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Abstract. In this article, we provide new methods to look for lightweight MDS matrices, and in particular
involutory ones. By proving many new properties and equivalence classes for various MDS matrices constructions
such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we exhibit new search algorithms that greatly
reduce the search space and make lightweight MDS matrices of rather high dimension possible to find. We also
explain why the choice of the irreducible polynomial might have a significant impact on the lightweightness, and in
contrary to the classical belief, we show that the Hamming weight has no direct impact. Even though we focused
our studies on involutory MDS matrices, we also obtained results for non-involutory MDS matrices. Overall, using
Hadamard or Hadamard-Cauchy constructions, we provide the (involutory or non-involutory) MDS matrices with
the least possible XOR gates for the classical dimensions 4× 4, 8× 8, 16× 16 and 32× 32 in GF(24) and GF(28).
Compared to the best known matrices, some of our new candidates save up to 50% on the amount of XOR gates
required for an hardware implementation. Finally, our work indicates that involutory MDS matrices are really
interesting building blocks for designers as they can be implemented with almost the same number of XOR gates
as non-involutory MDS matrices, the latter being usually non-lightweight when the inverse matrix is required.
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1 Introduction

Most symmetric key primitives, like block ciphers, stream ciphers or hash functions, are usually based on various
components that provide confusion and diffusion. Both concepts are very important for the overall security and
efficiency of the cryptographic scheme and extensive studies have been conducted to find the best possible building
blocks. The goal of diffusion is basically to spread the internal dependencies as much as possible. Several designs use
a weak yet fast diffusion layer based on simple XOR, addition and shifting operation, but another trend is to rely
on strong linear diffusion matrices, like Maximal Distance Separable (MDS) matrices. A typical example is the AES

cipher [17], which uses a 4× 4 matrix in GF(28) to provide diffusion among a vector of 4 bytes. These mathematical
objects ensure the designers a perfect diffusion (the underlying linear code meets the Singleton bound), but can be
quite heavy to implement. Software performances are usually not so much impacted as memory is not really constrained
and table-based implementations directly incorporate the field multiplications in the stored values. However, hardware
implementations will usually suffer from an important area requirement due to the Galois field multiplications. The
impact will also be visible on the efficiency of software bitslice implementations which basically mimic the hardware
computations flow.

Good hardware efficiency has became a major design trend in cryptography, due to the increasing importance
of ubiquitous computing. Many lightweight algorithms have recently been proposed, notably block ciphers [12, 14,
19, 9] and hash functions [4, 18, 11]. The choice of MDS matrices played an important role in the reduction of the
area required to provide a certain amount of security. In PHOTON, the hash function [18] that was proposed a new
type of MDS matrix that can be computed in a serial or recursive manner. This construction greatly reduces the
temporary memory (and thus the hardware area) usually required for the computation of the matrix. Such matrices
were later used in LED [19] block cipher, or PRIMATEs [1] authenticated encryption scheme, and were further studied
and generalized in subsequent articles [30, 34, 3, 2, 10]. Even though these serial matrices provide a good way to save
area, this naturally comes at the expense of an increased number of cycles to apply the matrix. In general, they are
not well suited for round-based or low-latency implementations.

Another interesting property for an MDS matrix to save area is to be involutory. Indeed, in most use cases,
encryption and decryption implementations are required and the inverse of the MDS matrix will have to be implemented
as well (except for constructions like Feistel networks, where the inverse of the internal function is not needed for
decryption). For example, the MDS matrix of AES is quite lightweight for encryption, but not really for decryption3.
More generally, it is a valuable advantage that one can use exactly the same diffusion matrix for encryption and
decryption. Some ciphers like ANUBIS [5], KHAZAD [6], ICEBERG [33] or PRINCE [13] even pushed the involution idea
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3 The serial matrix construction proposed in [18, 19] allows an efficient inverse computation if the first coefficient is equal to 1.

However, we recall that serial matrices are not well suited for round-based or low-latency implementations.



a bit further by defining a round function that is almost entirely composed of involution operations, and where the
non-involution property of the cipher is mainly provided by the key schedule.

There are several ways to build a MDS matrix [35, 24, 27, 31, 20, 15], a common method being to use a circulant
construction, like for the AES block cipher [17] or the WHIRLPOOL hash function [8]. The obvious benefit of a circulant
matrix for hardware implementations is that all of its rows are similar (up to a right shift), and one can trivially reuse
the multiplication circuit to save implementation costs. However,it has been proven in [23] that circulant matrices of
order 4 cannot be simultaneously MDS and involutory. And very recently Gupta et al. [21] proved that circulant MDS
involutory matrices do not exist. Finding lightweight matrices that are both MDS and involutory is not an easy task
and this topic has attracted attention recently. In [31], the authors consider Vandermonde or Hadamard matrices,
while in [35, 20, 15] Cauchy matrices were used. Even if these constructions allow to build involutory MDS matrices
for big matrix dimensions, it is difficult to find the most lightweight candidates as the search space can become really
big.

Our contributions. In this article, we propose a new method to search for lightweight MDS matrices, with an
important focus on involutory ones. After having recalled the formula to compute the XOR count, i.e. the amount of
XORs required to evaluate one row of the matrix, we show in Section 2 that the choice of the irreducible polynomial
is important and can have a significant impact on the efficiency, as remarked in [26]. In particular, we show that the
best choice is not necessarily a low Hamming weight polynomial as widely believed, but instead one that has a high
standard deviation regarding its XOR count. Then, in Section 3, we recall some constructions to obtain (involutory)
MDS matrices: circulant, Hadamard, Cauchy and Cauchy-Hadamard. In particular, we prove new properties for some
of these constructions, which will later help us to find good matrices. In Section 4 we prove the existence of equivalent
classes for Hadamard matrices and involutory Hadamard-Cauchy matrices and we use these considerations to conceive
improved search algorithms of lightweight (involutory) MDS matrices. We describe these new algorithms in Section 5
for lightweight involutory MDS matrices. Our methods can also be relaxed and applied to the search of lightweight
non-involutory MDS matrices as explained in Section 6. These algorithms are significant because they are feasible
exhaustive search while the search space of the algorithms described in [20, 15] is too big to be exhausted4. Our
algorithms guarantee that the matrices found are the lightest according to our metric.

Overall, using Hadamard or Hadamard-Cauchy constructions, we provide the smallest known (involutory or non-
involutory) MDS matrices for the classical dimensions 4 × 4, 8 × 8, 16 × 16 and 32 × 32 in GF(24) and GF(28). The
designers of one of the CAESAR competition candidates, Joltik [22], have used one of the matrices that we have
found to build their primitive. All our results are summarized and commented in Section 7. Surprisingly, it seems
that involutory MDS matrices are not much more expensive than non-involutory MDS ones, the former providing the
great advantage of a free inverse implementation as well. We recall that in this article we are not considering serial
matrices, as their evaluation either requires many clock cycles (for serial implementations) or an important area (for
round-based implementations).

Notations and preliminaries. We denote by GF(2r) the finite field with 2r elements, r ≥ 1. This field is isomorphic
to polynomials in GF(2)[X] modulo an irreducible polynomial p(X) of degree r, meaning that every field element can

be seen as a polynomial α(X) with coefficients in GF(2) and of degree r − 1: α(X) =
∑r−1
i=0 biX

i, bi ∈ GF(2),
0 ≤ i ≤ r − 1. The polynomial α(X) can also naturally be viewed as an r-bit string (br−1, br−2, ..., b0). In the rest
of the article, an element α in GF(2r) will be seen either as the polynomial α(X), or the r-bit string represented
in a hexadecimal representation, which will be prefixed with 0x. For example, in GF(28), the 8-bit string 00101010
corresponds to the polynomial X5 +X3 +X, written 0x2a in hexadecimal.

The addition operation on GF(2r) is simply defined as a bitwise XOR on the coefficients of the polynomial rep-
resentation of the elements, and does not depend on the choice of the irreducible polynomial p(X). However, for
multiplication, one needs to specify the irreducible polynomial p(X) of degree r. We denote this field as GF(2r)/p(X),
where p(X) can be given in hexadecimal representation5. The multiplication of two elements is then the modulo p(X)
reduction of the product of the polynomial representations of the two elements.

Finally, we denote by M [i, j] the (i, j) entry of the matrix M , we start the counting from 0, that is M [0, 0] is the
entry corresponding to the first row and first column.

2 Analyzing XOR count according to different finite fields

In this section, we explain the XOR count that we will use as a measure to evaluate the lightweightness of a given
matrix. Then, we will analyze the XOR count distribution depending on the finite field and irreducible polynomial

4 The huge search space issue can be reduced if one could search intelligently only among lightweight matrix candidates.
However, this is not possible with algorithms from [20, 15] since the matrix coefficients are known only at the end of the
matrix generation, and thus one cannot limit the search to lightweight candidates only.

5 This should not be confused with the explicit construction of finite fields, which is commonly denoted as GF(2r)[X]/(P ),
where (P ) is an ideal generated by irreducible polynomial P .



considered. Although it is known that finite fields of the same size are isomorphic to each other and it is believed that
the security of MDS matrices is not impacted by this choice, looking at the XOR count is a new aspect of finite fields
that remains unexplored in cryptography.

2.1 The XOR count

It is to note that the XOR count is an easy-to-manipulate and simplified metric, but MDS coefficients have often
been chosen to lower XOR count, e.g. by having low Hamming weight. As shown in [26], low XOR count is strongly
correlated minimization of hardware area.

Later in this article, we will study the hardware efficiency of some diffusion matrices and we will search among
huge sets of candidates. One of the goals will therefore be to minimize the area required to implement these lightweight
matrices, and since they will be implemented with XOR gates (the diffusion layer is linear), we need a way to easily
evaluate how many XORs will be required to implement them. We explain our method in this subsection.

In general, it is known that low Hamming weight generally requires lesser hardware resource in implementations,
and this is the usual choice criteria for picking a matrix. For example, the coefficients of the AES MDS matrix are 1,
2 and 3, in a hope that this will ensure a lightweight implementation. However, it was shown in [26] that while this
heuristic is true in general, it is not always the case. Due to some reduction effects, and depending on the irreducible
polynomial defining the computation field, some coefficients with not-so-low Hamming weight might be implemented
with very few XORs.

Definition 1 The XOR count of an element α in the field GF(2r)/p(X) is the number of XORs required to implement
the multiplication of α with an arbitrary β over GF(2r)/p(X).

For example, let us explain how we compute the XOR count of α = 3 over GF(24)/0x13 and GF(24)/0x19. Let
(b3, b2, b1, b0) be the binary representation of an arbitrary element β in the field. For GF(24)/0x13, we have:

(0, 0, 1, 1) · (b3, b2, b1, b0) = (b2, b1, b0 ⊕ b3, b3)⊕ (b3, b2, b1, b0) = (b2 ⊕ b3, b1 ⊕ b2, b0 ⊕ b1 ⊕ b3, b0 ⊕ b3),

which corresponds to 5 XORs6. For GF(24)/0x19, we have:

(0, 0, 1, 1) · (b3, b2, b1, b0) = (b2 ⊕ b3, b1, b0, b3)⊕ (b3, b2, b1, b0) = (b2, b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b3),

which corresponds to 3 XORs. One can observe that XOR count is different depending on the finite field defined by
the irreducible polynomial.

In order to calculate the number of XORs required to implement an entire row of a matrix, we can use the following
formula given in [26]:

XOR count for one row of M = (γ1, γ2, ..., γk) + (n− 1) · r, (1)

where γi is the XOR count of the i-th entry in the row of M , n being the number of nonzero elements in the row and
r the dimension of the finite field.

For example, the first row of the AES diffusion matrix being (1, 1, 2, 3) over the field GF(28)/0x11b, the XOR count
for the first row is (0 + 0 + 3 + 11) + 3× 8 = 38 XORs (the matrix being circulant, all rows are equivalent in terms of
XOR count).

2.2 XOR count for different finite fields

We programmed a tool that computes the XOR count for every nonzero element over GF(2r) for r = 2, . . . , 8 and for
all possible irreducible polynomials are provided in Appendix D. By analyzing the outputs of this tool, we could make
two observations that are important to understand how the choice of the irreducible polynomial affects the XOR count.
Before presenting our observations, we state some terminologies and properties related to reciprocal polynomials in
finite fields.

Definition 2 A reciprocal polynomial 1
p (X) of a polynomial p(X) over GF(2r), is a polynomial expressed as 1

p (X) =

Xr · p(X−1). A reciprocal finite field, K = GF(2r)/ 1
p (X), is a finite field defined by the reciprocal polynomial which

defines F = GF(2r)/p(X).

In other words, a reciprocal polynomial is a polynomial with the order of the coefficients reversed. For example, the
reciprocal polynomial of p(X) = 0x11b in GF(28) is 1

p (X) = 0x 1
11b = 0x1b1. It is also to be noted that the reciprocal

polynomial of an irreducible polynomial is also irreducible.

6 We acknowledge that one can perform the multiplication with 4 XORs as b0 ⊕ b3 appears twice. But that would require
additional cycle and extra memory cost which completely outweighed the small saving on the XOR count.



The total XOR count. Our first new observation is that even if for an individual element of the field the choice of
the irreducible polynomial has an impact on the XOR count, the total sum of the XOR count over all elements in the
field is independent of this choice. We state this in the following theorem, the proof being provided in Appendix A.

Theorem 1 The total XOR count for a field GF(2r) is r
∑r
i=2 2i−2(i− 1), where r ≥ 2.

From Theorem 1, it seems that there is no clear implication that one irreducible polynomial is strictly better than
another, as the mean XOR count is the same for any irreducible polynomial. However, the irreducible polynomials
have different distribution of the XOR count among the field elements, that is quantified by the standard deviation.
A high standard deviation implies that the distribution of XOR count is very different from the mean, thus there will
be more elements with relatively lower/higher XOR count. In general, the order of the finite field is much larger than
the order of the MDS matrix and since only a few elements of the field will be used in the MDS matrices, there is a
better chance of finding an MDS matrix with lower XOR count.

Hence, our recommendation is to choose the irreducible polynomial with the highest standard deviation regarding
the XOR count distribution. From previous example, in GF(24) (XOR count mean equals 4.25 for this field dimension),
the irreducible polynomials 0x13 and 0x19 lead to a standard deviation of 2.68, while 0x1f leads to a standard deviation
of 1.7075. Therefore, the two first polynomials seem to be a better choice. This observation will allow us to choose the
best irreducible polynomial to start with during the searches. We refer to Appendix D for all the standard deviations
according to the irreducible polynomial.

We note that the folklore belief was that in order to get lightweight implementations, one should use a low Hamming
weight irreducible polynomial. The underlying idea is that with such a polynomial less XORs might be needed when the
modular reduction has to be applied during a field multiplication. However, we have shown that this is not necessarily
true. Yet, by looking at the data from Appendix D, we remark that the low Hamming weight irreducible polynomials
usually have a high standard deviation, which actually validates the folklore belief. We conjecture that this heuristic
will be less and less exact when we go to higher and higher order fields.

Matching XOR count. Our second new observation is that the XOR count distribution implied by a polynomial
will be the same compared to the distribution of its reciprocal counterpart. We state this observation in the following
theorem, the proof being provided in Appendix B.

Theorem 2 There exists an isomorphic mapping from a primitive α ∈ GF(2r)/p(X) to another primitive β ∈
GF(2r)/ 1

p (X) where the XOR count of αi and βi is equal for each i = {1, 2, ..., 2r − 1}.

In Appendix C, we listed all the primitive mapping from a finite field to its reciprocal finite field for all fields GF(2r)
with r = 2, . . . , 8 and for all possible irreducible polynomials. We give an example to illustrate our theorem. For
GF(24), there are three irreducible polynomials: 0x13, 0x19 and 0x1f and the XOR count for the elements are shown
in Appendix D. From the binary representation we see that 0x 1

13 = 0x19. Consider an isomorphic mapping φ :
GF(24)/0x13 → GF(24)/0x19 defined as φ(2) = 12, where 2 and 12 are the primitives for the respective finite fields.
Table 4 of Appendix C shows that the order of the XOR count is the same.

We remark that for a self-reciprocal irreducible polynomial, for instance 0x1f in GF(24), there also exists an
automorphism mapping from a primitive to another primitive with the same order of XOR count (see Appendix C).

Theorem 2 is useful for understanding that we do not need to consider GF(2r)/ 1
p (X) when we are searching for

lightweight matrices. As there exists an isomorphic mapping preserving the order of the XOR count, any MDS matrix
over GF(2r)/ 1

p (X) can be mapped to an MDS matrix over GF(2r)/p(X) while preserving the XOR count. Therefore,

it is redundant to search for lightweight MDS matrices over GF(2r)/ 1
p (X) as the lightest MDS matrix can also be

found in GF(2r)/p(X). This will render our algorithms much more efficient: when using exhaustive search for low
XOR count MDS over finite field defined by various irreducible polynomial, one can reduce the search space by almost
a factor 2 as the reciprocal polynomials are redundant.

3 Types of MDS matrices and properties

In this section, we first recall a few properties of MDS matrices and we then explain various constructions of (involutory)
MDS matrices that were used to generate lightweight candidates. Namely, we will study 4 types of diffusion matrices:
circulant, Hadamard, Cauchy, and Hadamard-Cauchy. We recall that we do not consider serially computable matrices
in this article, like the ones described in [18, 19, 30, 34, 3, 2], since they are not adapted to round-based implementations.

3.1 Maximum Distance Separable matrices

Maximum Distance Separable matrices are crucial components in cryptographic designs, as they ensure a perfect
diffusion layer. Since we will search among many lightweight candidate matrices and only keep the MDS ones, we



recall in this subsection a few definitions and properties regarding these mathematical objects. We denote by Ik the
k × k identity matrix.

Definition 3 The branch number of a k × k matrix M over GF(2r) is the minimum number of nonzero entries
in the input vector v and output vector v · M = u (denoted wt(v) and wt(u) respectively), as we range over all
v ∈ [GF(2r)]k − {0}. I.e. the branching number is equal to minx6=0{wt(v) + wt(u)}, and when the optimal value k + 1
is attained, we say M is an MDS matrix.

Definition 4 A length n, dimension k and distance d binary linear code [n, k, d] is called a MDS code if the Singleton
bound k = n− d+ 1 is met.

From [16, Section 4], we have the following proposition to relate an MDS matrix to a MDS code.

Proposition 1 A k×k matrix M is an MDS matrix if and only if the standard form generator matrix [Ik|M ] generates
a (2k, k, k + 1)-MDS code.

There are various ways to verify if a matrix is MDS, in this paper we state two of the commonly used statements
that can be used to identify MDS matrix.

Proposition 2 ([29], page 321, Theorem 8 - [28], page 53, Theorem 5.4.5) Given a k×k matrix M , it is an
MDS matrix if and only if

1. every square submatrix (formed from any i rows and any i columns, for any i = 1, 2, ..., k) of M is nonsingular,
2. any k columns of [Ik|M ] are linearly independent.

The two following corollaries are directly deduced from the first statement of Proposition 2 when we consider subma-
trices of order 1 and 2 respectively.

Corollary 1 All entries of an MDS matrix are nonzero.

Corollary 2 Given a k×k matrix M , if there exists pairwise distinct i1, i2, j1, j2 ∈ {0, 1, ..., k−1} such that M [i1, j1] =
M [i1, j2] = M [i2, j1] = M [i2, j2], then M is not an MDS matrix.

3.2 Circulant matrices

A common way to build an MDS matrix is to start from a circulant matrix, reason being that the probability of finding
an MDS matrix would then be higher than a normal square matrix [16].

Definition 5 A k × k matrix C is circulant when each row vector is rotated to the right relative to the preceding row
vector by one element. The matrix is then fully defined by its first row.

An interesting property of circulant matrices is that since each row differs from the previous row by a right shift,
a user can just implement one row of the matrix multiplication in hardware and reuse the multiplication circuit for
subsequent rows by just shifting the input. However in this paper, we will show in Section 5.1 and 6.1 that these
matrices are not the best choice.

3.3 Hadamard matrices

Definition 6 ([20]) A finite field Hadamard (or simply called Hadamard) matrix H is a k × k matrix, with k = 2s,
that can be represented by two other submatrices H1 and H2 which are also Hadamard matrices:

H =

(
H1 H2

H2 H1

)
.

Similarly to [20], in order to represent a Hadamard matrix we use notation had(h0, h1, ..., hk−1) (with hi = H[0, i]
standing for the entries of the first row of the matrix) where H[i, j] = hi⊕j and k = 2s. It is clear that a Hadamard
matrix is bisymmetric. Indeed, if we define the left and right diagonal reflection transformations as HL = TL(H) and
HR = TR(H) respectively, we have that HL[i, j] = H[j, i] = H[i, j] and HR[i, j] = H[k− 1− i, k− 1− j] = H[i, j] (the
binary representation of k − 1 = 2s − 1 is all 1, hence k − 1− i = (k − 1)⊕ i).

Moreover, by doing the multiplication directly, it is known that if H = had(h0, h1, ..., hk−1) is a Hadamard matrix,
then H ×H = c2 · I, with c2 = h20 +h21 +h22 + ...+h2k−1. In other words, the product of a Hadamard matrix with itself
is a multiple of an identity matrix, where the multiple c2 is the sum of the square of the elements from the first row.



A direct and crucial corollary to this fact is that a Hadamard matrix over GF(2r) is involution if the sum of the
elements of the first row is equal to 1. Now, it is important to note that if one deals with a Hadamard matrix for
which the sum of the first row over GF(2r) is nonzero, we can very simply make it involutory by dividing it with the
sum of its first row.

We will use these considerations in Section 5.2 to generate low dimension diffusion matrices (order 4 and 8) with an
innovative exhaustive search over all the possible Hadamard matrices. We note that, similarity to a circulant matrix,
an Hadamard matrix will have the interesting property that each row is a permutation of the first row, therefore
allowing to reuse the multiplication circuit to save implementation costs.

3.4 Cauchy matrices

Definition 7 A square Cauchy matrix, C, is a k × k matrix constructed with two disjoint sets of elements from
GF(2r), {α0, α1, ..., αk−1} and {β0, β1, ..., βk−1} such that C[i, j] = 1

αi+βj
.

It is known that the determinant of a square Cauchy matrix, C, is given as

det(C) =

∏
0≤i<j≤k−1(αj − αi)(βj − βi)∏

0≤i<j≤k−1(αi + αj)
.

Since αi 6= αj , βi 6= βj for all i, j ∈ {0, 1, ..., k − 1}, a Cauchy matrix is nonsingular. Note that for a Cauchy matrix
over GF(2r), the subtraction is equivalent to addition as the finite field has characteristic 2. As the sets are disjoint,
we have αi 6= βj , thus all entries are well-defined and nonzero. In addition, any submatrix of a Cauchy matrix is also
a Cauchy matrix as it is equivalent to constructing a smaller Cauchy matrix with subsets of the two disjoint sets.
Therefore, by the first statement of Proposition 2, a Cauchy matrix is an MDS matrix.

3.5 Hadamard-Cauchy matrices

The innovative exhaustive search over Hadamard matrices from Section 5.2 is sufficient to generate low dimension
diffusion matrices (order 4 and 8). However, the computation for verifying the MDS property and the exhaustive search
space grows exponentially. It eventually becomes impractical to search for higher dimension Hadamard matrices (order
16 or more). Therefore, we use the Hadamard-Cauchy matrix construction, proposed in [20] as an evolution of the
involutory MDS Vandermonde matrices [30], that guarantees the matrix to be an involutory MDS matrix.

In [20], the authors proposed a 2s × 2s matrix construction that combines both the characteristics of Hadamard
and Cauchy matrices. Because it is a Cauchy matrix, a Hadamard-Cauchy matrix is an MDS matrix. And because it
is a Hadamard matrix, it will be involutory when c2 is equal to 1. Therefore, we can construct a Hadamard-Cauchy
matrix and check if the sum of first row is equal to 1 and, if so, we have an MDS and involutory matrix. A detailed
discussion on Hadamard-Cauchy matrices is given in Section 5.3.

4 Equivalence classes of Hadamard-based matrices

Our methodology for finding lightweight MDS matrices is to perform an innovative exhaustive search and by eventually
picking the matrix with the lowest XOR count. Naturally, the main problem to tackle is the huge search space. By
exploiting the properties of Hadamard matrices, we found ways to group them in equivalent classes and significantly
reduce the search space. In this section, we introduce the equivalence classes of Hadamard matrices and the equivalence
classes of involutory Hadamard-Cauchy matrices. It is important to note that these two equivalence classes are rather
different as they are defined by very different relations. We will later use these classes in Sections 5.2, 5.3, 6.2 and 6.3.

4.1 Equivalence classes of Hadamard matrices

It is known that a Hadamard matrix can be defined by its first row, and different permutation of the first row
results in a different Hadamard matrix with possibly different branch number. In order to find a lightweight MDS
involution matrix, it is necessary to have a set of k elements with relatively low XOR count that sum to 1 (to guarantee
involution). Moreover, we need all coefficients in the first row to be different. Indeed, if the first row of an Hadamard
matrix has 2 or more of the same element, say H[0, i] = H[0, j], where i, j ∈ {0, 1, ..., k − 1}, then in another row we
have H[i⊕ j, i] = H[i⊕ j, j]. These 4 entries are the same and by Corollary 2, H is not MDS.

By permuting the entries we hope to find an MDS involution matrix. However, given k distinct nonzero elements,
there are k! ways to permute the first row of the Hadamard matrix, which can quickly become intractable. Therefore,
we introduce a relation that relates certain permutations that lead to the same branch number.



Definition 8 Let H and H(σ) be two Hadamard matrices with the same set of entries up to some permutation σ. We
say that they are related, H ∼ H(σ), if every pair of input vectors, (v, v(σ)) with the same permutation σ, to H and
H(σ) respectively, have the same set of elements in the output vectors.

For example, let us consider the following three Hadamard matrices

H =


w x y z
x w z y
y z w x
z y x w

 , H(σ1) =


y z w x
z y x w
w x y z
x w z y

 , H(σ2) =


w x z y
x w y z
z y w x
y z x w

 ,

One can see that H(σ1) is defined by the third row of H, i.e. the rows are shifted by two positions and σ1 = {2, 3, 0, 1}.
Let us consider an arbitrary input vector for H, say v = (a, b, c, d). Then, if we apply the permutation to v, we obtain
v(σ1) = (c, d, a, b). We can observe that:

v ·H = (aw + bx+ cy + dz, ax+ bw + cz + dy, ay + bz + cw + dx, az + by + cx+ dw),

v(σ1) ·H(σ1) = (cy + dz + aw + bx, cz + dy + ax+ bw, cw + dx+ ay + bz, cx+ dw + az + by),

It is now easy to see that v ·H = v(σ1) ·H(σ1). Hence, we say that H ∼ H(σ1). Similarily, with σ2 = {0, 1, 3, 2}, we
have v(σ2) = (a, b, d, c) and:

v ·H = (aw + bx+ cy + dz, ax+ bw + cz + dy, ay + bz + cw + dx, az + by + cx+ dw),

v(σ2) ·H(σ2) = (aw + bx+ dz + cy, ax+ bw + dy + cz, az + by + dw + cx, ay + bz + dx+ cw),

and since v ·H and v(σ2) ·H(σ2) are the same up to the permutation σ2, we can say that H ∼ H(σ2).

Definition 9 An equivalence class of Hadamard matrices is a set of Hadamard matrices satisfying the equivalence
relation ∼.

Proposition 3 Hadamard matrices in the same equivalence class have the same branch number.

Proof. If two Hadamard matrices H1 and H2 are equivalent, H1 ∼ H2, then for every pair of input and output vectors
for H1, there is a corresponding pair of vectors for H2 with the same sum of nonzero components. Therefore, by taking
the minimum over all pairs, we deduce that both matrices have the same branch number. ut

When searching for an MDS matrix, we can make use of this property to greatly reduce the search space: if one
Hadamard matrix in an equivalence class is not MDS, then all other Hadamard matrices in the same equivalence class
will not be MDS either. Therefore, it all boils down to analyzing how many and which permutation of the Hadamard
matrices belongs to the same equivalence classes. Using the two previous examples σ1 and σ2 as building blocks, we
generalize them and present two lemmas.

Lemma 1 Given a Hadamard matrix H, any Hadamard matrix H(α) defined by the (α + 1)-th row of H, with α =
0, 1, 2, ..., k − 1, is equivalent to H.

Proof. By definition of the Hadamard matrix, we can express the two matrices as H = had(h0, h1, ..., hk−1) and
H(α) = had(hα, hα⊕1, ..., hα⊕(k−1)). Let v = (v0, v1, . . . , vk−1) and v(α) = (vα, vα⊕1, . . . , vα⊕(k−1)) be the input vector

for H and H(α), u and u(α) be the output vector respectively.

From our example with σ1, we see that if the same permutation α is applied to H and to the input vector v, the
output vectors are equal, i.e. u(α) = u. This is indeed true in general, it is known that the (j+ 1)-th component of the
output vector is the sum (or XOR as we are working over GF(2r)) of the product of the input vector and (j + 1)-th
column of the matrix. We can express the (j + 1)-th component of u(α) as

u
(α)
j =

k−1⊕
i=0

v
(α)
i H(α)[i, j] =

k−1⊕
i=0

vα⊕ihα⊕i⊕j ,

since XOR is commutative, the order of XOR is invariant, therefore u
(α)
j = uj . ut

Next, let us consider the other type of permutation. We can see in the example with σ2 that up to the permutation
applied to the Hadamard matrix, input and output vectors are the same. Let H(σ), v(σ) and u(σ) denote the permuted
Hadamard matrix, the permuted input vector and its corresponding permuted output vector. We want the permutation



to satisfy uσ(j) = u
(σ)
j , where j ∈ {0, 1, ..., k − 1}. That is the permutation of the output vector of H is the same as

the permuted output vector of H(σ). Using the definition of the Hadamard matrix, we can rewrite it as

k−1⊕
i=0

vihi⊕σ(j) =

k−1⊕
i=0

v
(σ)
i H(σ)[i, j].

Using the definition of the permutation and by the fact that it is one-to-one mapping, we can rearrange the XOR
order of the terms on the left-hand side and we obtain

k−1⊕
i=0

vσ(i)hσ(i)⊕σ(j) =

k−1⊕
i=0

vσ(i)hσ(i⊕j).

Therefore, we need the permutation to be linear with respect to XOR: σ(i ⊕ j) = σ(i) ⊕ σ(j). This proves our next
lemma.

Lemma 2 For any linear permutation σ (w.r.t. XOR), the two Hadamard matrices H and H(σ) are equivalent.

We note that the permutations in Lemma 1 and 2 are disjoint, except for the identity permutation. This is because
for the linear permutation σ, it always maps the identity to itself: σ(0) = 0. Thus, for any linear permutation, the
first entry remains unchanged. On the other hand, when choosing another row of H as the first row, the first entry is
always different.

With these two lemmas, we can now partition the family of Hadamard matrices into equivalence classes. For
Lemma 1, we can easily see that the number of permutation is equal to the order of the Hadamard matrix. However,
for Lemma 2 it is not so trivial. Therefore, we have the following lemma.

Lemma 3 Given a set of 2s nonzero elements, S = {α0, α1, ..., α2s−1}, there are
∏s−1
i=0 (2s − 2i) linear permutations

w.r.t. XOR operation.

Proof. For simplicity, we see how the indices of the elements are permuted. As mentioned, we need to map identity
to itself, σ(0) = 0. After index 0 is fixed, index 1 can be mapped to any of the remaining 2s − 1 indices. Similarly for
index 2, there are 2s − 2 choices. But for index 3, because of the linear relation, its image is defined by the mapping
of index 1 and 2: σ(3) = σ(1)⊕ σ(2).

Following this pattern, we can choose the permutation for index 4 among the 2s − 4 index, while 5, 6 and 7 are
defined by σ(1), σ(2) and σ(4). Therefore, the total number of possible permutations is

(2s − 1)(2s − 2)(2s − 4)...(2s − 2s−1) =

s−1∏
i=0

(2s − 2i). ut

Theorem 3 Given a set of 2s nonzero elements, S = {α0, α1, ..., α2s−1}, there are (2s−1)!∏s−1
i=0 (2

s−2i) equivalence classes of

Hadamard matrices of order 2s defined by the set of elements S.

Proof. To prove this theorem, we use the double counting proof technique that is commonly used in combinatorics.
We count the total number of permutations of Hadamard matrices for a given set of elements.
Counting 1: there is a total of (2s)! permutations for the given set of elements.

Counting 2: for each of the equivalence classes of Hadamard matrix, by Lemma 2 and 3, there are
∏s−1
i=0 (2s−2i) linear

permutations. For each of these permutations, by Lemma 1, there are 2s permutations by defining a new Hadamard
from one of the row. Therefore the total number of permutations is

{# of equivalence classes}

(
s−1∏
i=0

(2s − 2i)

)
(2s) .

Equating these two expressions together, we get

{# of equivalence classes} =
(2s − 1)!∏s−1
i=0 (2s − 2i)

. ut

For convenience, we call the permutations in Lemma 1 and 2 the H-permutations. The H-permutations can be
described as a sequence of the following types of permutations on the index of the entries:

1. choose α ∈ {0, 1, ..., 2s − 1}, define σ(i) = i⊕ α,∀i = 0, 1, ..., 2s − 1, and
2. fix σ(0) = 0, in ascending order of the index i, choose the permutation if i is power of 2, otherwise it is defined by

the linear permutation (w.r.t. XOR): σ(i⊕ j) = σ(i)⊕ σ(j).



We remark that given a set of 4 nonzero elements, from Theorem 3 we see that there is only 1 equivalence class of
Hadamard matrices. This implies that there is no need to permute the entries of the 4× 4 Hadamard matrix in hope
to find MDS matrix if one of the permutation is not MDS.

With the knowledge of equivalence classes of Hadamard matrices, what we need is an algorithm to pick one
representative from each equivalence class and check if it is MDS. The idea is to exhaust all non-H-permutations
through selecting the entries in ascending index order. Since the entries in the first column of Hadamard matrix are
distinct (otherwise the matrix is not MDS), it is sufficient for us to check the matrices with the first entry (index 0)
being the smallest element. This is because for any other matrices with the first entry set as some other element, it is
in the same equivalence class as some matrix H(α) where the first entry of (α+ 1)-th row is the smallest element. For
indexes that are powers of 2, select the smallest element from the remaining set. While for the other entries, one can
pick any element from the remaining set.

For 8× 8 Hadamard matrices for example, the first three entries, α0, α1 and α2 are fixed to be the three smallest
elements in ascending order. Next, by Lemma 2, α3 should be defined by α1 and α2 in order to preserve the linear
property, thus to ”destroy” the linear property and obtain matrices from different equivalence classes, pick an element
from the remaining set in ascending order as the fourth entry α3. After which, α4 is selected to be the smallest element
among the remaining 4 elements and permute the remaining 3 elements to be α5, α6 and α7 respectively. For each
of these arrangement of entries, we check if it is MDS using the algorithm discussed in Section 5.2. We terminate the
algorithm prematurely once an MDS matrix is found, else we conclude that the given set of elements does not generate
an MDS matrix.

It is clear that arranging the entries in this manner will not obtain two Hadamard matrices from the same equiva-
lence class. But one may wonder if it actually does exhaust all the equivalence classes. The answer is yes: Theorem 3
shows that there is a total of 30 equivalence classes for 8×8 Hadamard matrices. On the other hand, from the algorithm
described above, we have 5 choices for α3 and we permute the remaining 3 elements for α5, α6 and α7. Thus, there
are 30 Hadamard matrices that we have to check.

4.2 Equivalence classes of involutory Hadamard-Cauchy matrices

Despite having a new technique to reduce the search space, the computation cost for checking the MDS property
is still too huge when the order of the Hadamard matrix is larger than 8. Therefore, we use the Hadamard-Cauchy
construction for order 16 and 32. Thanks to the Cauchy property, we are ensured that the matrix will be MDS. Hence,
the only problem that remains is the huge search space of possible Hadamard-Cauchy matrices. To prevent confusion
with Hadamard matrices, we denote Hadamard-Cauchy matrices with K.

First, we restate in Algorithm 1 the technique from [20] to build involutory MDS matrices, with some modifications
on the notations for the variables. Although it is not explicitly stated, we can infer from Lemma 6,7 and Theorem 4
from [20] that all Hadamard-Cauchy matrices can be expressed as an output of Algorithm 1.

Algorithm 1 Construction of 2s × 2s MDS matrix or involutory MDS matrix over GF(2r)/p(X).

INPUT: an irreducible polynomial p(X) of GF(2r), integers s, r satisfying s < r and r > 1, a boolean Binvolutory.
OUTPUT: 2s × 2s Hadamard-Cauchy matrix K, where K is involutory if Binvolutory is set True.

procedure ConstructH-C(r, p(X), s, Binvolutory)
select s linearly independent elements x1, x2, x22 , ..., x2s−1 from GF(2r) and construct S, the set of 2s elements xi,

where xi =
⊕s−1

t=0 btx2t for all i ∈ [0, 2s − 1] (with (bs−1, bs−2, ..., b1, b0) being the binary representation of i)
select z ∈ GF(2r) \ S and construct the set of 2s elements yi, where yi = z + xi for all i ∈ [0, 2s − 1]
initialize an empty array ary s of size 2s

if (Binvolutory == False) then
ary s[i] = 1

yi
for all i ∈ [0, 2s − 1]

else
ary s[i] = 1

c·yi
for all i ∈ [0, 2s − 1], where c =

⊕s−1
t=0

1
z+xt

end if
construct the 2s × 2s matrix K, where K[i, j] = ary s[i⊕ j]
return K

end procedure

Similarly to Hadamard matrices, we denote a Hadamard-Cauchy matrix by its first row of elements as hc(h0, h1, ..., h2s−1),
with hi = K[0, i]. To summarize the construction of a Hadamard-Cauchy matrix of order 2s mentioned in Algorithm 1,
we pick an ordered set of s+ 1 linearly independent elements, we call it the basis. We use the first s elements to span
an ordered set S of 2s elements, and add the last element z to all the elements in S. Next, we take the inverse of
each of the elements in this new set and we get the first row of the Hadamard-Cauchy matrix. Lastly, we generate the
matrix based on the first row in the same manner as an Hadamard matrix.



For example, for an 8 × 8 Hadamard-Cauchy matrix over GF(24)/0x13, say we choose x1 = 1, x2 = 2, x4 = 4, we
generate the set S = {0, 1, 2, 3, 4, 5, 6, 7}, choosing z = 8 and taking the inverses in the new set, we get a Hadamard-
Cauchy matrix K = hc(15, 2, 12, 5, 10, 4, 3, 8). To make it involution, we multiply each element by the inverse of the
sum of the elements. However for this instance the sum is 1, hence K is already an involutory MDS matrix.

One of the main differences between the Hadamard and Hadamard-Cauchy matrices is the choice of entries. While
we can choose all the entries for a Hadamard matrix to be lightweight and permute them in search for an MDS
candidate, the construction of Hadamard-Cauchy matrix makes it nontrivial to control its entries efficiently. Although
in [20] the authors proposed a backward re-construction algorithm that finds a Hadamard-Cauchy matrix with some
pre-decided lightweight entries, the number of entries that can be decided beforehand is very limited. For example, for
a Hadamard-Cauchy matrix of order 16, the algorithm can only choose 5 lightweight entries, the weight of the other 11
entries is not controlled. The most direct way to find a lightweight Hadamard-Cauchy matrix is to apply Algorithm 1
repeatedly for all possible basis. We introduce now new equivalence classes that will help us to exhaust all possible
Hadamard-Cauchy matrices with much lesser memory space and number of iterations.

Definition 10 Let K1 and K2 be two Hadamard-Cauchy matrices, we say they are related, K1 ∼HC K2, if one can
be transformed to the other by either one or both operations on the first row of entries:

1. multiply by a nonzero scalar, and
2. H-permutation of the entries.

The crucial property of the construction is the independence of the elements in the basis, which is not affected by
multiplying a nonzero scalar. Hence, we can convert any Hadamard-Cauchy matrix to an involutory Hadamard-Cauchy
matrix by multiplying it with the inverse of the sum of the first row and vice versa. However, permutating the positions
of the entries is the tricky part. Indeed, for the Hadamard-Cauchy matrices of order 8 or higher, some permutations
destroy the Cauchy property, causing it to be non-MDS. Using our previous 8 × 8 example, suppose we swap the
first two entries, K ′ = hc(2, 15, 12, 5, 10, 4, 3, 8), it can be verified that it is not MDS. To understand why, we work
backwards to find the basis corresponding to K ′. Taking the inverse of the entries, we have {9, 8, 10, 11, 12, 13, 14, 15}.
However, there is no basis that satisfies the 8 linear equations for the entries. Thus it is an invalid construction of
Hadamard-Cauchy matrix. Therefore, we consider applying the H-permutation on Hadamard-Cauchy matrix. Since
it is also a Hadamard matrix, the H-permutation preserves its branch number, thus it is still MDS. So we are left to
show that a Hadamard-Cauchy matrix that undergoes H-permutation is still a Hadamard-Cauchy matrix.

Lemma 4 Given a 2s×2s involutory Hadamard-Cauchy matrix K, there are 2s ·
∏s−1
i=0 (2s−2i) involutory Hadamard-

Cauchy matrices that are related to K by the H-permutations of the entries of the first row.

Proof. We first show that aH-permutation of the first row of a Hadamard-Cauchy matrix is equivalent to choosing a dif-
ferent set of basis. Let K = hc( 1

z ,
1

z⊕x1
, 1
z⊕x2

, 1
z⊕x3

, ..., 1
z⊕x2s−1

) be an involutory Hadamard-Cauchy matrix. Under the

type 1 ofH-permutation, for some α ∈ {1, ..., 2s−1}, we haveK ′ = hc( 1
z⊕xα ,

1
z⊕x1⊕xα ,

1
z⊕x2⊕xα ,

1
z⊕x3⊕xα , ...,

1
z⊕x2s−1⊕xα ).

From this, we can see that z′ = z ⊕ xα while the first s elements {x2j},∀j = 0, 1, ..., s − 1, remain unchanged. Since
z′ is not a linear combination of the s elements, we have our s + 1 linearly independent elements. Under the type 2
of H-permutation, since σ(0) = 0, the last element z remain unchanged. Therefore, it is a linear permutation (w.r.t.
XOR) on the set S and the new s elements {x′2j},∀j = 0, 1, ..., s− 1 are still linearly independent. Again, we have our

s+ 1 linearly independent elements. Finally, as mentioned before in Lemma 1 and 3, there are 2s ·
∏s−1
i=0 (2s− 2i) ways

of H-permutations. ut

With that, we can define our equivalence classes of involutory Hadamard-Cauchy matrices.

Definition 11 An equivalence class of involutory Hadamard-Cauchy matrices is a set of Hadamard-Cauchy matrices
satisfying the equivalence relation ∼HC .

In order to count the number of equivalence classes of involutory Hadamard-Cauchy matrices, we use the same
technique for proving Theorem 3. To do that, we need to know the total number of Hadamard-Cauchy matrices that
can be constructed from the Algorithm 1 for a given finite field.

Lemma 5 Given two natural numbers s and r, based on Algorithm 1, there are
∏s
i=0(2r−2i) many 2s×2s Hadamard-

Cauchy matrices over GF(2r).

Proof. As we can see from Algorithm 1, we need to choose s + 1 many linearly independent ordered elements from
GF(2r) to construct a Hadamard-Cauchy matrix. For the (t + 1)-th element, where 0 ≤ t ≤ s, it cannot be a
linear combination of the t previously chosen elements, hence there are 2r − 2t many choices. Therefore, there are
(2r − 1)(2r − 2)(2r − 4)...(2r − 2s) ways to choose s+ 1 linearly independent ordered elements. ut

Theorem 4 Given two positive integers s and r, there are
∏s−1
i=0

2r−1−2i
2s−2i equivalence classes of involutory Hadamard-

Cauchy matrices of order 2s over GF(2r).



Proof. Again, we use the double counting to prove this theorem. We count the total number of distinct Hadamard-
Cauchy matrices that can be generated from Algorithm 1.
Counting 1: by Lemma 5, the total number of distinct Hadamard-Cauchy matrices generated from the algorithm is∏s
i=0(2r − 2i).

Counting 2: for each of the equivalence classes of involutory Hadamard-Cauchy matrices, by Lemma 4, there are 2s ·∏s−1
i=0 (2s−2i) involutory Hadamard-Cauchy matrices that are related. Moreover, for each of the involutory Hadamard-

Cauchy matrices, we can multiply by a nonzero scalar to obtain another related Hadamard-Cauchy matrix, thus there
are another factor 2r − 1 of distinct Hadamard-Cauchy matrices. Therefore, the total number of distinct Hadamard-
Cauchy matrices is

{# of equivalence classes}

(
2s ·

s−1∏
i=0

(2s − 2i)

)
(2r − 1) .

Equating these two expressions together, we get

{# of equivalence classes} =

s−1∏
i=0

2r−1 − 2i

2s − 2i
. ut

In [15], the authors introduced the notion of compact Cauchy matrices which are defined as Cauchy matrices with
exactly 2s distinct elements. These matrices seem to include Cauchy matrices beyond the class of Hadamard-Cauchy
matrices. However, it turns out that the equivalence classes of involutory Hadamard-Cauchy matrices can be extended
to compact Cauchy matrices.

Corollary 3 Any compact Cauchy matrices can be generated from some equivalence class of involutory Hadamard-
Cauchy matrices.

Proof. We count the number of distinct compact Cauchy matrices that can be generated from one equivalence class.
Taking the first row of an equivalence class of involutory Hadamard-Cauchy matrices, we can multiply it by a nonzero
scalar. The inverse of these entries corresponds to a set of 2s nonzero elements. Each of these elements can be defined
to be z and we have a set S and z ∈ GF(2r)\S. Note that S is closed under XOR operation and in the context of [15],
we can regard S as a subgroup of GF(2r) defined under XOR operation. Finally, by fixing the first element of S and
z + S to be 0 and z repectively, we have (2s − 1)! permutation for each set S and z + S. Each arrangement generates
a distinct compact Cauchy matrix. Therefore, considering all equivalence classes, we can obtain(

s−1∏
i=0

2r−1 − 2i

2s − 2i

)
(2r − 1)(2s) ((2s − 1)!)

2

distinct compact Cauchy matrices, which coherent to Theorem 3 of [15]. ut

Note that since the permutation of the elements in S and z + S only results in rearrangement of the entries of the
compact Cauchy matrix, the XOR count is invariant from Hadamard-Cauchy matrix with the same set of entries.

5 Searching for MDS and involutory matrices

In this section, using the previous properties and equivalence classes given in Sections 3 and 4 for several matrix
constructions, we will derive algorithms to search for lightweight involutory MDS matrices. First, we point out that
the circulant construction can not lead to such matrices, then we focus on the case of matrices of small dimension
using the Hadamard construction. For bigger dimension, we add the Cauchy property to the Hadamard one in order to
guarantee that the matrix will be MDS. We recall that, similarity to a circulant matrix, an Hadamard matrix will have
the interesting property that each row is a permutation of the first row, therefore allowing to reuse the multiplication
circuit to save implementation costs.

5.1 Circulant MDS involution matrix does not exist

The reason why we do not consider circulant matrices as potential candidates for MDS involution matrices is simple:
it simply does not exist. In [23], the authors proved that circulant matrices of order 4 cannot be simultaneously MDS
and involutory. And recently [21] proved that generic circulant MDS involutory matrices do not exist.



5.2 Small dimension lightweight MDS involution matrices

The computation complexity for checking if a matrix is MDS and the huge search space are two main complexity
contributions to our exhaustive search algorithm for lightweight Hadamard MDS matrices. The latter is greatly reduced
thanks to our equivalence classes and we now need an efficient algorithm for checking the MDS property. In this section,
using properties of Hadamard matrix, we design a simple algorithm that can verify the MDS property faster than
for usual matrices. First, let us prove some results using Proposition 2. Note that Lemma 6 and Corollary 4 are not
restricted to Hadamard matrices. Also, Corollary 4 is the contra-positive of Lemma 6.

Lemma 6 Given a k × k matrix M , there exists a l× l singular submatrix if and only if there exists a vector, v 6= 0,
with at most l nonzero components such that vM = u and the sum of nonzero components in v and u is at most k.

Proof. Suppose there exists a l× l singular submatrix, by the first statement of Proposition 2, M is not MDS and thus
from the second statement, there exists k columns of [Ik|M ] that are linearly dependent, in particular, k − l columns
from Ik and l columns from M . Let L be the square matrix comprising these k linearly dependent columns. From
linear algebra, there exists nonzero vector, v, such that the output is a zero vector, vL = 0. For the columns from Ik,
there is exactly one 1 and 0 for the other entries, this implies that the components of v corresponding to these columns
are zero, else the output will be nonzero. Therefore, there are at most l nonzero components in v. Now, let us consider
vM = u, for the l columns of M that are also in L, the corresponding output components are zero, as vL = 0. Thus,
there are at most k− l nonzero components in u. Hence, the sum of nonzero components in v and u is at most k. The
converse is similar, we consider v[Ik|M ] = [v|u], since there are at most k nonzero components in [v|u], we pick k − l
columns of Ik and k columns of M corresponding to the zero components in [v|u] to form a singular square matrix L.
The determinant of L is equal to some l × l submatrix of M , which is also singular. ut

Corollary 4 Given a k× k matrix M , the sum of nonzero components of the input and output vector is at least k+ 1
for any input vector v with l nonzero components if and only if all l × l submatrices of M are nonsingular.

One direct way for checking the MDS property is to compute the determinant of all the submatrices of M and
terminates the algorithm prematurely by returning False when a singular submatrix is found. If no such submatrix
has been found among all the possible submatrices, the algorithm can return True. Using the fact that the product
of a Hadamard matrix with itself is a multiple of an identity matrix, we can cut down the number of submatrices to
be checked with the following proposition.

Proposition 4 Given a k×k Hadamard matrix H with the sum c of first row being nonzero (c 6= 0), if all submatrices
of order l ≤ k

2 are nonsingular, then H is MDS.

Proof. Suppose not, there exists submatrix of order l ≥ k
2 + 1 that is singular. By Lemma 6, there exists a vector,

v 6= 0, with at most l nonzero components such that vH = u and u has at most k − l nonzero components. Right
multiply H to the equation and we get c2v = uH, where c 6= 0, hence the number of nonzero component of c2v is the
same as v. However, since u has k − l ≤ k

2 nonzero components, by Corollary 4, the sum of nonzero components is at
least k + 1. This contradicts that v has at most l nonzero components. ut

Fig. 1: The four quadrants of Hadamard matrix.

We can further reduce the computation complexity using
the fact that Hadamard matrices are bisymmetric. Given a
Hadamard matrix, we have four regions dissected by the left
and right diagonal, namely top, left, right and bottom quadrant.
For convention, we let the diagonal entries to be in both quad-
rants. See Figure 1 for illustration, where the top four entries
”a” belong to both top and left quadrants, while the bottom
four ”a” belong to both bottom and right quadrant.

Proposition 5 Given a k × k Hadamard matrix H, if all sub-
matrices L with leading entry L[0, 0] in the top quadrant are
nonsingular, then H is MDS.

Proof. It is known that the determinant of a matrix remains unchanged when it undergoes left or right diagonal
reflection. Thus, it is sufficient to show that for any submatrix, it corresponds to some submatrix with the leading
entry in top quadrant. This can be shown by looking at the reflection through the left and/or right diagonal. Consider
the submatrices case by case:

• case A: the leading entry is in left quadrant. Through the left diagonal reflection, we can see that it is same as a
submatrix with leading entry in top quadrant. Refer to Figure 2a, the red submatrix is reflected at the blue matrix
with leading entry in top quadrant.



• case B1: the leading entry is not in left quadrant and ending entry is in right quadrant. Through the right diagonal
reflection, the ending entry L[l− 1, l− 1] of red submatrix is reflected to the leading entry in the top quadrant of
the blue submatrix, see Figure 2b. Since the determinant does not change, the red submatrix will be nonsingular
if the blue matrix is nonsingular.

• case B2: the leading entry is not in left quadrant and ending entry is in bottom quadrant. From Figure 2c, we see
that through left diagonal reflection, the ending entry is now in the right quadrant, which is the case B1. ut

(a) Case A. (b) Case B1. (c) Case B2.

Fig. 2: Submatrices Reflections

Thanks to Propositions 4 and 5, our algorithm for checking the MDS property of Hadamard matrices is now much
faster than a naive method. Namely, given a 2s × 2s Hadamard matrix, the algorithm to test its MDS property can
be as follows. First, we check that all entries are nonzero and for l = 2, . . . , 2s−1 we check that the determinant of
l× l submatrices with leading entry in top quadrant is nonzero. If one submatrix fails, we output False. Once all the
submatrices are checked, we can output True.

Using this algorithm as the core procedure for checking the MDS property, we can find the lightest-weight MDS
involution Hadamard matrix by choosing a set of elements that sum to 1 with the smallest XOR count, permute the
entries as mentioned in Section 4.1 and use this core procedure to check if it is MDS. If all equivalence classes of
Hadamard matrices are not MDS, we swap some element in the set with another element with a slightly higher XOR
count and repeat the process until we find the first MDS involution Hadamard matrix with the lowest possible XOR
count. Eventually, we found the lightest-weight MDS involution Hadamard matrix of order 4 and 8 over GF(24) and
GF(28), which can be found in Table 1 in Section 7. We emphasize that our results close the discussions on MDS
involution Hadamard matrix of order 4 and 8, since our technique allows to take into account of all possible matrices.

5.3 Large dimension lightweight MDS involution matrices

The algorithm computation complexity grows exponentially with the matrix dimension, it is difficult to go to matrices
of higher order. For that reason, we reduce the search space from Hadamard to Hadamard-Cauchy matrices, which
guarantee the MDS property. Nevertheless, it is not feasible to generate and store all possible Hadamard-Cauchy
matrices. For 16 × 16 Hadamard-Cauchy matrices over GF(28), by Lemma 5 we know there are almost a trillion
distinct candidates. This is where the idea of equivalence classes comes in handy again. By Theorem 4, instead of
storing over 9.7× 1011 matrices, all we need is to find the 11811 equivalence classes. Even if memory space is not an
issue, using Algorithm 1 to exhaustively search for all Hadamard-Cauchy matrices requires about 239.9 iterations. In
this subsection, we propose a deterministic and randomized algorithm that only takes on average of 216.9 iterations to
find all the equivalence classes, which is equivalent to finding all possible Hadamard-Cauchy matrices.

First, we present two statements that are useful in designing the algorithm.

Lemma 7 Based on Algorithm 1, given a basis of s + 1 ordered elements {x1, x2, x22 , ..., x2s−1 , z}, any permutation
of the first s elements {σ(x1), σ(x2), σ(x22), ..., σ(x2s−1), z} will form a Hadamard-Cauchy matrix that belongs to the
same equivalence class.

Proof. Since we are taking the span of the ordered set {x1, x2, x22 , ..., x2s−1} and adding z to the span, it is obvious
that permuting {x2i} will only permute the order of the entries of K. ut

Proposition 6 Given two positive integers s and r, where s < r, doing exhaustive search through 1 ≤ x1 < x2 < x22 <
... < x2s−1 ≤ 2r and 1 ≤ z ≤ 2r is sufficient to find all possible equivalence classes of involutory Hadamard-Cauchy
matrices.



Algorithm 2 Finding all 2s × 2s equivalence classes of involutory Hadamard-Cauchy matrices over GF(2r)/p(X).

INPUT: an irreducible polynomial p(X) of GF(2r), integers s, r satisfying s < r and r > 1.
OUTPUT: a list of equivalence classes of involutory Hadamard-Cauchy matrix.

procedure GenECofInvH-C(r, p(X), s)

compute the total number of equivalence classes, EC =
∏s−1

i=0
2r−1−2i

2s−2i

initialize an empty set of arrays list EC
while (sizeof(list EC) 6= EC) do

select s linearly independent elements x1, x2, x22 , ..., x2s−1 from GF(2r)/p(X) in ascending order
select element z as linearly independent of x1, x2, x22 , ..., x2s−1

temp mat = ConstructH-C*(r, p(X), s,True, x1, x2, x22 , ..., x2s−1 , z)
if temp mat is not a permutation of any matrix in list EC then

store temp mat into list EC
end if

end while
return list EC

end procedure

Proof. Any linearly independent ordered set of elements {x1, x2, x22 , ..., x2s−1} that are not in ascending order is
simply some permutation of a set in ascending order. By Lemma 7, it forms a Hadamard-Cauchy matrix of the same
equivalence class. ut

We describe our search method in Algorithm 2 and one can see that it uses most of Algorithm 1 as core procedure.
We denote ConstructH-C* the procedure ConstructH-C from Algorithm 2 where the values x1, x2, x22 , ..., x2s−1

and z are given as inputs instead of chosen in the procedure. We first choose s+ 1 linearly independent elements and
apply Algorithm 1 to generate an involutory Hadamard-Cauchy matrix. We initialise an array temp mat and a list
list EC to empty. Then, temp mat is the matrix considered at the current iteration, it will be checked against list EC
which is the list of equivalence classes of involutory Hadamard-Cauchy matrices that have been found. If temp mat
is not a permutation of any matrix in list EC, then a new equivalence class is found and temp mat will be stored in
list EC. When all the equivalence classes are found, we terminates the algorithm, which will dramatically cut down
the number of iterations required.

From a representative of an equivalence class, one can obtain all the involutory Hadamard-Cauchy matrices of the
same equivalence class through H-permutations. Note that the H-permutation is also applicable to non-involutory
Hadamard-Cauchy matrices.

We remark that for 2 × 2 and 4× 4 Hadamard-Cauchy matrices, any permutation of the equivalence class is still
an involutory Hadamard-Cauchy matrix.

Notice that Algorithm 2 is a deterministic search for the equivalence classes. To further reduce the iterations needed,
we propose to choose the s+ 1 elements randomly. Using this randomized search, it takes about 216.9 iterations before
finding all the equivalence classes. Once all the equivalence classes of involutory Hadamard-Cauchy matrices are found,
we can check which matrix has the lightest-weight.

Using the randomized search algorithm, we found the lightest-weight involution Hadamard-Cauchy matrix of order
16 and 32 over GF(28), which can be found in Table 1.

6 Searching for MDS matrices

The disadvantage of using non-involution matrices is that its inverse may have a high computation cost. But if the
inverse is not required, non-involution matrices might be lighter than involutory matrices. In this paper, we look at
encryption only and do not consider the reuse of component for encryption/decryption (which can be studied in future
work). Note that the inverse of the matrix would not be required for popular constructions such as a Feistel network,
or a CTR encryption mode.

6.1 Circulant matrices

As the discussion on lightweight MDS circulant matrix is well-explored in [26], we focus on Hadamard-based matrix
and extend the exhaustive search for from involutory to non-involutory lightest-weight MDS matrix.

6.2 Small dimension lightweight MDS matrices

The results in Section 4.1 and 5.2 can also be applied on non-involution Hadamard matrices. Thus the method of
finding a lightweight MDS involution matrix is basically the same. We pick a set of low XOR count nonzero elements



that does not sum to 0, else it would be non-MDS, and apply the permutation method which is discussed at the end
of Section 5.2 to check through all equivalence classes of Hadamard matrices.

6.3 Large dimension lightweight MDS matrices

After finding all the equivalence classes of involutory Hadamard-Cauchy matrices using the Algorithm 2, we can
conveniently use this collection of equivalence classes to find lightest-weight non-involutory Hadamard-Cauchy matrix.
That is to multiply by a nonzero scalar to each equivalence classes to generate all possible Hadamard-Cauchy matrices
up to permutation. In this way, it is more efficient than exhaustive search on all possible Hadamard-Cauchy matrices
as we eliminated all the permutations of the Hadamard-Cauchy matrices that have the same XOR count.

7 Results

We first emphasize that although in [20, 15] the authors proposed methods to construct lightweight matrices, the
choice of the entries are limited as mentioned in Section 4.2. This is due to the nature of the Cauchy matrices where
the inverse of the elements are used during the construction, which makes it non-trivial to search for lightweight
Cauchy matrices7. However, using the concept of equivalence classes, we can exhaust all the matrices and pick the
lightest-weight matrix.

We applied the algorithms of Section 5 to construct lightweight MDS involutions over GF(28). We list them in
Table 1 and we can see that they are much lighter than known MDS involutions like the KHAZAD and ANUBIS, previous
Hadamard-Cauchy matrices [6, 20] and compact Cauchy matrices [15]. In Table 2, we list the GF(28) MDS matrices
we found using the methods of Section 6 and show that they are lighter than known MDS matrices like the AES,
WHIRLPOOL and WHIRLWIND matrices [17, 8, 7]. We also compare with the 14 lightweight candidate matrices C0 to C13

for the WHIRLPOOL hash functions suggested during the NESSIE workshop [32, Section 6]. Both Tables 1 and 2 are
comparing matrices that are explicitly provided in the papers. Recently, Gupta et al. [21] constructed some circulant
matrices that is lightweight for both itself and its inverse. However we do not compare them in our table because
their approach minimizes the number of XORs, look-up tables and temporary variables, which might be optimal for
software but not for hardware implementations based purely on XOR count.

By Theorem 2 in Section 2, we only need to apply the algorithms from Section 5 and Section 6 for half the
representations of GF(28) when searching for optimal lightweight matrices. And as predicted by the discussion after
Theorem 1, the lightweight matrices we found in Tables 1, 2 and 3 do come from GF(28) and GF(24) representations
with higher standard deviations.

We provide in the first column of the result Tables 1, 2 and 3 the type of the matrices. They can be circulant,
Hadamard or Cauchy-Hadamard. The subfield-Hadamard construction is based on the method of [26, Section 7.2]
which we explain here. Consider the MDS involution M = had(0x1, 0x4, 0x9, 0xd) over GF(24)/0x13 in the first row
of Table 1. Using the method of [26, Section 7.2], we can extend it to a MDS involution over GF(28) by using
two parallel copies of Q. The matrix is formed by writing each input byte xj as a concatenation of two nibbles
xj = (xLj ||xRj ). Then the MDS multiplication is computed on each half (yL1 , y

L
2 , y

L
3 , y

L
4 ) = M · (xL1 , xL2 , xL3 , xL4 ) and

(yR1 , y
R
2 , y

R
3 , y

R
4 ) = M ·(xR1 , xR2 , xR3 , xR4 ) over GF(24). The result is concatenated to form four output bytes (y1, y2, y3, y4)

where yj = (yLj ||yRj ).

We could have concatenated different submatrices and this is done in the WHIRLWIND hash function [7], where the
authors concatenated four MDS submatrices over GF(24) to form (M0|M1|M1|M0), an MDS matrix over GF(216).
The submatrices are non-involutory Hadamard matrices M0 = had(0x5, 0x4, 0xa, 0x6, 0x2, 0xd, 0x8, 0x3) and M1 =
(0x5, 0xe, 0x4, 0x7, 0x1, 0x3, 0xf, 0x8) defined over GF(24)/0x13. For fair comparison with our GF(28) matrices in Ta-
ble 2, we consider the corresponding WHIRLWIND-like matrix (M0|M1) over GF(28) which takes half the resource of the
original WHIRLWIND matrix and is also MDS.

The second column of the result tables gives the finite field over which the matrix is defined, while the third column
displays the first row of the matrix where the entries are bytes written in hexadecimal notation. The fourth column
gives the XOR count to implement the first row of the n×n matrix. Because all subsequent rows are just permutations
of the first row, the XOR count to implement the matrix is just n times this number. For example, to compute the
XOR count for implementing had(0x1, 0x4, 0x9, 0xd) over GF(24)/0x13, we consider the expression for the first row
of matrix multiplication 0x1 · x1 ⊕ 0x4 · x2 ⊕ 0x9 · x3 ⊕ 0xd · x4. From Table 8 of Appendix D, the XOR count of
multiplication by 0x1, 0x4, 0x9 and 0xd are 0, 2, 1 and 3, which gives us a cost of (0 + 2 + 1 + 3) + 3× 4 = 18 XORs to
implement one row of the matrix (the summand 3× 4 account for the three XORs summing the four nibbles). For the
subfield construction over GF(28), we need two copies of the matrix giving a cost of 18× 2 = 36 XORs to implement
one row.

7 Using direct construction, there is no clear implication for the choice of the elements αi and βj that will generate lightweight
entries cij . On the other hand, every lightweight entry chosen beforehand will greatly restrict the choices for the remaining
entries if one wants to maintain two disjoint sets of elements {αi} and {βj}.



We also applied the algorithms from Section 5 and Section 6 to find lightweight MDS involution and non-involution
matrices of order 4 and 8 over GF(24), these matrices are listed in Table 3. By Corollary 2 and the structure of
Hadamard matrix, the first row of an MDS Hadamard matrix must be pairwise distinct. Therefore, there does not
exist Hadamard matrix of order larger than 8 over GF(24). Due to the smaller dimension of the finite field, the XOR
counts of the matrices over GF(24) are approximately half of those over GF(28).

The application of our work has already been demonstrated in Joltik, a lightweight and hardware-oriented au-
thenticated encryption scheme that uses our lightweight MDS involution matrix of order 4 over GF(24) with XOR
count as low as 18. On the other hand, the diffusion matrix from Prøst [25] was designed with a goal in mind to
minimise the number of XOR operations to perform for implementing it. By Theorem 2 in Section 2 and reference to
Table 4, we observe that these two matrices are in fact the counterpart of each other in their respective finite fields.
Thus, they are essentially the same lightest matrix according to our metric.

In addition to Table 3, the subfield-Hadamard constructions in Tables 1 and 2 also capture the lightweightness of
our GF(24) matrices, and we show that our constructions are lighter than known ones. For example in Table 2, the
GF(24) matrices M0 and M1 used in the WHIRLWIND hash function has XOR count 61 and 67 respectively while our
Hadamard matrix had(0x1, 0x2, 0x6, 0x8, 0x9, 0xc, 0xd, 0xa) has XOR count 54.

With our work, we can now see that one can use involutory MDS for almost the same price as non-involutory MDS.
For example in Table 1, the previous 4× 4 MDS involution from [20] is about 3 times heavier than the AES matrix8;
but in this paper, we have used an improved search technique to find an MDS involution lighter than the AES and
ANUBIS matrix. Similarly, we have found 8 × 8 MDS involutions which are much lighter than the KHAZAD involution
matrix, and even lighter than lightweight non-involutory MDS matrix like the WHIRLPOOL matrix. Thus, our method
will be useful for future construction of lightweight ciphers based on involutory components like the ANUBIS, KHAZAD,
ICEBERG and PRINCE ciphers.

Table 1: Comparison of MDS Involution Matrices over GF(28)
(the factor 2 appearing in some of the XOR counts is due to the fact that we have to implement two copies of the

matrices)

matrix type finite field coefficients of the first row XOR count reference

4× 4 matrix

Subfield-Hadamard GF(24)/0x13 (0x1, 0x4, 0x9, 0xd) 2× (6 + 3× 4) = 36 Section 5.2

Hadamard GF(28)/0x165 (0x01, 0x02, 0xb0, 0xb2) 16 + 3× 8 = 40 Section 5.2

Hadamard GF(28)/0x11d (0x01, 0x02, 0x04, 0x06) 22 + 3× 8 = 46 ANUBIS [5]

Compact Cauchy GF(28)/0x11b (0x01, 0x12, 0x04, 0x16) 54 + 3× 8 = 78 [15]

Hadamard-Cauchy GF(28)/0x11b (0x01, 0x02, 0xfc, 0xfe) 74 + 3× 8 = 98 [20]

8× 8 matrix

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x03, 0x91, 0x04, 0x70, 0x05, 0xe1) 46 + 7× 8 = 102 Section 5.2

Subfield-Hadamard GF(24)/0x13 (0x2, 0x3, 0x4, 0xc, 0x5, 0xa, 0x8, 0xf) 2× (36 + 7× 4) = 128 Section 5.2

Hadamard GF(28)/0x11d (0x01, 0x03, 0x04, 0x05, 0x06, 0x08, 0x0b, 0x07) 98 + 7× 8 = 154 KHAZAD [6]

Hadamard-Cauchy GF(28)/0x11b (0x01, 0x02, 0x06, 0x8c, 0x30, 0xfb, 0x87, 0xc4) 122 + 7× 8 = 178 [20]

16× 16 matrix

Hadamard-Cauchy GF(28)/0x1c3
(0x08, 0x16, 0x8a, 0x01, 0x70, 0x8d, 0x24, 0x76,

258 + 15× 8 = 378 Section 5.3
0xa8, 0x91, 0xad, 0x48, 0x05, 0xb5, 0xaf, 0xf8)

Hadamard-Cauchy GF(28)/0x11b
(0x01, 0x03, 0x08, 0xb2, 0x0d, 0x60, 0xe8, 0x1c,

338 + 15× 8 = 458 [20]
0x0f, 0x2c, 0xa2, 0x8b, 0xc9, 0x7a, 0xac, 0x35)

32× 32 matrix

Hadamard-Cauchy GF(28)/0x165

(0xd2, 0x06, 0x05, 0x4d, 0x21, 0xf8, 0x11, 0x62,

610 + 31× 8 = 858 Section 5.3
0x08, 0xd8, 0xe9, 0x28, 0x4b, 0x96, 0x10, 0x2c,
0xa1, 0x49, 0x4c, 0xd1, 0x59, 0xb2, 0x13, 0xa4,
0x03, 0xc3, 0x42, 0x79, 0xa0, 0x6f, 0xab, 0x41)

Hadamard-Cauchy GF(28)/0x11b

(0x01, 0x02, 0x04, 0x69, 0x07, 0xec, 0xcc, 0x72,

675 + 31× 8 = 923 [20]
0x0b, 0x54, 0x29, 0xbe, 0x74, 0xf9, 0xc4, 0x87,
0x0e, 0x47, 0xc2, 0xc3, 0x39, 0x8e, 0x1c, 0x85,
0x58, 0x26, 0x1e, 0xaf, 0x68, 0xb6, 0x59, 0x1f)

8 We acknowledge that there are implementations that requires lesser XOR to implement directly the entire circulant AES

matrix. However, the small savings obtained on XOR count are completely outweighed by the extra memory cost required
for such an implementation in terms of temporary variables.



Table 2: Comparison of MDS Matrices over GF(28)
(the factor 2 appearing in some of the XOR counts is due to the fact that we have to implement two copies of the

matrices)

matrix type finite field coefficients of the first row XOR count reference

4× 4 matrix

Subfield-Hadamard GF(24)/0x13 (0x1, 0x2, 0x8, 0x9) 2× (5 + 3× 4) = 34 Section 6.2

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x04, 0x91) 13 + 3× 8 = 37 Section 6.2

Circulant GF(28)/0x11b (0x02, 0x03, 0x01, 0x01) 14 + 3× 8 = 38 AES [17]

8× 8 matrix

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x03, 0x08, 0x04, 0x91, 0xe1, 0xa9) 40 + 7× 8 = 96 Section 6.2

Circulant GF(28)/0x11d (0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09) 49 + 7× 8 = 105 WHIRLPOOL [8]

Subfield-Hadamard GF(24)/0x13 (0x1, 0x2, 0x6, 0x8, 0x9, 0xc, 0xd, 0xa) 2× (26 + 7× 4) = 108 Section 6.2

Circulant GF(28)/0x11d WHIRLPOOL-like matrices between 105 to 117 [32]

Subfield-Hadamard GF(24)/0x13 WHIRLWIND-like matrix 33 + 39 + 2× 7× 4 = 128 [7]

16× 16 matrix

Hadamard-Cauchy GF(28)/0x1c3
(0xb1, 0x1c, 0x30, 0x09, 0x08, 0x91, 0x18, 0xe4,

232 + 15× 8 = 352 Section 6.3
0x98, 0x12, 0x70, 0xb5, 0x97, 0x90, 0xa9, 0x5b)

32× 32 matrix

Hadamard-Cauchy GF(28)/0x1c3

(0xb9, 0x7c, 0x93, 0xbc, 0xbd, 0x26, 0xfa, 0xa9,

596 + 31× 8 = 844 Section 6.3
0x32, 0x31, 0x24, 0xb5, 0xbb, 0x06, 0xa0, 0x44,
0x95, 0xb3, 0x0c, 0x1c, 0x07, 0xe5, 0xa4, 0x2e,
0x56, 0x4c, 0x55, 0x02, 0x66, 0x39, 0x48, 0x08)

Table 3: Comparison of MDS (Involution) Matrices over GF(24)

matrix type finite field coefficients of the first row XOR count reference

4× 4 matrix

Involutory Hadamard GF(24)/0x13 (0x1, 0x4, 0x9, 0xd) 6 + 3× 4 = 18 Section 5.2, Joltik [22]

Involutory Hadamard GF(24)/0x19 (0x1, 0x2, 0x6, 0x4) 6 + 3× 4 = 18 Prøst [25]

Hadamard GF(24)/0x13 (0x1, 0x2, 0x8, 0x9) 5 + 3× 4 = 17 Section 6.2

8× 8 matrix

Involutory Hadamard GF(24)/0x13 (0x2, 0x3, 0x4, 0xc, 0x5, 0xa, 0x8, 0xf) 36 + 7× 4 = 64 Section 5.2

Hadamard GF(24)/0x13 (0x1, 0x2, 0x6, 0x8, 0x9, 0xc, 0xd, 0xa) 26 + 7× 4 = 54 Section 6.2

Hadamard GF(24)/0x13 (0x5, 0x4, 0xa, 0x6, 0x2, 0xd, 0x8, 0x3) 33 + 7× 4 = 61 [7]

Hadamard GF(24)/0x13 (0x5, 0xe, 0x4, 0x7, 0x1, 0x3, 0xf, 0x8) 39 + 7× 4 = 67 [7]
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berger, P. Rombouts, S. S. Thomsen, and T. Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In ASIACRYPT, pages 208–225, 2012.

14. C. De Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A Family of Small and Efficient Hardware-
Oriented Block Ciphers. In CHES, pages 272–288, 2009.

15. T. Cui, C.i Jin, and Z. Kong. On compact cauchy matrices for substitution-permutation networks. IEEE Transactions on
Computers, 99(PrePrints):1, 2014.

16. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In Eli Biham, editor, FSE, volume 1267
of LNCS, pages 149–165. Springer, 1997.

17. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer, 2002.
18. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight Hash Functions. In CRYPTO,

pages 222–239, 2011.
19. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block Cipher. In CHES, pages

326–341, 2011.
20. Kishan Chand Gupta and Indranil Ghosh Ray. On Constructions of Involutory MDS Matrices. In AFRICACRYPT, pages

43–60, 2013.
21. Kishan Chand Gupta and Indranil Ghosh Ray. On Constructions of Circulant MDS Matrices for Lightweight Cryptography.

In ISPEC, pages 564–576, 2014.
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A Proof of Theorem 1

We are interested in multiplying an arbitrary element α by β where α, β ∈ GF(2r). This can be done using a
multiplication matrix Mβ ∈ GF(2)r×r, which by definition satisfies

(Xr−1, Xr−2, . . . , 1)Mβ = (Xr−1β,Xr−2β, . . . , β).

To count the number of XORs needed to multiply α by β, it is enough to count the number of 1’s per column of Mβ :
if there are i 1’s, the number of XORs needed is i− 1.

Example 1 Set r = 2, with irreducible polynomial p(X) = X2 +X + 1. Then

Mβ =

[
b1 b0 + b1
b0 b1

]
for β = b1X + b0. Thus



• when (b1, b0) = (0, 0), the number of XORs is 0,
• when (b1, b0) = (0, 1), the number of XORs is 0,
• when (b1, b0) = (1, 0), the number of XORs is 1,
• when (b1, b0) = (1, 1), the number of XORs is 1.

This corresponds to the Table 6 in Appendix D.

Thus to count the total number of XORs needed when summing over all elements β, it is enough to count the
number of 1’s in the columns of Mβ when summing over all possible β. The matrix Mβ of course depends on the
irreducible polynomial p(X), however when summing over all β, the number of 1’s that appears in each column does
not depend on p(X), as we prove next. The first column of Mβ is (br−1, . . . , b0) for β = br−1X

r−1 + . . .+ b1X + b0.

Lemma 8 The set {(br−1, . . . , b0), bi ∈ GF(2), i = 0, . . . , r − 1} is in bijection with every column of Mβ.

Proof. This follows from GF(2r) being a finite field, thus multiplication by any nonzero element is invertible. ut

Corollary 5 The number of XORs needed when summing over all β is r times the number counted in the first column
of Mβ.

Lemma 9 The number of XORs counted in the first column of Mβ is
∑r
i=2

(
r
i

)
(i− 1).

Proof. It is enough to count the number of 1’s in the vector (br−1, . . . , b0) when all the bi run through GF(2),
i = 0, . . . , r − 1. There are

(
r
i

)
possible patters of i 1’s among the r coefficients, and whenever there are i 1’s, the

number of XORs needed is (i− 1). ut

Corollary 6 The total number of XORs needed when summing over all β is r
∑r
i=2

(
r
i

)
(i− 1).

Lemma 10 We have that
∑r
i=2

(
r
i

)
(i− 1) =

∑r
i=2 2i−2(i− 1).

Proof. 1. It is known that
∑n
k=1 k

(
n
k

)
= n2n−1. Thus

∑r
i=2

(
r
i

)
(i− 1) = r2r−1 − 2r + 1.

2. It is known that
∑n
k=1 kx

k = x−(n+1)xn+1+nxn+2

(x−1)2 .

Thus, we have
∑r
i=2 2i−2(i− 1) = 1− r2r−1 + (r − 1)2r. ut

Corollary 7 The number of XORs needed when summing over all β is r
∑r
i=2 2i−2(i− 1).

B Proof of Theorem 2

Proof. We already mentioned in the introduction that the finite field GF(2r)/p(X) is isomorphic to polynomials
in GF(2)[X] modulo the irreducible polynomial p(X). Since p(X) = 0 in this field, we may alternatively describe
GF(2r)/p(X) as the field extension of GF(2), obtained by adding a root α of p(X) to GF(2), in which case we write
(and say) that GF(2r)/p(X) is isomorphic to GF(2)(α), with p(α) = 0. Similarly GF(2r)/ 1

p (X) contains an element,

say β such that 1
p (β) = 0, and GF(2r)/ 1

p (X) is isomorphic to GF(2)(β).

Since

0 =
1

p
(β) = βrp(β−1),

it must be that p(β−1) = 0. Write a generic element of GF(2)(α) as a0 + a1α+ . . .+ ar−1α
r−1, ai ∈ GF(2) by fixing

{1, . . . , αr−1} as GF(2)-basis, and similarly a generic element of GF(2)(β) as b0 + b1β+ . . .+ br−1β
r−1, bi ∈ GF(2), by

fixing {1, . . . , βr−1} as GF(2)-basis. Define ψ : GF(2)(α)→ GF(2)(β) by ψ :
∑r−1
i=0 aiα

i 7→
∑r−1
i=0 aiβ

−i, i = 0, . . . , r−1.
Then ψ is a field isomorphism. Indeed

ψ(

r−1∑
i=0

aiα
i +

r−1∑
i=0

a′iα
i) = ψ(

r−1∑
i=0

(ai + a′i)α
i) =

r−1∑
i=0

(ai + a′i)β
−i = ψ(

r−1∑
i=0

aiα
i) + ψ(

r−1∑
i=0

a′iα
i)

Also, to show that

ψ(

r−1∑
i=0

aiα
i
r−1∑
i=0

a′iα
i) = ψ(

r−1∑
i=0

aiα
i)ψ(

r−1∑
i=0

a′iα
i)

it is enough to show that ψ(αr) = ψ(α)r. Write p(X) = p0 + p1X + . . .+ pr−1X
r−1 +Xr. Now, recalling that α is a

root of p(X)

ψ(αr) = ψ(p0 + p1α+ . . .+ pr−1α
r−1) = p0 + p1ψ(α) + . . .+ pr−1ψ(α)r−1 = p0 + p1β

−1 + . . .+ pr−1β
−r+1,



while
ψ(α)r = β−r = p0 + p1β

−1 + . . .+ pr−1β
−r+1

since p(β−1) = 0. Note that ψ is necessarily injective since GF(2)(α) is a field, ψ is then necessarily surjective since
|GF(2)(β)| is finite. This shows that ψ is a field isomorphism.

Now α may or not be a primitive element. Recall that α is primitive if it is such that α2r−1 = 1 and there is no i,
0 < i < 2r − 1 such that αi = 1. Suppose first that α is a primitive element of GF(2)(α) (this happens for example
if 2r − 1 is prime). Take again a generic element of GF(2)(α) as a0 + a1α+ . . .+ ar−1α

r−1, ai ∈ GF(2) by fixing the
same GF(2)-basis, that is {1, . . . , αr−1}. To compute the XOR of αj in GF(2)(α) (or equivalently in GF(2r)/p(X)),
compute

(a0 + a1α+ . . .+ ar−1α
r−1)αj , 1 ≤ j ≤ 2r − 1

since α is primitive. The distribution of XOR counts obtained that way is the same as the distribution of XOR counts
while computing instead

(a0 + a1α
−1 + . . .+ ar−1α

−(r−1))αj =

r−1∑
i=0

dijα
−i

where dij , 0 ≤ i ≤ r−1, decides the number of XOR of αj , 1 ≤ j ≤ 2r−1. Indeed, the sets {
∑r−1
i=0 aiα

i+j , 1 ≤ j ≤ 2r−1}
and {

∑r−1
i=0 aiα

−i+j , 1 ≤ j ≤ 2r − 1} are the same, up to relabeling the ai and recalling that α2r−1 = 1. Furthermore,
the computations of αi and α−i need the same number of XOR, since p(α) and α−rp(α) have the same number of
non-zero coefficients. Then

ψ((a0 + a1α
−1 + . . .+ ar−1α

−(r−1))αj) = (a0 + a1ψ(α)−1 + . . .+ ar−1ψ(α)−(r−1))ψ(αj)

= (a0 + a1β + . . .+ ar−1β
r−1)β−j

=

r−1∑
i=0

dijβ
i

thus the number of XOR of the element β−j in GF(2)(β) in the GF(2)-basis {1, . . . , βr−1} is the same as the XOR
count of αj in GF(2)(α).

If α is not primitive, take α′ a primitive element of GF(2)(α), write it in the GF(2)-basis {1, α, . . . , αr−1} and
apply the same argument on αi.

Consider for instance the finite field GF(24)/0x13 and GF(24)/0x19, corresponding to the polynomials p(X) =
X4 +X+ 1 and 1

p (X) = X4 +X3 + 1 respectively. In GF(24)/0x13, 2 is a primitive element. In GF(24)/0x19, compute

the inverse of the polynomial X, which is X3 + X2 since X(X3 + X2) = X4 + X3 = 1 (mod X4 + X + 1). The
isomorphism ψ is thus sending 2 to 12. ut



C Primitive mapping between finite fields

Table 4: Primitive mapping from GF(24)/0x13 to GF(24)/0x19

order
0x13 0x19

(10011) (11001)
x XOR x XOR

α 2 1 12 1

α2 4 2 6 2

α3 8 3 3 3

α4 3 5 13 5

α5 6 5 10 5

α6 12 5 5 5

α7 11 6 14 6

order
0x13 0x19

(10011) (11001)
x XOR x XOR

α8 5 6 7 6

α9 10 8 15 8

α10 7 9 11 9

α11 14 8 9 8

α12 15 6 8 6

α13 13 3 4 3

α14 9 1 2 1

Table 5: Primitive mapping from finite field to its reciprocal finite field

finite field p(X) 1
p
(X)

primitive
mapping

GF(22) 0x7 - φ : 2 7→ 3

GF(23) 0xb 0xd φ : 2 7→ 6

GF(24)
0x13 0x19 φ : 2 7→ 12
0x1f - φ : 3 7→ 5

GF(25)
0x25 0x29 φ : 2 7→ 20
0x3d 0x2f φ : 2 7→ 23
0x37 0x3b φ : 2 7→ 29

GF(26)

0x43 0x61 φ : 2 7→ 48
0x57 0x75 φ : 3 7→ 59
0x67 0x73 φ : 2 7→ 57
0x49 - φ : 3 7→ 37

GF(27)

0x83 0xc1 φ : 2 7→ 96
0xab 0xd5 φ : 2 7→ 106
0x8f 0xf1 φ : 2 7→ 120
0xfd 0xbf φ : 2 7→ 95
0xb9 0x9d φ : 2 7→ 78
0x89 0x91 φ : 2 7→ 72
0xe5 0xa7 φ : 2 7→ 83
0xef 0xf7 φ : 2 7→ 123
0xcb 0xd3 φ : 2 7→ 105

finite field p(X) 1
p
(X)

primitive
mapping

GF(28)

0x11d 0x171 φ : 2 7→ 184
0x177 0x1dd φ : 3 7→ 239
0x1f3 0x19f φ : 6 7→ 103
0x169 0x12d φ : 2 7→ 150
0x1bd 0x17b φ : 7 7→ 95
0x1e7 0x1cf φ : 2 7→ 231
0x12b 0x1a9 φ : 2 7→ 212
0x1d7 - φ : 7 7→ 116
0x165 0x14d φ : 2 7→ 166
0x18b 0x1a3 φ : 6 7→ 104
0x163 0x18d φ : 2 7→ 198
0x11b 0x1b1 φ : 3 7→ 217
0x13f 0x1f9 φ : 3 7→ 253
0x15f 0x1f5 φ : 2 7→ 250
0x1c3 0x187 φ : 2 7→ 195
0x139 - φ : 3 7→ 157



D Tables of XOR count

Table 6: XOR count for GF(22)
x 0x7

0 0

1 0

2 1

3 1

Table 7: XOR count for GF(23)
x 0xb 0xd

0 0 0

1 0 0

2 1 1

3 4 2

4 2 3

5 1 4

6 4 1

7 3 4

mean 1.88 1.88

σ 1.4569 1.4569

Table 8: XOR count for GF(24)
x 0x13 0x19 0x1f

0 0 0 0

1 0 0 0

2 1 1 3

3 5 3 5

4 2 3 3

5 6 5 5

6 5 2 6

7 9 6 6

8 3 6 3

9 1 8 5

10 8 5 6

11 6 9 6

12 5 1 6

13 3 5 6

14 8 6 5

15 6 8 3

mean 4.25 4.25 4.25

σ 2.6800 2.6800 1.7075



Table 9: XOR count for GF(25)
x 0x25 0x3d 0x37

0 0 0 0

1 0 0 0

2 1 3 3

3 6 6 6

4 2 5 5

5 7 8 8

6 8 7 7

7 13 8 12

8 3 7 6

9 2 10 7

10 7 9 8

11 6 10 7

12 10 7 8

13 9 8 7

14 14 7 12

15 13 6 13

16 5 9 7

17 10 8 10

18 1 9 9

19 6 10 10

20 8 11 9

21 13 12 10

22 4 9 5

23 9 12 8

24 11 7 10

25 10 8 9

26 9 9 6

27 8 12 3

28 14 7 12

29 13 10 9

30 12 3 10

31 11 8 9

mean 7.66 7.66 7.66

σ 4.0264 2.6318 2.8211



Table 10: XOR count for GF(26)

x 0x43 0x57 0x67 0x49 0x6d

0 0 0 0 0 0
1 0 0 0 0 0
2 1 3 3 1 3
3 7 9 7 7 7
4 2 6 5 2 7
5 8 8 9 8 11
6 7 11 8 9 8
7 13 13 14 15 14
8 3 8 8 3 8
9 9 14 12 3 10
10 10 9 9 10 13
11 16 15 15 10 13
12 7 12 9 11 9
13 13 14 15 11 9
14 12 13 16 18 14
15 18 15 20 18 16
16 4 10 10 3 9
17 10 12 10 9 13
18 11 13 13 2 12
19 17 15 11 8 14
20 12 10 9 11 14
21 18 8 7 17 16
22 17 17 14 10 13
23 23 15 14 16 17
24 7 14 10 12 9
25 13 16 8 12 9
26 14 13 17 11 8
27 20 15 17 11 6
28 11 14 15 20 14
29 17 12 15 20 12
30 16 13 20 19 17
31 22 11 18 19 17
32 5 12 12 3 10
33 1 8 16 9 14
34 12 15 13 10 13
35 8 11 15 16 15
36 13 12 15 1 15
37 9 12 17 7 17
38 18 15 10 8 14
39 14 15 14 14 18
40 14 12 12 12 16
41 10 8 14 12 16
42 21 7 5 19 15
43 17 3 9 19 13
44 18 16 13 10 13
45 14 16 17 10 11
46 23 15 12 17 16
47 19 15 14 17 16
48 7 16 12 12 9
49 3 16 10 18 15
50 14 17 7 11 10
51 10 17 3 17 14
52 15 12 19 10 10
53 11 16 15 16 14
54 20 13 16 9 3
55 16 17 14 15 9
56 10 14 14 21 13
57 6 14 10 21 15



x 0x43 0x57 0x67 0x49 0x6d

58 17 11 13 20 10
59 13 11 11 20 10
60 14 14 19 19 18
61 10 18 17 19 18
62 19 7 16 18 15
63 15 11 12 18 17

mean 12.09 12.09 12.09 12.09 12.09
σ 5.6440 3.6836 4.2592 5.8212 3.8850



Table 11: XOR count for GF(27)

x 0x83 0xab 0x8f 0xfd 0xb9 0x89 0xe5 0xef 0xcb

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 3 3 5 3 1 3 5 3
3 8 10 10 10 10 8 8 10 8
4 2 6 6 7 6 2 7 7 7
5 9 9 13 12 9 9 12 12 12
6 8 14 10 13 12 10 9 13 9
7 15 17 17 16 15 17 12 16 16
8 3 8 9 9 10 3 11 9 10
9 10 15 16 14 11 10 14 12 15
10 11 10 15 15 10 11 15 13 14
11 18 17 22 18 11 18 20 18 21
12 8 15 10 13 15 12 11 15 10
13 15 18 17 16 20 19 16 20 17
14 14 19 18 17 15 20 11 17 18
15 21 22 25 18 20 27 18 24 23
16 4 10 12 11 11 4 14 12 12
17 11 13 11 16 14 3 19 13 13
18 12 16 20 15 13 10 16 12 16
19 19 19 19 18 16 9 23 11 15
20 13 11 17 17 12 13 18 14 16
21 20 10 16 20 11 12 21 17 15
22 19 19 23 19 10 19 20 20 24
23 26 18 22 20 9 18 25 21 25
24 8 15 10 13 18 14 12 16 11
25 15 18 9 16 19 13 17 17 10
26 16 17 18 19 22 20 16 20 17
27 23 20 17 20 23 19 19 23 18
28 13 22 19 17 15 23 10 18 17
29 20 21 18 18 20 22 17 17 18
30 19 22 25 17 19 29 18 24 23
31 26 21 24 16 24 28 23 25 22
32 5 12 18 13 12 6 18 15 14
33 12 19 15 18 17 13 17 16 13
34 13 16 12 17 18 2 20 15 14
35 20 23 9 20 23 9 21 18 15
36 14 17 21 19 15 11 18 15 18
37 21 20 18 22 16 18 15 18 19
38 20 19 21 17 17 7 24 9 14
39 27 22 18 18 18 14 23 14 13
40 15 13 18 19 15 16 18 15 17
41 22 20 15 22 18 23 17 20 18
42 23 9 16 21 11 12 22 19 15
43 30 16 13 22 14 19 19 22 14
44 20 20 25 19 10 21 20 19 27
45 27 23 22 20 17 28 21 22 26
46 26 18 21 19 6 17 24 21 25
47 33 21 18 18 13 24 23 22 26
48 8 15 11 13 18 15 13 20 15
49 15 18 16 16 23 14 14 19 20
50 16 19 7 17 20 13 19 16 9
51 23 22 12 18 25 12 18 17 16
52 17 16 18 19 25 20 15 20 17
53 24 15 23 20 26 19 14 17 24
54 23 22 16 21 23 18 17 22 19
55 30 21 21 20 24 17 14 21 24
56 12 22 21 17 15 25 9 20 16
57 19 25 26 18 14 24 6 19 23



x 0x83 0xab 0x8f 0xfd 0xb9 0x89 0xe5 0xef 0xcb

58 20 22 17 19 19 23 17 16 16
59 27 25 22 18 18 22 16 13 21
60 17 21 24 17 18 30 21 24 24
61 24 20 29 16 21 29 20 25 29
62 23 19 22 13 22 28 21 22 20
63 30 18 27 10 25 27 22 21 27
64 6 14 21 15 13 8 21 17 19
65 1 17 16 12 18 15 20 20 20
66 14 20 19 19 19 16 19 17 13
67 9 23 14 18 24 23 20 22 16
68 15 19 16 21 22 1 21 17 15
69 10 18 11 20 23 8 18 18 18
70 21 23 8 19 24 9 19 19 17
71 16 22 3 20 25 16 18 22 18
72 16 21 23 23 16 12 19 15 20
73 11 24 18 22 15 19 18 18 23
74 24 19 17 21 16 20 15 19 20
75 19 22 12 22 15 27 12 20 21
76 21 20 22 19 17 5 25 7 14
77 16 19 17 20 20 12 26 12 15
78 27 20 18 15 17 13 25 17 10
79 22 19 13 18 20 20 24 20 13
80 17 15 18 21 17 19 18 16 18
81 12 14 21 20 22 18 19 13 13
82 25 21 14 21 19 25 20 20 18
83 20 20 17 22 24 24 19 19 15
84 26 8 17 23 14 12 24 20 16
85 21 3 20 24 15 11 23 19 13
86 32 16 11 21 12 18 18 22 12
87 27 11 14 24 13 17 15 23 7
88 21 20 26 19 10 23 20 18 29
89 16 19 29 20 13 22 17 19 26
90 29 22 22 21 18 29 20 22 27
91 24 21 25 24 21 28 19 21 22
92 26 19 21 19 3 16 24 22 25
93 21 14 24 22 10 15 23 21 20
94 32 19 15 15 11 22 20 20 23
95 27 14 18 20 18 21 21 17 20
96 8 15 12 13 18 17 14 21 18
97 3 18 17 12 21 24 21 22 15
98 16 19 14 17 24 13 16 21 22
99 11 22 19 18 27 20 21 20 17
100 17 20 5 19 21 14 20 15 8
101 12 19 10 20 20 21 25 18 3
102 23 22 13 17 23 10 18 17 16
103 18 21 18 20 22 17 21 18 13
104 18 16 18 19 27 21 14 23 17
105 13 19 23 20 28 28 17 24 12
106 26 12 24 21 27 17 14 15 23
107 21 15 29 24 28 24 19 18 20
108 23 23 15 19 22 18 18 21 17
109 18 22 20 22 27 25 23 20 14
110 29 21 19 19 22 14 10 19 23
111 24 20 24 24 27 21 17 20 18
112 11 22 23 17 14 26 9 22 15
113 6 21 20 18 21 25 14 21 18
114 19 22 27 17 12 24 3 18 25
115 14 21 24 20 19 23 10 15 26
116 20 23 16 19 21 23 17 16 15
117 15 18 13 22 24 22 20 13 16



x 0x83 0xab 0x8f 0xfd 0xb9 0x89 0xe5 0xef 0xcb

118 26 25 22 17 15 21 15 10 17
119 21 20 19 22 18 20 20 5 20
120 15 21 23 17 17 30 21 24 24
121 10 20 20 20 18 29 26 19 25
122 23 17 27 15 21 28 21 24 28
123 18 16 24 20 22 27 24 21 31
124 20 20 20 13 20 27 19 22 18
125 15 15 17 18 25 26 26 19 21
126 26 14 26 5 24 25 19 16 26
127 21 9 23 12 29 24 24 15 27

mean 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55
σ 7.2817 4.7114 5.7254 4.0187 5.7254 7.3103 4.9716 4.4359 5.7254



Table 12: XOR count for GF(28) (Part I)

x 0x11d 0x177 0x1f3 0x169 0x1bd 0x1e7 0x12b 0x1d7

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 3 5 5 3 5 5 3 5
3 11 13 11 11 11 11 11 11
4 6 10 7 6 9 7 6 9
5 14 14 13 10 15 13 14 15
6 13 15 14 15 14 14 15 14
7 21 19 18 19 22 18 23 18
8 9 14 9 10 12 9 9 13
9 17 16 15 12 16 15 11 17
10 16 17 16 11 17 16 16 16
11 24 19 20 13 19 20 18 22
12 15 16 18 18 17 18 19 16
13 23 22 22 24 19 22 21 22
14 22 19 19 21 22 19 24 19
15 30 25 21 27 26 21 26 27
16 12 15 11 15 15 11 13 16
17 12 19 17 19 21 13 21 18
18 21 18 18 14 20 16 12 19
19 21 22 22 18 24 20 20 19
20 18 21 16 11 18 18 17 17
21 18 21 20 19 22 22 25 21
22 27 20 21 12 19 21 18 24
23 27 20 23 20 25 27 26 26
24 17 17 22 21 19 22 24 17
25 17 19 26 27 21 26 26 19
26 22 26 23 26 20 21 23 22
27 22 28 25 32 20 27 25 26
28 23 19 21 23 22 23 24 20
29 23 25 23 25 22 29 26 20
30 32 24 20 26 27 20 25 29
31 32 30 20 28 29 28 27 31
32 16 16 13 19 18 16 17 19
33 14 22 13 19 18 22 15 23
34 13 21 20 22 23 13 24 20
35 11 27 22 22 25 21 22 22
36 26 20 22 17 21 17 13 22
37 24 22 24 21 23 21 11 24
38 23 25 23 18 26 20 22 19
39 21 27 27 22 26 26 20 19
40 21 24 16 11 24 23 18 18
41 19 28 18 13 28 27 22 18
42 18 23 21 20 21 22 25 21
43 16 27 25 22 27 28 29 23
44 27 20 23 11 19 22 18 27
45 25 28 27 9 25 24 22 29
46 28 19 22 22 24 27 27 26
47 26 27 28 20 28 31 31 30
48 18 19 26 24 21 23 26 19
49 24 25 28 28 19 27 24 25
50 17 18 27 27 22 28 29 18
51 23 24 31 31 22 30 27 22
52 24 27 25 28 22 20 24 22
53 30 29 29 28 22 26 22 30
54 19 30 24 33 19 27 25 29
55 25 32 30 33 17 31 23 35
56 23 19 23 24 23 24 25 22
57 29 19 27 22 25 30 29 28



x 0x11d 0x177 0x1f3 0x169 0x1bd 0x1e7 0x12b 0x1d7

58 22 28 22 25 20 31 24 19
59 28 28 28 23 24 35 28 27
60 33 23 20 26 28 19 27 31
61 39 27 26 28 32 27 31 35
62 32 28 17 25 29 28 24 28
63 38 32 25 27 31 34 28 34
64 19 17 16 24 20 20 22 22
65 15 15 22 30 20 18 24 18
66 16 26 13 21 19 25 17 25
67 12 24 21 27 17 25 19 23
68 17 23 23 24 25 13 26 23
69 13 25 27 26 23 9 28 21
70 10 28 22 23 28 24 23 22
71 6 30 28 25 28 22 25 22
72 30 23 23 20 22 21 15 25
73 26 27 27 24 26 21 23 25
74 27 22 26 23 25 20 10 26
75 23 26 32 27 27 22 18 24
76 24 25 24 18 27 20 23 20
77 20 25 26 26 29 18 31 18
78 21 28 29 19 26 25 20 17
79 17 28 33 27 30 25 28 13
80 25 26 21 11 25 25 19 24
81 29 24 25 13 27 25 21 26
82 20 29 16 16 32 30 26 17
83 24 27 22 18 32 28 28 21
84 19 24 22 21 20 22 25 21
85 23 26 24 27 20 24 27 21
86 14 27 23 24 27 29 30 22
87 18 29 27 30 29 29 32 24
88 28 20 26 11 19 24 18 27
89 32 20 28 19 25 22 26 29
90 23 29 27 6 26 23 21 30
91 27 29 31 14 30 19 29 30
92 26 18 21 23 26 27 28 26
93 30 14 21 27 30 27 36 30
94 25 27 28 20 25 28 29 29
95 29 23 30 24 31 26 37 31
96 19 21 27 27 24 24 25 21
97 25 21 29 25 24 24 29 21
98 26 26 30 28 19 29 24 28
99 32 26 30 26 21 27 28 30
100 17 17 28 27 23 31 31 20
101 23 21 32 29 25 29 35 22
102 24 26 33 30 22 30 28 19
103 30 30 35 32 22 26 32 23
104 26 29 24 29 24 19 26 22
105 32 31 28 33 20 21 24 26
106 29 28 29 28 23 26 21 31
107 35 30 31 32 21 26 19 33
108 16 29 23 35 19 28 28 27
109 22 27 29 35 17 28 26 29
110 23 32 30 32 14 29 21 36
111 29 30 34 32 10 27 19 36
112 23 22 26 24 25 25 26 23
113 21 18 30 26 27 23 30 21
114 32 17 27 21 24 30 29 28
115 30 13 29 23 28 30 33 28
116 21 26 21 26 18 32 22 18
117 19 26 27 24 22 32 26 14



x 0x11d 0x177 0x1f3 0x169 0x1bd 0x1e7 0x12b 0x1d7

118 26 29 28 21 25 35 27 27
119 24 29 32 19 27 37 31 25
120 34 22 21 26 29 18 29 32
121 32 24 27 26 27 14 27 30
122 39 27 24 29 28 25 32 35
123 37 29 28 29 28 23 30 31
124 32 26 14 22 30 27 21 25
125 30 24 22 26 30 25 19 25
126 37 31 23 27 29 32 26 32
127 35 29 29 31 27 32 24 30
128 21 23 20 29 22 23 26 26
129 29 25 16 29 28 25 20 26
130 16 14 23 32 25 20 27 19
131 24 16 21 32 29 24 21 17
132 17 27 13 23 21 28 20 27
133 25 25 7 27 25 28 14 29
134 12 26 22 28 16 27 19 24
135 20 24 18 32 22 29 13 24
136 20 25 27 25 28 16 27 27
137 28 21 25 27 30 20 27 27
138 15 26 28 26 23 7 28 22
139 23 22 28 28 23 13 28 24
140 12 29 22 25 31 27 25 22
141 20 29 18 23 31 29 25 20
142 3 30 29 24 26 20 24 21
143 11 30 27 22 28 24 24 21
144 35 26 25 22 23 22 17 28
145 35 24 23 26 27 26 11 34
146 28 27 26 25 26 23 26 27
147 28 25 26 29 28 25 20 31
148 27 22 28 26 28 19 9 25
149 27 16 24 26 30 25 3 29
150 24 27 31 27 27 26 20 24
151 24 21 29 27 31 30 14 26
152 26 28 26 18 29 21 24 21
153 26 24 26 16 29 23 24 23
154 19 23 25 27 28 16 29 18
155 19 19 27 25 26 16 29 22
156 22 28 31 16 26 24 20 20
157 22 28 29 18 24 28 20 24
158 15 27 32 27 29 25 27 9
159 15 27 32 29 29 27 27 15
160 29 29 23 12 26 27 19 25
161 27 29 23 20 24 31 23 29
162 30 24 28 11 29 28 20 30
163 28 24 26 19 29 30 24 32
164 21 31 14 18 31 30 27 16
165 19 27 16 22 31 32 31 22
166 26 26 25 19 34 29 30 21
167 24 22 25 23 32 29 34 25
168 20 25 24 22 22 22 28 24
169 18 23 22 24 24 28 26 28
170 25 26 23 27 17 25 25 19
171 23 24 19 29 21 29 23 25
172 12 27 21 26 27 27 32 21
173 10 29 21 32 31 31 30 23
174 17 28 26 29 30 28 31 24
175 15 30 24 35 32 30 29 28
176 29 20 26 11 19 26 18 27
177 35 20 24 15 15 28 22 29



x 0x11d 0x177 0x1f3 0x169 0x1bd 0x1e7 0x12b 0x1d7

178 32 21 29 22 26 23 27 30
179 38 21 25 26 24 27 31 30
180 21 30 27 3 26 25 20 30
181 27 26 27 11 24 29 24 30
182 24 27 32 12 29 16 27 29
183 30 23 30 20 25 22 31 27
184 24 20 21 25 27 27 29 26
185 30 14 17 31 27 27 27 24
186 31 11 18 26 30 26 38 31
187 37 5 12 32 32 28 36 31
188 24 26 28 19 22 28 27 27
189 30 24 26 21 24 30 25 27
190 27 21 27 22 29 21 34 28
191 33 19 23 24 29 25 32 30
192 20 26 28 29 28 25 24 22
193 16 26 26 27 30 25 24 22
194 25 21 31 26 25 26 29 21
195 21 21 27 24 25 24 29 23
196 28 26 29 29 19 28 24 31
197 24 30 25 31 19 26 24 29
198 33 25 30 24 20 27 31 30
199 29 29 24 26 22 23 31 30
200 17 16 29 27 24 34 33 21
201 13 22 29 31 30 32 27 21
202 26 21 34 30 25 29 34 22
203 22 27 32 34 29 25 28 20
204 25 28 32 29 23 31 29 16
205 21 30 30 29 27 27 23 18
206 30 29 35 34 20 24 32 25
207 26 31 31 34 26 18 26 25
208 28 31 23 30 23 18 27 22
209 32 31 23 32 27 12 27 16
210 31 32 28 31 20 23 24 27
211 35 32 26 33 22 19 24 23
212 28 27 30 28 24 25 21 31
213 32 31 28 26 26 21 21 27
214 35 28 29 31 21 24 16 32
215 39 32 25 29 25 22 16 30
216 13 29 22 36 19 29 30 25
217 17 31 24 36 27 25 24 23
218 20 24 29 35 16 28 27 28
219 24 26 29 35 22 26 21 24
220 21 33 31 32 16 30 20 36
221 25 31 31 36 22 28 14 32
222 28 28 32 29 5 23 15 35
223 32 26 30 33 13 23 9 29
224 24 24 29 24 26 25 27 25
225 30 26 27 30 28 23 25 21
226 19 19 30 29 27 22 32 20
227 25 21 30 35 31 22 30 18
228 32 18 28 20 23 30 29 28
229 38 24 28 22 27 26 27 22
230 31 9 27 23 28 29 32 27
231 37 15 29 25 30 27 30 23
232 21 24 20 28 16 32 20 18
233 27 28 16 32 14 28 24 14
234 16 25 27 23 21 31 25 11
235 22 29 25 27 21 29 29 5
236 25 30 25 18 25 35 26 27
237 31 30 23 26 25 29 30 25



x 0x11d 0x177 0x1f3 0x169 0x1bd 0x1e7 0x12b 0x1d7

238 20 27 30 15 26 36 29 24
239 26 27 30 23 24 32 33 20
240 34 21 22 27 29 18 30 33
241 32 19 18 29 33 14 28 31
242 31 26 25 24 26 11 27 26
243 29 24 23 26 32 5 25 26
244 38 27 27 29 24 23 30 36
245 36 29 25 35 30 21 28 36
246 35 24 24 28 29 22 29 29
247 33 26 24 34 33 18 27 31
248 31 25 11 19 31 27 21 22
249 29 29 5 27 31 25 25 24
250 28 20 20 22 28 22 14 25
251 26 24 16 30 30 18 18 25
252 39 31 22 27 26 30 25 31
253 37 31 18 31 28 30 29 31
254 32 26 25 28 23 31 20 26
255 30 26 23 32 23 29 24 24

mean 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03
σ 7.3958 5.3004 5.7544 6.7574 5.2528 5.8838 6.1752 5.7979



Table 13: XOR count for GF(28) (Part II)

x 0x165 0x18b 0x163 0x11b 0x13f 0x15f 0x1c3 0x139

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 3 3 3 3 5 5 3 3
3 11 9 11 11 13 13 9 11
4 6 7 6 6 10 10 5 6
5 10 13 10 14 18 14 11 14
6 15 10 13 13 13 15 10 13
7 19 18 17 21 21 19 14 21
8 10 10 12 9 15 12 7 9
9 12 16 14 17 17 20 11 11
10 11 15 11 18 20 17 12 18
11 13 23 13 26 22 25 18 20
12 18 11 14 15 13 18 14 15
13 24 19 20 23 15 22 20 17
14 21 20 17 20 24 19 13 24
15 27 26 23 28 26 23 21 26
16 13 14 17 12 19 14 12 13
17 17 20 21 12 19 18 18 13
18 14 17 18 19 20 21 11 12
19 18 25 22 19 20 25 19 12
20 13 17 15 22 23 20 13 19
21 21 25 23 22 23 20 17 19
22 12 28 12 29 22 27 18 22
23 20 34 20 29 22 27 24 22
24 21 12 15 17 16 20 17 16
25 27 20 21 17 22 24 23 22
26 24 21 20 26 13 23 22 17
27 30 27 26 26 19 27 26 23
28 23 21 17 19 24 22 12 26
29 25 27 19 19 30 22 20 32
30 28 26 26 28 27 21 23 27
31 30 34 28 28 33 21 29 33
32 17 17 19 16 22 16 16 18
33 23 17 25 14 20 14 22 16
34 18 22 24 13 21 21 21 15
35 24 20 30 11 19 19 25 13
36 15 18 23 22 24 22 11 14
37 17 16 25 20 22 24 19 12
38 18 27 24 19 21 27 22 11
39 20 27 26 17 19 29 28 9
40 15 19 19 25 25 24 17 23
41 19 17 23 23 29 22 23 27
42 26 26 24 24 24 21 16 18
43 30 26 28 22 28 19 24 22
44 11 30 11 31 23 26 18 23
45 19 30 19 29 27 28 22 27
46 20 37 20 30 20 27 23 22
47 28 35 28 28 24 29 29 26
48 24 13 16 20 19 22 20 17
49 26 11 18 26 25 24 24 23
50 27 22 23 17 22 25 25 22
51 29 22 25 23 28 27 31 28
52 24 22 20 26 11 24 27 17
53 30 22 26 32 17 30 33 23
54 29 27 23 27 20 27 26 22
55 35 25 29 33 26 33 34 28
56 24 19 18 21 24 24 11 28
57 32 19 26 27 24 26 19 28



x 0x165 0x18b 0x163 0x11b 0x13f 0x15f 0x1c3 0x139

58 25 26 17 16 31 23 22 35
59 33 24 25 22 31 25 28 35
60 30 26 26 27 28 22 24 28
61 34 24 30 33 28 28 30 28
62 29 33 29 26 33 17 29 31
63 33 33 33 32 33 23 33 31
64 21 20 21 19 26 19 20 22
65 19 18 27 27 28 23 24 24
66 26 19 26 16 21 14 23 19
67 24 19 32 24 23 18 29 21
68 19 25 27 17 22 25 25 20
69 21 25 29 25 24 25 31 22
70 26 20 32 10 19 20 26 13
71 28 18 34 18 21 20 34 15
72 17 18 27 22 25 23 11 17
73 17 18 31 30 21 27 19 25
74 16 15 28 21 24 26 20 12
75 16 13 32 29 20 30 26 20
76 21 29 25 20 25 29 22 11
77 17 27 33 28 21 29 28 19
78 18 26 26 15 18 28 29 6
79 14 26 34 23 14 28 33 14
80 16 22 22 27 27 23 18 27
81 18 22 24 27 25 23 24 33
82 19 17 25 24 30 24 25 28
83 21 15 27 24 28 24 29 34
84 28 27 24 25 25 25 15 17
85 26 25 30 25 23 21 23 23
86 33 26 27 22 30 18 24 22
87 31 26 33 22 28 14 30 28
88 10 32 10 34 24 25 19 24
89 6 30 18 34 28 25 25 24
90 19 29 17 29 27 30 20 27
91 15 29 25 29 31 30 28 27
92 20 39 20 32 18 27 22 22
93 20 39 24 32 22 23 26 22
94 27 36 27 27 23 28 25 25
95 27 34 31 27 27 24 31 25
96 28 17 18 23 22 25 24 18
97 24 23 26 21 22 23 30 22
98 27 10 17 30 27 24 25 25
99 23 18 25 28 27 22 33 29
100 30 24 26 17 22 27 27 22
101 30 32 30 15 22 29 31 26
102 27 25 25 24 29 26 30 29
103 27 31 29 22 29 28 36 33
104 24 23 20 26 9 25 29 17
105 26 31 22 24 15 23 35 15
106 29 22 27 31 18 32 36 22
107 31 28 29 29 24 30 40 20
108 28 28 20 28 21 27 26 21
109 26 34 26 26 27 29 34 19
110 35 23 27 33 24 30 35 30
111 33 31 33 31 30 32 41 28
112 25 17 19 23 25 25 10 29
113 25 25 23 29 29 27 18 29
114 34 18 28 26 22 26 19 28
115 34 24 32 32 26 28 25 28
116 25 28 15 13 31 23 21 37
117 21 34 23 19 35 29 27 37



x 0x165 0x18b 0x163 0x11b 0x13f 0x15f 0x1c3 0x139

118 32 21 24 20 30 24 28 36
119 28 29 32 26 34 30 32 36
120 31 27 27 26 30 23 25 26
121 29 33 33 32 28 25 29 32
122 34 22 28 31 27 28 28 27
123 32 30 34 37 25 30 34 33
124 25 32 31 24 32 13 30 30
125 27 40 33 30 30 19 36 36
126 30 31 32 33 31 22 31 27
127 32 37 34 39 29 28 39 33
128 24 26 23 22 30 22 25 25
129 26 28 23 16 26 22 21 31
130 21 19 28 27 29 25 26 26
131 23 23 28 21 25 25 20 32
132 26 21 27 18 22 14 24 21
133 32 25 23 12 18 18 22 27
134 25 22 32 27 27 21 31 22
135 31 24 28 21 23 25 27 28
136 20 28 29 21 23 28 30 22
137 28 32 23 15 25 28 26 22
138 23 27 30 28 26 27 33 25
139 31 29 24 22 28 27 31 25
140 28 21 33 9 19 20 27 14
141 32 23 31 3 21 24 21 14
142 29 16 34 20 20 19 36 13
143 33 20 32 14 22 23 32 13
144 19 18 30 22 29 24 11 20
145 25 22 26 24 29 20 5 22
146 18 19 33 31 20 29 20 29
147 24 21 29 33 20 25 16 31
148 15 17 30 22 23 28 22 12
149 17 19 30 24 23 28 18 14
150 16 10 33 31 20 29 25 21
151 18 14 33 33 20 29 23 23
152 25 32 26 21 24 32 22 11
153 29 34 24 23 18 28 20 19
154 18 27 33 28 23 29 29 18
155 22 31 31 30 17 25 25 26
156 19 25 26 13 22 28 31 3
157 27 29 20 15 16 28 27 11
158 10 24 33 20 11 25 32 14
159 18 26 27 22 5 25 26 22
160 17 25 26 28 28 22 19 31
161 21 19 24 32 30 20 17 31
162 20 24 25 27 25 25 26 34
163 24 20 23 31 27 23 22 34
164 19 18 28 24 32 26 28 29
165 27 14 22 28 34 20 24 29
166 20 13 27 23 27 25 29 36
167 28 7 21 27 29 19 23 36
168 29 27 24 27 29 24 14 16
169 35 23 20 31 25 22 8 22
170 26 24 31 24 22 23 23 21
171 32 18 27 28 18 21 19 27
172 33 26 26 23 29 20 25 22
173 35 20 26 27 25 14 21 28
174 32 23 33 20 28 11 28 27
175 34 19 33 24 24 5 26 33
176 10 35 9 36 25 24 21 24
177 18 31 3 32 23 26 17 28



x 0x165 0x18b 0x163 0x11b 0x13f 0x15f 0x1c3 0x139

178 3 30 18 35 30 25 24 23
179 11 24 12 31 28 27 22 27
180 22 28 15 32 27 32 18 30
181 26 22 13 28 25 30 12 34
182 13 27 24 27 30 29 27 25
183 17 23 22 23 28 27 23 29
184 20 41 21 31 16 28 22 23
185 22 35 21 27 20 30 18 21
186 19 38 22 32 21 21 23 20
187 21 34 22 28 25 23 17 18
188 26 36 27 27 22 28 21 25
189 32 32 23 23 26 26 19 23
190 27 33 28 24 25 21 28 22
191 33 27 24 20 29 19 24 20
192 31 20 20 27 26 27 27 19
193 31 16 18 21 24 27 23 19
194 26 25 27 22 23 24 32 22
195 26 19 25 16 21 24 30 22
196 29 9 16 31 28 27 26 27
197 25 3 10 25 26 31 20 27
198 22 18 27 30 27 20 33 30
199 18 14 21 24 25 24 29 30
200 33 26 28 20 23 29 28 22
201 31 20 24 14 27 29 24 28
202 30 33 31 13 20 30 31 27
203 28 29 27 7 24 30 25 33
204 25 25 28 24 29 25 29 30
205 27 21 28 18 33 29 27 36
206 24 32 27 21 28 26 34 31
207 26 26 27 15 32 30 30 37
208 24 24 23 27 7 27 31 18
209 20 18 17 29 13 23 29 26
210 29 33 20 22 16 22 36 13
211 25 29 14 24 22 18 32 21
212 28 21 27 31 19 31 38 22
213 28 17 25 33 25 31 34 30
214 31 26 28 26 22 30 41 17
215 31 20 26 28 28 30 35 25
216 28 26 17 28 22 27 26 23
217 30 22 17 30 22 23 20 25
218 23 33 26 25 27 30 33 16
219 25 27 26 27 27 26 29 18
220 34 21 25 32 22 27 35 31
221 32 15 21 34 22 27 31 33
222 31 28 30 29 29 30 40 28
223 29 24 26 31 29 30 38 30
224 26 15 21 25 26 25 9 31
225 28 19 21 29 30 27 3 37
226 23 26 22 30 29 26 16 28
227 25 28 22 34 33 28 12 34
228 36 18 27 25 20 29 18 25
229 34 20 23 29 24 27 14 31
230 35 21 32 30 25 26 23 26
231 33 25 28 34 29 24 21 32
232 24 29 13 10 31 23 20 38
233 20 31 7 14 29 25 18 38
234 19 34 22 17 34 28 25 37
235 15 38 16 21 32 30 21 37
236 32 18 23 18 29 23 27 36
237 32 22 21 22 27 21 23 36



x 0x165 0x18b 0x163 0x11b 0x13f 0x15f 0x1c3 0x139

238 25 27 28 25 34 28 30 35
239 25 29 26 29 32 26 24 35
240 33 29 28 25 29 21 25 24
241 31 31 24 21 25 27 21 22
242 28 32 31 34 28 24 28 33
243 26 36 27 30 24 30 22 31
244 33 20 26 29 29 29 26 26
245 35 24 26 25 25 31 24 24
246 30 31 33 34 22 28 31 31
247 32 33 33 30 18 30 27 29
248 21 31 30 22 32 9 30 29
249 21 35 28 18 34 15 26 33
250 26 40 33 29 27 20 35 36
251 26 42 31 25 29 26 33 40
252 27 28 32 34 28 21 29 23
253 23 30 26 30 30 23 23 27
254 30 33 31 37 25 24 36 30
255 26 37 25 33 27 26 32 34

mean 24.03 24.03 24.03 24.03 24.03 24.03 24.03 24.03
σ 6.8679 7.3618 6.4144 6.7574 5.5773 5.0581 7.4634 7.5303


