
GRECS: Graph Encryption for Approximate

Shortest Distance Queries

Xianrui Meng∗1, Seny Kamara†2, Kobbi Nissim‡3, and George Kollios§1

1Department of Computer Science, Boston University
2Microsoft Research

3Department of Computer Science, Ben-Gurion University

Abstract

We propose graph encryption schemes that efficiently support approximate shortest
distance queries on large-scale encrypted graphs. Shortest distance queries are one of the
most fundamental graph operations and have a wide range of applications. Using such
graph encryption schemes, a client can outsource large-scale privacy-sensitive graphs to
an untrusted server without losing the ability to query it. Other applications include en-
crypted graph databases and controlled disclosure systems. We propose GRECS (stands
for GRaph EnCryption for approximate Shortest distance queries) which includes three
schemes that are provably secure against any semi-honest server. Our first construction
makes use of only symmetric-key operations, resulting in a computationally-efficient con-
struction. Our second scheme, makes use of somewhat-homomorphic encryption and is
less computationally-efficient but achieves optimal communication complexity (i.e., uses
a minimal amount of bandwidth). Finally, our third scheme is both computationally-
efficient and achieves optimal communication complexity at the cost of a small amount
of additional leakage. We implemented and evaluated the efficiency of our constructions
experimentally. The experiments demonstrate that our schemes are efficient and can be
applied to graphs that scale up to 1.6 million nodes and 11 million edges.

1 Introduction

Graph databases that store, manage, and query large graphs have received increased interest
recently due to many large-scale database applications that can be modeled as graph problems.
Example applications include storing and querying large Web graphs, online social networks,
biological networks, RDF datasets, and communication networks. As a result, a number of
systems have been proposed to manage, query, and analyze massive graphs both in academia
(e.g., Pregel [31], GraphLab [30], Horton [38], Trinity [40], TurboGraph [22], and GraphChi-
DB [27]) and industry(e.g., Neo4j, Titan, DEX, and GraphBase.) Furthermore, with the

∗xmeng@cs.bu.edu
†senyk@microsoft.com
‡kobbi@cs.bgu.ac.il
§gkollios@cs.bu.edu

1

advent of cloud computing, there is a natural desire for enterprises and startups to outsource
the storage and management of their databases to a cloud provider. Increasing concerns about
data security and privacy in the cloud, however, have curbed many data owners’ enthusiasm
about storing their databases in the cloud.

To address this, Chase and Kamara [6] introduced the notion of graph encryption. Roughly
speaking, a graph encryption scheme encrypts a graph in such a way that it can be privately
queried. Using such a scheme, an organization can safely outsource its encrypted graph to
an untrusted cloud provider without losing the ability to query it. Several constructions were
described in [6] including schemes that support adjacency queries (i.e., given two nodes, do
they have an edge in common?), neighbor queries (i.e., given a node, return all its neighbors)
and focused subgraph queries on web graphs. Graph encryption is a special case of structured
encryption, which is a encryption scheme that encrypts data structures in such a way that
they can be privately queried. The most well-studied class of structured encryption schemes
are searchable symmetric encryption (SSE) schemes [42, 5, 13, 45, 24, 23, 4, 3, 33, 43] which,
roughly speaking, encrypt search structures (e.g., indexes or search trees) for the purpose of
efficiently searching on encrypted data.

In this work, we consider the problem of designing graph encryption schemes that support
one of the most fundamental and important graph operations: finding the shortest distance
between two nodes. Such shortest distance query is a basic operation in many graph algo-
rithms but also have applications of their own. For instance, on a social network, shortest
distance queries return the shortest number of introductions necessary for one person to meet
another. In protein-protein interaction networks they can be used to find the functional cor-
relations among proteins [35] and on a phone call graph (i.e., a graph that consists of phone
numbers as vertices and calls as edges) they return the shortest number of calls connecting
two nodes.

On the other hand, we note that computing shortest distance queries on massive graphs
(e.g., the Web graph, online social networks or a country’s call graph) can be very expensive,
so in practice one typically pre-computes a data structure from the graph called a distance
oracle that answers shortest distance queries approximately [44, 14, 10]; that is, given two
vertices v1 and v2, the structure returns a distance d that is at most α · dist(v1, v2) +β, where
α, β > 1 and dist(v1, v2) is the exact distance between v1 and v2.

Below we summarize our contributions for this paper:

• We propose three constructions. Our first scheme only makes use of symmetric-key
operations and, as such, is very computationally-efficient. Our second scheme makes
use of somewhat-homomorphic encryption and achieves optimal communication com-
plexity. Our third scheme is computationally-efficient, achieves optimal communication
complexity and produces compact encrypted graphs at the cost of some leakage.

• We show that all our constructions are adaptively semantically-secure with reasonable
leakage functions.

• We implement and evaluate our solutions on real large-scale graphs and show that our
constructions are practical.

2

1.1 Related Work

Graph privacy Privacy-preserving graph processing has been considered in the past. Most
of the work in this area, however, focuses on privacy models that are different than ours.
Some of the proposed approaches include structural anonymization to protect neighborhood
information [17, 29, 8, 12], use differential privacy [15] to query graph statistics privately
[25, 41], or use private information retrieval (PIR) [32] to privately recover shortest paths.
We note that none of these approaches are appropriate in our context where the graph itself
stores sensitive information therefore it must be hidden (unlike in the PIR scenario) and is
stored remotely (unlike the differential privacy and anonymization scenarios).

Structured and graph encryption was introduced by Chase and Kamara in [6]. Structured
encryption is a generalization of searchable symmetric encryption (SSE) which was first pro-
posed by [42]. The notion of adaptive semantic security was introduced by Curtmola, Garay,
Kamara and Ostrovsky in [13] and generalized to the setting of structured encryption in [6].

Another approach to execute graph algorithms over encrypted and outsourced graphs is to
use Oblivious RAM [20] over the adjacency matrix of the graph. This approach, however, is
inefficient and not practical even for small graphs since it requires storage that is quadratic in
the number of nodes in the graph and a large number of costly oblivious operations. Recent
work by [46] presents the oblivious data structure for computing shortest path on planar
graphs using ORAM. For a sparse planar graph with O(n) edges, their approach requires
O(n1.5) space complexity, but at the cost of O(

√
n log n) online query time. Other techniques

such as those developed by Blanton, Steele and Aliasgari [1] are not practical for sparse graphs
and do not scale to large graphs due to the complexity of the underlying secure operations
which are instantiated with secure multi-party computation protocols.

Distance oracles Computing the shortest distances on large graphs using Dijkstra’s algo-
rithm or breadth first search is very expensive. Alternatively, it is not practical to store all-
pairs-shortest-distances since it requires quadratic space. To address this, in practice, one pre-
computes a data structure called a distance oracle that supports approximate shortest distance
queries between two nodes in logarithmic query time. Solutions such as [14, 34, 36, 10, 7, 9, 11]
carefully select seed nodes (also known as landmarks) and store the shortest distances from all
the nodes to the seeds. The advantage of using such a data structure is that they are compact
and the query time is very fast. For example, the distance oracle construction of Das Sarma,
Gollapudi, Najork and Panigrahy [14] requires Õ(n1/c) work to return a (2c−1)-approximation
of the shortest distance.

2 Preliminaries and Notations

Notation Given an undirected graph G = (V,E), we denote its total number of nodes as
n = |V | and its number of edges as m = |E|. A shortest distance query q = (u, v) asks for
the length of the shortest path between u and v which we denote dist(u, v). The notation [n]
represents the set of integers {1, . . . , n}. We write x ← χ to represent an element x being

sampled from a distribution χ. We write x
$←− X to represent an element x being uniformly

sampled at random from a set X. The output x of a probabilistic algorithm A is denoted by
x ← A and that of a deterministic algorithm B by x := B. Given a sequence of elements v,

3

we define its ith element either as vi or v[i] and its total number of elements as |v|. If A is a
set then |A| refers to its cardinality. Throughout, k ∈ N will denote the security parameter
and we assume all algorithms take k implicitly as input. A function ν : N → N is negligible
in k if for every positive polynomial p(·) and all sufficiently large k, ν(k) < 1/p(k). We write
f(k) = poly(k) to mean that there exists a polynomial p(·) such that f(k) ≤ p(k) for all
sufficiently large k ∈ N; and we similarly write f(k) = negl(k) to mean that there exists a
negligible function ν(·) such that f(k) ≤ ν(k) for all sufficiently large k.

Data structures A dictionary DX is a data structure that stores label/value pairs (`i, vi)
n
i=1.

Dictionaries support insert and lookup operations defined as follows. The insert operation
takes as input a dictionary DX and a label/value pair (`, v) and adds the pair to DX. We
denote this as DX[`] := v. A lookup operation takes as input a dictionary DX and a label
`i and returns the associated value vi. We denote this as vi := DX[`]. Dictionaries can be
instantiated using hash tables and various kinds of search trees.

2.1 Cryptographic Tools

Encryption and homomorphic encryption In this work, we make use of several kinds of
encryption schemes including standard symmetric-key encryption and homomorphic encryp-
tion. A symmetric-key encryption scheme SKE = (Gen,Enc,Dec) is a set of three polynomial-
time algorithms that work as follows. Gen is a probabilistic algorithm that takes a security
parameter k as input and returns a secret key K; Enc is a probabilistic algorithm takes as
input a key K and a message m and returns a ciphertext c; Dec is a deterministic algorithm
that takes as input a key K and a ciphertext c and returns m if K was the key under which
c was produced. A public-key encryption scheme PKE = (Gen,Enc,Dec) is similarly defined
except that Gen outputs a public/private key pair (pk, sk) and Enc encrypts messages with
the public key pk. Informally, an encryption scheme is CPA-secure (Chosen-Plaintext-Attack-
secure) if the ciphertexts it outputs do not reveal any partial information about the messages
even to an adversary that can adaptively query an encryption oracle. We refer the reader to
[26] for formal definitions of symmetric-key encryption scheme and CPA-security.

A public-key encryption scheme is homomorphic if, in addition to (Gen,Enc,Dec) it also
includes an evaluation algorithm Eval that takes as input a function f and a set of ci-
phertexts c1 ← Encpk(m1) through cn ← Encpk(mn) and returns a ciphertext c such that
Decsk(c) = f(m1, . . . ,mn). If a homomorphic encryption scheme supports the evaluation
of any polynomial-time function, then it is fully-homomorphic (FHE) [37, 18] otherwise
it is somewhat homomorphic (SWHE). In this work, we make use of only “low degree”
homomorphic encryption; namely, we only require the evaluation of quadratic polynomi-
als. More precisely, we need a scheme that supports any number of additions and a single
multiplication. After that, any number of additions are allowed but not multiplications.
In particular, we need the evaluation algorithm to be additively homomorphic as follows,
Encpk(m1+m2) = Eval

(
+,Encpk(m1),Encpk(m2)

)
. Moreover, we also need the evaluation algo-

rithm to be multiplicative homomorphic, i.e. Encpk(m1m2) = Eval(×,Encpk(m1),Encpk(m2)).
However, we cannot evaluate the mulitiplication of two message, if we have already evaluated
it once, therefore, we can only homomorphically evaluate quadratic polynomials. Concrete
instantiations of such schemes include the scheme of Boneh, Goh and Nissim (BGN) [2] based
on bilinear maps and the scheme of Gentry, Halevi and Vaikuntanathan [19] based on lattices.

4

Pseudo-random functions A pseudo-random function (PRF) from domain D to co-
domain R is a function family that is computationally indistinguishable from a random
function. In other words, no computationally-bounded adversary can distinguish between
oracle access to a function that is chosen uniformly at random in the family and oracle access
to to a function chosen uniformly at random from the space of all functions from D to R. A
pseudo-random permutation (PRP) is a pseudo-random family of permutations over D. We
refer the reader to [26] for formal definitions of PRFs and PRPs.

3 Graph Encryption

In this section, we present the syntax and security definition for our graph encryption schemes.
There are many variants of graph encryption, including interactive and non-interactive,
response-revealing and response-hiding. Here, we consider interactive and response-hiding
schemes which denote the fact that the scheme’s query operation requires at least two messages
(one from the client and a response from the server) and that queries output no information
to the server.

Definition 3.1 (Graph Encryption) A graph encryption scheme for distance queries
Graph = (Setup, distQuery) consists of a polynomial-time algorithm and a polynomial-time
two-party protocol that work as follows:

• (K,EGR)← Setup(1k, G, α, ε): is a probabilistic algorithm that takes as input a security
parameter k, a graph G, an approximation factor α, and an error parameter ε. It
outputs a secret key K and an encrypted graph EGR.

• (d,⊥)← distQueryC,S
(
(K, q),EGR

)
: is a two-party protocol between a client C that holds

a key K and a shortest distance query q = (u, v) ∈ V 2 and a server S that holds an
encrypted graph EGR. After executing the protocol, the client receives a distance d ≥ 0
and the server receives ⊥. We sometimes omit the subscripts C and S when the parties
are clear from the context.

We say that Graph is (α, ε)-correct if for all k ∈ N, for all G, for all α ≥ 1, for all ε < 1, and
for all q = (u, v) ∈ V 2,

Pr [d ≤ α · dist(u, v)] ≥ 1− ε,

where the probability is over the randomness in computing (K,EGR)← Setup(1k, G, α, ε) and
then (d,⊥)← distQuery

(
(K, q),EGR

)
.

3.1 Security and Leakage

At a high level, the security guarantee we require from a graph encryption scheme is that: (1)
given an encrypted graph, no adversary can learn any information about the underlying graph
(either the nodes or the edges); and (2) given the view of a polynomial number of distQuery
executions for an adaptively generated sequence of queries q = (q1, . . . , qn), no adversary can
learn any partial information about either G or q.

Such a security notion can be difficult to achieve efficiently, so often one allows for some
form of leakage. Following [13, 6], this is usually formalized by parameterizing the security

5

definition with leakage functions for each operation of the scheme which in this case include
the Setup algorithm and distQuery protocol.

We adapt the notion of adaptive semantic security from [13, 6] to our setting (i.e., to the
case of graph encryption with support for approximate shortest distance queries).

Definition 3.2 (Adaptive semantic security) Let Graph = (Setup, distQuery) be a graph
encryption scheme that supports approximate shortest distance queries and consider the fol-
lowing probabilistic experiments where A is a semi-honest adversary, C is a challenger, S is
a simulator and LSetup and LQuery are (stateful) leakage functions: IdealA,S(1k):

• A outputs a graph G = (V,E), an approximation factor α and an error parameter ε.

• Given LSetup(G), 1k, α and ε, S generates and sends an encrypted graph EGR to A.

• A generates a polynomial number of adaptively chosen queries (q1, . . . , qm). For each qi,
S is given LQuery(G, qi) and A and S execute a simulation of distQuery with A playing
the role of the server and S playing the role of the client.

• A computes a bit b that is output by the experiment.

RealA(1k):

• A outputs a graph G = (V,E), an approximation factor α and an error parameter ε.

• C computes (K,EGR)← Setup(1k, G, ε) and sends the encrypted graph EGR to A.

• A generates a polynomial number of adaptively chosen queries (q1, . . . , qm). For each
query qi, A and C execute distQueryC,A

(
(K, q),EGR

)
.

• A computes a bit b that is output by the experiment.

We say that Graph is adaptively (LSetup,LQuery)-semantically secure if for all ppt adver-
saries A, there exists a ppt simulator S such that∣∣∣Pr

[
RealA(1k) = 1

]
− Pr

[
IdealA,S(1k)

]
= 1
∣∣∣ = negl(k).

In the definition above, it captures the fact that even if the adversarial server choose a
graph database on his own, the server still cannot learn any other information just from the
encryption scheme by just looking at the encrypted graph and token. All the graph encryption
schemes we discuss in this work leak information about the queries. In particular, our first
two constructions reveal to the server whether the nodes in a shortest distance query have
occurred in a previous query. We formalize this leakage below.

Definition 3.3 (Query pattern) For two queries q, q′ define Sim(q, q′) =(u = u′,u =
v′,v = u′, v = v′), i.e., the equality predicate of whether two queries are equal. Let
q = (q1, . . . , qm) be a non-empty sequence of queries. Every query qi ∈ q specifies a pair
of nodes ui, vi. The query pattern leakage function LQP (q) returns an m × m (symmetric)
matrix with entry i, j equals Sim(qi, qj). Note that LQP does not leak the identities of the
queried nodes.

6

Our third construction leaks both the query pattern and leakage we refer to as sketch
pattern, which we describe in Section 4.

We do not claim that it is always reasonable for a graph encryption scheme to leak the
query pattern - it may convey sensitive information in some settings. Furthermore, Defini-
tion 3.2 does not attempt to capture all possible leakages. As with many similar definitions,
it does not capture side channels, and, furthermore, it does not capture leakage resulting from
the client’s behavior given the query answers, which, in turn may be affected by the choice
of an approximation algorithm (see also [16, 21] for a discussion of privacy of approximation
algorithms).

3.2 Efficiency

We evaluate the efficiency and practicality of our constructions according to the following
criteria:

• Setup time: the time for the client to pre-process and encrypt the graph

• Space complexity: the size of the encrypted graph

• Query time: The time to execute a shortest distance query on the encrypted graph

• Communication complexity: the number of bits exchanged during a query operation

4 Distance Oracles

At a high-level, our approach to designing graph encryption schemes for shortest distance
queries consists of encrypting a distance oracle in such a way that it can be queried privately.
A distance oracle is a data structure that supports approximate shortest distance queries. A
trivial construction consists of pre-computing and storing all the pairwise shortest distances
between nodes in the graph. The query complexity of such a solution is O(1) but the storage
complexity is O(n2) which is not practical for large graphs.

We consider two practical distance oracle constructions. Both solutions are sketch-based
which means that they assign a sketch Skv to each node v ∈ V in such a way that the
approximate distance between two nodes u and v can be efficiently (sublinear) computed
from the sketches Sku and Skv. The first construction is by Das Sarma et al. [14] which is
itself based on a construction of Thorup and Zwick [44] and the second is by Cohen et al.
[10]. The two solutions produce sketches of the same form and distance queries are answered
using the same operation.

Sketched-based oracles More formally, a sketch-based distance oracle DO =
(Setup,Query) is a pair of efficient algorithms that work as follows. Setup takes as input a graph
G, an approximation factor α and an error bound ε and outputs an oracle ΩG = {Skv}v∈V .
Query takes as input an oracle ΩG and a shortest distance query q = (u, v). We say that DO
is (α, ε)-correct if for all graphs G and all queries q = (u, v),

Pr [d ≤ α · dist(u, v)] ≥ 1− ε,

where d := Query(ΩG, u, v).

7

The Das Sarma et al. oracle The Setup algorithm makes σ = Θ̃(n2/(α+1)) calls to a
Sketch sub-routine with the graph G. Throughout, we refer to σ as the oracle’s sampling
parameter and we note that it affects the size of the sketches. During the ith call, the Sketch
routine generates and returns a collection of sketches (Skiv1 , . . . ,Sk

i
vn), one for every node

vj ∈ V . Each sketch Skivj is a set constructed as follows. During the ith call to Sketch, it
samples uniformly at random λ = log n sets of nodes S0, . . . , Sλ−1 of progressively larger
sizes. In particular, for all 0 ≤ z ≤ λ − 1, set Sz is of size 2z. Skivj then consists of λ
pairs {(wz, δz)}0≤z≤λ−1 such that wz is the closest node to vj among the nodes in Sz and
δz = dist(vj , wz). Having computed σ collections of sketches (Skiv1 , . . . ,Sk

i
vn)i∈[σ], Setup then

generates, for each node vj ∈ V , a final sketch Skvj =
⋃σ
i=1 Sk

i
vj . Finally, it outputs a distance

oracle ΩG = (Skv1 , . . . ,Skvn).

The Cohen et al. oracle The Setup algorithm assigns to each node v ∈ V , a sketch
Skv that includes pairs (w, δ) chosen as follows. It first chooses a random rank function
rk : V → [0, 1]; that is, a function that assigns to each v ∈ V a value distributed uniformly
at random from [0, 1]. Let Nd(v) be the set of nodes within distance d − 1 of v and let
ρ = Θ(n2/(α+1)). Throughout, we refer to ρ as the oracle’s rank parameter and note that it
affects the size of the sketches. For each node v ∈ V , the sketch Skv includes pairs (w, δ) such
that rk(w) is less than the ρth value in the sorted set {rk(y) : y ∈ Ndist(u,v)(v)}. Finally it
outputs a distance oracle ΩG = (Skv1 , . . . ,Skvn).

Shortest distance queries The two oracle constructions share the same Query algorithm
which works as follows. Given a query q = (u, v), it finds the set of nodes I in common
between Sku and Skv and returns the minimum over s ∈ I of dist(u, s) + dist(s, v). If there
are no nodes in common, then it returns ⊥.

Sk(vi): {(a, 3), (b, 3), (e, 6), (g, 3), (h, 4)}
Sk(vj): {(b, 2), (d, 1), (e, 3), (h, 3), (f, 7)}

Figure 1: Two example sketches for nodes vi and vj . The approximate shortest distance
d = 5, since b is in both sketches and the sum of its distances to vi and vj is the minimum
sum.

Sketch leakage We described in Definition 3.3 the query pattern leakage which formally
captures the leakage of our first two constructions. The leakage revealed by our third con-
struction (see Section 5.3) is more complex, however. It includes both the query pattern
leakage and what we refer to as the sketch pattern leakage which we formalize here.

Definition 4.1 (Sketch pattern leakage) The sketch pattern leakage function LSP (G, q)
for a graph G and a query q = (u, v) is a pair (X,Y), where X = {f(w) : (w, δ) ∈ Sku} and
Y = {f(w) : (w, δ) ∈ Skv} are multi-sets and f is a random function.

8

5 Our Constructions

5.1 A Computationally-Efficient Scheme

We now describe our first scheme which is quite practical. The scheme, described below, makes
use of symmetric-key primitives which results in a simple and very efficient construction. The
scheme GraphEnc1 = (Setup, distQuery) makes use of a symmetric-key encryption scheme
SKE = (Gen,Enc,Dec), a pseudo-random permutation P and a sketched-based distance oracle
DO = (Setup,Query).

The Setup algorithm works as follows. Given a 1k, G, α and ε as inputs:

• It first computes a distance oracle ΩG using DO.Setup(G,α, ε). It then pads each sketch
to be the maximum sketch size Sm by filling them with dummy values.

• It then generates keys K1,K2 for the encryption scheme and pseudo-random permu-
tation respectively and sets K = (K1,K2). For all nodes v ∈ V , it computes a label
PK2(v) and creates an encrypted sketch ESkv = (c1, . . . , cλ), where ci ← EncK1(wi‖δi)
is a symmetric-key encryption of the ith pair (wi, δi) in Skv.

• It then sets up a dictionary DX in which it stores, for all v ∈ V , the pairs (PK2(v),ESkv),
ordered by the labels. The encrypted graph is then simply EGR = DX.

The distQuery protocol works as follows. To query EGR on q = (u, v), the client sends a
token tk = (tk1, tk2) = (PK2(u), PK2(v)) to the server who returns the pair ESku := DX[tk1]
and ESkv := DX[tk2]. The client then decrypts each encrypted sketch and computes
mins∈I dist(u, s) + dist(s, v) (note that the algorithm only needs the sketches of the nodes
in the query).

Security and efficiency It is straightforward to see that the scheme is adaptively (L,LQP)-
semantically secure, where L is the function that returns n and σ (ρ in the case of Cohen et.
al. oracle). We defer a formal proof to the full version of this work.

The communication complexity of the distQuery protocol is linear in Sm, where Sm is the
maximum sketch size. Note that even though Sm is sub-linear in n, it could still be large in
practice. For example, in the Das Sarma et al. construction Sm = O(n2/α · log n).

In the following Section, we show how to achieve a solution with O(1) communication
complexity and in Section 6 we experimentally show that it scales to graphs with millions of
nodes.

5.2 A Communication-Efficient Scheme

We now describe our second scheme GraphEnc2 = (Setup, distQuery) which is less efficient
computationally but is optimal with respect to communication complexity.

The details of the construction are given in Algorithms 1 and 2. It makes use of a SWHE
scheme SWHE = (Gen,Enc,Dec,Eval), a pseudo-random permutation P , a family of universal
hash functions H and a sketch-based distance oracle DO = (Setup,Query).

The Setup algorithm works as follows. Given 1k, G, α and ε as inputs, it generates
a public/secret-key pair (pk, sk) for SWHE. It then constructs a distance oracle ΩG using
DO.Setup(G,α, ε). Let Dm be the maximum distance over all the sketches and Sm be the

9

Algorithm 1: Setup algorithm for GraphEnc2
Input : 1k, G, α, ε
Output: EGR

1 begin Setup

2 Sample K
$← {0, 1}k;

3 Initialize a dictionary DX;

4 Generate a key pair (pk, sk)← SWHE.Gen(1k);
5 Compute ΩG ← DO.Setup(G,α, ε);
6 Set Sm := maxv∈V |Skv|;
7 Set Dm := maxv∈V

{
max(w,δ)∈Skv δ

}
;

8 Set N := 2 ·Dm + 1 and t = 2 · S2
m · ε−1;

9 Sample a hash function h : V → [t] from H;
10 foreach v ∈ V do
11 compute `v := PK(v);
12 initialize an array Tv of size t;
13 foreach (wi, δi) ∈ Skv do
14 set Tv[h(wi)]← SWHE.Encpk(2

N−δi);
15 fill remaining cells of Tv with encryptions of 0; set DX[`v] := Tv;

16 end

17 end
18 Output K and EGR = DX

19 end

maximum sketch size. Setup sets N := 2 ·Dm + 1 and samples a hash function h
$← H with

domain V and co-domain [t], where t = 2 · S2
m · ε−1.

It then creates a hash table for each node v ∈ V . More precisely, for each node v, it
processes each pair (wi, δi) ∈ Skv and stores Encpk(2

N−δi) at location h(wi) of a t-size array
Tv. In other words, for all v ∈ V , it creates an array Tv such that for all (wi, δi) ∈ Skv,
Tv[h(wi)]← Encpk(2

N−δi). It then fills the empty cells of Tv with homomorphic encryptions
of 0 and stores each hash table Tv1 through Tvn in a dictionary DX by setting, for all v ∈ V ,
DX[PK(v)] := Tv. Finally, it outputs DX as the encrypted graph EGR.

Fig. 2 below provides an example of one of the hash tables Tv generated from a sketch
Skv = {(w1, δ1), . . . , (ws, δs)}, where s is the size of the sketch. For all i ∈ [s], the ciphertext
Encpk(2

N−δi) is stored at location h(wi) of the table Tv. For example, we place Encpk(2
2−δj)

to Tv[h(wj)] since h(wj) = 1. Finally, all remaining locations of Tv are filled with SWHE
encryptions of 0. Notice that, since we are using probabilistic encryption, the encryptions of
0 are different.

!! …!…!Tv Encpk (2
N−δi) Encpk (2

N−δk)Encpk (2
N−δ j) Encpk (0)Encpk (0)Encpk (0)

0� h(wi)� h(wj)� h(wk)�2� t-1�

Figure 2: One node’s encrypted hash table.

The distQuery protocol works as follows. Given a query q = (u, v), the client sends tokens
(tk1, tk2) = (PK(u), PK(v)) to the server who uses them to retrieve the hash tables of nodes
u and v by computing Tu := DX[tk1] and Tv := DX[tk2]. The server then homomorphically
evaluates an inner product over the hash tables. More precisely, it computes c :=

∑t
i=1 Tu[i] ·

10

Tv[i], where
∑

and · refer to the homomorphic addition and multiplication operations of of
the SWHE scheme. Finally, the server returns only c to the client who decrypts it and outputs
2N − log2 (Decsk(c)).

Algorithm 2: DistQuery algorithm for GraphEnc2
Input : Client’s input is (K, q) and server’s input is EGR.
Output: Client’s output is distq and server’s output is ⊥.

1 begin distQuery
2 C: client parses q as (u, v);
3 C ⇒ S: client sends tk = (tk1, tk2) = (PK(u), PK(v));
4 S: server retrieves T1 := DX[tk1] and T2 := DX[tk2];
5 foreach i ∈ [t] do
6 Server computes ci ← SWHE.Eval(×,T1[i],T2[i]);
7 end
8 S ⇒ C: server sends c← SWHE.Eval(+, c1, . . . , ct);
9 C: client computes m← SWHE.Decsk(c);

10 C: client outputs dist = 2N − logm.

11 end

Note that the storage complexity at the server is O(n·t) and the communication complexity
of distQuery is O(1) since the server only returns a single ciphertext. In Section 5.2.1, we
analyze the correctness and security of the scheme.

Remark The reason we encrypt 2N−δi as opposed to δi is to make sure we can get the
minimum sum over the distances from the sketches of both u and v. Our observation is that
2x+2y is bounded by 2max(x,y)−1. As we show Theorem 5.2, this approach does not, with high
probability, affect the approximation factor from what the underlying distance oracle give us.

Instantiating and optimizing the SWHE For our experiments (see Section 6) we instan-
tiate the SWHE scheme with the BGN construction of [2]. We chose BGN due to the efficiency
of its encryption algorithm and the compactness of its ciphertexts and keys.Unfortunately, the
BGN decryption algorithm is expensive as it requires computations of discrete logarithms. To
improve this, we make use of various optimizations. In particular, we compute discrete logs
during decryption using the Baby step Giant step algorithm [39] and use a pre-computed table
to speed up the computation. We defer the details of our optimizations to the full version of
this work.

5.2.1 Correctness and Security

Here, we analyze the correctness of GraphEnc2. We first bound the collision probability of our
construction and then proceed to prove correctness of our construction in Theorem 5.2 below.

Lemma 5.1 Let q = (u, v) be a shortest distance query and let Eq be the event that collisions
occurred in the Setup algorithm while constructing the hash tables Tu and Tv. Then, Pr [Eq] ≤
2 · S

2
m
t .

11

Proof: Let Collv be the event that at least one collision occurs while creating v’s hash
table Tv (i.e., in Algorithm 1 Setup Line 14). Also, let XCollu,v be the event that there exists
at least one pair of distinct nodes wu ∈ Sku and wv ∈ Skv such that h(wu) = h(wv). For any
query q = (u, v), we have

Pr [Eq] ≤ Pr [Collu] + Pr [Collv] + Pr [XCollu,v]. (1)

Let su be the size of Sku an sv be the size of Skv. Since there are
(
su
2

)
and

(sv
2

)
node pairs in

Sku and Skv, respectively, and that each pair collides under h with probability at most 1/t,

Pr [Collu] ≤ s2u
2·t and Pr [Collv] ≤ s2v

2·t . On the other hand, if I is the set of common nodes in

Sku and Skv, then Pr [XCollu,v] ≤ (su−|I|)(sv−|I|)
t . Recall that su = sv ≤ Sm, so by combining

the above equations with Eq. 1, we have Pr [Eq] ≤ 2 · S
2
m
t . �

Note that in practice “intra-sketch” collision events Collu and Collv may or may not affect
the correctness of the scheme. This is because the collisions could map the SWHE encryptions
to locations that hold encryptions of 0 in other sketches. This means that at query time, these
SWHE encryptions will not affect the inner product operation since they will be canceled out.
Inter-sketch collision events XCollu,v, however, may affect the results since they will cause
different nodes to appear in the intersection of the two sketches and lead to an incorrect sum.

Theorem 5.2 Let G = (V,E), α ≥ 1 and ε < 1. For all q = (u, v) ∈ V 2 with u 6= v,

Pr [d ≤ α · dist(u, v)] ≥ 1− ε,

where (d,⊥) := GraphEnc2.distQuery
(
(K, q),EGR

)
and (K,EGR) ←

GraphEnc2.Setup(1k, G, α, ε).

Proof: Let I be the set of nodes in common between Sku and Skv and let mindist =
minwi∈I{δui + δvi }, where for all 0 ≤ i ≤ |I|, δui ∈ Sku and δvi ∈ Skv. Note that at line 8
in Algorithm 2 distQuery, the server returns to the client c =

∑t
i=1 Tu[i] · Tv[i].

Let Eq be the event a collision occurred during Setup in the construction of the hash tables
Tu and Tv of u and v respectively. Conditioned on Eq, we therefore have that

c =

|I|∑
i=1

Encpk(2
N−δui) · Encpk(2N−δ

v
i)

= Encpk

(
22N ·

|I|∑
i=1

2−(δ
u
i +δ

v
i)

)
,

where the first equality holds since for any node wi 6∈ I, one of the homomorphic encryptions
Tu[i] or Tv[i] is an encryption of 0. It follows then that (conditioned on Eq) at Step 10 the
client outputs

d = 2N − log

(
22N ·

|I|∑
i=1

2−(δ
u
i +δ

v
i)

)
≤ 2N − log

(
22N−mindist

)
≤ mindist,

12

where the first inequality holds since mindist ≤ (δui + δvi) for all i ∈ |I|. Towards showing a
lower bound on d note that

d = 2N − log

(
22N ·

|I|∑
i=1

2−(δ
u
i +δ

v
i)

)
≥ 2N − log

(
22N−mindist + |I|

)
≥ mindist− log(|I|),

where the first inequality also holds from mindist ≤ (δui + δvi) for all i ∈ |I|.
Now, by the (α, ε)-correctness of DO, we have that mindist ≤ α ·dist(u, v) with probability

at least (1− ε) over the coins of DO.Setup. So, conditioned on Eq,

mindist− log(|I|) ≤ d ≤ α · dist(u, v).

The Theorem follows by combining this with Lemma 5.1 which bounds the probability of Eq
and noting that Setup sets t = 2 · S2

m · ε−1. �

Space complexity Note that to achieve (α, ε)-correctness, our construction produces en-
crypted sketches that are larger than the original sketches. More precisely, if the maximum
sketch size of the underlying distance oracle is Sm, then the size of every encrypted sketch is
t = 2 · S2

m · ε−1, which is considerably larger. In Section 5.3, we describe a third construction
which achieves better space efficiency at the cost of more leakage.

Remark on negative approximations Note that in practice, the set of common nodes |I|
could be large and, in particular, larger than mindist which would yield even a negative distance
(we indeed observe this in our experiments). To improve the accuracy of the approximation,
one could increase the base in the homomorphic encryptions. More precisely, instead of using
homomorphic encryptions of the form Encpk(2

N−δ) we could use Encpk(B
N−δ) for B = 3 or

B = 4. This would result in an improved lower bound of mindist − logB(|I|) but would also
increase the homomorphic decryption time.

Remark on error rate Given the above analysis, a client that makes γ queries will have
an error ratio of ε · γ. In our experiments we found that, in practice, when using the Das
Sarma et al. oracle, setting σ ≈ 3 results in a good approximation. So if we fix σ = 3 and
set t = O(

√
n), then the error rate is O

(
γ · log2(n)/

√
n
)

which decreases significantly as n
grows. In the case of Cohen et al. all-distance sketch, if we fix ρ = 4 and set t = O(

√
n),

then we achieve about the same error rate O
(
γ · ln2(n)/

√
n
)
. We provide in section 6 detailed

experimental result on the error rate.

Security In the following Theorem, we analyze the security of GraphEnc2.

Theorem 5.3 If P is pseudo-random and SWHE is CPA-secure then GraphEnc2, as de-
scribed above, is adaptively (LSetup,LQuery)-semantically secure, where LSetup(G) = n and
LQuery(G, q) = LQP (q).

13

Proof: Consider the simulator S that works as follows. Given leakage LSetup = n, for

all 1 ≤ i ≤ n, it samples `i
$← {0, 1}logn (without repetition) and creates an array Ti of

size t filled with homomorphic encryptions of 0. It then creates a dictionary DX and sets
DX[`i] = Ti for all 1 ≤ i ≤ n. Finally, it outputs EGR = DX. Given leakage LQP (q), S first
checks whether any of the two query nodes appeared in an earlier query. If the first query
node appeared in a previous query, S sets tk1 to its stored token. Otherwise S chooses a

fresh token tk1
$← {0, 1}logn and stores it. S proceeds similarly with token tk2 and then sends

tk = (tk1, tk2).
It now remains to show that the RealA(1k) and IdealA,S(1k) experiments will output 1

with negligibly-close probability. This can be done using the following sequence of 3 games:

• Game0: this game corresponds exactly to a RealA(1k) experiment.

• Game1: is the same as Game0 except that the output of P is replaced with random
(log n)-bit strings. Clearly, the pseudo-randomness of P guarantees that

|Pr[Game0 = 1]− Pr[Game1 = 1]| ≤ negl(k).

• Game2: is the same as Game1 except that all the HE encryptions are replaced with HE
encryptions of 0. Clearly, it follows by the CPA-security of SWHE that

|Pr[Game1 = 1]− Pr[Game2 = 1]| ≤ negl(k).

Note that, by construction, Game2 corresponds exactly to an IdealA,S(1k) experiment so we
have ∣∣∣Pr

[
RealA(1k) = 1

]
− Pr

[
IdealA,S(1k) = 1

]∣∣∣ ≤ negl(k)

from which the Theorem follows. The Theorem follows from the pseudo-randomness of P and
the CPA-security of SWHE. �

5.3 A Space-Efficient Construction

Although our second construction, GraphEnc2, achieves optimal communication complexity,
it has two limitations. The first is that it is less computationally-efficient than our first
construction GraphEnc1 both with respect to constructing the encrypted graph and to querying
it. The second limitation is that its storage complexity is relatively high; that is, it produces
encrypted graphs that are larger than the ones produced by GraphEnc1 by a factor of 2·Sm·ε−1.
These limitations are mainly due to the need to fill the hash tables with many (homomorphic)
encryptions of 0. This also slows down the query algorithm since it has to homomorphically
evaluate an inner product on two large tables.

To address this, we propose a third construction GraphEnc3 = (Setup, distQuery) which is
both space-efficient and achieves O(1) communication complexity. The only trade-off is that
it leaks more than the two previous constructions.

The details of the scheme are given in Algorithms 3 and 4. At a very high-level, the
scheme works similarly to GraphEnc2 with the exception that the encrypted sketches do not
store encryptions of 0’s, i.e., they only store the node/distance pairs of the sketches constructed
by the underlying distance oracle. Implementing this high-level idea is not straightforward,

14

Algorithm 3: Setup algorithm for GraphEnc3
Input : 1k, G, α, ε
Output: EGR

1 begin Setup

2 Sample K1,K2
$← {0, 1}k;

3 Initialize a dictionary DX of size n;

4 Generate (pk, sk)← SWHE.Gen(1k);
5 Compute ΩG ← DO.Setup(G,α, ε);
6 Set Sm := maxv∈V |Skv|;
7 Set Dm := maxv∈V

{
max(w,δ)∈Skv δ

}
;

8 Set N := 2 ·Dm + 1 and t = 2 · S2
m · ε−1;

9 Initialize collision-resistant hash function h;
10 Initialize an array Arr of size m =

∑
v∈V |Skv|;

11 Sample a random permutation π over [m];
12 foreach v ∈ V do
13 sample Kv ← {0, 1}k;
14 foreach (wi, δi) ∈ Skv do
15 compute ci ← SWHE.Encpk(2

N−δi);
16 if i 6= |Skv| then
17 Set Ni = 〈h(wi)‖ci‖π(ctr + 1)〉;
18 else
19 Set Ni = 〈h(wi)‖ci‖NULL〉;
20 end

21 Sample ri
$← {0, 1}k;

22 Set Arr[π(ctr)] := 〈Ni ⊕H(Kv‖ri), ri〉;
23 Set ctr = ctr + 1 ;

24 end

25 end
26 foreach v ∈ V (in random order) do
27 Set DX[PK1

(v)] := 〈addrArr(hv)‖Kv〉 ⊕ FK2
(v)

28 end
29 Output K = (K1,K2, pk, sk) and EGR = (DX, Arr);

30 end

however, because simply removing the encryptions of 0’s from the encrypted sketches/hash
tables reveals the size of the underlying sketches to the server which, in turns, leaks structural
information about the graph.

We overcome this technical difficulty by adapting a similar technique from [13] to our
setting. Intuitively, we view the seed/distance pairs in each sketch Skv as a linked-list where
each node stores a seed/distance pair. We then randomly shuffle all the nodes and place them
in an array; that is, we place each node of each list at a random location in the array while
updating the pointers so that the “logical” integrity of the lists are preserved (i.e., given a
pointer to the head of a list we can still find all its nodes). We then encrypt all the nodes
with a per-list secret key.

The scheme makes use of a SWHE scheme SWHE = (Gen,Enc,Eval,Dec), a pseudo-random
permutation P , a pseudo-random function F , a random oracle H, a collision-resistant hash
function h modeled as a random function and a distance oracle DO = (Setup,Query).

15

The Setup algorithm takes as input a security parameter k, a graph G, an approximation
factor α > 0 and an error parameter ε < 1. As shown in Algorithm 3, it first constructs a
distance oracle ΩG using DO.Setup(G,α, ε), initializes a counter ctr = 0 and samples a random
permutation π over the domain [m], where m =

∑
v∈V |Skv|. It then initializes an m-size array

Arr. It then proceeds to create an encrypted sketch ESkv from each sketch Skv as follows.
First samples a symmetric key Kv for this sketch. Then, for each seed/distance pair (wi, δi)
in Skv, it creates a linked-list node Ni = 〈h(wi)‖ci‖π(ctr + 1)〉, where ci ← Encpk(2

N−δi), and
stores an H-based encryption 〈Ni ⊕H(Kv‖rv), rv〉 of the node at location π(ctr) in Arr. For
the last seed/distance pair, it uses instead a linked-list node of the form Ni = 〈h(wi)‖ci‖NULL〉.
It then increments ctr.

Setup then creates a dictionary DX where it stores for each node v ∈ V , the pair
(PK1(v), 〈addrArr(hv)‖Kv〉 ⊕ FK2(v)), where addrArr(hv) is the location in Arr of the head
of v’s linked-list. Figure 3 provides a detailed example for how we encrypt the sketch. Sup-
pose node u’s sketch Sku has the element (a, d1), (b, d2), (c, d3). The locations ind1, ind2, ind3
in Arr are computed according the random permutation π.

ind3%

ind2%

ind1%

…
%

…
%

…
%
…
%

…
%

Arr%

…% …% Kv||ind1 FK2(v) …%DX:

(a,%d1)�
(b,%d2)�
(c,%d3)�

v� :� <h(b)||SWHE.Enc(2N-d2))||ind3%%%%%H(Kv||r2), r2>�

<(h(c)||SWHE.Enc(2N-d3))||NULL%%%%%H(Kv||r3), r3>�

<h(a)||SWHE.Enc(2N-d1))||ind2%%%%%%H(Kv||r1), r1>�

Figure 3: Example of encrypting the sketch Sku = {(a, d1), (b, d2), (c, d3)}.

The distQuery protocol, which is shown in Algorithm 4, works as follows. Given a query
q = (u, v), the client sends tokens (tk1, tk2, tk3, tk4) = (PK1(u), PK1(v), FK2(u), FK2(v)) to the
server who uses them to retrieve the values γ1 := DX[tk1] and γ2 := DX[tk2]. The server
computes 〈a1||Ku〉 := γ1 ⊕ tk3 and 〈b1||Kv〉 := γ2 ⊕ tk4.

Next, it recovers the lists pointed to by a1 and b1. More precisely, starting with i = 1,
it parses Arr[a1] as 〈σu, ru〉 and decrypts σu by computing 〈hi‖ci‖ai+1〉 := σu ⊕ H(Ku‖ru)
while ai+1 6= NULL. And starting with j = 1, it does the same to recover 〈h′j‖c′j‖bj+1〉 while
bj+1 6= NULL.

The server then homomorphically computes an inner product over the ciphertext with the
same hashes. More precisely, it computes ans :=

∑
(i,j):hi=h′j

ci · c′j , where
∑

and · refer to the

homomorphic addition and multiplication operations of the SWHE scheme. Finally, the server
returns only ans to the client who decrypts it and outputs 2N − log2 (SWHE.Decsk(ans)).

Note that the storage complexity at the server is O(m + |V |) and the communication
complexity of distQuery is still O(1) since the server only returns a single ciphertext.

5.3.1 Correctness and Security

The correctness of GraphEnc3 follows directly from the correctness of GraphEnc2. To see why,
observe that: (1) the homomorphic encryptions stored in the encrypted graph of GraphEnc3

16

Algorithm 4: The protocol distQueryC,S .

Input : Client’s input is K, q = (u, v) and server’s input is EGR
Output: Client’s output is d and server’s output is ⊥

1 begin distQuery
2 C: computes (tk1, tk2, tk3, tk4) = (PK1

(u), PK1
(v), FK2

(u), FK2
(v));

3 C ⇒ S: sends tk = (tk1, tk2, tk3, tk4);
4 S: computes γ1 ← DX[tk1] and γ2 ← DX[tk2];
5 if γ1 = ⊥ or γ2 = ⊥ then
6 exit and return ⊥ to the client
7 end
8 S: compute 〈a1||Ku〉 := γ1 ⊕ tk3;
9 S: parse Arr[a1] as 〈σu, ru〉;

10 S: compute N1 := σu ⊕H(Ku‖ru);
11 repeat
12 parse Ni as 〈hi‖ci‖ai+1〉;
13 parse Arr[ai+1] as 〈σi+1, ri+1〉;
14 compute Ni+1 := σi+1 ⊕H(Ku‖ri+1);
15 set i = i+ 1;

16 until ai+1 = NULL;
17 S: compute 〈b1||Kv〉 := γ2 ⊕ tk4;
18 S: parse Arr[b1] as 〈σv, rv〉;
19 S: compute N′1 := σv ⊕H(Kv‖rv);
20 repeat
21 parse N′j as 〈h′j‖c′j‖bj+1〉;
22 parse Arr[bj+1] as 〈σj+1, rj+1〉;
23 compute N′j+1 := σj+1 ⊕H(Kv‖rj+1);

24 set j = j + 1;

25 until bj+1 = NULL;
26 S: set s := SWHE.Encpk(0);
27 foreach (Ni, N

′
j) do

28 if hi = h′j then
29 compute p := SWHE.Eval(×, ci, c′j);
30 compute s := SWHE.Eval(+, s, p);

31 end

32 end
33 S ⇒ C: send s;
34 C: compute d := SWHE.Decsk(s)

35 end

are the same as those in the encrypted graph produced by GraphEnc2 with the exception
of the encryptions of 0; and (2) the output d of the client results from executing the same
homomorphic operations as in GraphEnc2, with the exception of the homomoprhic sums with
0-encryptions.

We note that GraphEnc3 leaks only a little more than the previous constructions. In-
tuitively, for a query q = (u, v), the leakage consists of revealing to the server: (1) which
seed/distance pairs in the sketches Sku and Skv are the same; and (2) the size of these
sketches. This is formalized in Definition 4.1 as the sketch pattern leakage LSP (G, q). In the
following Theorem, we summarize the security of GraphEnc3.

17

Theorem 5.4 If P and F are pseudo-random, if SWHE is CPA-secure then GraphEnc3, as
described above, is adaptively (LSetup,LQuery)-semantically secure in the random oracle model,
where LSetup(G) = (n,m) and LQuery(G, q) = (LQP (G, q),LSP (G, q)).

Proof Sketch: Consider the simulator S that works as follows. Given leakage LSetup = (n,m),

for all 1 ≤ i ≤ m it samples Γi
$← {0, 1}log t+g(N)+logm+k, where g(·) is the ciphertext ex-

pansion of SWHE scheme. It then stores all the Γi’s in an m-element array Arr. For all

1 ≤ i ≤ n, it samples `i
$← {0, 1}logn without repetition and sets DX[`i]

$← {0, 1}logm+k.
Finally, it outputs EGR = (DX, Arr).

Given leakage LQuery(G, q) = (LQP (G, q),LSP (G, q)) such that LSP (G, q) = (X,Y), S
first checks if either of the query nodes u or v appeared in any previous query. If u appeared
previously, S sets tk1 and tk3 to the values that were previously used. If not, it sets tk1 := `i
for some previously unused `i and tk3 as follows. It chooses a previously unused α ∈ [m]

at random, a key Ku
$← {0, 1}k and sets tk3 := DX[tk1] ⊕ 〈α‖Ku〉. It then remembers the

association between Ku and X and the sketch size |Sku|. It does the same for the query node
v, sets tk2 and tk4 analogously and associates |Skv| and Y with the key Kv it chooses.

It simulates the random oracle H as follows. Given (K, r) as input, it checks to see if:
(1) K has been queried before (in the random oracle); and (2) if any entry in Arr has the
form 〈s, r〉 where s is a (log t+ g(N) + logm)-bit string. If K has not been queried before, it
initializes a counter ctrK := 0. If an appropriate entry exists in Arr, it returns s ⊕ 〈γ, c, p〉,
where γ is the ctrth element of the multi-set X or Y associated with K, c is a SWHE encryption
of 0 and p is an unused address in Arr chosen at random or ∅ if ctr = |Sk|, where |Sk| is the
sketch size associated with K. If no appropriate entry exists in Arr, S returns a random value.
The Theorem then follows from the pseudo-randomness of P and F and the CPA-security of
SWHE. �

6 Experimental Evaluation

In this section, we present experimental evaluations of our schemes on a number of large-scale
graphs. We implement the Das Sarma et al. and Cohen et al. distance oracles and all three
of our graph encryption schemes.

We use the AES-128 in CBC mode for symmetric encryption and instantiate SWHE with
the Boneh-Goh-Nissim (BGN) scheme, implement in C++ with the Stanford Pairing-Based
Library PBC1. We use the standard openssl2 for all basic cryptographic tools and use 128-bit
security for all the encryptions. We use HMAC for PRFs and instantiate the hash function in
GraphEnc3 with HMAC-SHA-256. All experiment were run on a 24-core 2.9GHz Intel Xeon,
with 512 GBs of RAM running Linux.

Datasets We use real-world graph datasets publicly available from the Stanford SNAP
website3. In particular, we use as-skitter, a large Internet topology graph; com-Youtube,
a large social network based on the Youtube web site; loc-Gowalla, a location-based social
network; email-Enron, an email communication network; and ca-CondMat, a collaboration

1http://crypto.stanford.edu/pbc/
2https://www.openssl.org/
3https://snap.stanford.edu/data/

18

http://crypto.stanford.edu/pbc/
https://www.openssl.org/
https://snap.stanford.edu/data/

network for scientific collaborations between authors of papers related to Condensed Matter
research. Table 1 summarizes the main characteristics of these datasets.

Dataset Nodes Edges Diameter

as-skitter 1,696,415 11,095,298 25
com-Youtube 1,134,890 2,987,624 20
loc-Gowalla 196,591 950,327 14
email-Enron 36,692 367,662 11
ca-CondMat 23,133 186,936 14

Table 1: The graph datasets used in our experiments

Notice that some of these datasets contain millions of nodes and edges and that the
diameters of these graphs are small. This is something that has been observed in many real-
life graphs [28] and is true for expander and small-world graphs, which is known to model
many real-life graphs. The implication of this, is that the maximum distance Dm in the
sketches generated by the distance oracles is, in practice, small and therefore the value N
that we use in GraphEnc2 and GraphEnc3 (see Algorithm 1 and 3) is typically small.

Performance Table 2 below gives our constructions’ space, setup and communication com-
plexities and Table 3 summarizes our experimental results. (Note that Sm is mainly based
the parameters of the distance oracle (σ in DO1, ρ in DO2) and we could achieve very good
approximation for Sm = O(log n) see [14, 10]).

Scheme Space Setup Comm.

GraphEnc1 O(nSm) O(nSm) O(Sm)

GraphEnc2 O(nt) O(nt) O(1)

GraphEnc3 O(nSm) O(nSm) O(1)

Table 2: The space, setup and communication complexities of our constructions.

6.1 Performance of GraphEnc1

GraphEnc1 GraphEnc2 GraphEnc3

Dataset
sketch Graph Comm. Setup Time Size Comm. Setup Time Size Comm. Setup Time Size

size Sketching per query per node per node T per query per node per node per query per node per node
Sm Scheme (in bytes) (in ms) (in KBs) size (in bytes) (in secs) (in MBs) (in bytes) (in ms) (in KBs)

as-skitter
80 DO1 3,840 16.7 1.94 11K 34 7.3 1.1 34 20.1 1.91
71 DO2 3,120 14 1.63 8.4K 34 6.59 0.76 34 16 1.83

Youtube
80 DO1 3,840 16.5 1.94 10K 34 8 1.1 34 18.2 1.91
68 DO2 3,120 14.5 1.63 8.5K 34 6.57 0.76 34 17.3 1.7

Gowalla
70 DO1 3360 14.9 1.7 7.5K 34 7.4 0.82 34 15.6 1.71
53 DO2 2544 12 1.29 7K 34 5 0.62 34 14.7 1.41

Enron
60 DO1 2880 12.5 1.44 7K 34 5.6 0.76 34 14 1.48
45 DO2 2160 9.39 1.11 6.5K 34 4.81 0.53 34 10 1.25

CondMat
55 DO1 2640 11.8 1.34 5.5K 34 4.65 0.65 34 13.2 1.31
42 DO2 2016 7.8 1.03 5K 34 3.8 0.49 34 8.2 1.21

Table 3: A full performance summary for GraphEnc1, GraphEnc2, and GraphEnc3

19

Distance oracle parameters In the following Sections we evaluate the performance of our
constructions using both the Das Sarma et al. and Cohen et al. distance oracles. For the
Das Sarma et al. oracle (DO1), we set the sampling parameter σ = 3 and for the Cohen et
al. oracle (DO2) we set the rank parameter ρ = 4. We choose these parameters because they
resulted in good approximation ratios and the maximum sketch sizes (i.e., Sm) of roughly the
same amount.

We can see from Table 3 that the time to setup an encrypted graph with GraphEnc1 is
practical—even for large graphs. For example, it takes only 8 hours to setup an encryption
of the as-skitter graph which includes 1.6 million nodes. Since the GraphEnc1.Setup is highly-
parallelizable, we could speed setup time considerably by using a cluster. A cluster of 10
machines would be enough to bring the setup time down to less than an hour. Furthermore,
the size of the encrypted sketches range from 1KB for CondMat to 1.94KB for as-skitter per
node.

The main limitation of this construction is that the communication is proportional to the
size of the sketches. We test for various sketch sizes, and the communication per query went
up to 3.8KB for as-skitter when we set Sm = 80. This can become quite significant if the
server is interacting with multiple clients.

6.2 Performance of GraphEnc2

The first column in Table 3 of the GraphEnc2 experiments gives the size the encrypted hash
tables Tv constructed during GraphEnc2.Setup. Table sizes range from 5K for ca-CondMat to
11K for as-skitter.

The Time column gives the time to create an encrypted hash-table/sketch per node. This
includes generating the BGN encryptions of the distances and the 0-encryptions. Note that
this makes GraphEnc2.Setup be quite costly, about 3 orders of magnitude more expensive than
GraphEnc1.Setup. This is mostly due to generating the 0-encryptions. Note, however, that
similarly to GraphEnc1, we can use extensive parallelization to speed up the graph encryption.
For example, using a cluster of 100 machines, we can setup the encrypted graph on the order
of hours, even for as-skitter which includes 1.6 million nodes. The space overhead per node is
also large, but the encrypted graph itself can be distributed in a cluster since every encrypted
sketch is independent of the other.

Finally, as shown in Table 3, GraphEnc2 achieves a constant communication cost of 34B.

Collisions In Fig. 4, we report on the intra- and inter-collisions that we observed when
executing over 10K different queries over our datasets. The collision probability ranges be-
tween 1% and 3.5%. As we can say from the results, the oracle DO2 has less error rate than
DO1. We would like to point out that these collisions can be detected by associating with
each encryption of a node a random value and its inverse value that are unique for each node.
If two different nodes collide, the product of these values will be a random value, whereas if
the same node is mapped to the same entry the product will give 1. More discussion about
this technique will appear in the full version of this work.

20

Figure 4: Collision probabilities for different datasets

6.3 Performance of GraphEnc3

The GraphEnc3 columns in Table 3 show that GraphEnc3 is as efficient as GraphEnc1 in terms
of setup time and encrypted sketch size. Moreover, it achieves O(1) communication of 34B
like GraphEnc2. Using a single machine, GraphEnc3.Setup took less than 10 hours to encrypt
as-skitter, but like the other schemes, it is highly parallelizable, and this could be brought
down to an hour using 10 machines.

We instantiate the hash function h using a cryptographic keyed hash function HMAC-
SHA-256 and this worked very well in all our experiments.

Construction time & encrypted sketch size Since the performance of GraphEnc3 de-
pends only on the size of the underlying sketches we investigate the relationship between the
performance of GraphEnc3.Setup and the sampling and rank parameters of the Das Sarma et
al. and Cohen et al. oracles, respectively. We use values of σ and ρ ranging from 3 to 6 in
each case which resulted in maximum sketch sizes Sm ranging from 43 to 80. Figure 5 and
Figure 6 give the construction time and size overhead of an encrypted sketch when using the
Das Sarma et al. oracle and Cohen et al. oracle respectively.

In each case, the construction time scales linearly when σ and ρ increase. In fact, the results
show that GraphEnc3 does not add much overhead when using more seed/distance pairs in
the sketches. Also, unlike the previous schemes, GraphEnc3 produces encrypted sketches that
are compact since it does not use 0-encryptions for padding purposes.

Query time We measure the time to query an encrypted graph as a function of the oracle
sampling/rank parameter. The average time at the server (taken over 10K random queries)
is given in Figure 7 for all our graphs and using both distance oracles. In general, the results
show that query time is fast and practical. For as-skitter, the query time ranges from 6.1 to 10
milliseconds with the Das Sarma et al. oracle and from 5.6 to 10 milliseconds with the Cohen
et al. oracle. Query time is dominated by the homomorphic multiplication operation of the
BGN scheme. But the number of multiplications only depends on the number of common
seeds from the two encrypted sketches and, furthermore, these operations are independent so
they can be parallelized.

We note that we use mostly un-optimized implementations of all the underlying primitives
and we believe that more a careful implementation (e.g., faster pairing library) would reduce

21

Construction Time (in ms) Space Overhead (in KB)

Figure 5: Construction time and size overhead (DO1)

Construction Time (in ms) Space Overhead (in KB)

Figure 6: Construction time and size overhead (DO2)

3

6

9

12

3 4 5 6
σ

A
ve

ra
ge

 Q
ue

ry
 T

im
e

(in
 m

s)

As−skitter condmat enron gowalla youtube

(a) Query Time (in ms) using DO1

3

6

9

12

3 4 5 6
ρ

Av
er

ag
e

Q
ue

ry
 T

im
e

(in
 m

s)

As−skitter condmat enron gowalla youtube

(b) Query Time (in ms) DO2

Figure 7: Average Query time

the query time even further.
We also measure the decryption time at the client. As pointed out previously, decryption

time depends on N which itself is a function of the diameter of the graph. Since all our graphs
have small diameter, client decryption time—which itself consists of a BGN decryption— was
performed very efficiently. In particular, the average decryption time was less than 4 seconds
and in most cases the decryption ranged between 1 and 3 seconds.

Finally, we would like to mention that there is some additional information that is leaked
through our implementation. We leak the parameter ρ and σ that are related to the size of the
encrypted graph and this may leak some information about how “hard” it is to approximate
the shortest distance values for the particular graph at hand. Also, the time that it takes to

22

estimate the final result at the client may reveal the diameter of the graph, since it is related
to the N and the max distance in the sketches.

6.4 Approximation errors

We investigate the approximation errors produced by our schemes. We generate 10K ran-
dom queries and run the QueryC,S protocol. For client decryption, we recover 2N − logm
and round it to its floor value. We used breadth-first search (BFS) to compute the exact
distances between each pair of nodes and we compare the approximate distance returned by
our construction to exact distances obtained with BFS.

0.0

0.2

0.4

0.6

3 4 5 6
σ

m
ea

n
of

 th
e

re
la

tiv
e

er
ro

r
w

ith
 s

d

As−skitter condmat enron gowalla youtube

Mean of Estimated Error with Standard De-
viation using DO1

0.0

0.1

0.2

0.3

0.4

0.5

3 4 5 6
ρ

m
ea

n
of

 th
e

re
la

tiv
e

er
ro

r
w

ith
 s

d

As−skitter condmat enron gowalla youtube

Mean of Estimated Error with Standard De-
viation using DO2

Figure 8: Mean of Estimated Error

We report the mean and the standard deviation of the relative error for each dataset.
We used both oracles to compute the sketches. We present our results in Figure 8, which
shows that our approximations are quite good. For the Gowalla, the mean of the relative
error ranges from 0.36 to 0.13 when using the Das Sarma et al. oracle DO1. For as-skitter, it
ranges from 0.45 to 0.22. The mean error and the variance decreases as we increase the size
of each sketch. In addition, we note that DO2 performs better in all datasets. Also, half of
the distances returned are exact and most of the distances returned are at most 2 away from
the real distance. Figure 9 shows the histogram for the absolute error when using DO2 with
ρ = 3. All the other datasets are very similar to them, we omit them due to space limit.

Figure 9: Absolute error histogram DO2 and ρ = 3

We note that a very small number of distances were negative and we remove them from
the experiments. Negative distances result from the intersection size |I| being very large.

23

Indeed, when the client decrypts the SWHE ciphertext returned by the server, it recovers
d ≥ mindist− log |I|. If |I| is large and mindist is small (say, 1 or 2) then it is very likely that
d is negative.

7 Conclusion

In this work, we describe three graph encryption schemes that support approximate shortest
distance queries. Our first solution, GraphEnc1, is based only on symmetric-key primitives and
is computationally very efficient while our second solution, GraphEnc2, is based on somewhat
homomorphic encryption and is optimal in terms of communication complexity. Furthermore,
our third solution, GraphEnc3, achieves the “best of both worlds” and is computationally very
efficient with optimal communication complexity. Our schemes work with any sketched-based
distance oracle. We implement our constructions and evaluate their efficiency experimentally,
showing that our constructions are practical for large-scale graphs.

References

[1] Blanton, M., Steele, A., and Aliasgari, M. Data-oblivious graph algorithms for secure
computation and outsourcing. In ASIACCS (2013), pp. 207–218.

[2] Boneh, D., Goh, E.-J., and Nissim, K. Evaluating 2-dnf formulas on ciphertexts. In TCC
2005 (2005), pp. 325–342.

[3] Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., and Steiner,
M. Dynamic searchable encryption in very-large databases: Data structures and implementation.
In Network and Distributed System Security Symposium (NDSS ’14) (2014).

[4] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., and Steiner, M. Highly-
scalable searchable symmetric encryption with support for boolean queries. In CRYPTO ’13
(2013), pp. 353–373.

[5] Chang, Y., and Mitzenmacher, M. Privacy preserving keyword searches on remote encrypted
data. In ACNS ’05 (2005), Springer, pp. 442–455.

[6] Chase, M., and Kamara, S. Structured encryption and controlled disclosure. In ASIACRYPT
’10 (2010), vol. 6477, pp. 577–594.

[7] Chechik, S. Approximate distance oracles with constant query time. In STOC (2014), pp. 654–
663.

[8] Cheng, J., Fu, A. W.-C., and Liu, J. K-isomorphism: privacy preserving network publication
against structural attacks. In SIGMOD Conference (2010), pp. 459–470.

[9] Cohen, E. All-distances sketches, revisited: Hip estimators for massive graphs analysis. In PODS
(2014), pp. 88–99.

[10] Cohen, E., Delling, D., Fuchs, F., Goldberg, A. V., Goldszmidt, M., and Werneck,
R. F. Scalable similarity estimation in social networks: closeness, node labels, and random edge
lengths. In COSN (2013), pp. 131–142.

[11] Cohen, E., Halperin, E., Kaplan, H., and Zwick, U. Reachability and distance queries via
2-hop labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.

[12] Cormode, G., Srivastava, D., Yu, T., and Zhang, Q. Anonymizing bipartite graph data
using safe groupings. PVLDB (2008), 833–844.

24

[13] Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. In CCS 2006 (2006), ACM, pp. 79–88.

[14] Das Sarma, A., Gollapudi, S., Najork, M., and Panigrahy, R. A sketch-based distance
oracle for web-scale graphs. In WSDM (2010), pp. 401–410.

[15] Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in
private data analysis. In TCC (2006), pp. 265–284.

[16] Feigenbaum, J., Ishai, Y., Malkin, T., Nissim, K., Strauss, M. J., and Wright, R. N.
Secure multiparty computation of approximations. ACM Transactions on Algorithms 2, 3 (2006),
435–472.

[17] Gao, J., Yu, J. X., Jin, R., Zhou, J., Wang, T., and Yang, D. Neighborhood-privacy
protected shortest distance computing in cloud. In SIGMOD (2011), pp. 409–420.

[18] Gentry, C. Fully homomorphic encryption using ideal lattices. In STOC ’09 (2009), ACM
Press, pp. 169–178.

[19] Gentry, C., Halevi, S., and Vaikuntanathan, V. A simple bgn-type cryptosystem from
lwe. In Advances in Cryptology - EUROCRYPT ’10 (2010), Springer, pp. 506–522.

[20] Goldreich, O., and Ostrovsky, R. Software protection and simulation on oblivious RAMs.
Journal of the ACM 43, 3 (1996), 431–473.

[21] Halevi, S., Krauthgamer, R., Kushilevitz, E., and Nissim, K. Private approximation of
np-hard functions. In STOC (2001), ACM, pp. 550–559.

[22] Han, W., Lee, S., Park, K., Lee, J., Kim, M., Kim, J., and Yu, H. Turbograph: a fast
parallel graph engine handling billion-scale graphs in a single PC. In KDD (2013), pp. 77–85.

[23] Kamara, S., and Papamanthou, C. Parallel and dynamic searchable symmetric encryption.
In Financial Cryptography and Data Security (FC ’13) (2013).

[24] Kamara, S., Papamanthou, C., and Roeder, T. Dynamic searchable symmetric encryption.
In ACM Conference on Computer and Communications Security (CCS ’12) (2012), ACM Press.

[25] Kasiviswanathan, S. P., Nissim, K., Raskhodnikova, S., and Smith, A. Analyzing graphs
with node differential privacy. In TCC (2013), pp. 457–476.

[26] Katz, J., and Lindell, Y. Introduction to Modern Cryptography. Chapman & Hall/CRC, 2008.

[27] Kyrola, A., and Guestrin, C. Graphchi-db: Simple design for a scalable graph database
system - on just a PC. CoRR abs/1403.0701 (2014).

[28] Leskovec, J., Kleinberg, J. M., and Faloutsos, C. Graphs over time: densification laws,
shrinking diameters and possible explanations. In KDD (2005), pp. 177–187.

[29] Liu, K., and Terzi, E. Towards identity anonymization on graphs. In SIGMOD Conference
(2008), pp. 93–106.

[30] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M.
Graphlab: A new framework for parallel machine learning. In UAI (2010), pp. 340–349.

[31] Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N.,
and Czajkowski, G. Pregel: a system for large-scale graph processing. In SIGMOD (2010),
pp. 135–146.

[32] Mouratidis, K., and Yiu, M. L. Shortest path computation with no information leakage.
PVLDB (2012), 692–703.

[33] Naveed, M., Prabhakaran, M., and Gunter, C. Dynamic searchable encryption via blind
storage. In Oakland S& P 2014 (2014).

25

[34] Potamias, M., Bonchi, F., Castillo, C., and Gionis, A. Fast shortest path distance
estimation in large networks. In CIKM (2009), pp. 867–876.

[35] Przulj, N., Wigle, D. A., and Jurisica, I. Functional topology in a network of protein
interactions. Bioinformatics 20, 3 (2004), 340–348.

[36] Qi, Z., Xiao, Y., Shao, B., and Wang, H. Toward a distance oracle for billion-node graphs.
In VLDB (2013), pp. 61–72.

[37] Rivest, R., Adleman, L., and Dertouzos, M. On data banks and privacy homomorphisms.
In Foundations of Secure Computation (1978), pp. 169–180.

[38] Sarwat, M., Elnikety, S., He, Y., and Kliot, G. Horton: Online query execution engine
for large distributed graphs. In ICDE (2012), pp. 1289–1292.

[39] Shanks, D. Class number, a theory of factorization, and genera. In 1969 Number Theory
Institute. Providence, R.I., 1971, pp. 415–440.

[40] Shao, B., Wang, H., and Li, Y. Trinity: a distributed graph engine on a memory cloud. In
SIGMOD (2013), pp. 505–516.

[41] Shen, E., and Yu, T. Mining frequent graph patterns with differential privacy. In KDD 2013
(2013), pp. 545–553.

[42] Song, D., Wagner, D., and Perrig, A. Practical techniques for searching on encrypted data.
In Oakland S & P (2000), pp. 44–55.

[43] Stefanov, E., Papamanthou, C., and Shi, E. Practical dynamic searchable encryption with
small leakage. In Network and Distributed System Security Symposium (NDSS ’14) (2014).

[44] Thorup, M., and Zwick, U. Approximate distance oracles. Journal of the ACM 52, 1 (Jan.
2005), 1–24.

[45] Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., and Jonker, W. Computationally
efficient searchable symmetric encryption. In VLDB Conference on Secure Data Management
(Berlin, Heidelberg, 2010), SDM’10, pp. 87–100.

[46] Wang, X. S., Nayak, K., Liu, C., Chan, T. H., Shi, E., Stefanov, E., and Huang, Y.
Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, Scottsdale, AZ, USA, November 3-7, 2014 (2014), pp. 215–226.

26

	Introduction
	Related Work

	Preliminaries and Notations
	Cryptographic Tools

	Graph Encryption
	Security and Leakage
	Efficiency

	Distance Oracles
	Our Constructions
	A Computationally-Efficient Scheme
	A Communication-Efficient Scheme
	Correctness and Security

	A Space-Efficient Construction
	Correctness and Security

	Experimental Evaluation
	Performance of GraphEnc1
	Performance of GraphEnc2
	Performance of GraphEnc3
	Approximation errors

	Conclusion

