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Abstract: The Linearization of Nonlinear feedback shift registers (NFSRs) is to find their state transition matrices. In this paper,
we investigate the linearization multi-valued NFSRs by considering it as a logical network via a semi-tensor product approach.
A new state transition matrix is found for an multi-valued NFSR, which can be simply computed from the truth table of its
feedback function, and the new state transition matrix is easier to compute and is more explicit. First, a linear representation of a
multi-valued NFSR is given, based on which several necessary and sufficient conditions for the nonsingularity are given. Then,
some properties of the state transition matrice are provided, which are helpful to theoretically analyze NFSRs. Finally, we give
properties of a maximum length multi-valued NFSR and the linear representation of the general structure of an n-bit shift register
with updating functions.
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1 Introduction

Due to inherent linearity of linear feedback shift registers
(LFSRs) makes their generated sequences cryptographically
insecure, nonlinear feedback shift registers (NFSRs) have
been used as the main building blocks in many stream ci-
phers. For example, the eSTREAM Stream Cipher Project
hardware finalists, Grain [1], Mickey [2] and Trivium [3].
Unlike the well-developed theory of LFSRs, the theory of
NFSRs is not well-understood due to its complexity and
lack of efficient analysis tools, though numerous efforts have
been made over the past decades. For example, given a feed-
back function, it is hard to predict the periods of NFSR se-
quences. Golomb pointed out that all sequences generated
by an NFSR are periodic if and only if its feedback func-
tion is nonsingular [4]. These NFSRs are called nonsingular
NFSRs. In particular, those NFSRs generating de Bruijn se-
quences are called maximum length NFSRs. There are nu-
merous efforts in [5, 6, 7] about the maximum length NFSRs.
In addition, other work about NFSRs is in [8, 9, 10, 11].

It is known that an n-stage LFSR is relatively simple, the
sequence generated by it can be easily forecasted, then does
there exist a linearization method of NFSRs? We use a new
linearization method for an NFSR by considering it as a log-
ical network via semi-tensor product approach, namely, the
Boolean network approach (preliminary work was given in
[12]), because a Boolean network can be equivalently ex-
pressed as a linear system by its state transition matrix. In
short, the Linearization of Nonlinear feedback shift regis-
ters (NFSRs) is to find their state transition matrices. A
Boolean network is an autonomous system that evolves as
a finite state automaton through Boolean functions. It was
first introduced by Kauffman in 1969 [13]. Over the last
decades Boolean networks have attracted much attention in
many communities, such as biology [14], physics [15] and
control theory [16, 17]. In particular, Cheng and his cowork-
ers developed an algebraic framework for Boolean networks,
using a semi-tensor product approach [18], i.e., a Boolean
function can be expressed as a multi-linear mapping with
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respect to its variables, and a Boolean network is therefore
converted into a conventional discrete-time linear system. It
is worth noting that the semi-tensor product of matrices [19]
has been successfully used in the study of Boolean (control)
networks [20,21,22], multi-valued and mix-valued logical
networks [23, 24], and some other related fields. In [21],
Cheng and Qi investigated a matrix expression of a Boolean
network, and presented some results about the number of cy-
cles of different lengths, transient period and basin of each
attractor. Multi-valued logical networks were studied, and
the controllability of multi-valued logical control networks
was revealed in [23]. Thanks to their algebraic set-up, prob-
lems related to Boolean functions can be converted into al-
gebraic problems. Recently, some works about analysis of
periods of NFSR sequences used their algebraic set-up to in-
vestigate NFSRs [24, 25]. Compared to the work in [24, 25],
more explicit results of NFSR are given[12, 28].

This paper investigates multi-valued nonlinear feedback
shift register by considering it as a logical network via semi-
tensor product approach. A Fibonacci NFSR can be de-
scribed as in Fig. 1. Assume an n-stage NFSR is a col-
lection of n storage devices x1, x2, · · · , xn each of which is
capable of holding a set of values, {0, 1, · · · , k− 1}. First, a
linear representation of a multi-valued NFSR is given, based
on which the explicit form of the state transition matrix is
given, some new properties of the state transition matrix are
provided as well, and several conditions are given for the
nonsingularity. Then, we give some properties of maximum
length NFSR and the linear representation of the general
structure of an n-bit shift register with updating functions.
The rest of this paper is organized as follows. Section 2 gives
some necessary preliminaries on the semi-tensor product of
matrices. In Section 3, we present the main results of this pa-
per, and in Section 4, we give multi-valued general structure
of an n-bit shift register with updating functions by consider-
ing it as a logical network via semi-tensor product approach
, which is followed by the conclusion in Section 5.
2 Notations and Preliminaries

Semi-tensor product (STP) of matrices is an extension
of conventional matrix product to any two arbitrary matri-



ces. Using it, we can give the logic a vector expression,
any logical function can be identified by its structure ma-
trix (or canonical form), and furthermore a finite-valued or
mixed-valued logical network can be converted to its alge-
braic form, which is very useful for the structure analysis and
synthesis of such networks. We refer to [18, 20, 21] and the
references therein for details. This section presents some no-
tations and necessary preliminaries on the semi-tensor prod-
uct and matrix expression of logical functions.

First, we give some notations used in this paper.
• In : identity matrix.
• δin: the i-th column of the identity matrix In.
• Colj(B): the j-th column of a matrix B.
• Lm×n : the set of m×n logical matrices, if A ∈ Lm×n,

and columns of A are of the form of δim.
• Dk = {0, 1, 2, · · · , k−1},∆n = {δin|i = 1, 2, · · · , n}.

By identifying i ∼ δk−i
k , we have Dk ∼ ∆k. where

i ∼ j means they are equivalent.
• If L ∈ Lm×n, it can be expressed as L =
[δi1m δi2m · · · δinm ], For the sake of compactness, it is
briefly denoted by L = δm[i1 i2 · · · in].

Next, we give some definitions and results about the semi-
tensor product.

Definition 2.1 [27] Let A = (aij) and B be matrices of
dimensions n × m and p × q, respectively. The Kronecker
product of A and B is defined as an np ×mq matrix, given
by

A⊗B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB

...
...

...
...

an1B an2B · · · anmB

 .

Definition 2.2 [18] Let A and B be matrices of dimensions
n×m and p×q, respectively, and let α be the least common
multiple of m and p. The (left) semi-tensor product of A and
B is defined as an nα

m × qα
p matrix, given by

AnB = (A⊗ I α
m
)(B ⊗ Iα

p
).

Throughout this paper the default matrix product is the
semi-tensor product. The semi-tensor product is a general-
ization of the conventional matrix product. Thus, we can
simply call it product and omit the symbol n without confu-
sion.

Definition 2.3 [29] Let A = [A1 A2 · · · An] and B =
[B1 B2 · · · Bn] be matrices of dimensions m×n and p×n,
respectively, where Ai, Bi, i = 1, 2, · · · , n are the i-th col-
umn of matrices A and B respectively. The Khatri-Rao prod-
uct of A and B is defined as an mp× n matrix, given by

A ∗B = [A1 ⊗B1 A2 ⊗B2 · · · An ⊗Bn].

where ⊗ represents the Kronecker product.

Lemma 2.4 [18] Any Boolean function f(x1, x2, · · · , xn)
with xi ∈ Dk, i = 1, 2, · · · , n, can be expressed as a multi-
linear form: f(x1, x2, · · · , xn) = Mx1x2 · · ·xn, where M
is called the structure matrix of f , and is uniquely expressed
by the truth table of f , arranged in the reverse alphabet or-
der.

3 Main Result

A Fibonacci NFSR can be described as in Fig.1, and can
be expressed as

x1(t+ 1) = x2(t),
x2(t+ 1) = x3(t),

...
xn−1(t+ 1) = xn(t),
xn(t+ 1) = f(x1(t), x2(t), . . . , xn(t)).

where xi ∈ Dk, i = 1, 2, · · · , n, and f : Dn
k → Dk.

3.1 STP Representation of Nonlinear Feedback Shift
Register

Lemma 3.1 [18] Suppose

x = X1X2 · · ·Xn

with Xi ∈ ∆k, i = 1, 2, · · · , n. Then x ∈ ∆kn and and
each Xi is uniquely determined by x.

Lemma 3.2 [18] For any j ∈ {1, 2, · · · , kn}, the state
x = δjkn ∈ ∆kn and the state x = [x1, x2 · · · , xn]

T ∈ Dn
k

satisfying kn−1x1 + kn−2x2 + · · ·+ xn = kn − j are one-
to-one correspondent.

A Boolean network with n nodes can be described as the
following system:

x(t+ 1) = g(x(t)), t ∈ N,

where x = [x1, x2, · · · , xn]
T ∈ Dn

k is the state, t represents
the time instant, and g : Dn

k → Dn
k is a vectorial function.

Lemma 3.3 [16] The Boolean network can be equivalently
described as a linear system:

x(t+ 1) = Lx(t), t ∈ N,

where Let Gi be the structure matrix of the i-th component
of the vectorial function g, the state x ∈ ∆kn and the state
transition matrix L ∈ Lkn×kn , and L = G1 ∗G2 ∗ · · · ∗Gn,
here ∗ denotes the Khatri-Rao Product.

Lemma 3.4 Consider an n-stage FSR with a feedback func-
tion f . Let M = [M1 M2 · · · Mkn−1 ] be the structural ma-
trix of FSR which can be got the truth table of f , arranged
in the reverse alphabet order, and L = [L1 L2 · · · Lkn−1 ]
be the state transition matrix. Then we have Colj(Li) =

δ
(i−1)k+j
kn−1 Colj(Mi), where L ∈ Lkn×k,M ∈ Lk×k, j =
1, 2, · · · , k, i = 1, 2, . . . , kn−1.



Proof. View the NFSR as a Boolean network. Then the
NFSR can be expressed as the following nonlinear system:

x1(t+ 1) = x2(t),
x2(t+ 1) = x3(t),

...
xn−1(t+ 1) = xn(t),
xn(t+ 1) = f(x1(t), x2(t), . . . , xn(t)),

where xi ∈ Dk, i = 1, 2, · · · , n, and f : Dn
k → Dk.

Let Ti be the structure matrix of xi(t + 1) = xi+1(t), i ∈
1, 2, · · · , n− 1, and M be the structure matrix of xn(t +
1) = f(x1(t), x2(t), . . . , xn(t)). Then it is easy to see that

T1 = [G1 · · ·G1︸ ︷︷ ︸
k1

], G1 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−2

δ2k · · · δ2k︸ ︷︷ ︸
kn−2

· · · δkk · · · δkk︸ ︷︷ ︸
kn−2

],

T2 = [G2 · · ·G2︸ ︷︷ ︸
k2

], G2 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−3

δ2k · · · δ2k︸ ︷︷ ︸
kn−3

· · · δkk · · · δkk︸ ︷︷ ︸
kn−3

],

...

Tn−1 = [Gn−1 · · ·Gn−1︸ ︷︷ ︸
kn−1

], Gn−1 = [δ1k · · · δkk ],

M = [M1 · · · Mkn−1 ].

Then Lemma 3.3 shows that the unique state transition ma-
trix L satisfying L = T1 ∗ T1 ∗ · · ·Tn−1 ∗M , where ”*” is
the Khatri-Rao product. Straightforward computations yield
the columns of L satisfying

Colj(Li) = δ
(i−1)k+j
kn−1 Colj(Mi),

where j = 1, 2, · · · , k, i = 1, 2, . . . , kn−1. �
Remark 3.5 According to the method of Lemma 3.4, the
proof of Theorem 4[28] is very simple.

f(x1, x2, · · · , xn) = Mxnxn−1 · · ·x1.

Let Ti be the structure matrix of xi(t + 1) = xi+1(t), i ∈
1, 2, · · · , n− 1, and M be the structure matrix of xn(t +
1) = f(xn(t), xn−1(t), . . . , x1(t)). Then it is easy to see
that

T1 = G1, G1 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−1

δ2k · · · δ2k︸ ︷︷ ︸
kn−1

· · · δkk · · · δkk︸ ︷︷ ︸
kn−1

],

T2 = [G2 · · ·G2︸ ︷︷ ︸
k

], G2 = [δ1k · · · δ1k︸ ︷︷ ︸
kn−2

δ2k · · · δ2k︸ ︷︷ ︸
kn−2

· · · δkk · · · δkk︸ ︷︷ ︸
kn−2

],

...

Tn−1 = [Gn−1 · · ·Gn−1︸ ︷︷ ︸
kn−2

],

Gn−1 = [δ1k · · · δ1k︸ ︷︷ ︸
k

δ2k · · · δ2k︸ ︷︷ ︸
k

· · · δkk · · · δkk︸ ︷︷ ︸
k

],

M = [M1 . . . Mkn−1 ].

Then Lemma 3.3 shows that the unique state transition ma-
trix L satisfying L = M∗T1∗T1∗· · ·∗Tn−1. Straightforward
computations yield the columns of L satisfying

Colj(Li) = Colj(Mi)δ
i
kn−1

Theorem 3.6 Let the state transition matrix of FSR be
L = δkn [η1 η2 · · · ηkn ], the structural matrix be M =
δk[p1 p2 · · · pkn ], and [s1 s2 · · · skn ] be the truth table
of the feedback function f . Then ηi = (i (mod kn−1) −
1)k + pi = i(mod kn−1)k − si.

Proof. We simplify the representation

Colj(Li) = δ
(i−1)k+j
kn−1 Colj(Mi),

where j = 1, 2, · · · , k, i = 1, 2, . . . , kn−1.
Let (i − 1)k + j = m, then straightforward computations
show that

ηi = (i− 1)k + pi,
ηi+kn−1 = (i− 1)k + pi+kn−1 ,
ηi+2kn−1 = (i− 1)k + pi+2kn−1 ,

...
ηi+(k−1)kn−1 = (i− 1)k + pi+(k−1)kn−1 .

(1)

where i = 1, 2, . . . , kn−1.
Therefore ηi = (i (mod kn−1)−1)k+pi, i = 1, 2, · · · , kn.
Moreover, since si = k−pi, we have ηi = (i (mod kn−1)−
1)k + pi = (i (mod kn−1) − 1)k − si, where i =
1, 2, · · · , kn. �
Remark 3.7 when k = 2, the result of Theorem 3.6 is the
same as the result of Theorem 1 in [4].

Theorem 3.8 Consider the linearization of an n-stage
NFSR. Let M = δk[p1 p2 · · · pkn ] be the structure ma-
trix, and L = δkn [η1 η2 · · · ηkn ] be the state transition ma-
trix. We define Ai = δk[pi, pi+kn−1 , · · · , pi+(k−1)kn−1 ], i =
1, 2, · · · , kn−1. Then the NFSR is nonsingular if and only if
det(Ai) ̸= 0, i = 1, 2, · · · , kn−1.

Proof. (Necessity) Since the NFSR is nonsingular, each
state of a nonlinear FSR has only one successor and one pre-
decessor, that is, for any two states δjkn , δ

j
kn , i ̸= j, we have

Lδjkn ̸= Lδjkn , which is equivalent to δηi

kn ̸= δ
ηj

kn ,
i.e., for all i ̸= j, Coli(L) ̸= Colj(L), it shows
η1, η1+kn−1 , · · · , η1+(k−1)kn−1 are distinct. According
to Formulation (1), we have p1, p1+kn−1 , · · · , p1+(k−1)kn−1

are distinct, i.e., det(A1) ̸= 0. The same reasoning holds
for det(Ai) ̸= 0, i = 2, 3, · · · , kn−1.
(Sufficiency) Since det(A1) ̸= 0, that is,
p1, p1+kn−1 , · · · , p1+(k−1)kn−1 are distinct, we hve
η1, η1+kn−1 , · · · , η1+(k−1)kn−1 are distinct. Moreover,
p1, p1+kn−1 , · · · , p1+(k−1)kn−1 ∈ {1, 2, · · · , k}, we have
η1, η1+kn−1 , · · · , η1+(k−1)kn−1 ∈ {1, 2, · · · , k}.
The same reasoning holds for

η2+ikn−1 ∈ {k + 1, k + 2, · · · , 2k},
...

ηkn−1+ikn−1 ∈ {kn − k, kn − k + 1, · · · , kn}.

therefore L is nonsingular, i,e., the NFSR is nonsingular. �
3.2 The properties of state transition matrix
Theorem 3.9 Consider the linearization of an n-stage
NFSR. Let L = δkn [η1 η2 · · · ηkn ] be the state transition
matrix.
(1) η i(kn−1)

k−1 +1
= i(kn−1)

k−1 + 1 if and only if the state di-
agram of the NFSR has a unit cycle containing the state



[k − i− 1, k − i− 1, . . . , k − i− 1]T .
(2) Specially, ηkn = kn if and only if the state diagram of
the NFSR has a unit cycle containing the state [0, 0, . . . , 0]T ,
and η1 = 1 if and only if the state diagram of the NFSR has
a unit cycle containing the state [k − 1, k − 1, . . . , k − 1]T .

Proof. Suppose f is the feedback function of the NFSR.
The state diagram of the NFSR has a unit cycle containing
the state [k − i − 1, k − i − 1, . . . , k − i − 1]T , if and only
if f(k − i− 1, k − i− 1, . . . , k − i− 1) = k − i− 1. Since
the truth table of f is arranged in the reverse alphabet order,
sm = k − i− 1, then

m = ikn−1 + ikn−2 + · · ·+ ik + i+ 1 =
i(kn − 1)

k − 1
+ 1.

According to Theorem 3.6,
η i(kn−1)

k−1 +1
= (( i(k

n−1)
k−1 + 1) (mod kn−1))k − s i(kn−1)

k−1 +1

= i(kn−1)
k−1 + 1. Specially, theorem 3.6 shows that η1 = 1 if

and only if f(k − 1, k − 1, · · · , k − 1) = k − 1, which is
equivalent to that the successor of [k−1, k−1, · · · , k−1]T
is itself. Thus, the result follows. The same reasoning holds
for ηkn = kn. �
Theorem 3.10 Consider the linearization of an n-stage
NFSR. δikn is a starting state if and only if δikn is not a col-
umn of the state transition matrix L, where i ∈ 1, 2, . . . , kn.

Proof. (Necessity) Assume δikn is a column of L. Without
loss of generality, suppose δikn is the j-th column of L for
some j ∈ 1, 2, · · · , kn. Then Lδjkn = δikn , which implies
that δjkn is a predecessor of δikn . It is in contradiction with
the assumption that δikn is a starting state.
(Sufficiency) Assume δikn is not a starting state. Then
δikn has at least one predecessor. Without loss of gen-
erality, we assume δjkn is a predecessor of δikn for some
j ∈ 1, 2, · · · , kn. Then we conclude that Lδjkn = δikn , which
means that δikn is the j-th column of L. It is contrary to the
assumption. �
Theorem 3.11 Consider the linearization of an n-stage
NFSR. The state transition matrix L = δkn [η1 η2 · · · ηkn ] is
singular if and only if there exist some i ∈ {1, 2, . . . , kn−1}
such that ηi+a1kn−1 = ηi+a2kn−1 , a1, a2 ∈ {0, 1, . . . , k−1}
and a1 ̸= a2. Moreover, if ηi+a1kn−1 = ηi+a2kn−1 = j then
δjkn is a branch state.

Proof. According to Theorem 3.6, it is easy to see that
the necessity and sufficiency of the result hold. On the
other hand, if ηi+a1kn−1 = ηi+a2kn−1 = j, we have
Lδi+a1k

n−1

kn = Lδi+a2k
n−1

kn = δjkn , which implies that the
state δjkn has two predecessors, δi+a1k

n−1

kn and δi+a1k
n−1

kn .
Thus δjkn is a branch state. �
Corollary 3.12 If a matrix

L = δkn [η1 η2 · · · ηkn ] ∈ Lkn×kn ,

satisfies

ηi, ηi+kn−1 , · · · , ηi+(k−1)kn−1 ∈ {ki−k+1, ki−k, · · · , ki},

where i = 1, 2, · · · , kn−1, then there exists an n-stage NFSR
such that L is a state transition matrix of the NFSR. More-

over, if the matrix L is nonsingular, then the NFSR is also
nonsingular.

Proof. According to Equations (1), we have

ηi = ik − si,
ηi+kn−1 = ik − si+kn−1 ,
ηi+2kn−1 = ik − si+2kn−1 ,

...
ηi+(k−1)kn−1 = (ik − si+(k−1)kn−1 .

(2)

Equations (1) and (2) show that for a matrix L satisfy-
ing ηi, ηi+kn−1 , · · · , ηi+(k−1)kn−1 ∈ {ki − k + 1, ki −
k, · · · , ki}, i = 1, 2, · · · , kn−1 there exists an NFSR
whose state transition matrix is L. Moreover, Theo-
rem 3.6 implies the truth table of the feedback func-
tion, [s1, s2, · · · , skn ] is the truth table of the feedback
function, arranged in the reverse alphabet order, satis-
fies: si, si+kn−1 , · · · , si+(k−1)kn−1 ∈ {0, 1, · · · , k − 1}
if ηi, ηi+kn−1 , · · · , ηi+(k−1)kn−1 ∈ {ki − k + 1, ki −
k, · · · , ki}. Moreover, if L is nonsingular, then the feedback
function is nonsingular as well. Thus, the NFSR is nonsin-
gular. �

In the end of this section, an example is given to show the
effectiveness of the results obtained in this paper.
Example Consider a nonlinear feedback shift register with
a feedback function

f(x1, x2) = x2 + x1(x
2
2 + 1)(mod3).

Through computation, the structure matrix and the state
transition matrixis are M = δ3[3 1 1 2 3 2 1 2 3] and
L = δ9[3 4 7 2 6 8 1 5 9] respectively. Then according to
theorem 3.6, it is nonsingular.

3.3 Properties of Maximum Length NFSR
In this subsection, we survey some of the necessary con-

ditions of the feedback function f(x1, . . . , xn) ∈ Dk to gen-
erate de Bruijin sequences.

Proposition 3.13 To avoid all i cycle i = 0, 1, . . . , k − 1,
f(i, . . . , i) ̸= i.

Proof. It is proved obviously.

Proposition 3.14 To avoid all (0, 0, . . . , 0, i) of length n+1,
the coefficients of all the linear terms of f are not k − 1
simultaneously, and c0 ̸= i.

Proof. If all linear coefficient of f are k − 1, then
f = c0+(k−1)(x1+x2+· · ·xn)+· · ·+c12...nx1x2 · · ·xn.

f(0, 0, · · · , 0, i) = i+ (k − 1)i = 0,
f(0, 0, · · · , i, 0) = i+ (k − 1)i = 0,

...
f(i, 0, · · · , 0, 0) = i+ (k − 1)i = 0.

There must be (0, 0, . . . , 0, i) of length n+1. �
Lemma 3.15 [22] Consider a k-valued n-stage NFSR with
the structural matrix L. The number of fixed points and the
number of cycles which have length s of the NFSR, are de-



noted by N1, Ns respectively, then

N1 = tr(L), Ns =
tr(Ls)−

∑
t∈P (s) tNt

s
.

where 2 ≤ s ≤ kn, and P (s) is a set of proper factors of s,
tr is the sum of the diagonal elements of a matrix.

Proposition 3.16 An n-stage NFSR is a maximum length
NFSR if and only if the state transition matrix L of its lin-
earization satisfies Lkn

= Ikn and tr(Lm) = 0 for any
positive integer m < kn.

Proof. The result follows from Lemma 3.15.
(Sufficiency) ord(L) = kn, i.e., Lkn

= Ik, then Nkn =
tr(Lkn

)−
∑

t∈P (s) tNt

kn = 1, which shows that NFSR is a max-
imum length.
(Necessity) If ord(L) = m < kn, i.e., tr(Lm) = kn, then

Nkn =
tr(Lkn

)−
∑

t∈P (s) tNt

kn < 1, which is contradictory
with the condition. �
Lemma 3.17 [12] Let A = δm[ζ1 ζ2 · · · ζm] ∈ Lm×m

be a cyclic permutation matrix. If ζi0 = m for some i0 ∈
1, 2, · · · ,m− 1, then ord(A) = m

gcd(m,i0)
and tr(Al) = 0

for any positive integer l < ord(A).

Proposition 3.18 For an n-stage NFSR, the state transition
matrix L ∈ Lkn×kn satisfies ord(L) = kn, then
tr(Ll) = 0 for any positive integer l < kn. Moreover
det(L) = (−1)

kn−1
.

Proof. ord(L) = kn implies L ̸= Ikn and L is nonsingular.
Thus L is a permutation matrix. We have L is similar to the
cyclic permutation matrix Bkn , where

Bkn = δkn [kn 1 2 3 · · · kn − 1].

We deduce that Ll is similar to Bl
kn for any positive integer l.

Hence det(L) = det(Bkn) = (−1)
kn−1 × 1 = (−1)

kn−1
.

Moreover, from lemma 3.16, we see ord(Bkn) = kn, while
lemma 3.16 shows that tr(Bkn) = 0 for any positive integer
l < ord(A). Therefore tr(Ll) = 0 for any positive integer
l < kn. �
Theorem 3.19 An n-stage NFSR is a maximum length
NFSR if and only if the state transition matrix L satisfies
ord(L) = kn.

Proof. The result yields from proposition 3.16 and proposi-
tion 3.18.

Theorem 3.20 For an n-stage maximum length NFSR, the
state transition matrix L of its linearization is denoted by

L = δkn [η1 η2 . . . ηkn ].

Then
(1) η i(kn−1)

k−1

̸= i(kn−1)
k−1 , i = 0, 1, · · · , k − 1.

(2) There exists unique i ∈ 1, 2, · · · , k − 1 such that
ηikn−1 = kn.

Proof. (1) One hand,

η i(kn−1)
k−1 +1

=
i(kn−1)

k − 1
+ 1 = i(kn−1 + · · ·+ k + 1) + 1,

the other hand,
η i(kn−1)

k−1 +1
= (( i(k

n−1)
k−1 +1)(mod (kn−1))k+k−f(k−i−

1, · · · , k − i − 1) = i(kn−1 + · · · + k) + k − f(k − i −
1, · · · , k − i− 1).

Then we have f(k− i− 1, · · · , k− i− 1) = k− i− 1, i.e.,
the state diagram of the NFSR has a unit cycle containing
the state [k− i−1, · · · , k− i−1]T , which is a contradiction
with the maximum length NFSR.
(2) According to theorem 3.6, we have
ηikn−1 = (kn−1 − 1)k + k − skn−1+(i−1)kn−1

= kn − f(k − i, 0, · · · , 0).
Because of the NFSR is maximum length, there exists
unique i ∈ 1, 2, · · · , k − 1 such that (k − i, 0, · · · , 0) is
the predecessor of the state (0, 0, · · · , 0). Then ηikn−1 =
kn−f(k− i, 0, · · · , 0) = kn. �
4 The generalized NFSR

The general structure of an n-bit shift register with up-
dating functions can be described as in Fig.2, and can be
expressed as

x1(t+ 1) = x2(t)⊕ f1(x1(t), x3(t), · · · , xn(t)),
x2(t+ 1) = x3(t)⊕ f2(x1(t), x2(t), x4(t), · · · , xn(t)),

...
xi(t+ 1) = xi+1(t)⊕ fi(x1(t), · · · , xi(t), xi+2(t), · · · , xn(t)),
xn(t+ 1) = x1 ⊕ fn(x2(t), . . . , xn(t)).

where xi ∈ Dk, and fi : Dn
k → Dk, i = 1, 2, · · · , n. Now

in vector form above formulation becomes
x1(t+ 1) = T1x(t),
x2(t+ 1) = T2x(t),

...
xn(t+ 1) = Tnx(t).

(3)

Let Ti, i ∈ 1, 2, · · · , n− 1 be the structure matrix of xi(t+
1) = xi+1(t) ⊕ fi(x1(t), · · · , xi(t), xi+2(t), · · · , xn(t)),
and Ti = δk[p

i
1, · · · , pikn ], which can be got

the truth table of xi(t + 1) = xi+1(t) ⊕
fi(x1(t), · · · , xi(t), xi+2(t), · · · , xn(t)), and L =
δkn [η1 η2 · · · ηkn ] be the state transition matrix of
shift register. Then it is easy to see that

ηi = kn − (p1i k
n−1 + p2i k

n−2 + · · ·+ pni ).

5 Conclusion

This paper used Boolean network approach to facilitate
the linearization of multi-valued NFSRs. Therefore we study
an NFSR by the new state transition matrix, which is actu-
ally a linearization of the NFSR. The new state transition



matrix can be simply computed from the truth table of the
feedback function of the multi-valued NFSRs. We give some
properties of the new state transition matrix, properties of a
maximum length multi-valued NFSR and the linear repre-
sentation of general structureof an n-bit shift register with
updating functions as well.
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