receives D(w̃i)
′ such

that D(w̃i)
′ ̸= D(w̃i) for some w̃i. In this case, we let A1 output 1. Otherwise

A1 outputs 0.
Then we define the advantage of reliability by

Advauth(A1, A2) = Pr((A1, A2) succeeds).

Further let
Advauth = max

(A1,A2)
Advauth(A1, A2).

Definition 3.2 We say that a verifiable SSE scheme satisfies reliability if
Advauth is negligible.

Further we say that the adversary (A1, A2) strongly succeeds if the client
accepts (C(w̃i)

′, Tag′i) such that (C(w̃i)
′, Tag′i) ̸= (C(w̃i), Tagi) for some w̃i,

where
(C(w̃i), Tagi)← Search(I, C, t(w̃i)).

In this case, we let A1 output 1. Otherwise A1 outputs 0. Then we define
the advantage of strong reliability by

Advsauth(A1, A2) = Pr((A1, A2) strongly succeeds).

Further let
Advsauth = max

(A1,A2)
Advsauth(A1, A2).

Definition 3.3 We say that a verifiable SSE scheme satisfies strong relia-
bility if Advsauth is negligible.

It is easy to see that a verifiable SSE scheme satisfies reliability if it
satisfies strong reliability.

10

4 UC Secure Verifiable SSE Scheme

In this section, we define the universally composable (UC) security [5] of
verifiable SSE schemes. More precisely, we define the ideal functionality of
verifiable SSE schemes.

4.1 UC Framework

In general, even if a protocol Π is secure in a“stand-alone” setting where only
a single protocol instance runs in isolation, it may not be secure in a more
complex setting. To this problem, Canetti introduced a notion of universal
composability (UC), and proved the UC composition theorem which states
that if a protocol Π is UC secure, then its security is preserved under a
general protocol composition operation [5].

In the UC framework of a given protocol Π, the real world and the ideal
world of Π are defined. In the ideal world, a real world adversary A can
corrupt some of the parties who run the protocol Π. In the ideal world, each
party is replaced with a dummy party, and the run of Π is replaced with
an ideal functionality F . Also an ideal world adversary S can corrupt some
dummy parties.

Then the protocol Π is called UC-secure if no environment Z can dis-
tinguish the real world and the ideal world, where Z generates the input to
all parties, receives all their outputs, and in addition interacts with A or S
in an arbitrary way.

More precisely, Π is said to securely realize the ideal functionality F
if for any adversary A, there exists an ideal world adversary S such that
no environment Z can tell whether it is interacting with A and the parties
running the protocol, or with S and the dummy parties that interact with
F in the ideal world.

4.2 Real Wold

In this subsection, we describe the real world of a verifiable SSE scheme in
the UC framework. For simplicity, we ignore session id.

（Store phase）

1. An environment Z chooses (D,W, Index) and sends them to the client.

2. The client generates a key K ← Gen(1λ).

He computes
(C, I)← Enc(K,D,W, Index)

11

and sends them to the server.

3. The server receives (C, I) and then stores them.

（Search phase）

1. Z chooses a keyword w, and sends it to the client.

2. The client computes a trapdoor t(w) ← Trpdr(K,w) and sends it to
the server.

3. The server returns (C′(w), Tag′) to the client.

4. The client computes

accept/reject← Verify(K, t(w), C′(w), Tag)′.

• If the result is accept, then the client decrypts

Dj ← Dec(K,Cj)

for each Cj ∈ C(w), and sends D(w) = {Dj | Cj ∈ C(w)} to Z.
• Otherwise the client sends reject to Z.

An adversary A can control the server arbitrarily. (We assume that the
client is honest.) Z can communicate with A in an arbitrary way. Finally
Z outputs 1 or 0. （See Fig.9.）

Figure 9: Real world of verifiable SSE scheme

12

4.3 Ideal Wold

In this subsection, we introduce the ideal functionality FSSE, and describe
the ideal world of a verifiable SSE scheme. For simplicity, we ignore session
id.

（Store phase）（See Fig.10.）

1. Z chooses (D,W, Index) and sends them to the dummy client.

2. The dummy client relays (D,W, Index) to FSSE.

3. FSSE records (D,W, Index). It then sends m,n, |D1|, · · · , |Dn| to the
ideal adversary S.

It sets c0 ← 0 and J ← ∅.

（Search phase）（See Fig.11.）

1. Z chooses a keyword w, and sends it to the dummy client.

2. The dummy client relays w to FSSE.

3. If (w, c) ∈ J for some c, then FSSE sends c to S.

Otherwise it sends List(w) to S. It then sets c0 ← c0 + 1 and J ←
J ∪ {(w, c0)}.

4. S returns accept or reject to FSSE.

5. FSSE sends

X =

{
D(w) if FSSE received accept from S

reject if FSSE received reject from S

to the dummy client.

6. The dummy client relays X to Z.

Z can communicate with S in an arbitrary way. （See Fig.12.）Finally
Z outputs 1 or 0.

Note that

• The ideal world adversary S learns only the minimum leakage (which
is shown in Sec.3.2).

• The dummy client receives D(w) or reject. It means that he never
receives D(w)′ such that D(w)′ ̸= D(w).

Therefore this is the ideal world.

13

Figure 10: Ideal world (store) Figure 11: Ideal world (search)

Figure 12: Ideal world

4.4 UC Security

Let

Preal = Pr(Z outputs 1 in the real world)

Pideal = Pr(Z outputs 1 in the ideal world)

AdvucS (Z,A) = |Preal − Pideal|

Then we say that a verifiable SSE scheme securely realizes the ideal
functionality FSSE if for any real world adversary A, there exists an ideal
world adversary S such that AdvucS (Z,A) is negligible for any environment
Z.

Now we have the following from the UC composition theorem [5]. Let Σ
be a larger protocol which uses a verifiable SSE scheme Π as a sub-protocol.
Let Σ′ be a variant of Σ such that Π is replaced with the ideal functionality
FSSE. Then Σ is as secure as Σ′ if Π securely realizes FSSE.

Namely for any adversary A against Σ, there exists an adversary S
against Σ′ such that no environment Z can distinguish between (Σ,A) and
(Σ′, S).

14

5 Weak Equivalence

In this section, we prove the following Theorems.

Theorem 5.1 If a verifiable SSE scheme Π securely realizes FSSE, then Π
satisfies privacy and reliability.

Theorem 5.2 If a verifiable SSE scheme Π satisfies privacy and strongly
reliability, then Π securely realizes FSSE.

5.1 Proof of Theorem 5.1

（Proof of privacy）In the real world (see Fig.9), consider an adversary A0

such that A0 sends each message Y that the server received from the client
to Z. (Namely Y = (C, I) in the store phase, and Y = t(w) in the search
phase.) Look at Z as a distinguisher and (client, server, A) as a challenger
as shown in Fig.13. Then this real world can be seen as the real game of
privacy.

On the other hand, in the ideal world, there exists an adversary S which
sends almost the same Y to Z because Z cannot distinguish between the
real world and the ideal world from our assumption. Now look at Z as a
distinguisher, S as a simulator and (dummy-client, FSSE) as a challenger
as shown in Fig.14. Then this real world can be seen as the ideal game of
privacy.

Figure 13: Real world (privacy) Figure 14: Ideal world (privacy)

This means that

AdvprivS (Z) = AdvucS (Z,A0)

15

Therefore we have

AdvprivS = max
Z

AdvprivS (Z)

= max
Z

AdvucS (Z, A0)

= negligible

from our assumption. Hence Π satisfies privacy.

（Proof of reliability）For an adversary (A1, A2) on reliability (see Sec.3.3),
consider an environment Z and a real world adversary A such that (Z,A) =
(A1, A2). Then there exists an ideal world adversary S such that

AdvucS (Z, A) = |Preal − Psim| = negligible

from our assumption.
In the ideal world, Z never receives D(w)′ such that D(w)′ ̸= D(w) for

any search keyword w (see Fig.11). Therefore

Pideal = Pr(Z outputs 1)

= Pr(A1 outputs 1)

= 0.

Hence Preal =negligible. This means that

Advauth(A1, A2) = Preal = negligible.

Therefore Π satisfies reliability.

5.2 Proof of Theorem 5.2

We say that (C′(w), Tag′) is invalid if (C′(w), Tag′) ̸= (C(w), Tag), where

(C(w), Tag)← Search(I, C, t(w)). (4)

Fix a real world adversary A arbitrarily. In the following, we consider a
series of games Game0, · · · , Game3, where Game0 is the real world. Let

pi = Pr(Z outputs 1 in Gamei).

(Game1) In this game, we modify Game0 as follows.

In the store phase, the client records (D,W, Index).

In the search phase, suppose that Z sends a keyword w to the client.

16

1. If A instructs the server to return an invalid (C′(w), Tag′), then
the server returns reject to the client. 3

Otherwise the server returns accept to the client.

2. If the client receives reject from the server, then he sends reject
to Z.
If the client receives accept from the server, then he sends D(w)
to Z.

See Fig.15.

Figure 15: Game 1 Figure 16: Game 2

Let BAD be the event that the client accepts an invalid (C′(w), Tag′)
in Game0. Then it holds that

|p0 − p1| ≤ Pr(BAD)

Now consider an adversary (A1, A2) on the reliability such that (A1, A2) =
(Z, (A, server)) in Game0. Then we can see that

Pr(BAD) = Advsauth(A1, A2)

Therefore we have
|p0 − p1| ≤ Advsauth.

(Game2) In this game, we modify Game1 as follows. We replace the client with
(client1, client2) such that the server receives a message from client2,
and sends accept or reject to client1. (See Fig.16.) Namely;

• Both of client1 and client2 receive the (same) input from Z.
• In each phase, if the client sends Y to the server, client2 sends Y

to the server.
3The server first compute eq.(4).

17

• In the search phase, client1 receives accept or reject from the
server, and sends D(w) or reject to Z.

This change is conceptual only. Therefore p2 = p1.

(Game3) In this game, we modify Game2 as follows. Since Π satisfies privacy
from our assumption, there exists a simulator Sim such that AdvprivSim =
negligible.

Now in Game3, client2 plays the role of the challenger in the simulation
game of privacy. Namely he sends the minimum leakage to Sim. Sim
then sends its outputs (the simulated message) to the server.

Further look at (Z, client1, server,A) as a distinguisher of the privacy
game (see Fig.17). Then Game3 is the simulation game and Game2 is
the real game. Therefore it holds that

|p3 − p2| ≤ AdvprivSim .

In Game3, (client1, clinet2) behaves exactly in the same way as the ideal
functionality FSSE. Further look at (A, server,Sim) as the ideal world ad-
versary S (see Fig.18). Then Game3 can be seen as the ideal world of the UC
framework.

Therefore we have

AdvucS (Z, A) = |p0 − p3|
≤ Advsauth + AdvprivSim

for any Z. Finally Advsauth and AdvprivSim are negligible from our assumption.
Hence Π securely realizes FSSE.

6 On SSE-2 of Curtmola et al.

In [6, 7], Curtmola et al. presented an SSE scheme called SSE-2, and claimed
that it satisfies privacy.

In this section, we first point out a flaw of SSE-2. We next show how to
fix the flaw. Then we prove the privacy of the modified SSE-2.

6.1 Flaw of SSE-2

We first illustrate SSE-2 by using Example 3.1.

18

Figure 17: Game 3
Figure 18: Game 3 = ideal world

(Store phase:) Let πk = π(k, ·) be a pseudo-random permutation, where
k is a key. Then the client constructs an array I as follows. Initially,
let I(x) = 0 for all x. Next

• Since List(w1) = (1, 3, 5), set

I(πk(w1, 1)) = 1, I(πk(w1, 2)) = 3, I(πk(w1, 3)) = 5, (5)

• Since List(w2) = (2, 4), set

I(πk(w2, 1)) = 2, I(πk(w2, 2)) = 4 (6)

The client stores I and C = {C1, · · · , C5} to the server, where Cj is a
ciphertext of Dj .

(Search phase:) Suppose that the client wants to retrieve the files which
contain w1. Then the client sends

t(w1) = (πk(w1, 1), . . . , πk(w1, 5))

to the server.

From eq.(5), the server sees that List(w1) = (1, 3, 5). The server then
returns C(w1) = {C1, C3, C5} to the client.

The client finally decrypts them to obtain D(w1) = {D1, D3, D5}.

The above scheme, however, does not satisfy privacy. The server sees
that each file contains just one keyword because each file index i ∈ {1, . . . , 5}
appears once in I

To solve this problem, the client does the following in the store phase of
SSE-2 [7, Fig.2]. For each file Dj :

19

(a) Let c be the number of entries in I that already contain j.

(This means that j appears c times in I.)

(b) For 1 ≤ h ≤ m− c, set I[πk(0ℓ, n+ h)] = j,

where ℓ is the bit length of each keyword.
In the above example, n = 5,m = 2, and c = 1 for j = 1, . . . , 5. There-

fore the above procedure says that for j = 1, . . . , 5, set I[πk(0ℓ, 5 + 1)] = j.
This means that the client sets

I[πk(0ℓ, 6)] ← 1

...

I[πk(0ℓ, 6)] ← 5

At the end, we have I[πk(0ℓ, 6)] = 5 only ! Namely only 5 appears twice,
but each j ∈ {1, . . . , 4} appears once in I.

Therefore the above scheme (which is SSE-2) still does not satisfy pri-
vacy.

6.2 Modified SSE-2

In this subsection, we show how to fix the flaw of SSE-2.
We assume that W = {0, 1}ℓ for some ℓ = O(log2 λ), where λ is the

security parameter. Hence m = 2ℓ. Let SKE = (G,E,E−1) be a symmetric-
key encryption scheme.

(Store phase:) The client takes (D,W, Index) as an input, where W =
{0, 1}ℓ and Index = (ei,j) is defined by eq.(1). Let πk = π(k, ·) be a
pseudorandom permutation on

X = {0, 1} × {0, 1}ℓ × {1, . . . , n}. (7)

1. The client generates ke ← G(1λ) and computes Cj = Eke(Dj) for
j = 1, . . . , n. Let C = (C1, . . . , Cn).

2. The client chooses a key k of π randomly, and sets

I(πk(1, wi, j)) ← ei,j (8)

I(πk(0, wi, j)) ← 1− ei,j (9)

for i = 1, . . . ,m and j = 1, . . . , n, where m = 2ℓ and wi ∈ W .

20

The client stores (C, I) to the server.

(Search phase:) The client takes a keyword w ∈ W as an input.

1. Let aj = πk(1, w, j) for j = 1, . . . , n. Then the client sends

t(w) = (a1, . . . , an)

to the server.

2. From t(w) = (a1, . . . , an), the server sets

List(w) = {j | I(aj) = 1}.

(Remember eq.(8).) She then returns C(w) = {Cj | j ∈ List(w)}
to the client.

3. For each Cj ∈ C(w), the client computes Dj = E−1(Cj) and
outputs D(w) = {Dj | Cj ∈ C(w)}.

Consider Example 3.1. Then the client sets

I(π(1, w1, 1)) = 1, I(π(0, w1, 1)) = 0

I(π(1, w1, 2)) = 0, I(π(0, w1, 2)) = 1

I(π(1, w1, 3)) = 1, I(π(0, w1, 3)) = 0

I(π(1, w1, 4)) = 0, I(π(0, w1, 4)) = 1

I(π(1, w1, 5)) = 1, I(π(0, w1, 5)) = 0

For a search keyword w1, the client sends

t(w1) = (a1, a2, a3, a4, a5)

= (π(1, w1, 1), π(1, w1, 2), π(1, w1, 3), π(1, w1, 4), π(1, w1, 5)).

to the server. The server sees that

I(π(1, w1, 1)) = I(π(1, w1, 3)) = I(π(1, w1, 5)) = 1.

Hence the server returns C(w1) = {C1, C3, C5} to the client.

6.3 Privacy of Modified SSE-2

Theorem 6.1 The above SSE scheme satisfies privacy if SKE is LOR se-
cure.

21

(Proof) We construct a simulator Sim in the simulation game Gamesim of the
privacy game as follows.

(Store phase:) 1. Sim is given n,m(= 2ℓ) and |D1|, · · · , |Dn| from the
challenger.

2. Sim generates ke ← G(1λ) and computes C ′
j = Eke(0

|Dj |) for
j = 1, . . . , n. Let C′ = (C ′

1, . . . , C
′
n).

3. Sim chooses a key k of psuedorandom permutation π on X ran-
domly, where X is given by eq.(7).

For i = 1, . . . ,m and j = 1, . . . , n, Sim sets

I ′(πk(1, wi, j)) ← 1, (10)

I ′(πk(0, wi, j)) ← 0. (11)

Sim returns (C′, I ′) to the challenger.

(Search phase:) Sim sets c1 ← 0 and L← ∅.
For i = 1, . . . , q, do:

• Suppose that Sim is given List(w) for some w ∈ W by the chal-
lenger. Then let c1 ← c1 + 1. For j = 1, . . . , n, set

aj =

{
πk(1, c1, j) if j ∈ List(w)
πk(0, c1, j) if j ̸∈ List(w)

Let

t′(w) ← (a1, . . . , an)

L ← L ∪ {(c1, t′(w)}

Sim returns t′(w) to the challenger.

• Suppose that Sim is given c ∈ {1, 2, . . .} by the challenger. Then
Sim finds (c, t) ∈ L, and returns t to the challenger.

We will prove that no distinguisher B can distinguish between Gamereal
and Gamesim by using a series of games Game0, · · · , Game4, where Game0 =
Gamereal. Let

pi = Pr(B outputs b = 1 in Gamei).

22

• Game1 is the same as Game0 except for that Cj is replaced with C ′
j =

Eke(0
|Dj |) for j = 1, . . . , n. Then |p1 − p0| is negligible because SKE is

LOR secure.

• Game2 is the same as Game1 except for that πk is replaced with a random
permutation π̄ on X . Then |p2 − p1| is negligible because πk is a
pseudorandom permutation.

• Game3 is the same as Game2 except for the following. In the store phase,
the client records Index = (ei,j), and sets

I(π̄(1, wi, j)) ← 1, (12)

I(π̄(0, wi, j)) ← 0. (13)

for i = 1, . . . ,m and j = 1, . . . , n. In the search phase, the client set

aj =

{
π̄(1, w, j) if j ∈ List(w)
π̄(0, w, j) if j ̸∈ List(w)

for j = 1, . . . , n. Then it is easy to see that p3 = p2 because π̄ is a
random permutation.

• Game4 is the same as Game3 except for that π̄ is replaced with a pseu-
dorandom permutation πk. Then |p4 − p3| is negligible.

It is easy to see that p4 = Pr(b = 1 in Gamesim). Therefore

AdvprivSim (B) = |Pr(b = 1 in Gamereal)− Pr(b = 1 in Gamesim)|
= |p0 − p4|
≤ |p0 − p1|+ |p1 − p2|+ |p2 − p3|+ |p3 − p4|
= negligible

for any distinguisher B. Therefore the SSE scheme satisfies privacy.
Q.E.D.

6.4 Efficiency of Modified SSE-2

In the modified SSE-2 scheme,

|I| = 2mn

|t(w)| = n(log2m+ log2 n+ 1)

23

7 More Efficient (Verifiable) SSE Scheme

In this section, we first show a more efficient SSE scheme than the modified
SSE-2. We next extend it to a verifiable SSE scheme.

Then we prove the privacy and the strong reliability of the verifiable
SSE scheme. This means that the verifiable SSE scheme securely realizes
the ideal functionality FSSE from Theorem 5.2.

7.1 More Efficient SSE Scheme

In this subsection, we show a more efficient SSE scheme than the modified
SSE-2.

Similarly to (the modified) SSE-2, we assume that W = {0, 1}ℓ for some
ℓ = O(log2 λ), where λ is the security parameter. Hence m = 2ℓ. Let
SKE = (G,E,E−1) be a symmetric-key encryption scheme.

(Store phase:) The client takes (D,W, Index) as an input, where W =
{0, 1}ℓ and Index = (ei,j) is defined by eq.(1). Let πk = π(k, ·) be a
pseudorandom permutation on W = {0, 1}ℓ, and

g : {0, 1}λ × {0, 1}ℓ → {0, 1}n

be a psuedorandom function.

1. The client generates ke ← G(1λ) and computes Cj = Eke(Dj) for
j = 1, . . . , n. Let C = (C1, . . . , Cn).

2. The client chooses k and k′ randomly, where k is a key of π and
k′ is a key of g. The client sets

I(πk(wi)) = (ei,1, . . . , ei,n)⊕ gk′(wi) (14)

for i = 1, . . . ,m, where m = 2ℓ, wi ∈ W and ⊕ denotes the
bitwise XOR.

The client stores (C, I) to the server.

(Search phase:) The client takes a keyword w ∈ W as an input.

1. The client sends
t(w) = (πk(w), gk′(w)) (15)

to the server.

24

2. The server computes

(e1, . . . , en) = I(πk(w))⊕ gk′(w). (16)

She then returns C(w) = {Cj | ej = 1} to the client.

3. For each Cj ∈ C(w), the client computes Dj = E−1(Cj) and
outputs D(w) = {Dj | Cj ∈ C(w)}.

Consider Example 3.1. Let w1 = 0 and w2 = 1. Then the client sets

I(πk(0)) = (10101)⊕ gk′(0)

I(πk(1)) = (01010)⊕ gk′(1).

If the search keyword is w1 = 0, then the client sends

t(0) = (πk(0), gk′(0))

to the server. The server computes

I(πk(0))⊕ gk′(0) = (10101)

and returns C(w1) = {C1, C3, C5} to the client.

The privacy will be proved by Corollary 7.1.

(Remark) Our SSE scheme can be viewed as a variant of Scheme1 of Chang
and Mitzenmacher [9]. Let

F : {0, 1}λ × {0, 1}ℓ → {0, 1}λ

G : {0, 1}λ × {1, . . . , n} → {0, 1}

be two psuedorandom functions. Let Fk = F (k, ·) and Gk = G(k, ·). Then
in Scheme1, eq.(14) is replaced with

I(πk(wi)) = (ei,1, . . . , ei,n)⊕ (Gri(1), . . . , Gri(n))

where ri = Fk′(wi). Eq.(15) is replaced with

t(w) = (p = πk(w), r = Fk′(p))

and eq.(16) is replaced with

(e1, . . . , en) = I(p)⊕ (Gr(1), . . . , Gr(n)). (17)

However, we cannot prove the privacy of Scheme1. The reason is as follows.
In the store phase, the simulator Sim sends I(p) to the challenger. In the
search phase, Sim is given (e1, . . . , en) by the challenger. Then Sim must be
able to compute r which satisfies eq.(17) because she must send t(w) = (p, r)
to the challenger. It is, however, impossible.

25

7.2 Extension to Verifiable SSE Scheme

In this subsection, we extend the above SSE scheme to a verifiable SSE
scheme.

As before, we assume that W = {0, 1}ℓ for some ℓ = O(log2 λ), where
λ is the security parameter. Hence m = 2ℓ. Let SKE = (G,E,E−1) be a
symmetric-key encryption scheme.

(Store phase:) The client takes (D,W, Index) as an input, where W =
{0, 1}ℓ. Let πk = π(k, ·) be a pseudorandom permutation on W =
{0, 1}ℓ, and

g : {0, 1}λ × {0, 1}ℓ → {0, 1}n

MAC : {0, 1}λ × {0, 1}∗ → {0, 1}λ

be two psuedorandom functions.

1. The client generates ke ← G(1λ) and computes Cj = Eke(Dj) for
j = 1, . . . , n. Let C = (C1, . . . , Cn).

2. The client chooses k, k′ and km randomly, where k is a key of π,
k′ is a key of g and km is a key of MAC.

3. The client first computes

t(wi) = (πk(wi), gk′(wi))

C(wi) = {Cj | ei,j = 1}
Tagi = MACkm((t(wi), C(wi))

for i = 1, . . . ,m, where m = 2ℓ and wi ∈ W.

4. He next sets

I(πk(wi)) = ((ei,1, . . . , ei,n)⊕ gk′(wi), Tagi)

for i = 1, . . . ,m.

The client stores (C, I) to the server.

(Search phase:) The client takes a keyword w ∈ W as an input.

1. The client sends
t(w) = (πk(w), gk′(w))

to the server.

26

2. Let
I(πk(w)) = (X,Tag).

The server computes

(e1, . . . , en) = X ⊕ gk′(w).

She then returns C(w) = {Cj | ej = 1} and Tag to the client.

3. The client receives (C′(w), Tag′). He checks if

Tag′ = MACkm((t(w), C
′(w))). (18)

If eq.(18) does not hold, then he outputs reject. Otherwise
he computes Dj = E−1(Cj) for each Cj ∈ C′(w), and outputs
D(w) = {Dj | Cj ∈ C′(w)}.

7.3 Privacy of Our Verifiable SSE Scheme

Theorem 7.1 The above verifiable SSE scheme satisfies privacy if SKE is
LOR secure.

(Proof) We construct a simulator Sim in the simulation game Gamesim of
privacy as follows.

(Store phase:) 1. Sim is given m,n and |D1|, · · · , |Dn| from the chal-
lenger.

2. Sim generates ke
$← G(1λ) and computes C ′

j = Eke(0
|Dj |) for

j = 1, . . . , n. Let C′ = (C ′
1, . . . , C

′
n).

3. Sim chooses

indexi
$← {0, 1}n

Tagi
$← {0, 1}λ

for i = 1, . . . ,m.

4. Sim sets
I ′(i) = (indexi, Tagi)

for i = 1, . . . ,m.

Sim returns (C′, I ′) to the challenger.

27

(Search phase:) Sim sets c1 ← 0 and L ← ∅. It chooses a key k of the
pseudorandom permutation π randomly.

For i = 1, . . . , q, do:

• Suppose that Sim is given List(w) for some w ∈ W by the chal-
lenger. Then let c1 ← c1 + 1. For j = 1, . . . , n, set

ej =

{
1 if j ∈ List(w)
0 if j ̸∈ List(w)

Suppose that I ′(πk(c1)) = (X,Tag∗). Then let

Y ← (e1, . . . , en)⊕X

t′(w) ← (πk(c1), Y)

L ← L ∪ {(c1, t′(w), Tag∗)}

Sim returns (t′(w), Tag∗) to the challenger.

• Suppose that Sim is given c ∈ {1, 2, . . .} by the challenger. Then
Sim finds (c, t, Tag) ∈ L, and returns (t, Tag) to the challenger.

We will prove that no distinguisher B can distinguish between Gamereal
and Gamesim by using a series of games Game0, · · · , Game4, where Game0 =
Gamereal. Let

pi = Pr(B outputs b = 1 in Gamei).

• Game1 is the same as Game0 except for that Cj is replaced with C ′
j =

Eke(0
|Dj |) for j = 1, . . . , n. Then |p1 − p0| is negligible because SKE is

LOR secure.

• Game2 is the same as Game1 except for that each πk is replaced with a
random permutation π̄. Then |p2 − p1| is negligible.

• Game3 is the same as Game2 except for that each indexi is replaced
with a random string of length n. Then |p3 − p2| is negligible because
g is a pseudorandom function.

• Game4 is the same as Game3 except for that each Tagi is replaced with
a random string of length λ. Then |p4 − p3| is negligible because MAC

is a pseudorandom function.

28

It is easy to see that

|p4 − Pr(b = 1 in Gamesim)|

is negligible. Therefore

AdvprivSim (B) = |Pr(b = 1 in Gamereal)− Pr(b = 1 in Gamesim)|
= |p0 − Pr(b = 1 in Gamesim)|
≤ |p0 − p1|+ |p1 − p2|+ |p2 − p3|+ |p3 − p4|

+|p4 − Pr(b = 1 in Gamesim)|
= negligible

for any distinguisher B. Therefore the verifiable SSE scheme satisfies pri-
vacy.

Q.E.D.

Corollary 7.1 The SSE scheme of Sec.7.1 satisfies privacy.

The proof is almost the same as that of Theorem 7.1.

7.4 Strong Reliability of Our Verifiable SSE Scheme

Theorem 7.2 The above verifiable SSE scheme satisfies strong reliability.

(Proof) Suppose that there exists an adversary (A1, A2) who strongly suc-
ceeds in the attack game of reliability with nonnegligible probability. We
will construct a distinguisher B which can distinguish between MAC and the
random oracle RO : {0, 1}∗ → {0, 1}λ.

Let O denote the oracle MACkm(·) or RO(·). B runs (A1, A2) by playing
the role of the client except for the following.

（Store phase） For i = 1, . . . ,m, B queries (t(wi), C(wi)) to O, and re-
ceives Tagi.

（Search phase） Suppose that B sends t(w) to A2 (as the client), and
A2 returns (C′(w), Tag′). B queries (t(w), C′(w)) to O, and receives
Tag∗. B then checks if

Tag′ = Tag∗ = O(t(w), C′(w)) (19)

instead of eq.(18).

29

Finally B outputs 1 if the adversary (A1, A2) strongly succeeds, and 0 oth-
erwise. Recall that the adversary strongly succeeds if the client accepts

(C(w̃i)
′, T̃ ag

′
i) such that (C(w̃i)

′, T̃ ag
′
i) ̸= (C(w̃i), T̃ agi) for some w̃i, where

(C(w̃i), T̃ agi)← Search(I, C, t(w̃i)).

Suppose that O(·) = MACkm(·). Then

p0 = Pr(B outputs 1)

= Pr((A1, A2) strongly succeeds)

= nonnegligible

from our assumption.
On the other hand, suppose that O = RO. The client never accepts

(C(w̃i)
′, T̃ ag

′
i) such that C(w̃i)

′ = C(w̃i) and T̃ ag
′
i ̸= T̃ agi. Therefore if the

adversary (A1, A2) strongly succeeds, then the client accepts (C(w̃i)
′, T̃ ag

′
i)

such that C(w̃i)
′ ̸= C(w̃i) for some w̃i.

Note that B never queries (t(w), C′(w)) such that C′(w) ̸= C(w) to O in
the store phase. Therefore

Pr(eq.(19) holds) = 1/2λ

for (t(w), C′(w)) such that C′(w) ̸= C(w). Hence

p1 = Pr(B outputs 1)

= Pr((A1, A2) strongly succeeds)

≤ q/2λ,

where q is the number of keywords which A1 sends to the client. Since q is
bounded by some polynomial in λ, q/2λ is negligible.

Consequently |p0 − p1| is nonnegligible. This is against that MAC is a
pseudorandom function. Q.E.D.

7.5 UC Security

Corollary 7.2 Our verifiable SSE scheme securely realizes the ideal func-
tionality FSSE.

(Proof) This corollary is obtained from Theorem 5.2, Theorem 7.1 and The-
orem 7.2.

Q.E.D.

30

Table 1: Comparison of Efficiency

scheme privacy reliability UC 　 |I| |t(w)|
Modified SSE-2 ⃝ × × 2mn n(log2m+ log2 n+ 1)

Sec.7.1 ⃝ × × mn n+ log2m

Sec.7.2 ⃝ ⃝ ⃝ m(n+ λ) n+ log2m

8 Comparison

We show a comparison of the modified SSE-2, our SSE scheme of Sec.7.1
and our verifiable SSE scheme of Sec.7.2 in Table 1. As can be seen, our SSE
scheme has shorter |I| and |t(w)| than the modified SSE-2, and our verifiable
SSE scheme has slightly larger |I| and |t(w)| than our SSE scheme.

9 Summary

In this paper, we first extended the model of SSE schemes to that of verifiable
SSE schemes, and define the (strong) reliability. We next formulated the UC
security of verifiable SSE schemes, and proved its weak equivalence with both
privacy and reliability. Finally we showed an efficient verifiable SSE scheme,
and proved that it is UC-secure. We also pointed out a flaw of SSE-2, and
showed how to fix the flaw.

In our verifiable SSE scheme, the communication overhead of the search
phase is n+log2m = n+O(log λ), where n is the number of stored encrypted
files and λ is the security parameter. It will be an open problem to construct
a UC-secure scheme such that the communication overhead of the search
phase is sublinear in n in the standard model.

References

[1] S.Bellovin and W.Cheswick: Privacy-Enhanced Searches Using En-
crypted Bloom Filters, Cryptology ePrint Archive, Report 2006/210,
http://eprint.iacr.org/ (2006)

[2] M. Bellare, A. Desai, E. Jokipii, P. Rogaway: A Concrete Security
Treatment of Symmetric Encryption. FOCS 1997: pp.394–403 (1997)

31

[3] Lucas Ballard, Seny Kamara, Fabian Monrose: Achieving Efficient Con-
junctive Keyword Searches over Encrypted Data. ICICS 2005, pp.414-
426 (2005)

[4] J. W. Byun, D. H. Lee, and J. Lim: Efficient conjunctive keyword
search on encrypted data storage system. EuroPKI, pp.184–196 (2006)

[5] Ran Canetti, Universally Composable Security: A New Paradigm for
Cryptographic Protocols, Cryptology ePrint Archive, Report 2000/067
http://eprint.iacr.org/ (2005)

[6] R.Curtmola, J.A. Garay, S.Kamara, R.Ostrovsky: Searchable symmet-
ric encryption: improved definitions and efficient constructions. ACM
Conference on Computer and Communications Security 2006: pp.79–88
(2006)

[7] Full version of the above: Cryptology ePrint Archive, Report 2006/210,
http://eprint.iacr.org/ (2006)

[8] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel Rosu, Michael Steiner: Highly-Scalable Searchable Symmetric
Encryption with Support for Boolean Queries. CRYPTO 2013.

[9] Y.Chang and M.Mitzenmacher: Privacy Preserving Keyword Searches
on Remote Encrypted Data. ACNS 2005: pp.442–455 (2005)

[10] David Cash, Stefano Tessaro: The Locality of Searchable Symmetric
Encryption. EUROCRYPT 2014: 351-368

[11] Eu-Jin Goh: Secure Indexes. Cryptology ePrint Archive, Report
2003/216, http://eprint.iacr.org/ (2003)

[12] Philippe Golle, Jessica Staddon, Brent R. Waters: Secure Conjunctive
Keyword Search over Encrypted Data. ACNS 2004, pp.31-45 (2004)

[13] Kaoru Kurosawa: Garbled Searchable Symmetric Encryption. Finan-
cial Cryptography 2014: 234-251

[14] Kaoru Kurosawa, Yasuhiro Ohtaki: UC-Secure Searchable Symmetric
Encryption. Financial Cryptography 2012: 285-298

[15] Kaoru Kurosawa, Yasuhiro Ohtaki: How to Update Documents Verifi-
ably in Searchable Symmetric Encryption. CANS 2013: 309-328

32

[16] Seny Kamara and Charalampos Papamanthou: Parallel and Dynamic
Searchable Symmetric Encryption. FC 2013

[17] Seny Kamara, Charalampos Papamanthou, Tom Roeder: Dynamic
searchable symmetric encryption. ACM Conference on Computer and
Communications Security 2012: 965-976

[18] D.Song, D.Wagner, A.Perrig: Practical Techniques for Searches on En-
crypted Data. IEEE Symposium on Security and Privacy 2000: pp.44–
55 (2000)

[19] Peishun Wang, Huaxiong Wang, Josef Pieprzyk: Keyword Field-Free
Conjunctive Keyword Searches on Encrypted Data and Extension for
Dynamic Groups. CANS 2008: 178-195

33

