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ABSTRACT
Many network middleboxes perform deep packet inspection,
a set of useful tasks which examine packet payloads. These
tasks include intrusion detection (IDS), exfiltration detec-
tion, and parental filtering. However, a long-standing issue
is that once packets are sent over https, the middleboxes can
no longer accomplish their tasks because the payloads are
encrypted. Hence, one is faced with choosing at most one
of two desirable properties: the functionality of the middle-
boxes and the privacy of encryption.

We propose BlindBox, a novel system that for the first time
enables both properties together. The approach of Blind-
Box is to perform the deep-packet inspection directly on the
encrypted traffic. We demonstrate how BlindBox enables
applications such as IDS, exfiltration detection and parental
filtering; BlindBox supports real rulesets from both open
source (Snort) DPI systems as well as rulesets from indus-
trial DPI systems developed by XYZ Co. and ABC Co..1

While BlindBox’s performance is not yet ready for real de-
ployment, BlindBox is nearly practical and improves per-
formance by more than 106 times as compared to a direct
application of cryptography.

1 Introduction
Network middleboxes perform a wide range of services on
packet payloads, which benefit both end users and network
operators. For example, middleboxes run network intrusion
detection or IDS (e.g., using Snort [2] or Bro [28]) to de-
tect if packets from a compromised sender contain an at-
tack; they perform data loss/ exfiltration prevention such as
searching for watermarks in documents [35] to detect if an
insider outsources confidential information; and they per-
form other tasks such as parental filtering [5].

However, a long-standing problem is that when the traf-
fic is sent over HTTPS, network middleboxes can no longer
run these tasks [27] because the payload is encrypted. The
encryption provided by HTTPS is useful because it protects
private user data or confidential company data from an at-
tacker at the middlebox. Unfortunately, currently deployed
middlebox systems support HTTPS in an insecure way: some
middleboxes mount a man-in-the-middle attack on SSL and
decrypt the traffic at the middlebox [18, 16]. This approach
violates the end-to-end security guarantees of SSL and opens
the door to a set of issues as surveyed in [18]. Moreover,

1Company names anonymized for public release.

users and clients have expressed criticism and various con-
cerns over this approach [42, 21, 33, 38], including worries
that the private data logged at the middlebox is given to mar-
keters or to the government.

Therefore, one is faced with an unfortunate choice of at
most one of two desirable properties: the functionality of the
middleboxes and the privacy afforded by encryption.

It would be ideal to have a system that provides both the
privacy of encryption and the functionality of middleboxes.
Unfortunately, there is a strong tension between these two
properties, making such an ideal solution seem impossible.

In this paper, we demonstrate that it is possible to build
such a system. We propose the first system that provides
both the benefits of encryption and the functionality at the
middlebox. The system is called BlindBox to denote that the
middlebox cannot see the private content of the traffic, de-
spite being able to operate on it. BlindBox can support the
functionality of a wide range of applications over HTTP traf-
fic, such as data watermarking [35], parental filtering, and
real intrusion detection signatures including signatures from
Snort,
stonesoft IDS, and
lastline.

Our approach is to perform the inspection directly on the
encrypted payload, without decrypting the payload at the
middlebox. The traffic is encrypted with a special encryp-
tion scheme and the middlebox receives some capabilities
enabling it to detect matches with rules of interest. BlindBox
protects the data with a strong encryption scheme that is ran-
domized (and formalized using indistinguishability-based se-
curity definitions, which we present in the Appendix of this
document): for example, the middlebox cannot even tell if
certain parts of the packet are equal to each other. Never-
theless, the middlebox learns a small amount of information
about the traffic necessary to detect matching of rules ef-
ficiently: if a suspicious string matches at some offset in
the traffic, the middlebox learns that the suspicious string
matched at that offset, but it does not learn the content of the
traffic that does not match suspicious strings.

Although BlindBox’s performance is not yet ready for real
deployment, BlindBox makes a major step towards practi-
cality by improving performance by more than 106 times as
compared to a direct application of existing cryptography.
The key overhead with BlindBox is the session handshake.
Setting up a connection in BlindBox is slowed down by min-
utes; although this is a substantial improvement over the
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hours or even days as traditional fully homomorphic or func-
tional encryption schemes would lead to. However, once
the handshake completes, page load times increase by only
2× relative to normal SSL, making BlindBox practical for
long-lived connections, but not short/frequent ones. These
are the overheads at the client only: at the middlebox itself,
BlindBox is actually faster at signature detection than Snort,
a standard IDS.

1.1 Challenges and techniques
Building a practical system that provides both encryption
and detection is a challenging task for three reasons: per-
formance, security and functionality. BlindBox addresses
each of these challenges with a combination of novel net-
working and cryptographic techniques: a new encryption
scheme DPIEnc, a fast detection algorithm BlindBox Detect,
enhancing packets with certain offset information, and a new
model for traffic privacy called probable cause privacy. We
now explain these techniques.

Challenge 1: Performance. Existing encryption schemes
that enable computing the desired functionality on encrypted
data are prohibitively slow (as described in Sec. 10.2). A
naïve approach is to choose an existing encryption scheme
that seems most fit to our setting (described in Sec. 9.2.1)
and most efficient among the schemes available; such straw-
man results in more than 106 times overhead on top of HTTPS,
which is not acceptable.

Instead, we achieve better performance by providing a
novel encryption scheme DPIEnc and a novel detection pro-
tocol BlindBox Detect that uses this encryption scheme.

DPIEnc is fast because:
• We designed it custom for this setting. It consists of

four building blocks: the AES block cipher, Yao gar-
bled circuits [41, 24], hashes, and digital signatures,
which are tied together by a careful use of randomness.
• We ensured that the operations that need to run very

frequently are fast: encryption is done with a combina-
tion of AES and hashing, and detection with equality
checks. We achieve this by pushing the main crypto-
graphic work in the less frequent operation of setting
up a connection.

Since each of the building blocks has a simple black-box
interface, our encryption scheme can be understood easily
by a reader with no cryptographic background.

Our detection algorithm BlindBox Detect is fast because it
uses DPIEnc in a clever way: it maintains certain state at the
endpoints and middlebox such that it minimizes the number
of equality checks performed during inspection of a packet,
while maintaining security.

In comparison to the strawman above, we decreased the
cryptographic overhead for encryption and detection by 106

times – thus making a major step towards practicality. In
fact, fortunately, BlindBox’s detection throughput is high,
twice faster than Snort [2]. However, the time to setup a con-
nection is not yet competitive: it takes 414 s for ABC Co.’s

IDS. Nevertheless, this is 1.8 ·103 faster than the strawman’s
setup for the same security level. Hence, our current sys-
tem is more fit for persistent connections or SPDY-type [31]
connections which perform setup once or rarely. Neverthe-
less, we believe that we can reduce the setup time in the
near future: this time depends mainly on the size and speed
of the garbled circuits. Garbled circuits have been continu-
ally studied at security conferences and their performance
has steadily increased over the years: for example, from
2011 [17] and 2012 [23] to 2013 [8], their performance im-
proved by two orders of magnitude [8]. Overall, we take the
first major step towards achieving the vision of supporting
both encryption and middlebox in a practical way.

Challenge 2: Security. It turns out that the desired security
exposes a contradictory situation. On the one hand, to de-
tect matching of a rule against the encrypted traffic, the rule
needs to be encrypted with the same key k as the key for
the traffic. On the other hand, it seems that no party in our
setup is fit to encrypt the rules under key k: the middlebox
cannot give the rules to the endpoints for encryption since
they are proprietary (as we explain in Sec. 2.2) and the end-
points cannot give the key k to the middlebox, because the
middlebox can then decrypt the traffic.

Our encryption scheme DPIEnc resolves this tension
through a new technique called obfuscated rule encryption:
the endpoints essentially obfuscate the AES encryption al-
gorithm together with the key k and give an obfuscated AES
algorithm to the middlebox. The middlebox can run this ob-
fuscated algorithm on the rules to obtain encrypted rules,
without learning the key k. This obfuscation is achieved us-
ing Yao garbled circuits [41, 24] described in Sec. 3.2.

Challenge 3: Wide range of functionality. Different DPI
applications require different functionality. We divide such
functionality in three groups: basic string matching, mul-
tiple string matching with offset information, and arbitrary
regexp and scripts. We provide three protocols, one for each
category. Regarding arbitrary regexp on encrypted traffic,
there is currently no encryption scheme or protocol that can
support general operations over encrypted data in a practical
way: functional encryption and FHE are at least 9 orders of
magnitude slower than regular computation [14]. Hence, to
enable regexp efficiently, our protocol for regexp provides a
weaker security guarantee than the other two protocols.

The three protocols are not separate, but they provide a
technical progression towards the third protocol. Table 1
summarizes these protocols and their relationship.

Protocol I: Basic string matching. This protocol supports
watermarking and parantal filtering, and can be implemented
with the tools we discussed already, DPIEnc and BlindBox
Detect.

Protocol II: Limited IDS. Commonly-used IDS tools such as
Snort [2, 37] have rules that match multiple strings and also
specify offset ranges where these strings should be matched.
We can support this protocol using DPIEnc and BlindBox
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Protocol Applications supported Techniques used Security guarantee

I data loss/exfiltration prevention through
watermarking, parental filtering

DPIEnc, BlindBox Detect MB does not see traffic; learns
where suspicious strings match

II limited IDS as above + add offset information to packets same as above

III full IDS as above + probable cause privacy protocol probable cause privacy

Table 1: Overview of contributions: the protocols we provide, the functionality they cover, which of our techniques they
use and the security guarantee they provide. MB denotes middlebox.

Detect, along with a protocol for annotating encrypted pack-
ets with certain offset information.

Protocol III: Full IDS. Some IDS such as Snort [2] have
rules that contain arbitrary regular expressions. To support
these efficiently, we introduce a new model of privacy of
the traffic, called probable cause privacy, and a protocol to
achieve it. This model is inspired from two ideas. First, most
rules in Snort that contain regexp first attempt to find a sus-
picious string in the packet – this string is selective so only
a small fraction of the traffic matches this string and gets
passed through the regexp. Indeed, the Snort’s users man-
ual [37] urges the presence of such selective strings because
otherwise, detection would be too slow. Second, we are in-
spired from the notion of probable cause from United States’
criminal law: our idea is that one should give up privacy only
if there is a reason for suspicion.

Hence, our model says that if a packet contains a suspi-
cious keyword from an attack rule, the middlebox should be
able to decrypt that stream of traffic; otherwise, the middle-
box must not see the traffic. Our protocol ensures that, as
soon as the middlebox possesses an attack rule that matches
the packet, the middlebox gains the ability to decrypt the
stream; then, the middlebox can run regexp and scripts on
it. However, if no suspicious string matches the stream, the
middlebox cannot possibly decrypt the traffic, and the same
security guarantees as in the previous two protocols apply.
Since the suspicious strings are selective, a small fraction of
the traffic is decrypted.

Finally, we have implemented and evaluated our protocols
on realistic rulesets such as data watermarking [35], Snort
Community IDS, Snort Emerging Threats IDS, XYZ Co.
(McAffee) IDS, ABC Co. IDS and Parental Filtering [5],
and we already summarized BlindBox’s performance above.

2 Overview
Fig. 1 presents the system architecture. There are 4 par-
ties involved in the protocol: two endpoints – the sender
S and the receiver R – the middlebox (denoted MB), and
a rule generator (denoted RG). RG generates attack rules
(also called signatures) to be used by MB in detecting at-
tacks. For example, RG can be Emerging Threats, McAffee,
or Symantec. S and R send traffic through MB. We explain
the purpose of each module from Fig. 1 in Sec. 2.3.

2.1 Usage scenarios
Before formalizing our threat model, we illustrate our usage
scenario with two examples. For each individual in these
examples, we indicate the party in our model (R, S, MB, or
RG) that they correspond to.

Example #1: University Network. Alice (R or S) is a stu-
dent at the University of SIGCOMM and brings her own lap-
top to her dorm room. However, university policy requires
that all student traffic be monitored for botnet signatures and
illegal activity by a middlebox (MB) running an IDS. Al-
ice is worried about her computer being infected with bot-
net software, so she wants this policy applied to her traffic.
McAfee (RG) is the service that provides attack signatures
to the middlebox and Alice trusts it. However, she is uncom-
fortable with the idea of someone she doesn’t know (who has
access to the middlebox) potentially being able to read her
private Facebook messages and emails.

Alice has installed BlindBox HTTPS with McAfee’s pub-
lic key, allowing the IDS to scan her traffic for Security-
Corp’s signatures, but not read her private messages.

Example #2: ISP Service. Bob has two young children
(S/R) at home, and registers for parental filtering with his
ISP so that all traffic is filtered for adult content. But, Bob
has read stories in the news of ISPs selling user browsing
data to marketers [38] and wants to prevent his ISP (MB)
from using his data in this way. Bob trusts the Electronic Fil-
tering Foundation (RG), a non-profit which generates rule-
sets for filtering and pledges not to sell user data. Bob in-
stalls BlindBox HTTPS on his home computer with the Elec-
tronic Filtering Foundation’s public key, allowing his traffic
to be scanned for EFF rules only, but no other data.

In these scenarios, Alice and Bob want to have a mid-
dlebox in their network check for the signatures the corre-
sponding trusted parties permit, but this middlebox should
not learn anything else about the content of the traffic.

2.2 Threat model
Like in any intrusion detection protocol, the rule generator
is assumed to create the attack rules honestly. In some cases,
an enterprise purchases a middlebox from the RG already
containing the rules. Crucially, RG does not want to disclose
these rules to the endpoints because RG’s business is based
on the rules’ secrecy. Moreover, [28] argues that rules should
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Figure 1: System architecture. Shaded boxes indicate algorithms added by BlindBox.

remain secret for security reasons too. Hence, the middlebox
cannot give away the rules to the endpoints.

There are two types of attackers in our setup.

The original attacker considered by IDS. This is the same
attacker that traditional (unencrypted) IDS consider and we
do not change the threat model here. Our goal is to enable
detecting such attacker over encrypted traffic. As in tradi-
tional IDS, one endpoint can behave maliciously, but at least
one endpoint must be honest. This is a fundamental require-
ment of any IDS [28]; the reason is that the problem is im-
possible to solve otherwise: two malicious endpoints can al-
ways agree on a secret key through an out-of-band channel
and encrypt their traffic under that key using a strong en-
cryption scheme, making any prevention impossible by the
security properties of the encryption scheme.

The attacker at the middlebox. This is the new attacker
in our setting. This attacker tries to subvert our scheme by
attempting to extract private data from the encrypted traffic
in BlindBox. We assume that the middlebox MB performs
the detection honestly, but that it tries to learn private data
from the traffic and violate the privacy of the endpoints. In
particular, we assume that an attacker at MB reads all the
data accessible to the middlebox, including traffic logs and
other state.

Given this threat model, BlindBox’s goal is to hide the
content of the traffic from MB, while allowing MB to do
DPI. We do not seek to hide the attack rules from the MB
itself; many times these rules are hardcoded in the MB.

2.3 System architecture
We now explain each module from our system architecture
depicted in Fig. 1. The purpose of these modules is the same
in all our three protocols.

In the initial system setup, MB obtained the detection rules
from the rule generator. Also, S and R obtained the public
key of the rule generator. The rule generator is never again
involved in the protocol.

Let us now discuss what happens when a sender and re-
ceiver initiate and send traffic on a connection.

Connection setup. First, the sender and receiver run the
regular SSL handshake which permits them to agree on a

key k0. The sender and receiver use k0 to derive three keys
(e.g., using a pseudorandom generator):
• kSSL: the regular SSL key, used to encrypt the traffic as

in the SSL protocol,
• k: used in our detection protocol, and
• krand: used as a seed for randomness. Since both end-

points have the same seed, they will generate the same
randomness, which enables some later crosschecks.

Next, MB runs the rule preparation algorithm (helped by
the sender and the receiver). In this step, MB obtains en-
cryptions of the rules with key k – this will later enable MB
to perform the detection.

Sending traffic. When the sender has traffic to send, two
things happen. (1) The traffic gets encrypted with SSL as
before. (2) The traffic gets tokenized and the resulting tokens
get encrypted. The tokenize algorithm, discussed in Sec. 7,
transforms the traffic into a set of tokens – these tokens are
substrings of the traffic of various lengths taken from various
offsets in the traffic. In regular IDS, rules contain strings
that should be matched at any offset in the traffic stream. In
our case, rules will match against tokens. The encryption
module will encrypt each token with a key k.

Detection. The middlebox receives the SSL-encrypted traf-
fic and the encrypted tokens. It ignores the SSL-encrypted
traffic. The detect module will search for matchings between
rules encrypted with a key k against the tokens encrypted
with k using BlindBox Detect (Sec. 5). If there is a match,
one can choose the same actions as in a regular (unencrypted
IDS) such as drop the packet, stop the connection, or notify
an administrator. In some cases, a system administrator may
want to inspect the packets manually. However, the pack-
ets are now encrypted. If a system administrator needs the
traffic to be decrypted if and only if it matched a suspicious
content, and if the endpoints agree to run such a protocol,
one can use our probable cause protocol (Sec. 6) even for
systems that do not need to run regexp computation. After
completing detection, MB forwards the SSL traffic and the
encrypted tokens to the sender.

Receiving traffic. Two actions happen at the receiver. First,
the receiver decrypts and authenticates the traffic using reg-
ular SSL. Second, the receiver checks that the encrypted to-
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kens were encrypted properly by the sender. This happens in
order to establish if the sender encrypted the tokens properly.
Recall that, in our threat model, one endpoint may be mali-
cious – this endpoint could try to cheat by not encrypting the
tokens correctly or by encrypting only a subset of the tokens
to eschew detection at the middlebox. Since we assume that
at least one endpoint is honest, such verification will prevent
this attack.

3 Protocol I: Basic detection
In this protocol, each rule consists of one string. MB must be
able to detect if the string appears at any offset in the traffic.

This protocol suffices for applications such as document
watermarking [35] and parental filtering [5]. The goal of wa-
termarking is to prevent an employee from exfiltrating sen-
sitive documents outside of a company. A data owner (e.g.,
an enterprise) encodes a watermark, which is typically a ran-
dom serial number, into confidential documents. The mid-
dlebox knows these serial numbers and checks if outgoing
traffic contains these watermarks. If it finds them, MB likely
discovered an exfiltration attack and flags it to an adminis-
trator.

Even though this protocol provides the simplest function-
ality, it contains the meat of our techniques; the other proto-
cols simply build on this protocol. The protocol consists of
two parts: our encryption scheme DPIEnc and our detection
protocol BlindBox Detect. We describe DPIEnc here and
dedicate Sec. 5 to BlindBox Detect.

3.1 Intuition behind DPIEnc
We start by presenting the intuition behind DPIEnc. We re-
mark that a non cryptography-trained reader can understand
DPIEnc because it is composed of encryption schemes with
a clean black box interface.

As already discussed in the introduction, in the encryption
and detection phases, the protocol must perform very simple
operations such as equality, hashes or block ciphers for each
position in the stream to be tested. Any more complicated
operations or cryptography will result in poor throughput.

A promising first idea is to encrypt each token with a de-
terministic encryption scheme, such as AES. This has the
property that encrypting the same value twice results in the
same encryption. To illustrate how MB can use this property
for detection, consider that MB has a rule consisting of the
string r = “attack” and its encryption AESk(r) under key k,
where k is some connection key. Now consider that the traf-
fic includes the word r. Hence, there will be a token for r
and the endpoint will create an encryption for it: AESk(r).
Now MB only needs to run a simple equality check to iden-
tify the presence of r in the stream because the encryption
is deterministic. This scheme has promising performance
because detection consists from a simple equality and en-
cryption consists of AES. However, this approach has two
security shortcomings.

The first issue is that deterministic encryption leaks more
about the traffic than the middlebox needs to know to per-

form the detection efficiently. In particular, it leaks when-
ever a token repeats. For example, if the encrypted tokens
are [AESk(“secret”), AESk(“attack”), AESk(“secret”)], the
attacker will know that the first and third tokens are equal –
even if there is no rule for “secret”. An attacker can construct
frequency histograms and learn about the data. To address
this problem, a natural idea is to randomize the encryption
by adding a random salt to each word, for example by hav-
ing [salt1, AES(salt1, "secret"), salt2, AESk(salt2, "attack"),
salt3, AESk(salt3, "secret")]. The problem now is that MB
can no longer run the detection with AESk("attack") because
it has no way to include the salt in the encryption (the salt
cannot be fixed either because it must be different for every
occurrence of the word “attack”).

Instead, the solution is to note that one does not need to
be able to decrypt an encrypted token – hence one can use
a hash H on top of the encryption. For a cryptography-
trained reader, H is modeled as a random oracle. The result-
ing traffic is [salt1, H(salt1, AESk("secret")), salt2, H(salt2,
AESk("attack")), salt3, H(salt3, AESk("secret")]. Now, MB
can perform the detection by using the encrypted rule
AESk("secret") and combining it with salt2 from the traffic
stream to compute H(salt2, AESk("attack")).

The second issue is even more challenging. Since each
pair of endpoints (or each connection) have a different key k,
each rule r at MB must be encrypted into AESk(r) using k to
enable detection. But who can perform this encryption? One
idea is to have the endpoints send the key k to MB so that
MB can encrypt. But this means that MB can also decrypt
the whole traffic, violating privacy. (Even though the hashH
is not decryptable, MB can try a word w at a time, compute
AESk(w), applyH and see if it matches the encrypted token
from the traffic). Hence, another idea is to have MB send the
rules to the endpoints so they can encrypt using k. However,
by our threat model in Sec. 2.2, the endpoints are not allowed
to see the rules. Hence, it seems that there is no party fit to
do the encryption.

Instead, our idea is to have the endpoints obfuscate the en-
cryption function of AES together with the key k and send
this obfuscation to the middlebox. The resulting function
ObfAESk() hides the key k. When establishing a new con-
nection with key k, the endpoints compute and send ObfAESk
to MB. MB can run this function on each rule r and ob-
tain ObfAESk(r). While obfuscation per-se is impossible or
prohibitively slow [7, 12], we can achieve the properties we
need in this setting using Yao garbled circuits [41, 24]. An
endpoint can garble the AES function to obtain ObfAESk
which hides k. With garbled circuits, MB cannot directly
plug in r to ObfAESk(), but it must obtain an encoding of r
from the endpoints that works with ObfAESk. This encod-
ing is obtained using a protocol called oblivious transfer [26,
6] which provides the guarantee that the endpoints will not
learn r. We call this technique obfuscated rule encryption.

However, an active attacker at MB might try to run
ObfAESk on every possible word so as to decrypt the traffic
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via a dictionary attack. To prevent this, we augment each
rule r from the rule generator RG with a signature by RG.
Now, we can ensure that MB will obtain an encoding from
the endpoints of only those rules r for which it has a signa-
ture from RG. This step can be done by incorporating the
signature verification into the garbled circuit (although we
have a more efficient way of achieving the same result).

3.2 Building blocks
Before we present the protocol, let us briefly present the
functionality and API of our crypto building blocks.

Yao garbling scheme [41, 24]. A garbled circuit scheme,
first introduced by Yao, consists of three algorithms Garble
and Eval. Garble takes as input a function F with n bits
of input and outputs a garbled function ObfF and n pairs of
labels (L0

1, L
1
1), . . . , (L

0
n, L

1
n), one pair for every input bit of

F .
Let us explain the functionality of ObfF. Consider any in-

put x of n bits with xi being its i-th bit. ObfF has the prop-
erty that ObfF(Lx1

1 , . . . , L
xn
n ) = F (x). Basically, ObfF pro-

duces the same output as F if given the labels corresponding
to each bit of x.

Regarding security, ObfF and Lx1
1 , . . . , L

xn
n do not leak

anything about F and x beyond F (x). However, the ObfF
circuit can be used only once. That is, an adversary who has
ObfF and Lx1

1 , . . . , L
xn
n is not allowed to receive labels for

a different input than x, because he can learn information
otherwise.

1-out-of-2 oblivious transfer (OT) [26, 6]. Consider that a
party A has two values, L0 and L1, and party B has a bit b.
Consider that B wants to obtain the b-th label from A, Lb,
but B does not want to tell b to A. Also, A does not want B
to learn the other label L1−b. Hence, B cannot send b to A
and A cannot send both labels to B. Oblivious transfer (OT)
enables exactly this: B can obtain Lb without learning L1−b

and A does not learn b.
One can see how OT helps with garbled circuits: it enables

one partyB holding an input x to obtain the labels for x from
party A without telling A what x is.

Others. Let H be a hash function (e.g., SHA-1), which is
modeled as a random oracle, AES our block cipher, and sig
is a digital signature scheme.

3.3 Protocol
We are now ready to present the protocol. Recall that S and
R are the sender and receiver, MB the middlebox and RG the
rule generator.

Rule preparation. To prepare the rules, MB uses garbled
circuits for AES to encrypt the rules as in Fig. 2. One end-
point could be malicious and attempt to perform garbling
incorrectly to eschew detection. To prevent such an attack,
both endpoints have to prepare the garbled circuit and send
it to MB to check that they produced the same result. If the
garbled circuits and labels match, MB is assured that they

Lr
1 Lr

2 Lr
n
n1 2oblivious transfer

middlebox AESk(r)endpoint

garbled 
circuit AESk 

...garble 
AESk

L0
1 L0

n
...

L1
1 L1

n
...

Figure 2: Rule preparation.

are correct because at least one endpoint is honest (as dis-
cussed in Sec. 2.2). The only issue is that the garbling pro-
cess requires randomness. If the endpoints use different ran-
domness, their garbled circuits will not match even if they
are equal. Hence, the two endpoints generate the same ran-
domness using a pseudorandom generator seeded with krand
(which is discussed in Sec.2.3).

DPIEnc Rule preparation:
1: MB tells S and R the number of rules N it has.
2: For each rule 1, . . . , N , do:

2.1: S and R: Garble the following function F .

F on input [x, sig(x)] checks if sig(x) is a
valid signature on x using RG’s public key
and if so, it encrypts x with AESk and out-
puts AESk(x).

In the garbling process, use randomness
based on krand. Send the resulting garbled cir-
cuit and labels to MB.

2.2: MB: Verify that the garbled circuits from S
and R are the same, and let ObfAESk be this
garbled circuit. Let r be the current rule. Run
oblivious transfer with each of S and R to ob-
tain the labels for r. Verify that the labels
from S and R are the same, and denote them
Lr11 , . . . , L

rn
n .

2.3: MB: Evaluate ObfAESk on the labels
Lr11 , . . . , L

rn
n to obtain AESk(r).

Importantly, Steps 2 and 2c for each rule above are run in
parallel.

We use an optimization that, instead of garbling sig ver-
ification, it garbles a hash computation while achieving the
same security level. Due to space constraints, we do not de-
scribe it here.

Tokenize. For the purpose of this section alone, consider a
naïve tokenization, in which a token is created for every off-
set in the packet stream for every string length from 1 bytes
to 100 bytes. For example, if the packet stream is “alice ap-
ple”, if the minimum length is 4 and the maximum is 5, the
tokens are "alic", "alice", "lice", "lice ", "ice ", "ice a", etc.

Since this yields a large number of tokens, in Sec. 7, we
describe a more clever tokenization algorithm that creates
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fewer tokens.

Encrypt. To encrypt the tokens, we use AES and H as
discussed above. Additionally, we reduce the size of the en-
crypted token by taking the last 5 bytes, so that we can have
a smaller packet size. This makes the result un-decryptable,
but this is not a problem because we do not need to decrypt
the tokens. A token of size 5 bytes ensures that collisions be-
tween a suspicious string and a different string happen very
infrequently. Let RS = 240.

DPIEnc Encrypt:
The inputs are a set of tokens t1, . . . , tm corresponding
to a packet.

1: For each token ti, MB chooses a random value
salti, and computes H (salt,AESk(ti))mod RS.

2: The output is the list of encrypted tokens:

[ salt1, H (salt1,AESk(t1))mod RS, . . . ,

saltn, H (saltn,AESk(tn))mod RS].

Detect. Checking for a match is easy with DPIEnc:

DPIEnc Match:
The input is a rule encryption AESk(r) and the cipher-
text [salt, H(salt,AESk(t)) mod RS] of a token t.

1: Compute H(salt,AESk(r)) mod RS and check it
is equal to the input H(salt,AESk(t)) mod RS.

The detection protocol at MB works with many rules and
many encrypted tokens. It is important that the detection is
as fast as possible because it is one of the main factors in
the throughput at the middlebox. Hence, MB must invoke
DPIEnc Match algorithm as few times as possible, which
turns out to be challenging due to a tension with security. To
resolve this tension, we provide a fast detection protocol in
Sec. 5, called BlindBox Detect.

Validate tokens. This procedure takes the decrypted traffic
from SSL and applies Tokenize and Encrypt as above. It
checks that the result is the same as the encrypted tokens
from MB. If not, there is a chance that the other endpoint is
malicious and flags the misbehavior.

Decrypt. This procedure is the same as in SSL.

3.4 Security guarantee
Our protocols are provably secure; we present security proofs
in the Appendix to this document.

The security of Yao garbled circuits and of OT ensures
that MB learns AESk(r) only for those rules r that come
from RG; moreover, MB does not learn anything else about
the key k in the process.

BlindBox does not hide the number of tokens in a packet.
Also, for every malicious content that matches the traffic
stream, MB learns the offset where it matches the stream.

DPIEnc hides data content from MB and it provides a
strong security guarantee. We formalize this guarantee using
an indistinguishability-type security definition: given tokens
t0 and t1 for which MB does not have an encrypted rule, and
given a ciphertext c = [salt, H(salt,AESk(tb)) mod RS] for
some bit b, MB cannot guess what b is with chance better
than half. In other words, MB cannot tell if t0 or t1 is en-
crypted in c. We can see why this property holds: if MB
does not have AESk(tb), this value is indistinguishable from
a random value by the pseudorandom permutation property
of AES.

Moreover, since our encryption scheme is randomized,
MB cannot tell if two tokens are equal to each other (as long
as they do not match a malicious string). We can see why
this is true: given [salt1, H(salt1,AESk(t)) mod RS] and
[salt2, H(salt2,AESk(t))mod RS], MB cannot tell these are
encryptions of the same token t because it cannot invert the
hash H .

Note that BlindBox maintains the authenticity property of
SSL, but it necessarily breaks the end-to-end security of SSL
so as to allow detection.

4 Protocol II: Limited IDS
This protocol supports a limited form of an IDS. Namely, it
allows a rule to contain
• multiple keyword matches, and
• absolute and relative offset information within the packet.

This protocol supports most of the keywords in the rule
language of Snort [37]. A few keywords are not supported,
the most notable being pcre, which allows arbitrary regular
expressions to be run over the payload.

For example, consider rule number 2003296 from the Snort
Emerging Threats ruleset:

alert tcp $EXTERNAL_NET $HTTP_PORTS
-> $HOME_NET 1025:5000 (

flow: established,from_server;
content: “Server|3a| nginx/0.”;
offset: 17; depth: 19;
content: “Content-Type|3a| text/html”;
content: “|3a|80|3b|255.255.255.255”; )

This rule gets triggered if the flow is from the server, it
contains the string “Server|3a| nginx/0.” at an offset of at
least 17 but no more than 19, and it also contains the strings
“Content-Type|3a| text/html” and “|3a|80|3b|255.255.255.255”.
The symbol “|” denotes binary data.

Protocol II builds on Protocol I and supports this rule as
follows. Each content gets encrypted separately with AES as
in Protocol I. Each token is now accompanied by its offset
in the stream to allow for offset and depth keywords. For
example, assume that the stream consists of the simple string
“zero-day attack", and assume that the only tokens formed
are: “zero”, “zero-”, “zero-day", “zero-day attack", “-day",
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“day", “day attack", “attack". (The tokenization algorithm is
explained in Sec. 7.) The packet becomes:

[ 0, 4, Enc(“zero-”), Enc(“zero”),
Enc(“zero-day attack"), Enc(“zero-day");

4, 1, Enc(“-day");
5, 2, Enc(“day attack"), Enc(“day");
9, 1, Enc(“attack”)],

where the numbers represent offset and number of tokens for
that offset respectively, and Enc(t) = [salt, H(salt,AESk(t))
mod RS] as in DPIEnc Encrypt. The order of the tokens for
each offset is random – upon a match of a token to a content
in a rule, this prevents the middlebox from learning the index
of the token among the tokens at that offset.

4.1 Security guarantee
The security guarantee is the same as in Protocol I: for each
suspicious content of each rule, the middlebox learns if the
content appears in the traffic and at what offset. The only
difference is that the middlebox now also sees the number
of tokens per offset. Nevertheless, the middlebox does not
learn the content of the encrypted tokens that do not match
suspicious strings, and it also does not learn how long each
token is.

5 BlindBox Detect
Before presenting protocol III, we explain how to perform
the detection efficiently.

Performing the match of the encrypted rules against the
encrypted traffic in a fast way is crucial for the throughput at
the middlebox. To come up with a fast detection algorithm, it
turns out we need to resolve a tension between performance
and security.

Security versus performance tension. Recall that an en-
crypted token for token t is of the form [salt, c= H(salt,
AESk(t))mod RS], the encrypted rule for a rule r is AESk(r),
and checking for a match involves computing H(salt,
AESk(r)) and checking if it equals to c. To obtain high
performance at the middlebox, MB should perform as few
hashes as possible.

Let R be the number of contents in all rules and T the
number of tokens in a packet. For example, in ABC Co.
there are 3000 rules, R ≈ 9000 contents, and T ≈ 214
tokens per packet. A naïve algorithm invokes DPIEnc Match
R × T , once for each pair of rule content and token, which
is very slow.

An ideal number of matches would be O(T logR), thus
removing the large multiplicative factor of R. In fact, this
cost would be easy to achieve if we used one fixed salt for
all the tokens in a stream, as follows. MB could precompute
H(salt,AESk(r))mod RS for every r and arrange these val-
ues in a search tree. For each encrypted token c, one checks
in O(logR) time if it exists in the tree.

However, having one fixed salt for all tokens is not secure:
the encryption becomes deterministic which means that an

attacker at MB can see which token in the traffic equals
which other token in the traffic. The role of the salt was
to randomize the encryption and thus hide what tokens are
equal to each other. Even though the content of the tokens
remains hidden, one can build a frequency histogram based
on the equality patterns. Since tokens can be both full words
and subwords of various lengths, such frequency analysis
can leak a lot about the data. Hence, this exposes a tension
between security and performance.

Solution. To resolve this tension, the idea is to use a small
number of salts while preventing such frequency analysis.
First, note that if t1 6= t2, one can use the same salt in the
encryption of t1 and t2 (for a cryptographer reader, the rea-
son is that H is modeled as a random oracle). The problem
only appears when two tokens, both equal to t, are encrypted
with the same salt.

To keep the number of different salts small, the sender will
use the same salt for all distinct tokens, and increment the
salt for every token repetition. Concretely, the sender keeps
a table mapping the tokens encrypted so far to how many
times each one of them appeared in the stream – this table is
restarted everyP packets so that it remains modest in size. In
our experiments, P = 10MB gave a modest table size while
maintaining good MB detection performance. The sender
sends one freshly-chosen random salt and MB records it.
Then, for all the following P packets, the sender does not
send any other salt. When encrypting a token t, the sender
checks the number of times it was encrypted so far, say ct,
which could be zero. It then encrypts this token with the salt
(salt + ct) by computing H(salt + ct,AESk(t)). Note that
this satisfies security because no two equal tokens will have
the same salt.

This strategy enables the middlebox to construct a fast
search tree over the rules. For each rule, MB hashes it along
with S salts, salt, salt + 1, . . . , salt + S − 1, and adds it in
a fast search tree. S is chosen to be an upper bound on the
number of times a content from a rule matches a token in the
P packets. Note that each content match indicates poten-
tially malicious/suspicious behavior so S is not large. Based
on our experiments, S = 10 suffices.

Nevertheless, even if some rule has a number of matches
more than S, the correctness of detection is not affected: is
that MB can tell when the match was to an encrypted rule
whose salt was salt + S − 1. In this infrequent case, MB
can compute another S hashes for that rule for salt+S, . . . ,
salt+ 2S − 1 and insert them in the tree, etc..

Note that another advantage of this scheme is that there is
only one salt sent for the whole stream as opposed to a salt
per token, which decreases bandwidth consumption.

Now, for each packet consisting of T tokens, the cost of
the matching is T · log(S · R) which is much smaller than
T ·R by three orders of magnitude on the ABC Co. ruleset.
Every P packets, the middlebox has to rehash the rules and
recompute the tree which yields an additional amortized cost
per packet of O(RS/P · logRS).
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6 Protocol III: Full IDS with probable cause
privacy

This section enables full IDS functionality, including regexp
and scripts, based on our probable cause privacy model. If
a content of a rule (a suspicious string) matches a stream of
traffic, MB should be able to decrypt the traffic. This enables
the middlebox to then run regexp (e.g., the “pcre” field in
Snort) or scripts from Bro on the decrypted data. However, if
such a suspicious content does not match the packet stream,
the middlebox cannot possibly decrypt the traffic, and the
security guarantee is the same as in Protocol II.

Protocol insight. The approach is to somehow embed the
SSL key kSSL into the encrypted tokens, such that, if the
server has a token for t, it can obtain kSSL. Concretely,
if the server has AESk(t) and the token t shows up in the
encrypted traffic, the middlebox should be able to obtain
kSSL. To achieve this goal, we replace the encrypted to-
ken salt, H(salt,AESk(t))mod RS with itself XOR-ed with
kSSL: salt, H(salt,AESk(t)) mod RS ⊕ kSSL. If the server
has AESk(t), the server can construct the encrypted token
using the corresponding salt, and hence XOR out kSSL. The
problem is that this would slow down detection because it
would not allow a simple lookup of an encrypted token into
the rule tree described in Sec. 5 – the reason is that the en-
crypted token is now combined with the SSL key.

Protocol. To maintain the efficiency of the detection, we
retain the same encrypted token as in DPIEnc and use it
for detection, but additionally create an encrypted token that
has the key plugged in. Now, the encryption of a token
t becomes: [salt, c1 = H(salt,AESk(t)) mod RS, c2 =
H2(salt,AESk(t)) ⊕ kSSL], where H2 is a different and in-
dependent hash function from H (also modeled as a random
oracle). Note that it is crucial that H2 be different from H
because otherwise an attacker can compute c1 ⊕ c2 and ob-
tain kSSL.

MB uses c1 to perform the detection as before. If MB de-
tects a match using BlindBox Detect, MB computesH2(salt,
AESk(t)) using AESk(t) (which it has since it found a match),
and then H2(salt, AESk(t)) ⊕ c2 which yields kSSL.

7 Optimizations
A more efficient tokenization. The number of tokens af-
fects the bandwidth overhead. In Sec. 3, we proposed a
naïve tokenization protocol forming tokens at every offset
in a packet for every possible length. This results in a large
number of tokens. Fortunately, we can reduce the number of
tokens significantly with the following observations.

Observation 1. Images and videos should not be tok-
enized because intrusion rules such as Snort Community,
Snort Emerging Threats and ABC Co. do not look for at-
tacks over this content. Nevertheless, the metadata of this
content (e.g., any titles or text associated) is still tokenized.

Observation 2. Rules that are very long can always be de-
tected by concatenating a sequence of shorter tokens. There-

fore, at a given offset, we need not generate multiple to-
kens of varying lengths: we generate one token of a fixed
length. For example, to detect the word "constantinople",
one can instead detect the overlapping tokens “constant” and
“ntinople.” We would also transmit “onstanti”, “nstantin”,
“stantino”, etc. We refer to this tokenization method as "window-
based" tokenization, as we generate tokens using a sliding
window of fixed length; we run using a fixed length of 8.

Observation 3. The strings matched in rules start and
end before or after a delimiter. Delimiters are punctuation,
spacing, and special symbols. For example, if we have the
payload “login.php?user=alice”, possible content strings are
typically “login”, “login.php”, “?user=”, “user=alice” – but
not substrings like "logi" and other combinations. Hence,
we only need to generate tokens such that we can detect con-
tent strings that start and end on delimiter-based offsets; this
allows us to ignore redundant tokens in the window. For ex-
ample, returning to our “constantinople” example, we might
transmit “ constantinople: ”. Here, we would simply not
transmite “onstanti”, and “nstantin”, because they are redun-
dant to a middlebox looking for words that start and end only
with spaces or other non-alphanumeric characters. We refer
to this tokenization as "delimiter-based" tokenization.

8 System Implementation
We prototyped BlindBox’s two components: a client/server
library for transmission, and a Click-based [22] middlebox
to perform detection.
BlindBox library. The BlindBox HTTPS protocol is im-
plemented in a simple C library that allows applications to
connect, transmit, and receive from other BlindBox protocol
users. When a client opens a connection, our protocol actu-
ally opens three separate sockets: two to the server, and one
listener in case a middlebox is on path and needs to request
garbled circuits. The two sockets to the server consist of
a normal SSL channel (on top of a modified GnuTLS [4] li-
brary which allows us to extract the session key under Proto-
col III), and a secondary channel for ‘searchable’ encrypted
content strings. On send, a user tokenizes the data for trans-
mission, and first sends the encrypted content strings, and
then sends the traffic over normal HTTPS. At the receiver
side, the client receives both the encrypted content strings
and the normal HTTPS data. The receiver verifies that to-
kenization was performed properly, and, if so, returns the
decrypted data from the HTTPS connection. If the HTTPS
session receives data for which there are no corresponding
tokens, it can signal to the sender that there was packet loss,
and the tokens should be re-transmitted; until the receiver is
sure that all tokens have been transmitted (and observed by
the middlebox), it will not pass the decrypted HTTPS data
up to the application layer.

Should there be a middlebox on path, the client receives
a SYN request from the middlebox on the port + 1 that the
BlindBox connection was opened on. The client then im-
mediately begins generating garbled circuits representing an
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AES implementation with the client’s key hard-coded; to
generate the circuits we use JustGarble [8] in combination
with the OT Extension library [1]. As we show in the fol-
lowing section, this circuit exchange process is by far the
largest cost of using the BlindBox library.

The middlebox. We implemented detection in a Click-based
[22] middlebox with two elements: a ‘GarbleSpeaker’ and a
‘BlindBoxFilter’. When a new SYN packet arrives at the
BlindBoxFilter element, the connection signature is placed
in a queue and then forwarded along; the Filter then marks
the connection signature as ‘Pending’ in a shared Signa-
tureTable structure. The GarbleSpeaker reads in new con-
nections from the queue from the BlindBox Filter and then
initiates the handshake with both clients. Once the GarbleS-
peaker has evaluated all circuits received from the clients, it
constructs the search tree and leaves the encrypted tokens in
the shared SignatureTable structure. Finally, it updates the
connection from “pending” to “allowed”.

While a connection is marked as pending, the BlindBox-
Filter allows the first few bytes – the TCP and SSL hand-
shakes – to proceed as normal, but does not permit any fur-
ther data packets through until the connection is marked as
Allowed. During this time the client waits to transmit, so this
check in practice is never enforced. Once the connection is
marked allowed, the BlindBoxFilter allows data packets in
the SSL channel to proceed, so long as no attack has been
deetcted. Searchable packets are compared against a search
tree containing the tokens generated from the garbled cir-
cuits. On receipt of a salt update packet from the client, the
BlindBoxFilter inserts new tokens in to the tree at the signa-
ture; this stalls processing for a few milliseconds and hence
it is important that salt updates be rare. If a client sends too
many salt updates this is interpreted as a DoS attempt and
the connection is stopped.

On signature detection, under Protocol I the connection
status is marked as ‘DENIED’ and all future packets are
dropped. Under Protocol II, a signature vector (containing
potentially multiple tokens) is updated to mark that an ad-
ditional token has been detected. If all tokens in the signa-
ture are now marked, the connection status is updated to DE-
NIED. Finally, under Protocol III, the connection is passed
to a decryption element (which wraps the open source
ssldump [3] tool). Like SSL-Termination devices [9] (which
today man-in-the-middle all traffic) the traffic can then be
passed on to one or several DPI and monitoring appliances,
all of which can now operate on plaintext data.

9 Evaluation

To evaluate BlindBox, we answer two questions: First, how
completely can BlindBox support our target applications –
exfiltration, parental filtering, and HTTP intrusion detection?
Second, what are the performance overheads of BlindBox at
both the client and middlebox?

9.1 Functionality evaluation
We targeted several use-cases in our design an implementa-
tion of BlindBox: Parental Filtering, Document Watermark-
ing, and HTTP Intrusion Detection. We now evaluate how
comprehensively BlindBox can support each application.
Can BlindBox implement the functionality required for each
target system? Table 2 shows what fraction of ‘rules’ Blind-
Box can implement using either protocol I, II, or III for each
of several systems. We report on several public datasets, as
well as two industrial 2 datasets to which we had (partial)
access for the purposes of this evaluation.

Document Watermarking and Parental Filtering can be com-
pletely supported using protocol I, as each system relies only
on detection of a single substring to trigger an alarm or fil-
tering. However, protocol I can only support between 1.6-
5% of the policies required by the more general HTTP IDS
applications (the two public Snort datasets, as well as the
datasets from XYZ Co. and ABC Co.). This limitation is
due to the fact that most IDS policies require exact match
detection of multiple substrings, or regular expressions and
scripting.

Protocol II, by supporting multiple exact match substrings,
extends support to 29-67% of policies for the HTTP IDS ap-
plications. Protocol III supports all applications, including
regular expressions and scripting, by enabling decryption,
only when there is probable cause to do so.
Does BlindBox fail to detect any attacks/policy violations
that these standard implementations would detect? In §7,
we described two tokenization techniques: Window-based
and Delimiter-based tokenization. Window-based tokeniza-
tion can detect every match in any ruleset (excluding regular
expressions). Delimiter-based tokenization relies on the as-
sumption that, in IDSes, most rules occur on the boundary of
non-alphanumeric characters, and thus does not transmit all
possible tokens – only those required to detect rules which
occur between such ‘delimiters.’ To test this hypothesis, we
ran BlindBox over the ICTF2010 [39] trace using the Snort
Emerging Threats ruleset excluding all rules with regular ex-
pressions. The ICTF trace is a network trace during a col-
lege ‘capture the flag’ contest during which students attempt
to hack different servers to win the competition. With Blind-
Box and delimiter based-detection, we detected 97.1% of all
content strings that would have been detected using Snort,
and 99% of all attacks that Snort detected.

9.2 Performance & cryptographic overheads
We implemented both the client software required to per-
form DPIEnc, and a middlebox to perform BlindBox detect,
as described in §8. We now use these systems to investigate
BlindBox’s performance overheads at both the client and the
network.

For all experiments, the client software uses Protocol II,
which has higher overhead than Protocol I. The primary over-
2We thank ABC Co. and XYZ Co. for the data required for this
analysis.
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Dataset I. II. III.
Document Watermarking [35] 100% 100% 100%
Parental Filtering [5] 100% 100% 100%
Snort Community (HTTP) 3% 67% 100%
Snort Emerging Threats (HTTP) 1.6% 42% 100%
XYZ Co. IDS 5% 40% 100%
ABC Co. 0 29.1% 100%

Table 2: Fraction of attack signatures in public and in-
dustrial signature sets addressable with protocols I, II,
and III.

head of Protocol III comes from the secondary middlebox to
perform regular expression processing. Our prototype of the
client software runs on two servers with 2.60 GHz proces-
sors connected by a 10GbE link. The machines are mul-
ticore, but we used only one thread per client. The CPU
supports AES-NI instructions and thus the encryption times
for both SSL and BlindBox reflect this hardware support.
Since typical clients are not running in the same rack over
a 10GbE links, in some experiments we reduced throughput
to 20Mbps (typical of a broadband home link) and increased
latency to 10ms RTT. Our prototype middlebox runs with
four 2.6GHz Xeon E5-2650 cores and 128 GB RAM; the
network hardware is a single 10GbE Intel 82599 compatible
network card.

Because BlindBox is the only system we know of to en-
able DPI over encrypted data, our performance baselines are
not apples-to-apples comparisons. We measure BlindBox’s
overhead relative to two protocols: standard SSL, which does
not enable DPI as BlindBox does, and a standard functional
encryption scheme which provides the correct functionality
but which is not tailored to packet processing. The compar-
ison to this strawman demonstrates how far our new tech-
niques in BlindBox towards practicality.

We now describe the functional encryption algorithm we
compare against, before discussing bandwidth and computa-
tional overheads at both the clients and middlebox.

9.2.1 Strawman

If one wants to use existing cryptography, functional encryp-
tion is the most applicable encryption scheme to our setting
as follows. Since the middlebox (MB) needs to compute
on the encrypted traffic, the candidate encryption schemes
are fully homomorphic encryption (FHE) and functional en-
cryption. FHE does not permit MB to learn the result of the
detection, namely if there is an attack or not, so MB cannot
take actions upon an attack, such as drop a packet or alert
an administrator. Functional encryption does allow MB to
learn whether there is an attack in the packet and at the same
time, it prevents MB from learning the content of the traffic.
Fortunately, we have constructions of functional encryption
which support any function [12, 15] and, hence, they support
DPI. However, these are prohibitively impractical: they are
slower than FHE which is currently at least 9 orders of mag-

nitude slower than regular computation. For example, [15]
nests FHE in itself, resulting in an overhead of at least 18
orders of magnitude.

The only functional encryption schemes that are feasible
are specialized functional encryption schemes. We imple-
mented one of the simplest and fastest such scheme [20],
which enables only inner product computation on encrypted
data (which can also be used for equality checks).

We note that even if functional encryption were efficient,
it still does not meet all the security requirements of our set-
ting, although it comes closer than other schemes. The main
drawback is that tokens over all streams (for every pair of
endpoints) are encrypted with the same key, unlike SSL and
BlindBox which has a per-key connection. This means that,
if someone gets hold of this key, they can decrypt the traf-
fic between every single pair of endpoints. Also, if someone
compromises the rule generator, they can decrypt all traffic
sent in the past or future; whereas, in BlindBox, past traffic
is not affected and there is a limited effect on future traffic.
It is not clear how can one enable a per-connection key as
in SSL and BlindBox. One would most likely need to use
BlindBox’s technique of converting the rule using garbled
circuits. However, the rule encryption algorithm is more
complicated than BlindBox’s: it is based on modular expo-
nentiations which result in very large garbled circuits. Since
these are very complicated circuits, we did not implement
this rule conversation. Nevertheless, we can estimate a gen-
erous lower bound on this phase based on the sizes of mod-
ular exponentiation circuits reported in [8]: the garbled cir-
cuit will be at least 1.8 · 103 times larger and hence the setup
phase will be at least 1.8 ·103 times slower than BlindBox’s.

9.2.2 Client performance

BlindBox introduces noticeable overheads in client perfor-
mance stemming from three root causes: the bandwidth over-
head due to transmitting encrypted tokens, the computational
overhead of generating and encrypting these tokens, and the
setup time required to do the handshake with the middlebox
and exchange garbled circuits. By far, the largest overhead
comes from the initial handshake, which takes on the order
of minutes to complete – typically about 414s for a 3000 sig-
nature ruleset in our experiments. Post-handshake, however,
the overheads are much more modest. A page download dur-
ing a persistent connection in our experiments increased by
between 13% and 300% depending on the page size and con-
tents, resulting in a slower but practical and usable download
time.
How long are page downloads with BlindBox, excluding the
handshake setup cost? Figure 3 shows page download times
using our "typical end user" testbed with 20Mbps links; we
show in this figure five popular websites: YouTube, AirBnB,
CNN, The New York Times, and Project Gutenberg. The
data shown represents the post-handshake (persistent con-
nection) page download time. YouTube and AirBnB load
video, and hence have a large amount of binary data which
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Figure 3: Download time for TLS and TLS+BlindBox
at 20Mbps×10ms.
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Figure 4: Download time time for TLS and
TLS+BlindBox at 1Gbps×10ms.

is not tokenizer. CNN and The New York Times have a mix-
ture of data, and Project Gutenberg is almost entirely text.
We show results for both the amount of time to download
the page including all video and image content, as well as the
amount of time to load only the Text/Code of the page. The
overheads when downloading the whole page are at most
2×; for pages with large amount of binary data like YouTube
and AirBnB the overhead was only 10-13%. Load times for
Text/Code only – which are required to actually begin ren-
dering the page for the user – are impacted more strongly,
with penalties as high as 3× and a worst case of about 2×.
What is the computational overhead of BlindBox encryption,
and how does this overhead impact page load times? While
the encryption costs are not noticeable in the page download
times observed over the ‘typical client’ network configura-
tion, we immediately see the cost of encryption overhead
when the available link capacity increases 1Gbps in Figure 4
– at this point, we see a performance overhead of as much
as 16× relative to the baseline SSL download time. For both
runs (Figs. 3 and 4), we observed that the CPU was almost
continuously fully utilized to transfer data during data trans-
mission. At 20Mbps, the encryption cost is not noticeable as
the CPU can continue producing data at around the link rate;
at 1Gbps transmission with BlindBox stalls relative to SSL,
as the BlindBox sender cannot encrypt fast enough to keep
up with the line rate. This overhead can be mitigated with
extra cores; while we ran with only one core per connection,
tokenization can easily be parallelized.

We provide microbenchmarks of the encryption cost in
Table 3, with comparisons to both the Functional Strawman
and to SSL. We see that, as observed with CPU utilization,
encryption of a 1500 byte packet with BlindBox takes 30×
longer than with SSL, but is still 5 orders of magnitude faster
than the strawman scheme.
What is the bandwidth overhead of transmitting encrypted
tokens for a typical web page? Minimizing bandwidth over-
head is key to client performance: less data transmitted means

Vanilla
HTTPS

Strawman
HTTPS

BlindBox
HTTPS

Client

Encrypt (128 bits) 13ns 70 · 106 ns 69ns
Encrypt (1500 bytes) 3µs 15 ·106µs 90µs
Setup (1 Content) 73ms 8.3 ·104ms 119 ms
Setup (3K Rules) 73ms 7.5 ·105ms 414 s

MB

Detection:
1 Rule, 1 Token NP 1.7 ·105µs 20ns
1 Rule, 1 Packet NP 3.6 ·107µs 5µs
3K Rules, 1 Token NP 5.0 ·108µs 137ns
3K Rules, 1 Packet NP 1.1 ·1011µs 33µs

Table 3: Connection and detection microbenchmarks
in comparison between Vanilla HTTPS, our functional
strawman, and BlindBox HTTPS. NP Stands for not pos-
sible.
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(a) Window-Based Tokenization
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(b) Delimiter-Based Tokenization

Figure 5: Bandwidth overhead over top-50 web dataset.

less cost, faster transfer times, and lower encryption over-
head. The number of encrypted tokens varies widely de-
pending on three parameters of the page being loaded: what
fraction of bytes are text/code which must be tokenized, how
“dense” the text/code in number of delimiters, and whether
or not the web server and client support compression.

Figures 5 (a) and (b) break down transmitted data in to the
number of text-bytes, binary-bytes, and tokenize-bytes using
the Window-based and Delimiter-based tokenization algo-
rithms (as discussed in §??); the y2 axis shows the overhead
of adding tokens over transmitting just the original page data.
The median page with delimited tokens sees a 2.5× increase
in the number of bytes transmitted. In the best case, some
pages see only a 1.1× increase, and the worst page sees a
14× overhead. The median page with window tokens sees
a 4× increase in the number of bytes transmitted; the worst
page sees a 24× overhead. The first observable factor in
what impacts this overhead – seen in these figures – is simply
what fraction of bytes in the original page load required to-
kenization – pages which were mostly video suffered lower
penalties than pages with large amounts of text, HTML, and
javascript as we do not tokenize video that our DPI services
have no aim to scan.
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Figure 7: Impact of compression and delimiter density
on tokenization overhead for delimiter-based tokeniza-
tion only.

A second factor, better observed in Figures 6 and 7(a)
is whether or not the web server hosting the page supports
gzip compression. Many web servers will compress con-
tent before sending it to clients, which then unzip the data
before passing to rendering in the browser. Where win-
dow based tokenization imposes a penalty of one token (five
bytes) per plaintext byte (and delimiter-based tokenization
imposes less than half of a token – 2.2 bytes – by eliminat-
ing tokens which are redundante to the DPI engine), com-
pressing the plaintext makes the perceived penalty higher:
the baseline data can be compressed, but encrypted tokens
cannot. In Figure 6 we show a CDF of the ratio of BlindBox
bytes to SSL bytes when gzip is not enabled, and when gzip
is enabled exactly as in the original trace (i.e. we compare
against the bytes gzipped when we downloaded the dataset
from the webservers; if any data was not compressed we left
it as-is and did not try to compress it further). When com-
pared against plaintext, both window and delimiter based to-
kenization have ‘tight’ tails – the worst page with window
based tokenization has slightly more than 5× overhead, and
the worst page with delimeter tokenization has around 4×
overhead. But, for pages which benefit strongly from com-
pression, the penalty can begin to look dramatic at the tail,
going as high as 24× for one page (Craigslist.com, which
is mostly text/code and benefits strongly from compression).
Figure 7(a) shows for each page the number of tokens pro-
duced on average per byte, plotted against the page reduction
achieved by the web server by using gzip.

The final factor is simply the number of delimiters seen
in a page – text-only pages like Project Gutenberg do well
in this metric, since there are few code-like characters in the
text. The worst performers in this area are pages which make

large use of compressed javascript code, where a large frac-
tion of characters result in tokenization. Figure 7(b) illus-
trates this effect for the same dataset as previously.

9.2.3 Middlebox throughput and performance

We compared the throughput of detection at the middlebox
in BlindBox to the throughput in Snort [2]. The table below
summarizes our results. We can see that, from this stand-
point, BlindBox is twice faster than Snort, a deployed and
common IDS system today.

Snort BlindBox
Line Rate for Established
Connections

85Mbps 166Mbps

This is a result of the fact that BlindBox reduces all detec-
tion to exact matching, pushing all regular expression pars-
ing to a secondary middlebox, invoked rarely. Hence, it is
unsurprising that BlindBox performs detection more quickly.

While we did not implement a version of BlindBox which
relied on our strawman, we can compare against it using
a smaller benchmark, which illustrates that the strawman
would be prohibitively impractical to use at the middlebox:
detection over a single packet against a 3000 rule signature
set would take more than a day.

10 Related work
Related work falls into three categories: insecure proposals
some being deployed today, relevant work on computing on
encrypted data, and other related work.

10.1 Insecure proposals
Given that deployed systems could not support both encryp-
tion and deep packet inspection (DPI), they chose the in-
secure path. Existing systems mount a man-in-the-middle
attack on SSL [18, 16] by installing fake certificates at the
middlebox [21, 33]. This enables the middlebox to break
the security of SSL and decrypt the traffic. Once the traffic
is decrypted, middleboxes can run DPI protocols. However,
this breaks the end-to-end security of SSL, and as a conse-
quence, many issues follow as surveyed in Jarmoc [18].

Some proposals allow users to tunnel their traffic to a
third party middlebox provider, e.g. Meddle [32], Beyond
the Radio [38], and APLOMB [34]. These approaches al-
low the middlebox owner to inspect/read all traffic; although
the situation is preferable (from the client’s perspective) in
that the inspector is one with whom the client has a for-
mal/contractual relationship. However, this approach is not
preferable the network service providers, who may wish to
enforce policy on users in the network, using a local mid-
dlebox to ensure, e.g., that no hosts within the network are
infected with botnet malware.

As compared to these works, BlindBox maintains the ben-
efits of encryption.
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10.2 Computing on encrypted data
Fully homomorphic encryption (FHE) [13] and general func-
tional encryption [12, 15] are encryption schemes that can
compute any function over encrypted data and thus promise
to support the complexity of deep packet inspection tasks.
They do not address all the desired security properties in our
threat model, and more importantly, they are prohibitively
slow, currently at least 9 orders of magnitude slower than
unencrypted computation [14].

Even a specialized functional encryption scheme [20] as
our strawman described in Sec. 9.2.1 is six orders of magni-
tude slower than BlindBox. Also, some recent systems [29,
30] showed that some specialized computation can be per-
formed efficiently on encrypted data. However, these sys-
tems perform SQL operations or certain types of search on
the encrypted data, and do not enable the computations we
are interested in for deep packet inspection.

There is a large body of work on searchable encryption,
which enables finding keywords on encrypted text. A part
of our protocol has the flavor of searchable encryption be-
cause it seeks to match the content of a rule on encrypted
traffic. However, existing searchable encryption schemes do
not provide the desired security or functionality in BlindBox.
Symmetric-key searchable encryption schemes [36, 19] re-
quire the endpoint to encrypt the rule with the symmetric
key which means that the endpoint sees the rule, thus vio-
lating our threat model. Public-key searchable encryption
schemes [10] do not have this drawback, but they are still
less secure than BlindBox and remain too slow for this set-
ting. First, the security they provide is weaker because all
tokens for all connections (over all pairs of endpoints) are
encrypted with the same key unlike a different key per flow
as in SSL – when this key gets compromised, everyone’s
traffic can be decrypted. Second, their performance is un-
acceptable because they perform a slow operation, called a
cryptographic pairing, for every pair of token to rule content
– in our experimental setup, for the ABC Co. ruleset and
using the pbc library [25] for bilinear maps, inspecting one
packet against the ruleset at the middlebox takes≥ 9 ·108µs,
which is orders of magnitude more than BlindBox and regu-
lar SSL. Moreover, none of these schemes provide a story for
supporting arbitrary regexp and scripts on the traffic, unlike
our probable cause privacy model and protocol.

10.3 Other related work
Yamada et al. [40] show how one can detect some limited
intrusion attacks by using only the data size and timing of
SSL-encrypted packets. Their approach cannot do detection
based on the content of a packet and thus cannot support
IDSes, exfiltration detection or parental filtering.

11 Conclusion and future directions
In this paper, we argue that the vision of computing on en-
crypted packets promises to solve the tension between secu-
rity and functionality at middleboxes.

To the best of our knowledge, BlindBox is the first system
that makes inspecting encrypted packets usable on human
timescales. It improves performance by six orders of magni-
tude as compared to what existing techniques could do today
in this setting, and, for frequent operations such as detec-
tion, it is faster than Snort, a common IDS deployed today.
As discussed, current research holds the potential to bring
BlindBox’s overhead further down and this is the subject of
our future work.
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APPENDIX
In this appendix, we treat cryptographically the algorithms in BlindBox: the DPIEnc encryption scheme, BlindBox Detect, and
the probable cause privacy protocol.

We first introduce notation and provide the syntax for our scheme, then provide a definition of what it means to be secure, and
then prove that DPIEnc achieves this definition under standard cryptographic assumptions. Next, we define security formally
for probable cause privacy and prove that our construction achieves it.

A Notation
Let κ denote the security parameter throughout this paper. For a distribution D, we say x ← D when x is sampled from the
distribution D. If S is a finite set, by x ← S we mean x is sampled from the uniform distribution over the set S. We use p(·)
to denote that p is a function that takes one input. Similarly, p(·, ·) denotes a function p that takes two inputs.

We say that a function f is negligible in an input parameter κ, if for all d > 0, there exists K such that for all κ > K,
f(κ) < κ−d. For brevity, we write: for all sufficiently large κ, f(κ) = negl(κ). We say that a function f is polynomial in an
input parameter κ, if there exists a polynomial p such that for all κ, f(κ) ≤ p(κ). We write f(κ) = poly(κ).

Let [n] denote the set {1, . . . , n} for n ∈ N∗. When saying that a Turing machineA is p.p.t. we mean thatA is a non-uniform
probabilistic polynomial-time machine.

Two ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N, are said to be computationally indistinguishable (and denoted
{Xκ}κ∈N

c
≈ {Yκ}κ∈N) if for every probabilistic polynomial-time algorithm D,

|Pr[D(Xκ, 1
κ) = 1]− Pr[D(Yκ, 1

κ) = 1]| = negl(κ).

In our security definitions, we will define probabilistic experiments and denote by random variables their outputs. For
example, ExpAdv(1

κ) denotes the random variable representing the output of the experiment with adversary Adv on security
parameter κ. Moreover, {ExpAdv(1κ)}κ∈N denotes the ensemble of such random variables indexed by κ ∈ N.

B Syntax
We now define the syntax for the class of encryption schemes we call middlebox searchable encryption scheme, or shortly
MBSE. DPIEnc is such an encryption scheme.

Definition 1 (Syntax). An MBSE scheme associated with message space M is is a tuple of p.p.t. algorithms (Setup, Enc,
RuleEnc, Match) as follows:

• Setup(1κ) : Takes as input a security parameter 1κ and outputs a key k.
• Enc(k, t1, . . . , tn) : Takes as input the key k and a set of n tokens each inM where n = poly(κ), and outputs a salt salt,

and a set of ciphertexts [c1, . . . , cn].
• RuleEnc(k, r) : Takes as input a key k and a rule string r ∈M, and outputs an encrypted rule encr.
• Match(encr, salt, c1, . . . , cn): Takes as input an encrypted rule encr corresponding to a rule r, a salt salt and a set of

ciphertexts and outputs the set of indexes {ind1, . . . , ind`}, where each index is in [n].

Correctness. For any polynomial n(·), for every sufficiently large security parameter κ, if n = n(κ), for all [t1, . . . , tn] ∈Mn,
for every rule r ∈M, for every index i such that ti = r and for every index j such that tj 6= r, we have:

Pr


k ← Setup(1κ);
salt, c1, . . . , cn ← Enc(k, t1, . . . , tn);
encr← RuleEnc(k, r);
S ← Match(encr, salt, c1, . . . , cn) :
i ∈ S

 = 1.

and

Pr


k ← Setup(1κ);
salt, c1, . . . , cn ← Enc(k, t1, . . . , tn);
encr← RuleEnc(k, r);
S ← Match(encr, salt, c1, . . . , cn) :
j ∈ S

 = negl(κ).

The correctness property above specifies that a match is detected with probability 1 for every token that matches the rule,
but for a token that does not match the rule, the probability of a match is negligibly small.
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C Security definition
Our security definition is standard for searchable encryption schemes. For example, it is similar to the security definition of
Song et al. [36]. This is helpful because it means that the security guarantee we provide is well-studied as opposed to new and
not well understood.

This security definition is indistinguishability-based: at a high level, given two sets of tokens, and an encryption of one of
these two sets of tokens, no polynomial-time adversary can tell with chance significantly better than half, which of the two sets
of tokens were encrypted. In other words, the adversary gains no side information from the encryption scheme.

However, when given an encrypted search word (called rule string in our case), the attacker can tell precisely which encrypted
token this rule matches, while not learn anything else about the data. This statement is typically formalized by allowing the
attacker to choose any two sets of tokens of the same length, any number of rules, and as long as those sets of tokens match
the set of rules at the same tokens, no attacker can distinguish between encryptions of the two sets of tokens. Note that the
property in the paragraph above follows from this property (in the case that an adversary chooses an empty set of rules).

Our security definition does not specify that rule strings are also hidden, which means that the attacker is allowed to learn
the rules. (As a side note, the encryption scheme does hide the rules, providing a deterministic encryption guarantee, but in our
systems setup, the middlebox will get to know the rules from the rule generator anyways, so formalizing this property is not
useful).

Definition 2 (MBSE security). Consider an MBSE scheme with algorithms (Setup, Enc, RuleEnc, Match) and associated
message spaceM. Let Adv be a p.p.t. stateful adversary with oracle access to H . Consider the following experiment.

ExpAdv(1
κ):

1: k ← Setup(1κ)
2: T 0 = (t01, . . . , t

0
n), T

1 = (t11, . . . t
1
n)← Adv(1κ)

3: b← {0, 1}, a random bit.
4: salt, c1, . . . , cn ← Enc(k, tb1, . . . , t

b
n)

5: r1, . . . , r` ← Adv(salt, c1, . . . , cn)
6: encr1, . . . , encr` ← RuleEnc(k, r1), . . .RuleEnc(k, r`)
7: b′ ← Adv(encr1, . . . , encr`)
8: Let I0i be the set of indexes that match ri in T 0 and I1i be the set of indexes that match ri in T 1. If b′ = b and I0i = I1i for

all i, output “Success” else output “Fail”.

We say that the scheme is secure if for all p.p.t. stateful adversaries Adv, and for all sufficiently large κ:

Pr[ExpAdv(1
κ) = “Success”] ≤ 1/2 + negl(κ).

In this security definition, the adversary Adv chooses two sets of tokens T 0 and T 1, receives an encryption of one of these
at random (the bit b controls which set of tokens will be encrypted) and then tries to guess b by outputting b′. Adv is also
allowed to choose the rules. As with typical searchable encryption security definitions, the adversary succeeds if his guess b′

equals b and only if he chose rules that do not automatically distinguish T 0 and T 1: these rules must match T 0 and T 1 at the
same indexes; otherwise, the functionality we desire from the scheme will enable anyone to distinguish these two sets of tokens
trivially. We want to ensure that the attacker dos not learn anything from the scheme other than the pattern of matching, hence,
he only succeeds if he chooses sets of tokens with the same pattern of matchings with the rules.

D Construction
For preciseness, we provide the construction of the scheme here too. This construction consists of DPIEnc enhanced with the
encryption from BlindBox Detect. Here, we are concerned only with security. Hence, we do not include in the construction the
data structure BlindBox Detect builds at the middlebox which is only meant for performance and has no implication on security.
However, we do include the enhanced encryption due to BlindBox Detect which chooses salts in specific ways, because we do
need to prove that this mechanism does not weaken security.

Also, in this treatment, we do not include the rule encryption step using Yao garbled circuits: the security of the overall
scheme with the Yao garbled circuits follows trivially from composing the security of this scheme with the security guarantees
of Yao garbled circuits.

Let H be a hash function modeled as a random oracle.
The setup algorithm Setup(1κ): Generate AES key k as in AES.
The encryption algorithm Enc(k, t1, . . . , tn):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], do:
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2.1: let ct be the number of times that ti repeats in the sequence t1, . . . , ti−1. ct could be 0.
2.2: Compute ci = H(salt+ ct,AESk(ti)) mod RS.

3: Output salt, c1, . . . , cn.
Note that the strategy above for generating salts is from BlindBox Detect.

The rule encryption algorithm RuleEnc(k, r): Output encr = AESk(r).

We do not include a second description of the matching algorithm here. The reason is that it has no bearing on security: it
does not show up in the security definition (Def. 2). This makes sense because matching is performed on data that is already
available to the attacker from other algorithms such as Enc and RuleEnc. It provides no new information to the attacker (and in
fact it is ran by the attacker). The matching algorithm is involved only in the correctness of functionality of our scheme, which
we already explained in the body of the paper.

E Security proof
The security of our scheme relies on the standard cryptographic assumption that AES is pseudorandom permutation [?], and
on H being a random oracle.

Theorem 1. Assuming that AES is a pseudorandom permutation and H is a random oracle, our construction in Sec. D is a
secure MBSE scheme.

Proof. It is easy to check why this construction satisfies the syntax of MBSE as described in Sec. B.
We now prove security. We prove security through a sequence of two hybrids. The first hybrid replaces the AES encryption

of tokens with deterministic random values, based on the pseudorandom security property of AES. The second hybrid then
replaces the random oracle with deterministic random values based on the property of the random oracle. This results in an
experiment in which the distribution of encryptions of T 0 and T 1 are statistically equal and thus indistinguishable, proving our
theorem.

Hybrid 1. The Enc algorithm is changed to replace AESk(·) with random values. Concretely:
Hybrid1.Enc(k, t1, . . . , tn):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], generate a random value Ri in the ciphertext space of AESk, with the only restriction that it

preserves equality. Namely, iff ti = tj , Ri = Rj .
2.1: let ct be the number of times that ti repeats in the sequence t1, . . . , ti−1. ct could be 0.
2.2: Compute ci = H(salt+ ct, Ri) mod RS.

3: Output salt, c1, . . . , cn.
The rows in bold indicate differences from the regular encryption.

We also define Hybrid1.RuleEnc(k, r) to output Ri if r = ti for some ti, otherwise to output a fresh random value R. A
future rule r′ = r should also be assigned the same random value as r.

One can define ExpAdv,Hybrid 1(1
κ) in the same way as ExpAdv(1

κ) by replacing Enc with Hybrid1.Enc and RuleEnc with
Hybrid1.RuleEnc.

Lemma 2. Assuming AES is a pseudorandom permutation, for all p.p.t. stateful adversaries Adv, for all sufficiently large κ:

Pr[ExpAdv(1
κ) = “Success”] ≤ Pr[ExpAdv,Hybrid 1(1

κ) = “Success”] + negl(κ).

Proof. The proof follows directly from the pseudorandom property of AES, which means that AESk is computationally indis-
tinguishable from a random oracle.

Hybrid 2. The Enc algorithm is changed to replace H with random values.
Hybrid2.Enc(k, t1, . . . , tn):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], generate a random value Ri in the ciphertext space of [0, RS − 1] bits and let ci = Ri.
3: Output salt, c1, . . . , cn.

The rows in bold indicate differences from Hybrid 1. Unlike Hybrid 1, there is no restriction on the random values Ri any
more.

We also define Hybrid2.RuleEnc(k, r) to output a random value R for each rule r to be encrypted, with the only restriction
that any rule string r′ = r is also assigned to R.

18



In the case of Hybrid 2, we also need to program the random oracleH . When Adv gives as input toH salt∗,Hybrid2.RuleEnc(k, r),
for r such that r = ti for some i and salt∗ = salt+ cti, H returns Ri.

One can define ExpAdv,Hybrid 2(1
κ) in the same way as ExpAdv(1

κ) by replacing Enc with Hybrid2.Enc and RuleEnc with
Hybrid2.RuleEnc.

Lemma 3. Assuming H is a programmable random oracle, for all p.p.t. stateful adversaries Adv, for all sufficiently large κ:

Pr[ExpAdv,Hybrid 1(1
κ) = “Success”] ≤ Pr[ExpAdv,Hybrid 2(1

κ) = “Success”] + negl(κ).

Proof. The proof follows directly from the properties of the random oracle.

Lemma 4. For all p.p.t. stateful adversaries Adv,

Pr[ExpAdv,Hybrid 2(1
κ) = “Success”] = 1/2.

Proof. We can see that Hybrid 2 loses all the information about t1, . . . , tn and the rules r except for the pattern of matching
between the rules and the tokens t1, . . . , tn. In other words, all encryptions are random values preserving the pattern of
matching between rules and tokens. This pattern is the same for T 0 and T 1. Hence, the two distributions for T 0 and T 1 are
statistically the same, which means that any adversary Adv has a chance of distinguishing them of exactly half.

By Lemmas 2, 3, and 4, we obtain:

Pr[ExpAdv(1
κ) = “Success”] ≤ Pr[ExpAdv,Hybrid 2(1

κ) = “Success”] + negl(κ) = 1/2 + negl(κ),

which concludes our proof.

F Probable cause security
The security of the probable cause algorithm specifies that the middlebox should obtain kSSL if and only if there is a match of
a rule string against a token. This security guarantee is similar to the one of attributed-based encryption schemes [11] (shortly
denoted ABE). Hence, we formalize the security of probable cause in a similar way to ABE security.

In this security definition, Adv is allowed to choose two SSL keys k0SSL and k1SSL, one of these gets selected at random and
then encrypted along with the tokens. The challenge to the adversary Adv is to guess which one of these keys were encrypted,
when no rule string matches any of the contents.

We call such an encryption scheme, probable cause MBSE. The syntax of a probable cause MBSE scheme is the same as
the syntax of MBSE (Sec. B) except for the encryption and match algorithms. The encryption algorithm takes an additional
element kSSL: Enc(k, t1, . . . , tn, kSSL). The matching algorithm additionally produces kSSL upon a match.

Definition 3 (Probable cause security). Consider a probable cause MBSE scheme with algorithms (Setup, Enc, RuleEnc,
Match) and associated message space M. Let Adv be a p.p.t. stateful adversary with oracle access to H . Consider the
following experiment.

ExpAdv(1
κ):

1: k ← Setup(1κ)
2: k0SSL, k

1
SSL ← Adv(1κ)

3: T = t1 . . . tn ← Adv(1κ)
4: b← {0, 1}, a random bit
5: salt, c1, . . . , cn ← Enc(k, t1, . . . , tn, k

b
SSL)

6: r1 . . . r` ← Adv(salt, c1, . . . , cn)
7: encr1, . . . , encr` ← RuleEnc(k, r1), . . .RuleEnc(k, r`)
8: b′ ← Adv(encr1, . . . , encr`)
9: If b′ = b and none of the rules rj match any token in T , output “Success” else output “Fail”.

We say that the scheme has probable cause security if for all p.p.t. stateful adversaries Adv, and for all sufficiently large κ:

Pr[ExpAdv(1
κ) = “Success”] ≤ 1/2 + negl(κ).
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F.1 Probable cause construction
Let us recall the probable cause construction. As before, the matching algorithm has no bearing to security so we do not review
it here. The setup and rule encryption algorithms are the same as in the regular construction.

Let H and H2 be hash functions modeled as random oracles.
The setup algorithm Setup(1κ): Generate AES key k as in AES.
The encryption algorithm Enc(k, t1, . . . , tn, kSSL):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], do:

2.1: let ct be the number of times that ti repeats in the sequence t1, . . . , ti−1. ct could be 0.
2.2: Compute ci = (H(salt,AESk(ti)) mod RS, H2(salt,AESk(ti))⊕ kSSL).

3: Output salt, c1, . . . , cn.
The rule encryption algorithm RuleEnc(k, r): Output encr = AESk(r).

F.2 Security proof
Theorem 5. Assuming that AES is a pseudorandom permutation, and H and H2 are random oracles, the construction above
has probable cause security.

Proof. As before, we prove security through a sequence of hybrids.

Hybrid 1. The Enc algorithm is changed to replace AESk(·) with random values. Concretely:
Hybrid1.Enc(k, t1, . . . , tn, kSSL):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], generate a random value Ri in the ciphertext space of AESk, with the only restriction that it

preserves equality. Namely, iff ti = tj , Ri = Rj .
2.1: let ct be the number of times that ti repeats in the sequence t1, . . . , ti−1. ct could be 0.
2.2: Compute ci = (H(salt, Ri) mod RS, H2(salt, Ri)⊕ kSSL).

3: Output salt, c1, . . . , cn.
The rows in bold indicate differences from the regular encryption.
We also define Hybrid1.RuleEnc(k, r) to output Ri if r = ti for some ti, otherwise to output a fresh random value R. A

future rule r′ = r should be assigned the same random value.

Hybrid 2. The Enc algorithm is changed to replace H and H2 with random values.
Hybrid2.Enc(k, t1, . . . , tn, kSSL):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], generate a random value Ri, R′i in the ciphertext space of [0, RS − 1] bits and let ci = (Ri, R

′
i ⊕

kSSL).
3: Output salt, c1, . . . , cn.

The rows in bold indicate differences from Hybrid 1.
We also define Hybrid2.RuleEnc(k, r) to output a random value R for each rule r to be encrypted, with the only restriction

that any rule string r′ = r is also assigned to R.

Hybrid 3. The Enc algorithm is changed to completely lose kSSL. Concretely R′i ⊕ kSSL becomes R′i.
Hybrid2.Enc(k, t1, . . . , tn, kSSL):
1: Let salt be a random salt as in AES.
2: For each i ∈ [n], generate a random value Ri, R′i in the ciphertext space of [0, RS − 1] bits and let ci = (Ri, R

′
i).

3: Output salt, c1, . . . , cn.
The rows in bold indicate differences from Hybrid 2.
The rule encryption algorithm does not chance in this hybrid: Hybrid3.RuleEnc(k, r) = Hybrid2.RuleEnc(k, r).
By the pseudorandom properties of AES, Hybrid 1 is computationally indistinguishable from the original security game.

By the random oracle properties of H and H2, Hybrid 1 and 2 are computationally indistinguishable. Hybrid 2 and 3 are
statistically indistinguishable because R′1 . . . R

′
n are independent and random values and they preserve the same distribution

when xor-ed with kSSL. In Hybrid 3, no adversary Adv can distinguish between k0SSL and k1SSL because these keys are not used
in the encryption, thus concluding our proof.
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