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Abstract. Cryptographic multilinear maps have found many applications, such as multipartite 
Diffie-Hellman key exchange, general software obfuscation. However, currently only three 
constructions are known, and are “noisy” and bounded to polynomial degree. In this paper, we 
describe constructions of ideal multilinear maps using ideal lattices, which support arbitrary 
multilinearity levels. The security of our construction depends on hardness assumption over 
ideal lattices. Moreover, we describe one-round multipartite Diffie-Hellman key exchange 
protocols by using our construction. 
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1 Introduction 

Constructing multilinear maps have been a long-standing open problem since 2003. Many 
applications on bilinear maps, such as [SOK00, Jou00, BF01, Sma03], et al., inspired the 
study of cryptographical multilinear maps [BS03, RS09, PTT10, Rot13]. Boneh and 
Silverberg [BS03] first introduced the notion of multilinear maps, which are an extension of 
bilinear maps. However, they suspected that such maps come from the realm of algebraic 
geometry.  

Garg, Gentry, and Halevi recently described the first plausible construction of 
multilinear maps that use ideal lattices [GGH13]. Their multilinear maps, whose encodings 
were randomized with noise and bounded with a fixed maximum degree, were different from 
the ideal multilinear maps of Boneh and Silverberg. Construction security depends on the new 
hardness assumptions of GCDH/GDDH, which are provided an extensive cryptanalysis in 
[GGH13]. To reduce the public parameter size of GGH, Langlois, Stehlé, and Steinfeld 
[LSS14] improved the security analysis of the GGH construction re-randomization process 

and decreased the public parameter bit size for the GGH scheme from 3 5( log( ))O k k   to 
3 2( log ( ))O k k   in GGHLite, with respect to security parameter   and multilinearity 

parameter k . Although the length of public parameters of the GGHLite is asymptotically 

close to optimal, a large hidden constant is found in 3 2( log ( ))O k k  . 

Following GGH’s idea, Coron, Lepoint, and Tibouchi [CLT13] described a new and 
relatively practical construction following the [GGH13] method. Their construction works 
over integers instead of ideal lattices, and multilinear maps are implemented over integers 
using heuristic optimization techniques. However, the CLT multilinear maps have been 
broken by Cheon et al. [CHL+14] using level-1 encodings of zero. To fix the construction 
[CLT13], Boneh, Wu, and Zimmerman [BWZ14] and Garg, Gentry, Halevi, and Zhandry 
[GGHZ14] proposed two independent approaches to avoid zeroizing attack, however Coron，
Lepoint and Tibouchi [CTL14] show that two fixes can be defeated using extensions of the 
[CHL+14]. 

To improve the security of previous constructions, Hiromasa, Abe and Okamoto 
[HAO14] constructed new multilinear maps based on GSW’s fully homomorphic encryption. 
The security of their construction is not reduced to LWE, although the security of GSW’s 
fully homomorphic encryption is reduced to LWE. Basing same idea, Gentry，Gorbunov and 
Halevi [GGH14] described graph-induced multilinear maps from lattices. Their construction 
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encodes LWE samples on short square matrix with higher dimension, however, the security of 
their construction is not reduced to LWE or hard assumption of arbitrary other classic 
problems.  

To avoid zeroizing attack in the GGH construction, Gu [Gu15] described a construction 
of multilinear maps without encoding of zero by designing new zero-testing parameters. 
Recently, Coron, Lepoint, and Tibouchi fixed the construction in [CTL13] by also modifying 
zero-testing parameters. 

However, all current constructions follow the framework of the GGH construction, 
whose levels are in advance fixed and encodings have noisy. In this paper, we will describe a 
construction of ideal multilinear maps from ideal lattices using the methods in [Gu15, 
CLT15]. 
Our Results. Our main contribution is presenting a construction of ideal multilinear maps 
that use ideal lattices. Construction security depends on a new hardness assumption. Our 

construction works in a polynomial ring [ ] / ( 1)nR x x  , where n  is a positive integer. 

Given secret ring elements , , 1,...,j j R j m f g , we denote 
1

m

jj
f f . A level-1 

encoding of level- 0  element Ra  is ( ) mod c a g f , where modj jg g f , 

modj ja a f , 1,...,j m . If only given a  and c , then one can compute 

( / ) modg c a f . So, we provide the multiplier 0 q q f  of f  in the public parameters 

to avoid this simple attack. Now, we transform the encoding c  to a new encoding 
( ) mod  u c r f q . To decide whether or not u  is an encoding of zero, we provide a 

zero-testing parameter 1

1
( ( mod )) mod

m

zt j jj
q q


 p h f  in the public parameters. If 

the norm of  zt q
p u  is small, then u  is the encoding of zero; otherwise, it is the encoding 

of non-zero. This defines an arbitrary degree multilinear map. 
     Our second contribution is presenting a variant of ideal construction to avoid zeroizing 
attack in the above construction. This is because q  is an encoding of zero. To support 

arbitrary multilinearity levels, we must provide this encoding of zero. So in the variant, we 
take a large enough multiplier 0q  so that a non-reduced quantity over the modulo q  

cannot be directly obtained multiplying q  by ztp . In the public parameters, we provide a 

list of non-zero encodings and its corresponding zero-testing parameters to gradually reduce 
encoding. We have used this method of constructing new zero-testing parameters in [Gu15] to 
improve the GGH construction [GGH13]. 

Our third contribution is presenting a one-round multipartite Diffie-Hellman key 
exchange protocol, which supports arbitrary multilinearity levels. The integer modulo in our 
construction does not increase by multilinearity levels. Thus, our ideal multilinear maps using 
ideal lattices are practical. 

The remainder of this paper is organized as follows: some preliminaries are recalled 
in Section 2, construction of ideal multilinear maps that use ideal lattices is described in 
Section 3, a variant of our ideal construction is presented in Section 4, and a symmetric ideal 
variant is presented in Section 5. Finally, one-round multipartite Diffie-Hellman key exchange 
protocol is constructed in Section 6. 

2 Preliminaries 

2.1 Notations 

We denote , ,    the integer ring, rational number field and real number field. Vectors 

and matrices are denoted in bold. We denote    1, 2, ,k k   for k . We take n  as 
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a power of two, the polynomial ring [ ]/ 1nR x x     and polynomial field 

[ ]/ 1nx x     . For Ra , 


a  ( a  for short) denotes the infinity norm of the 

vector corresponding to a . 
In this paper, we use the absolute minimum residual system, that is 

  mod ( / 2, / 2]
q

a a q q q   . Similarly, notation  qa  denotes each entry (or each 

coefficient) ( / 2, / 2]ia p p  . 

2.2 Lattices and Ideal Lattices 

An n-dimension full-rank lattice nL    is the set of all integer linear combinations 

1

n

i ii
y

 b  of n linearly independent vectors n
i b  . If we arrange the vectors ib  as the 

columns of matrix n nB  , then  : nL  By y  . We say that B  spans L  if B  

is a basis for L . For any lattice basis, we define 

( ) { | , : 1/ 2 1/ 2}n
iP i z     B Bz z  . Let det( )B  denote the determinant of the 

matrix B . 
Given , Ra g , we let the principal ideal I  g  with the 1R -basis 

1
2 2( ) ( , ,..., )nRot x x   g g g g  and [ ]ga  denote the modulo reduction of I  g , 

namely, [ ] ( ( ))P Rotga g  and ( [ ] ) ( ( ))L Rot ga a g .  

Given nc  , 0  , we define , , , ,( ) / ( )LD L   c c cx  the Gaussian 

distribution of a lattice L , where 

Lx ,
2 2

, ( ) exp( / )    c x x c , , ,( ) ( )
x L

L  


c c x . In the following, we 

will write 
, ,0nD


 as 
,nD


. We denote a Gaussian sample as ,LD x  (or ,ID d ) 

over the lattice L (or ideal lattice I ). 

2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1k   cyclic groups 1,... ,k TG G G  of the 

same order p , a k -multilinear map 1: k Te G G G    has the following properties: 

(1)Elements  
1,...,j j j k

g G


 , index  j k , and integer pa Z  hold that 

1 1( , , , , ) ( , , )j k ke g a g g a e g g     . 

(2)Map e  is non-degenerate in the following sense: if elements  
1,...,j j j k

g G


  are 

generators of their respective groups, then 1( , , )ke g g  is a generator of TG . 

Definition 2.2 ( k -Graded Encoding System [GGH13]). A k -graded encoding system 

over R  is a set system of   ( ) : ,jS S R R j k      with the following properties: 

(1) For every index  j k , the sets  ( ) :jS R    are disjoint. 

(2) Binary operations ‘ ’ and ‘ ’ exist, such that every 1 2,  , every index  j k , 

and every 1( )
1 ju S   and 2( )

2 ju S   hold that 1 2( )
1 2 ju u S     and 1 2( )

1 2 ju u S    , 

where 1 2   and 1 2   are the addition and subtraction operations in R  
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respectively. 

(3) Binary operation ‘ ’ exists, such that every 1 2,  , every index  1 2,j j k  

with 1 2j j k  , and every 1

1

( )
1 ju S   and 2

2

( )
2 ju S   hold that 1 2

1 2

( )
1 2 j ju u S  

  , 

where 1 2   is the multiplication operation in R  and 1 2j j  is the integer addition. 

3 Ideal Multilinear Maps 

In this section, we first construct symmetric multilinear maps over ideal lattices. Then we 
show the correctness of our construction. Next, we show the security of our construction. 
Finally, we give known cryptanalysis for our construction. 

3.1 Construction 

Setting the parameters. Because our construction uses the GGH construction as the basic 
component, our parameter setting is set as that of GGH to conveniently describe and compare. 
Let   be the security parameter, n  the dimension of elements of R . Concrete parameters 

are set as n  , 1.5n   , (1)2 Oq n , 2( )n O  , 2m  , 2( )l O  , 2( )O n  . 

Instance generation: 1 1(par ) InstGen (1 ) . 

(1) Choose a large enough prime q  

(2) Sample , ,
, , , ni j j j j D


a f g h


,

, '
, ni i D


s t


,  i  ,  j m  and 

0 , 'nD


p


 such that all ideal lattices jf ’s are coprime, 1
j
 f   and 1

j l f . 

(3) Compute 
1

m

jj
f f  and 0 q p f . 

(4) Compute id , ic ,  i   over the modulo f  such that , modi i j jd a f , 

,( ) modi i j j j c a g f ,  j m . 

(5) Set ( ) modi i i  x d s f q  and ( ) modi i i  y c t f q ,  i  . 

(6) Set 1

1
( ( mod )) mod

m

zt j jj
q q


 p h f . 

(7) Output public parameters     1par , , , ,i i zti
q


 q x y p . 

Generating level- k  random encodings:    1 1Enc (par , , )i i
k


u w . 

Choose 
, 'ni D


w


,  i  , generate a level- 0  encoding 

1
( ) modk

i ii




 d w x q  and a level- k  encoding 

1
( ) modk

i ii




 u w y q . 

Adding encodings: 1 1 1Add (par , , , , )sku u u . 

Given s  level- k  encodings tu ,  t s , their sum 
1

= mod
s

ttu u q  is a level- k  

encoding. 
Multiplying encodings: 1 1 1Mul (par ,1, , , )ku u u .  

Given k  level- 1  encodings tu ,  t k , their product 
1

= mod
k

ttu u q  is a 

level- k  encoding. 

Zero Testing: 1 1isZero (par , )u . 

To determine whether level- k  encoding u  is an encoding of zero,  zt q
v = p u  is 
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computed in qR  and checked whether v  is short: 

 
1 1

1 if / 2
isZero (par , )

0 otherwise

zt q
q    



p u
u . 

Extract: 1Ext(par , )sk  u . 

Given a level- k  encoding u ,  1 1Ext (par , ) Extract (msbs ( ))s zt q u p u . 

In this paper, we omit the seed s  and concrete extraction algorithm Extract . 

Remark 3.1 When 1m  , one requires to solve 1( / ) modj j
f f f . The inverse operation 

over the modulo jf  needs to cost expensive time. One can set 1m   and a large dimension 

n  to avoid this costly inverse computation.  

3.2 Correctness 

Lemma 3.2 If the ideal lattices ,f g  over R  are co-prime, then there exists a PPT 

algorithm which solves ,s t  such that 1 sf tg . 

Proof. Using LLL algorithm, we can obtain a basis E  generated by ,f g  and two matrices 

1 2,U U  such that T T
1 2( ( )) ( ( ))Rot Rot U f U g E . Since ,f g  are co-prime, 

det( ) 1E . Namely, E  is a unimodular matrix. So, 1E  is also unimodular and in 

particular 1 n n E  . So, 1 T 1 T
1 2( ( )) ( ( ))Rot Rot  E U f E U g I  and 

1 T 1 T
1 2( )( ) ( )( )Rot Rot  f E U g E U I . Let s , t  be the first column of 

1 T
1( )E U , 1 T

2( )E U , respectively. It is easy to verify that 1 sf tg . 

Lemma 3.3 The instance generation 1InstGen (1 )  is a probabilistic polynomial time 

algorithm. 
Proof. One can efficiently generate a prime q . By [GGH13], one can sample 

, , , ,i j j j ja f g h  such that 1
j
 f   and 1

j l f  with high probability, and compute f  

and q . 

According to Chinese remainder theorem, we have 
1

,1
( ( / ) ( / ) mod ) mod

m

i i j j j jj




  d a f f f f f f . 

By Lemma 3.2, we know that 1( / ) modj j
f f f  can be solved in polynomial time. 

Namely, one can compute id  in polynomial time. Similarly, one can get ic  in polynomial 

time. 
It is easy to see that , ,i i ztx y p  can be generated in polynomial time.             ■ 

Lemma 3.4 1 1Enc (par , , )ku d  is a level- k  encoding of d . 

Proof. Since 
1

( ) modk
i ii




 d w x q , we have 
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1

1

1

1

1

,1

mod

( ( ) mod ) mod

( (( ) mod ) mod ) mod

( ( ) mod ) mod

( ( ) ) mod

( ( mod ) ) mod

( ( ) ) mod

j

k
i i ji

k
i i i ji

k
i i i ji

k
i i i ji

k
i i j ji

k
i i j ji

























 

   

   

   

 

 








d f

w x q f

w d s f q q f

w d s f q f

w d s f f

w d f f

w a f

. 

Since 
1

( ) modk
i ii




 u w y q , we have 

1

1

1

,1

,1

mod

( ( ) mod ) mod

( (( ) mod ) mod ) mod

( (( ) mod ) ) mod

( ( ) ) mod

( ( ) ) ( ) mod

j

k
i i ji

k
i i i ji

k
i i i j ji

k
i i j j ji

k k
i i j j ji





















 

   

   

 

  







u f

w y q f

w c t f q q f

w c t f f f

w a g f

w a g f

. 

So, u  is a level- k  encoding of d .                                           ■ 

Lemma 3.5 1 1 1Add (par , , , , )sku u u  is a level- k  encoding. 

Proof. Using modulo operation, it is easy to verify that u  is a level- k  encoding.       ■ 

Lemma 3.6 1 1 1Mul (par ,1, , , )ku u u  is a level- k  encoding. 

Proof. Since tu ,  t k  are level-1 encodings, we have ,modt j t j ju f u g . Then, we 

have 

1

1

1

,1

,1

mod

= ( mod ) mod

= ( mod ) mod

= ( ( mod )) mod

= ( ) mod

= ( )( ) mod

j

k

t jt

k

t j jt

k

t j jt

k

t j j jt

k k
t j j jt

















u f

u q f

u f f

u f f

u g f

u g f

 

So, u  is a level- k  encoding.                                               ■ 

Lemma 3.7 For an arbitrary integer 0k  , the zero-testing algorithm 1 1isZero (par , )u  

correctly determines whether a level- k  encoding u  is an encoding of zero. 

Proof. Given an arbitrary level- k  encoding u , we have   u d r f  and u q  with 

d f .  

(1) If u  is an encoding of zero, then  mod 0,j j m u f . Since  ,j j mf  are 

co-prime, mod 0u f . That is, mod 0d f  and 0d  according to d f . So, we 

have 
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1

1

1

1

1

1

1

1

1

1

1

(( ( mod )) mod ) mod

(( ( mod )) mod ) mod

(( ( mod )) mod ) mod

(( / ) mod ) mod

( / ) mod

/

/

/

zt q

m

j jj

m

j jj

m

j jj

m

j jj

m

j jj

m

j jj

m

j jj

j jj

q q q

q q q

q q q

q q

q






















  

  

   

  

  

  

  

  











v = p u

h f u

h u f

h r f f

h r f f

h r f f

h r f f

h r f f

h r f f

/ 2

m

q 



. 

(2) If u  is not an encoding of zero, then mod 0u f . That is, 

 , mod 0jj m  d f . So,  

 
1

1

1

1

1

1

1

1 1

1

1

(( ( mod )) mod ) mod

(( ( mod )) mod ) mod

(( ( ) ( mod )) mod ) mod

( / ) ( ( ) ( mod )) mod

( ( ) ( mod )) mod /

zt q

m

j jj

m

j jj

m

j jj

m m

j j j jj j

m

j j j jj j

q q q

q q q

q q q

q q

q q











 


 

 

  

  

    

     

     





 


v p u

h f u

h u f

h d r f f

h r f f h d f

h d f h r f f
1

1

1 '

/ 2

m

q q

q

 







 





 

So, 1 1isZero (par , )u  correctly decides the encoding of u .                        ■ 

Lemma 3.8 If two level- k  encodings 1 2,u u  encode same level- 0  element, namely 

 1 2 ( ) mod ,k
j j j j m   u u a g f , then 1 1 1 1 1 2Ext (par , ) Ext (par , )u u . 

Proof. Since  1 2 ( ) mod ,k
j j j j m   u u a g f and  ,j j mf  are co-prime, we get 

1 1 2 2,     u d r f u d r f . So, we have 

  1
1 11

1
11 1

(( ( ) ( mod )) mod ) mod

( / ) ( ( ) ( mod )) mod

m

zt j jq j

m m

j j j jj j

q q q

q q





 

     

     


 

p u h d r f f

h r f f h d f
 

  1
2 21

1
21 1

(( ( ) ( mod )) mod ) mod

( / ) ( ( ) ( mod )) mod

m

zt j jq j

m m

j j j jj j

q q q

q q





 

     

     


 

p u h d r f f

h r f f h d f
. 
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By Lemma 3.7, we have that 11
( / )

m

j jj
  h r f f , 21

( / )
m

j jj
  h r f f  are less 

than / 2q  , respectively. Hence, the most significant bits of  1zt q
p u  and  2zt q

p u  

are all decided by the second term 1

1
( ( ) ( mod ))

m

j jj
q


  h d f . That is, 

1 1 1 1 1 2Ext (par , ) Ext (par , )u u .                                             ■ 

3.3 Security 

The security of our constructions depends on new hardness assumptions, and seems to 
rely on hardness to solve shortest generator problems for principal ideal lattices. However, at 
present we do not know how to reduce the security of our construction to the shortest 
principal ideal generator problems.  

Hardness assumptions for multilinear maps in [GGH13] are modeled as discrete 
logarithms and DDH assumptions in multilinear groups. Generating a level- k  encoding of 
the product or distinguishing the product from random elements is unfeasible given the public 
parameters and 1k   level-1 encodings of random elements.  

Garg, Gentry, and Halevi introduced the definition of GCDH/GDDH in [GGH13] to 
describe the hardness assumption of the GGH construction. Langlois, Stehlé, and Steinfeld 
extended the GCDH/GDDH to the ext-GCDH/ext-GDDH in [LSS14] to prove the security of 
the GGHLite scheme. 

In the following, we adapt the definition of ext-GCDH/ext-GDDH in [LSS14] to our 
constructions. Consider the following process: 

(1) 1 1(par ) InstGen (1 ) . 

(2) Choose an arbitrary positive integer k . 
(3) For 0t   to k : 

     Sample , , 'nt i D


w


,  i   

     Generate level-1 encoding of ,1
( ) modt t i ii




 d w x q : 

,1
( ) modt t i ii




 u w y q . 

(4) Sample 0, , 'ni D


r


,  i   and generate 0 0,1
( ) modi ii




 r r x q . 

(5) Compute 
1

* mod
k

tt
u u q , 0( *) mod u d u q  and 0 *mod'  u r u q . 

(6) Set 1 1Ext (par , )C D v v u . 

(7) Set 1 1Ext (par , )R 'v u . 

Definition 3.8 (ext-GCDH/ext-GDDH). The extraction k -graded CDH problem 

(ext-GCDH) is, on input  1 0par , , , ku u , to output an extraction encoding pRw , 

such that 1 1Ext (par , ) Cw v . The extraction k -graded DDH problem (ext-GDDH) 

distinguishes between Dv  and Rv , that is, between the distributions 

 1 0par , , , ,GDDH k DD  u u v  and  1 0par , , , ,RAND k RD  u u v . 

As in [GGH13], our construction security depends on new assumptions that are unlikely 
to be reducible to more classical assumptions. We assume the ideal-GCDH/ ideal-GDDH is 
hard in our scheme. 

3.4 Cryptanalysis 

In this section, we will describe known attacks of our above construction. In the following 
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section, we will present a variant construction to thwart this attack. 

3.3.1 Average Attack 

Since 0 q p f  is an encoding of zero in our construction,  zt q
q p  is not reduced 

modulo q . So, the following quantities are easily computed from public parameters through 

algebraic transformation. 

 
1

0 1

0 1

0 1

0

( )( ( mod )) mod

( / ) mod

/

zt q

m

j jj

m

j jj

m

j jj

q q

q








 

  

  

  

 





u q p

p f h f

p h f f

p h f f

p h

,               

where 
1

/
m

j jj
 h h f f . 

The above fourth equality holds because  / ,j R j m f f  and 0 , , /j jp h f f  

all are small according to our parameter setting. That is, 0 u p h  is not reduced modulo 

q . So, one can compute a basis 0P  of 0p  from ,u q  and a basis F  of f . However, the 

short generators for 0p , f  cannot at present be found using 0P , F  and ,u q . 

For the averaging attacks considered in [GGH13, LS14], the current countermeasure is 
to increase dimension of ideal lattice of our scheme. The security of our scheme is based on 
the difficulty of finding any short element of the secret element f . 

3.3.2 Attack with Known f 

If f  is known, our construction is broken. Since modi ix f d , modi iy f c , we 

compute 1 1/ modg c d f , where we assume that 1d  is invertible over the modulo f . 

Otherwise, we can use other id ’s. Then we have 

1 1

1 1

1, 1,

mod ( / ) mod

(( mod ) / ( mod )) mod

( / ) mod

mod

j j

j j j

j j j j

j j









g f c d f

c f d f f

a g a f

g f

. 

Given an arbitrary level- k  encoding u , we know 

 mod ( ) mod ,k
j j j j j m u f a g f . So, ( mod ) / ka = u f g  is the level- 0  encoding of 

u . This is because 

mod ( mod ) / mod

( mod ) / ( mod ) mod

( ( ) ) / (( ) ) mod

mod

k
j j

k
j j j

k k
j j j j

j j









a f u f g f

u f g f f

a g g f

a f

. 

Thus, f  must be kept secret in our construction. 
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3.3.3 Attack for Small Multiple of f 

When Small Multiple of f  is known, one cannot attack our construction. Without loss 

of generality, assume ' q = r f  such that r  is small. One can find a basis of f  using 

,'q q , but cannot efficiently find f  applying current algorithms. Using 'q , one cannot also 

obtain the level- 0  encoding of u  by the method of known f . 

4 Variant of ideal multilinear maps 

From the cryptanalysis above, there exist easily computable bases in our scheme. These bases 
are related to secret ring elements and can threaten our scheme security. This is because q  is 

an encoding of zero in our scheme above. The reason why we must include this encoding of 
zero is to obtain ideal multilinear maps. Now, we describe a variant, whose method is to 
combine that in [CLT14, Gu15].  

4.1 Construction 

Setting the parameters. Because our construction uses the GGH construction as the basic 
component, our parameter setting is set as that of GGH to conveniently describe and compare. 
Let   be the security parameter, n  the dimension of elements of R . Concrete parameters 

are set as n  , 1.5n   , (1)2 Oq n , 2( )n O  , 2m  , 2( )l O  , 2( )O n  . 

Instance generation: 2 2(par ) InstGen (1 ) .  

(1) Choose a large enough prime q . 

(2) Sample , ,
, , , ni j j j j D


a f g h


,

,
, ni i q

Ds t


,  i  ,  j m  and 

0 ,n q
Dp


 such that all ideal lattices jf ’s are co-prime, 1
j
 f   and 

1
j l f . 

(3) Set 
1

m

jj
f f  and 0 q p f . 

(4) Compute id , ic ,  i   over the modulo f  such that , modi i j jd a f  and 

,( ) modi i j j j c a g f ,  j m . 

(5) Set ( ) modi i i  x d s f q , and ( ) modi i i  y c t f q . 

(6) Set 1

1
( ( mod )) mod

m

zt j jj
q q


 p h f . 

(7) Sample 
,n

i
i q

Dp


,  1i   , where log q      and 

 , 1i
iq i    . 

(8) Sample , , ,
, ni j i j D


e r


,  1i   ,  j m  and compute ie  such that 

, modi i j je e f  

(9) Set i i i  q e p f  and 1
, , ,1

( ( )( mod )) mod
m

zt i j i j i j j jj
q q


 p h e r f f , 

 1i   ,  such that 1 1( )i in q q  and 1i in q q  . If 

1 1( )i in q q , one resamples 
,n

i
i q

Dp


. 
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(10) Output public parameters         2 , 1
par , , , , , ,i i zt i zt ii i

q
   

 q x y p q p . 

Generating level- k  random encodings:    2 2Enc (par , , )i i
k


u w . 

Choose 
, 'ni D


w


,  i  , generate a level- 0  encoding 

1
( ) modk

i ii




 d w x q  and a level- k  encoding 

1
( ) modk

i ii




 u w y q . 

Adding encodings: 2 2 1Add (par , , , , )sku u u . 

Given s  level- k  encodings tu ,  t s , their sum 
1

= mod
s

ttu u q  is a level- k  

encoding. 
Multiplying encodings: 2 2 1Mul (par ,1, , , )ku u u .  

Given k  level- 1  encodings tu ,  t k , their product 
1

= mod
k

ttu u q  is a 

level- k  encoding. 

Zero Testing: 2 2 0isZero (par , )u . 

To determine whether level- k  encoding 0u  is an encoding of zero, compute as 

follows: 
(1)For 1i   to 1   

      Compute 1 modi i iu u q  and 1( ) /i i i i k u u q . 

(2)Compute 
1

1 1zt zt,i ii q





 

    v = p u p k  

(3)Checked whether v  is short: 

2 2 0

1 if / 2
isZero (par , )

0 otherwise

q  
 


v
u . 

Extract: 2 2 0Ext (par , )sk  u . 

Given a level- k  encoding 0u , compute as follows: 

(1) For 1i   to 1   

      Compute 1 modi i iu u q  and 1( ) /i i i i k u u q . 

(2)Compute 
1

1 1zt zt,i ii q





 

    v = p u p k  

(3)Extract the most significant bits 2 2 0Ext (par , ) Extract(msbs ( ))u v . 

Remark 4.1 (1) If one sets 2( )m= O   and 1n =  for our variant, then the variant is 

extended to the ring   of integers. In some sense this case is similar to the construction in 
[CLT15], however our construction is ideal multilinear maps, whereas their construction is 
approximate multilinear maps. Moreover, our variant needs to use the method of constructing 

new zero-testing parameter in [Gu15]. (2) One cannot set 2( )m= O   and 1n =  for the 

ideal multilinear maps in Section 3. This is because the multiplier 0q  is an integer and can 

be computed in this case. (3) One can set 1m=  and 2( )n = O   for our variant to 

decrease time of computing inverse elements in generating instance algorithm. 

4.2 Correctness 

We first give Lemma 4.2 to show the correctness of our variant construction. 

Lemma 4.2 If 1 1( )n p p  and / u p , then mod   u p u k p  and k  is 
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satisfied 2 ( 1)n  k . 

Proof. Since mod   u p u k p , then 1( mod ) k p u u p . So , we have 
1

1

1

1

1

2

( mod )

( mod )

( mod )

( )

( )

( 1)

n

n

n

n

n
















 

 

 

 

 

 

k p u u p

p u u p

p u u p

p u p

p p p

. 

So, k  is a small integer.                                                 ■ 

Similar as that in the construction of ideal multilinear maps, it is easy to prove that 

2InstGen , 2Enc , 2Add , 2Mul  are correct. Here we only require to prove that 2Red , 

2isZero  and 2Ext  are correct. 

Lemma 4.3 For an arbitrary integer 0k  , the zero-testing algorithm 2 2 0isZero (par , )u  

correctly determines whether a level- k  encoding 0u  is an encoding of zero. 

Proof. Given an arbitrary level- k  encoding 0u , we have 0   u d r f  and 0 u q  

with d f . 

For  1i   , 1 modi i iu u q , then i iu q . So, we have 

1 1/ /i i i i n  u q q q . 

By Lemma 4.2 and 1 1( )i in q q , we have 2 ( 1)i n n k .  

For  1i   , 1 modi i iu u q , 1( ) /i i i i k u u q , then 1i i i i  u u k q . 

So, we have 
1 1

0 1 11 1
( )i i i i ii i

 
 

 
  

        u u k q u k e p f . 

Namely, 
1 1

0 1 11 1
mod ( ( )) mod ( ) modi i i i ii i

 
 

 
  

        u f u k e p f f u k e f , 

1

0 1 ,1
mod ( ) modj i i j ji





 

  u f u k e f . 

Moreover, we have 
1

1 1

1

1 1

1

1 1

1

1 1

3( ( 1))

i ii

i ii

i ii

ii

n n n













  



 



 


 



 

 

  

 

 

  






u k e

u k e

u k e

q k f

f

, 
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1

1 ,1

1

1 ,1

,

4 3 3 2

i i ji

i i ji

i i jn n

n n







 

  



 



 

 

  

 

 




u k e

u k e

f k e
. 

Now, we have 
1

1 1

11 1
1 , ,1 1 1

11
1 , ,1 1

( ( mod ) ) ( ( )( mod ) )

( mod ) ( ( )

zt zt,i ii q

m m

j j j i j i j j j ij i j q

m

j j i i j i j jj i q

q q

q












 

 
  


 

     

      

     



  

 

v p u p k

h f u h e r f f k

h f u k e r f

. 

(1) If 0u  is an encoding of zero, then  0 mod 0,j j m u f , mod 0u f and 

0d . So, we have 
1

0 1 ,1
mod ( ) mod 0j i i j ji





 

   u f u k e f . That is, 

1

1 ,1 i i j j ji





 
  u k e t f . 

So, 
1 1

( ) ( )
m m

j j j j j jj jq 
      v h t r h t r , where 

1

,1j i i ji




 r k r . 

Thus, we have 

1

2 4 3 3 2 3 2

(1)

( )

( )

( )

2 ( )

/ 2

m

j j jj

j j j

j j j

O

m

mn

n n n n

n

q 

     


 

 

 

  






v

h t r

h t r

h t r . 

(2) If 0u  is not an encoding of zero, then 0 mod 0u f . That is, 

 , mod 0jj m  d f . So, 
1

0 1 ,1
mod ( ) mod modj i i j j ji





 

   u f u k e f d f , 

namely 
1

1 ,1 i i j j ji





 
   u k e t f d . 

Thus, we have 
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11
1 , ,1 1

1 11
1 , ,1 1 1

11
,1 1

1

1 1

( mod ) ( ( )

( mod ) ( )

( mod ) ( )

( mod ) ( )

m

j j i i j i j jj i q

m

j j i i j i i j jj i i q

m

j j j j i i j jj i q

m m

j j j j jj j q

q

q

q

q




 





 

 
  


 


 

     

     

     

    

 

  

 

 

v h f u k e r f

h f u k e k r f

h f d t f k r f

h d f h t r

1

1 1

1

1 '

( mod ) ( )

/ 2

m m

j j j j jj jq q
q

q q

q

 




 





        

 



 h d f h t r

, 

where 
1

,1j i i ji




 r k r . 

So, 2 2 0isZero (par , )u  can correctly decide whether the encoding of 0u  is zero.      ■ 

Lemma 4.4 If two level- k  encodings (1) (2)
0 0,u u  encode same level- 0  element, then 

(1) (2)
2 2 0 2 2 0Ext (par , ) Ext (par , )u u . 

Proof. Since  (1) (2)
0 0 ( ) mod ,k

j j j j m   u u a g f  and  ,j j mf  are co-prime, we 

get (1) (1) (2) (2)
0 0,     u d r f u d r f .  

For  1i   , (1) (1)
1 modi i iu u q , (1) (1) (1)

1( ) /i i i i k u u q , we have 

(1) (1) (1)
1i i i i  u u k q . 

So,  
1 1(1) (1) (1) (1) (1)

0 1 11 1
( )i i i i ii i

 
 

 
  

        u u k q u k e p f . 

(1)
0

1(1) (1)
1 1

1(1) (1)
1 1

mod

( ( )) mod

) mod

mod

i i ii

i ii








 



 

    

  






u f

u k e p f f

u k e f

d f

, 

1(1) (1) (1)
0 1 ,1

mod ( ) mod modj i i j j ji





 

   u f u k e f d f . 

Namely, we get 
1(1) (1) (1)

1 ,1 i i j ii





 
   u k e d t f . 

So, we have 
1(1) (1) (1)

1 1

11 (1) (1)
1 , ,1 1

1 11 (1) (1) (1)
1 , ,1 1 1

1 (1) (1)
,

( mod ) ( ( )

( mod ) ( )

( mod ) (

zt zt,i ii q

m

j j i i j i j jj i q

m

j j i i j i i j jj i i q

j j j j i i

q

q

q







 




 


 

 
  



    

     

     

   



 

  

v = p u p k

h f u k e r f

h f u k e k r f

h f d t f k r
1

1 1
)

m

j jj i q



 
 
   f

. 

Similarly, we have 
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1(2) (2) (2)
1 1

11 (2) (2)
,1 1

( mod ) ( )

zt zt,i ii q

m

j j j j i i j jj i q
q







 


 

    

    



 

v = p u p k

= h f d t f k r f
. 

By Lemma 4.3, we have  
1(1) (1)

,1 1
( ) / 2

m

j j i i jj i
q

 

 
  h t k r , 

1(2) (2)
,1 1

( ) / 2
m

j j i i jj i
q

 

 
  h t k r . 

Hence, the most significant bits of (1)v  and (2)v  are all decided by the second term 
1

1
( ( ) ( mod ))

m

j jj
q


  h d f . Namely, 1 1 1 1 1 2Ext (par , ) Ext (par , )u u .            ■ 

4.3 Security 

Variant security depends on new assumptions, and the extraction variant of GCDH/GDDH is 
called ext-GCDH/ext-GDDH. The ext-GCDH/ext-GDDH is introduced in [LSS14] to prove 
the security of the GGHLite scheme. We describe the security experiment of our variant 
below: 

(1) 2 2(par ) InstGen (1 ) . 

(2) Choose an arbitrary positive integer k . 
(3) For 0t   to k : 

     Sample , , 'nt i D


w


,  i   

     Generate level-1 encoding of ,1
( ) modt t i ii




 d w x q : 

,1
( ) modt t i ii




 u w y q . 

(4) Sample 0, , 'ni D


r


,  i   and generate 0 0,1
( ) modi ii




 r r x q . 

(5) Compute 
1

* mod
k

tt
u u q , 0( *) mod u d u q  and 0 *mod'  u r u q . 

(6) Set 2 2Ext (par , )C D v v u . 

(7) Set 2 2Ext (par , )R 'v u . 

Definition 4.5 (ext-GCDH/ext-GDDH). The extraction k -graded CDH problem (ext-GCDH) 

is, on input  2 0par , , , ku u , to output an extraction encoding pRw , such that 

2 2Ext (par , ) Cw v . The extraction k -graded DDH problem (ext-GDDH) distinguishes 

between Dv  and Rv , that is, between the distributions  2 0par , , , ,GDDH k DD  u u v  

and  2 0par , , , ,RAND k RD  u u v .  

5 Asymmetric ideal multilinear maps 

Asymmetric ideal multilinear maps with different group are required in some applications. 
Similar to [GGH13], we briefly describe asymmetric variant as follow. 
In this variant, we sample different , ,

, 1,...,nj k D k


 g


. The element of the form 

, ,( ) modj k j k ja g f  is a level-1 encoding relative to the k -th generator ,j kg . We denote 

by vectors the different levels of encoding. For a level- 0  encoding a , the encoding c  

with an index vector 1( ,..., )w w 
 w   is satisfied to 
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,1
mod ( ( ) ) modkw

j j k jk




 c f a g f . So, we give the public parameters 

, , ,( ) modi k i k i k  x d s f q  and , , ,( ) modi k i k i k  y c t f q ,  i  ,  k  , where 

, , , modi k i j k jd a f , , , , ,( ) modi k i j k j k j c a g f . That is, the public parameters in 

asymmetric variant is       1 , , ,
par , , , ,i k i k zti k

q
  

 q x y p . For the variant in Section 4, 

we can similarly obtain asymmetric variant, namely 

          2 , , ,, 1
par , , , , , ,i k i k zt i zt ii k i

q
     

 q x y p q p . 

6 One-round Multipartite Diffie-Hellman Key Exchange Protocol 

We describe the construction of one-round multipartite Diffie-Hellman key exchange protocol 
using our ideal multilinear maps. As in [GGH13], protocol security relies on the hardness 
assumption of the ext-GDDH. 

(1 )Setup . For  2t  , output (par ) InstGen (1 )t t
  as the public parameter.  

(par , )t jPublish . Let N  be the number of participants,  j N . Each party j  

samples random elements , , 'nj i D


w


,  i  , computes level- 0 encoding 

,1
( ) modk

j j i ii




 d w x q  as a secret key, and publishes level-1 encoding 

    ,Enc par ,1,j t t j i i 
u w  as a public key. 

 (par , , , )t j j j i
j


KeyGen d u . Each party j  computes j j kk j

 c d u  and extracts 

the common secret key Ext (par , )t t jsk  c . 

Theorem 6.1 Suppose that ext-GDDH is hard, then our construction above is one-round 
multipartite Diffie-Hellman key exchange protocol. 
Proof. The proof is similar as Theorem 2 in [GGH13].                             ■ 
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