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exchange and software obfuscation. However, the encodings of three current constructions are 
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1 Introduction 

The construction of multilinear maps has been a long-standing open problem since 2003. 
Many studies on the applications of bilinear maps, such as [SOK00, Jou00, BF01, Sma03], 
have influenced research on cryptographic multilinear maps [BS03, RS09, PTT10, Rot13]. 
Boneh and Silverberg [BS03] first introduced the notion of multilinear maps, which are an 
extension of bilinear maps. However, they suspected that such maps come from the realm of 
algebraic geometry. 

Garg, Gentry, and Halevi (GGH) recently described the first candidate construction of 
multilinear maps from ideal lattices [GGH13]. The GGH construction, whose encodings are 
randomized with noise and bounded with a fixed maximum degree, is different from the ideal 
multilinear maps envisioned by Boneh and Silverberg [BS03]. Construction security depends 
on the new hardness assumptions of GCDH/GDDH, which provided extensive cryptanalysis 
in [GGH13]. Langlois, Stehlé, and Steinfeld [LSS14] presented a variant of GGH by 
reanalyzing its re-randomization process to improve its efficiency. However, by using the 
zeroizing attack proposed by [GGH13], the application of multipartite key exchange (MPKE) 
based on GGH was broken by Hu and Jia [HJ15a]. 

One line of work focused on new constructions of multilinear maps. Following the 
GGH framework, the second candidate construction of multilinear maps was presented by 
Coron, Lepoint, and Tibouchi (CLT) [CLT13]. The CLT construction changes from working 
over ideal lattices to working over integers and is implemented by using many heuristic 
optimization techniques. However, by using the zeroizing attack, the CLT construction was 
broken by Cheon et al. [CHL+14]. Boneh, Wu, and Zimmerman [BWZ14] and Garg, Gentry, 
Halevi, and Zhandry [GGHZ14] proposed two independent approaches to fix the CLT 
construction [CLT13]. However, Coron, Lepoint, and Tibouchi [CTL14] showed that two 
fixes can be broken by using an extension of the attack proposed by Cheon et al. [CHL+14]. 
Recently, Coron, Lepoint, and Tibouchi [CTL15] presented a new variant of CLT by 
modifying the zero-testing parameter. 

The third candidate construction of graph-induced multilinear maps from lattices was 
proposed by Gentry, Gorbunov, and Halevi [GGH15]. The security of their construction 
depends on new hardness assumptions and cannot be reduced to LWE or other classic 
hardness assumptions. 

Another line of work focused on the new cryptographic applications of multilinear maps: 
witness encryption [GGS+13], general program obfuscation [GGH+13b, Zim15], function 
encryption [GGH+13b], and other applications [GGH+13a, BZ14]. 
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However, all known constructions are noisy multilinear maps. These noisy encodings 
restrict the number of operations that can be performed and further restrict their applications. 
In this study, we propose a candidate construction of ideal multilinear map that supports any 
multilinearity degree. 

1.1 Our Results 

Our main contribution describes a candidate construction of ideal multilinear map by using 
ideal lattices. The security of our construction depends on new hardness assumptions. The 
starting point of our work is that, given 1k   ring elements i i i y a g t f , all products of 

the form modj j ii j
 b a y f  are identical to element 

1

1
mod

kk
ii



g a f . 

Our construction includes two layers, namely, the inner layer that works over polynomial 

rings [ ] / ( 1)nR x x   and /qR R qR  and the outer layer that works over matrix 

ring 2 2n n .  
First, we select secret short ring elements , Rf g . Given an element Ra , the 

level-1 encoding is ( ) modc ag f . However, one can compute ( / ) modg c a f  when 

f , a , and c  are known. To prevent this simple division attack, we replace f  with 

0q q f  and add noise rf  to the encoding c , where 0q  is a short ring element. 

Thereafter, we transform a  and c  into new encodings ( ) mod x a ef q  and 

( ) mod   y c tf ag tf q , where e  and t  are short random elements drawn from R . 

In our construction, we regard kg  as level- k  encoding and rf  as random encoding of 

zero. 
The aforementioned encodings support the addition and multiplication operations. Given 

level- 1  encodings ( ) modi i i i i   u c rf a g r f q , 1, 2i  , we derive the following 

expressions: 

1 2 1 1 2 2

1 2 1 2

( ) ( )

(( ) ( ) ) mod

    
   

u u c r f c r f

a a g r r f q
, 

       

1 2 1 1 2 2

1 2 1 2 2 1 1 2

2
1 2 1 2 2 1 1 2

( ) ( )

(( ) ( ) ) mod

(( ) ( ) ) mod

      
    

   

u u c r f c r f

c c c r c r r r f f q

a a g c r c r r r f f q

. 

One can be decided whether an encoding is 0 . Given 0q q f , all level- k  encodings 

can have the form ( ) modk ag rf q . That is, the norm of any encoding is less than 


q , 

where 


q  is the maximum norm of q . Thus, to decide whether u  is an encoding of 

zero, a zero-testing parameter 1( mod ) modzt q q p h f  is included in the public 

parameters, where q


q . If the norm of  zt q
p u  is small, u  is an encoding of zero; 

otherwise, u  is an encoding of a nonzero element. 
However, this construction can be broken when q  and   pairs of encodings 

( ) modi i i x a e f q  and ( ) modi i i y a g t f q  are included in the public parameters. 

Because one can compute the basis of f , the inverse of 1( )Rot a , and the inverse of 

( )Rot g  by cross-multiplying 
1 2 2 1 1 2,i i i i i i x y x y r f  of ix , iy , where notation ( )Rot v  

denotes the anti-cyclic matrix of Rv . 
To prevent the cross-multiplying attack, we introduce random matrices to enclose the 

ring elements in the aforementioned construction. We first select two short random 
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unimodular matrices T , S . Then we transform ix , iy  into 1( )i iRot X S x S , 
1 ( )i iRotY T y T , and ztp  into  ( )zt zt q

RotP S p T . For modulo q , we generate two 

list encodings of zero 1( )j jRot M S m q S , 1 ( )j jRotN T n q T ,  j n , where 

jm  and jn  are short random elements drawn from R . We represent M  and N  as 

2n n  matrices whose column vectors are jM  and jN , respectively. Thus, we can easily 

generate encodings by scalar product; that is, sampling   small random integers id , a 

level- 1  encoding is generated as 
1

modi ii
d




 U Y N , and the level- 0  encoding 

corresponding to U  is 
1

modi ii
d




D X M . Similarly, whether the encoding U  is an 

encoding of zero can be determined by computing  zt q
  V E P U  and checking the norm 

of V , where 
1

modi ii
r




 E X M  and can be set identity matrix. By 

cross-multiplication, an adversary can obtain   ( )zt q
Rot   V E P U S r T , which is not 

reduced modulus q . 

Very recently, Pellet-Mary and Stehlé [PS15] presented an efficient attack for our 

construction using random matrix. This is because one can compute 1 modi j
Y N  if 

det( )iY  and det( )jN  are coprime. Without loss of generality, assume 1
1 1modC Y N . 

Given the public parameters par  and 1k   level-1 encodings , 0,...,r r kU , then one 

computes 
0

( ) mod
k

rr
 U U N , 

0
( ) mod

k

rr
'


 U C U N , and  1 zt q

'  V X P U . 

Let 0D  be the level- 0  encoding corresponding to 0U . It is not difficult to verify that the 

significant bits of each entry in V  are same as that in  0 0 zt q
  V D P U . To avoid this 

attack, we multiply ring elements in the inner layer by a random short element Rh . In this 
case, one can no longer find an invertible encoding over modulo jN . 

However, the encodings 1( )i iRot X S x S  works over the integers, iX  and 

( )iRot x  are similar matrices. According to Stehlé [Ste15], one can obtain S  by computing 

the singular values of iX  and recovering ring element ix . To thwart this attack, we extend 

encodings from single ring element to multiple ring element. That is, we generate new 
encodings and the zero-testing parameter as follows: 

1,1, 1,2, 1

2,1, 2,2,

( ) ( )

( ) ( )
i i

i
i i

Rot Rot

Rot Rot
 

  
 

x x
X S S

x x
,

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
i i

i
i i

Rot Rot

Rot Rot
  

  
 

y y
Y T T

y y
, 

,1 1

2 ,2

( )

( )
zt

zt
zt q

Rot

Rot

  
   
   

p r
P S T

r p
 with short ring elements 1r , 2r . 

For using as modulo the encodings jM , jN  of zero, we similarly transform them into 

the above form. This briefly describes our construction of ideal multilinear maps. 
Our second contribution is to describe two applications using our ideal construction: 

multipartite Diffie–Hellman key exchange protocol (MPKE), which supports any number of 
participants, and witness encryption scheme (WE). In our construction, the size of modulus 
q  does not depend on the multilinearity levels. Thus, the MPKE and WE using our ideal 

multilinear maps are practical. 
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1.2 Organization 

The remainder of this paper is organized as follows. We recall several preliminaries in Section 
2. We describe the construction of ideal multilinear maps that use ideal lattices in Section 3. 
We extend our construction to asymmetric and commutative variants in Section 4. Finally, we 
propose two applications by using our ideal construction in Section 5. 

2 Preliminaries 

2.1 Notations 

We denote , ,    as the integer ring, rational number field, and real number field, 

respectively. The vectors and matrices are denoted in bold. For a positive integer k , we let 

   1, 2, ,k k  . For n  the power of 2, we let [ ]/ 1nR x x    , /qR R qR , 

and [ ]/ 1nx x     . We denote an element of the polynomial ring as a coefficient 

vector for simplicity. For the element Ra , we denote 


a  ( a  for short) as the 

maximum norm of a . 
Throughout this study, we use the absolute minimum residual system, that is, 

  mod ( / 2, / 2]
q

a a q q q   . Similarly, notation  qa  denotes each entry (or each 

coefficient) ( / 2, / 2]ia q q   of a . 

2.2 Lattices and Ideal Lattices 

The n-dimensional full-rank lattice nL    is the set of all integer linear combinations 

1

n

i ii
y

 b  of n linearly independent vector n
i b  . If we arrange the vectors of ib  as 

the columns of matrix n nB  , then  : nL  By y  . We can state that B  spans L  

if B  is a basis for L . For basis B  of the lattice, we denote its parallelization cell as 

( ) { | , : 1/ 2 1/ 2}n
iP i z     B Bz z  . We let det( )B  be the determinant of B . 

For elements , Ra g , we let I  g  be the principal ideal lattice generated by 

g , and 1( ) ( , ,..., )nRot x x   g g g g  the basis of R . We denote [ ]ga  as the reduction 

of a  modulo ( )Rot g , that is, [ ] ( ( ))P Rotga g  and ( [ ] ) ( ( ))L Rot ga a g . 

Given nc  , 0  , we define , , , ,( ) / ( )LD L   c c cx  as the Gaussian 

distribution of lattice L , where Lx ,
2 2

, ( ) exp( / )    c x x c , and 

, ,( ) ( )
x L

L  


c c x . Thereafter, we write 
, ,0nD


 as 
,nD


 for simplicity. We 

denote a Gaussian sample as ,LD x  (or ,ID d ) over the lattice L  (or the ideal 

lattice I ). 

2.3 Multilinear Maps 

Definition 2.1 (Multilinear Map [BS03]). For 1k   cyclic groups 1,... ,k TG G G  of the 

same order p , a k -multilinear map 1: k Te G G G    has the following properties: 
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(1) Elements  
1,...,j j j k

g G


 , index  j k , and integer pa Z  hold that 

1 1( , , , , ) ( , , )j k ke g a g g a e g g     . 

(2) Map e  is a nondegenerate in the following sense: if elements  
1,...,j j j k

g G


  

are generators of their respective groups, then 1( , , )ke g g  is a generator of TG . 

Definition 2.2 ( k -Graded Encoding System [GGH13]). A k -graded encoding system 

over R  is a set system of   ( ) : ,jS S R R j k      with the following properties: 

(1) For every index  j k , the sets  ( ) :jS R    are disjoint. 

(2) Binary operations “  ” and “  ” exist, such that every 1 2,  , every index 

 j k , and every 1( )
1 ju S   and 2( )

2 ju S   hold that 1 2( )
1 2 ju u S     and 

1 2( )
1 2 ju u S    , where 1 2   and 1 2   are the addition and subtraction operations 

in R , respectively. 

(3) Binary operation “” exists, such that every 1 2,  , every index  1 2,j j k  

with 1 2j j k  , and every 1

1

( )
1 ju S   and 2

2

( )
2 ju S   hold that 1 2

1 2

( )
1 2 j ju u S  

  , 

where 1 2   is the multiplication operation in R  and 1 2j j  is the integer addition. 

3 Ideal Multilinear Maps 

In this section, we describe the construction of ideal multilinear maps applying unimodular 
matrices. For our construction, its inner layer works over the polynomial ring, and its outer 
layer works over the matrix ring. We use different unimodular matrices for elements of 
level- 0  and level-1 encodings to prevent the cross-multiplication between level- 0  and 
level-1 encodings. For simplicity, we only consider our construction as graded encoding. 

3.1 Construction 

Setting the parameters. We let   be the security parameter and n  be the dimension of 

polynomial ring R . Concrete parameters are set as n  , 1.5n   , 2( )n O  , 

4N n , ( )O m  , 16 220 2q n  , and 2( )O n  . 

Instance generation: (par) InstGen(1 ) . 

(1) Select a sufficiently large prime q . 

(2) Generate parameters in the inner layer: 

(2.1) Sample 1 2 ,
, nD


f f


 such that 1 2,f f  are co-prime and 1

t
 f   with 

1 2( )t O n f ,  2t , and set 1 2f f f . 

(2.2) Sample 
,nt D


g


, , , , , , , , '
, , nt s i t s i t s i D


a e d


,  2t ,  2s ,  i  . 

(2.3) Sample 0 , '
, nD


h q


 and set 0q hq f  such that 1 q  . 

(2.4) For  2t ,  2s  and t s , set 

, , , , , ,( ) modt s i t s i t s i t x h a e f q , , , , , , ,( ) modt s i t s i t t s i t y h a g d f q . 

For  2t ,  2s  and t s , set 

, , , ,t s i t s ix he f  and , , , ,t s i t s iy hd f . 
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(2.5) Set 1
,zt t t t q

   p h f ,  2t , where 
,nt D


h


. 

(2.6) Sample , , , , ,
, nt s j t s j D


m n


,  2t ,  2s ,  j N  such that 'M , 'N  

are invertible over  , where 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,

N

N

N

N

'

 
 
   
  
 

m q m q m q

m q m q m q
M

m q m q m q

m q m q m q






, 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,

N

N

N

N

'

 
 
   
  
 

n q n q n q

n q n q n q
N

n q n q n q

n q n q n q






. 

 
(3) Generate parameters in the outer layer: 

(3.1) Sample randomly 2 2n n -dimensional unimodular matrices S  and T  such 

that 1 1 2( )O n    S S T T . 

(3.2) For  i  , set 

1,1, 1,2, 1

2,1, 2,2,

( ) ( )

( ) ( )
i i

i
i i

Rot Rot

Rot Rot
 

  
 

x x
X S S

x x
, 

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
i i

i
i i

Rot Rot

Rot Rot
  

  
 

y y
Y T T

y y
. 

(3.3) For  j N , set  

1,1, 1,2, 1

2,1, 2,2,

( ) ( )

( ) ( )
j j

j
j j

Rot Rot

Rot Rot
 

  
 

m q m q
M S S

m q m q
, 

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
j j

j
j j

Rot Rot

Rot Rot
  

  
 

n q n q
N T T

n q n q
. 

We denote by 
2(4 ) (4 ), n nM N   the matrix of column vectors jM  and jN , 

where jM  and jN  are considered as 24n -dimensional column vectors. Assume 

 M N . 

(4) Generate the parameters of zero-testing and extraction: 
(4.1) Sample 2 ,

, nD


s t


 and 1 2 , '
, nD


r r


. 

(4.2) Randomly select ,s t qRz z  such that 1 1,s t qR  z z . 

(4.3) Set 
1

* 1

1

( )

( )
T s

s q

Rot

Rot






  
   
   

z
s s S

z
, 

1
* 1

1

( ) 0

0 ( )
t

t q

Rot

Rot






  
   
   

z
t T t

z
. 
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(4.4) Set 
,1 1

2 ,2

( ) ( )

( ) ( )
s t zt s t

zt
s t s t zt q

Rot Rot

Rot Rot

  
   
   

z z p z z r
P S T

z z r z z p
. 

(5) Output the public parameters     * *par , , , , , , ,i i zti
q


 M N X Y P s t . 

Generating level- k  random encodings:    Enc(par, , )i i
k w


U . 

Select , 'iw D   ,  i   and generate a level- 0  encoding 

1
( ) modk

i ii
w




 D X M  and a level- k  encoding 

1
( ) modk

i ii
w




 U Y N . 

Notice that here 
1

( )k
i ii

w



 R X  is considered as a 24n -dimensional column 

vector, and modR M  means to map R  into parallelepiped of lattice generated by M . 

Similarly, 
1

( ) modk
i ii

w



 Y N . 

Adding encodings: 1Add(par, , , , )skU U U . 

Given s  level- k  encodings rU ,  r s , their sum 
1

= mod
s

rrU U N  is a 

level- k  encoding. 

Multiplying encodings: 1Mul(par,1, , , )kU U U . 

Given k  level-1 encodings rU ,  r k , their product 
1

= mod
k

rrU U N  is a 

level- k  encoding. 
Zero-testing: isZero(par, , )D U . 

Given a level- k  encoding U  and a level- 0  encoding D , we determine whether 

U  is an encoding of zero. We compute * *
zt q

v      = s D P U t  in q  and check 

whether v  is small, as follows: 

1 if / 2
isZero(par, , )

0 otherwise

v q  
 


D U . 

Extract: Ext(par, , )sk  D U . 

Given a level- k  encoding U  and a level- 0  encoding D , 
* *Ext(par, , ) Extract (msbs ( ))s zt q       D U s D P U t , where msbs  extracts the 

     most significant bits from the result. Extract s  is a strong randomness extractor 

using the seed s . 

Remark 3.1 (1) In our construction, we can replace vectors 2 ,
, nD


s t


 with matrices 

2 21 21 1, ,
,k n n kD D

   S T
 

, and *s , *t  with 
1

* 1
1 1

( )

( )
s

s q

Rot

Rot






  
   
   

z
S S S

z
, 

1
* 1

11

( )

( )
t

t q

Rot

Rot






  
   
   

z
T T T

z
. In this case, we compute a 1 2k k -matrix 

* *
zt q

     S D P U T  as the final result, where 1 2k k n   to guarantee the security of 

construction. (2) We can take n   or 8n   according to an optimization in [HJ15c]. 
(3) The matrix D  can be taken the identity matrix. Our aim is to demonstrate how to use 
level- 0  encodings when constructing the MPKE protocol. (4) When our construction is only 

applied to multipartite Diffie–Hellman key exchange, ztP , iX  in the public parameters can 
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be replaced by  ,zt i i zt q
P = X P  and S  does not require a unimodular matrix. Moreover, 

the matrix  ,zt i i zt q
P = X P  may be further modified into a vector ,zt i i zt q

  
*p = s X P . 

3.2 Correctness 

Lemma 3.2 InstGen(1 )  is a probabilistic polynomial time algorithm. 

Proof. (1) The unimodular matrices S  and T  can be generated using the method of 
[GGH15]. 

(2) If det( ( )) 0Rot q , then 1 q  . So, one can efficiently generate q . 

(3) For the matrices 'M , we have 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,

( )

( )

( )

( )

N

N

N

N

Rot

Rot
'

Rot

Rot

''

  
  
     
     

 

m m mq

m m mq
M

m m mq

m m mq

Q M






. 

     Since ( )Rot q  is invertible, the diagonal matrix Q  is invertible over  . So, with 

high probability, 'M  is invertible over   since a random sampling matrix ''M  is 

invertible over   with high probability. 

Similarly, it is easy to show that 'N  is invertible over  . 

All other elements in InstGen(1 )  can be generated in polynomial time.       ■ 

Lemma 3.3 The ranks of M  and N  in the public parameter par  are 4n . 

Proof. We prove the result by contradiction and assume that the rank of M  is less than 4n . 

Without loss of generality, assume that there exist 4n  non-all-zero real numbers jk  such 

that 
4 2 2

1

n n n
j jj

k 


 M 0 , namely, k 0 . Thus, we derive the following expression: 

4 4 1,1, 1,2, 1 2 2

1 1
2,1, 2,2,

( ) ( )

( ) ( )
n n j j n n

j j jj j
j j

Rot Rot
k k

Rot Rot
 

 

  
      

 
m q m q

M S S 0
m q m q

. 

Given that S  is invertible over  , we derive 

4 1,1, 1,2, 2 2

1
2,1, 2,2,

( ) ( )

( ) ( )
n j j n n

jj
j j

Rot Rot
k

Rot Rot




 
 

 


m q m q
0

m q m q
. 

That is, 
4 1,1, 1,2, 2 2

1
2,1, 2,2,

n j j n
jj

j j

k 


 
 

 


m q m q
0

m q m q
. So, we have 

1,1,

4 1,2, 4 1

1
2,1,

2,2,

j

n j n
jj

j

j

k 


 
 
   
  
 



m q

m q
0

m q

m q

. 

Given that 'M  is invertible, we have '  M k 0  and k 0 . A contradiction is 
generated. Similarly, we can prove that the rank of N  is 4n .                    ■ 
Lemma 3.4 Suppose that ( )Space M  and ( )Space N  are linear spaces spanned by M  

and N , respectively. Then for    i i 
X ,   i i 

Y  in the public parameter par , 
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( )i SpaceX M  and ( )i SpaceY N . 

Proof. Given that 'M  is invertible, for 
1,1, 1,2, 1

2,1, 2,2,

( ) ( )

( ) ( )
i i

i
i i

Rot Rot

Rot Rot
 

  
 

x x
X S S

x x
, we have 

1,1,

1,2,1

2,1,

2,2,

( )

i

i

i

i

' 

 
 
  
 
  
 

x

x
k M

x

x

 and 

1,1,

1,2,

2,1,

2,2,

i

i

i

i

'

 
 
  
 
  
 

x

x
M k

x

x

 

Thus, we derive the following expression: 

1,1, 1,1,

4 1,2, 1,2,

1
2,1, 2,1,

2,2, 2,2,

j i

n j i
jj

j i

j i

k


   
   
      
     

  



m q x

m q x

m q x

m q x

. 

Namely,  

4 1,1, 1,2, 1,1, 1,2,

1
2,1, 2,2, 2,1, 2,2,

n j j i i
jj

j j i i

k


   
   
  


m q m q x x

m q m q x x
. 

Since the j -th column of ( )Rot x  is jxx , then we have 

4 1,1, 1,2, 1,1, 1,2,

1
2,1, 2,2, 2,1, 2,2,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
n j j i i

jj
j j i i

Rot Rot Rot Rot
k

Rot Rot Rot Rot

   
   
  


m q m q x x

m q m q x x
. 

Thus, 
4

1

n

i j jj
k


X M  and ( )i SpaceX M . Similarly, ( )i SpaceY N .   ■ 

Lemma 3.5 Given the public parameter par , suppose 

1 2

1,1 1,2 1
1 2

2,1 2,2

( ) ( )
( ) mod

( ) ( )i i

Rot Rot
w w

Rot Rot
 

   
 

d d
X X M S S

d d
. Then 

(1) 
1 2 1 2, 1 , , 2 , , 1 , , 2 , ,( ) modt t t t i t t i t t i t t i tw w w w d x + x ha + ha f ,  2t ; 

(2) 1,2 2,1mod mod 0 d f d f . 

Proof. By the method generated iX  and jM , we have 

1 2

1 2

1 2 1 2

1 2 1 2

1 2

4

1 2 1

1 1,1, 2 1,1, 1,1 1 1,2, 2 1,2, 1,2 1

1 2,1, 2 2,1, 2,1 1 2,2, 2 2,2, 2,2

( ) mod

( ) ( )

( ) ( )

i i

n

i i j jj

i i i i

i i i i

w w

w w k

Rot w w Rot w w

Rot w w Rot w w







  

  
     


X X M

X X M

x + x r q x + x r q
S S

x + x r q x + x r q

, 

where 
4

, , ,1

n

t s j t s jj
k


r m ,  2t ,  2s . 

By the method generated , ,t s ix ,  2t ,  2s  and 0q hq f , we have 

1 2 1 2, 1 , , 2 , , , 1 1,1, 2 1,1, 1( ) modt t t t i t t i t t i iw w w w  d x + x r q ha + ha f , 

1 21,2 1 1,2, 2 1,2, 1,2 0modi iw w   d x x r q f , 

1 22,1 1 2,1, 2 2,1, 2,1 0modi iw w  d x + x r q f . 

So, the proof is complete.                                               ■ 
Lemma 3.6 Given the public parameter par , suppose 
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1 2

1,1 1,2 1

2,1 2,2

( ) ( )
( ) mod

( ) ( )i i

Rot Rot

Rot Rot
 

  
 

d d
X X M S S

d d
. Then 

(1) 
1 2 1 2

2
, 1,1, 1,1, , , , ,( ) modt t i i t t i t t i t d x x h a a f ,  2t ; 

(2) 1,2 2,1mod mod 0 d f d f . 

Proof. By the method generated iX  and jM , we have 

1 2

1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

4

1

1,1, 1,1, 1,2, 2,1, 1,1 1,1, 1,2, 1,2, 2,2, 1,2

2,1, 1,1, 2,2, 2,1, 2,1 2,1, 1,2, 2,2, 2,2, 2,2

( ) mod

( ) ( )

( ) ( )

i i

n

i i j jj

i i i i i i i i

i i i i i i i i

k

Rot Rot

Rot Rot


 

    
       


X X M

X X M

x x x x r q x x x x r q
S

x x x x r q x x x x r q
1S

, 

where 
4

, , ,1

n

t s j t s jj
k


r m ,  2t ,  2s . 

By the method generated , ,t s ix ,  2t ,  2s  and 0q hq f , we have 

1 2 1 2 1 2

2
1,1 1,1, 1,1, 1,2, 2,1, 1,1 1,1, 1,1, 1( ) modi i i i i i   d x x x x r q h a a f , 

1 2 1 2 1 2

2
2,2 2,1, 1,2, 2,2, 2,2, 2,2 2,2, 2,2, 2( ) modi i i i i i   d x x x x r q h a a f . 

1 2 1 21,2 1,1, 1,2, 1,2, 2,2, 1,2 0modi i i i   d x x x x r q f , 

   
1 2 1 22,1 2,1, 1,1, 2,2, 2,1, 2,1 0modi i i i   d x x x x r q f . 

So, the proof is complete.                                               ■ 
Lemma 3.7 Given the public parameter par , suppose 

1 2

1,1 1,21
1 2

2,1 2,2

( ) ( )
( ) mod

( ) ( )i i

Rot Rot
w w

Rot Rot
  

   
 

u u
Y Y N T T

u u
. Then 

(1) 
1 2 1 2, 1 , , 2 , , 1 , , 2 , ,( ) modt t t t i t t i t t i t t t i t tw w w w u y + y ha g + ha g f ,  2t ; 

(2) 1,2 2,1mod mod 0 u f u f . 

Proof. The proof is identical to that of Lemma 3.5.                             ■ 
Lemma 3.8 Given the public parameter par , suppose 

1 2

1,1 1,21

2,1 2,2

( ) ( )
( ) mod

( ) ( )i i

Rot Rot

Rot Rot
  

  
 

u u
Y Y N T T

u u
. Then 

(1) 
1 2 1 2

2 2
, , , , , , , , ,( ) modt t t t i t t i t t t i t t i t u y y h g a a f ,  2t ; 

(2) 1,2 2,1mod mod 0 u f u f . 

Proof. The proof is same as that of Lemma 3.6.                                ■ 
 

Lemma 3.9 Encoding    Enc(par, , )i i
k w


U  is a level- k  encoding. 

Proof. Given that 
1

( ) modk
i ii

w



 D X M , we derive the following expressions by 

Lemma 3.5, 3.6: 
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1

1,1, 1,1 1 1,21 1

2,1 2,2, 2,2 21

1,1 1,2 1

2,1 2,2

( ) mod

( ( ) ) ( )

( ) ( ( ) )

( ) ( )

( ) ( )

k
i ii

k
i ii

k
i ii

w

Rot w Rot

Rot Rot w

Rot Rot

Rot Rot









 





 

  
 
   
 

  
 






D X M

x r f r f
S S

r f x r f

d d
S S

d d

. 

Thus, we obtain 

, , , ,1

, ,1

mod ( ( ) ) mod

( ( ) ) mod

k
t t t i t t i t t t ti

k
i t t i ti

w

w









  

 




d f x r f f

ha f
, 

1,2 2,1mod mod d f d f 0 . 

Given that 
1

( ) modk
i ii

w



 U Y N , we derive the following expressions by 

Lemma 3.7, 3.8: 

1

1,1, 1,1 1 1,211

2,1 2,2, 2,2 21

1,1 1,21

2,1 2,2

( ) mod

( ( ) ) ( )

( ) ( ( ) )

( ) ( )

( ) ( )

k
i ii

k
i ii

k
i ii

w

Rot w Rot

Rot Rot w

Rot Rot

Rot Rot















 

  
 
   
 

  
 






U Y N

y s f s f
T T

s f y s f

u u
T T

u u

, 

Thus, we obtain 

, , , ,1

, ,1

mod ( ( ) ) mod

( ( ) ) mod

k
t t t i t t i t t t ti

k k
i t t i t ti

w

w









  

  




u f y s f f

ha g f
, 

1,2 2,1mod mod u f u f 0 . 

As such, U  is a level- k  encoding of D .                                 ■ 

Lemma 3.10 Encoding 1Add(par, , , , )skU U U  is a level- k  encoding. 

Proof. By Lemma 3.5 and Lemma 3.9, the sum U  of level- k  encodings rU ,  r s  is a 

level- k  encoding.                                            ■ 

Lemma 3.11 1Mul(par,1, , , )kU U U  is a level- k  encoding. 

Proof. Given that rU ,  r k  are level-1 encodings, we obtain 

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
r r

r
r r

Rot Rot

Rot Rot
  

  
 

u u
U T T

u u
, 

where , , , , , ,t t r t t r t t t r t u d hg r f , 1,2, 1,2,r ru s f , 2,1, 2,1,r ru s f . 

As such, we derive the following expressions by Lemma 3.8: 
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1

1,1, 1,1 1 1,211

2,1 2,2, 2,2 21

1,1 1,21

2,1 2,2

mod

( ) ( )

( ) ( )

( ) ( )

( ) ( )

k

tt

k

rr

k

rr

Rot Rot

Rot Rot

Rot Rot

Rot Rot











 
 
  
 

  
 






U U N

u s f s f
T T

s f u s f

u u
T T

u u

, 

So, we get 

, , , ,1

, ,1

, ,1

mod ( ) mod

( ) mod

( )( ) mod

k

t t t t t r t t t tr

k

t t r t tr

k k
t t r t tr







 









u f u s f f

hd g f

hd g f

, 

1,2 2,1mod mod u f u f 0 . 

Thus, U  is a level- k  encoding.                                        ■ 
Lemma 3.12 For an arbitrary integer 0k  , the zero-testing algorithm isZero(par, , )D U  

correctly determines whether U  is an encoding of zero. 
Proof. Given a level- 0  encoding D  and an arbitrary level- k  encoding U , we have 

1,1 1,2 1 1

2,1 2,2

( ) ( )

( ) ( )

Rot Rot
'

Rot Rot
  

    
 

d d
D S S S D S

d d
, 

1,1 1,21 1

2,1 2,2

( ) ( )

( ) ( )

Rot Rot
'

Rot Rot
  

    
 

u u
U T T T U T

u u
, 

where 1,2 2,1mod mod 0 d f d f  and 1,2 2,1mod mod 0 u f u f . 

Hence, 2 -1' nD S D S  and 2 -1' nU T U T . 

On the basis of D M  and U N , we obtain 6' n D  and 

6' n U . As a result, 6
,t s n d  and 6

,t s n u ,  2t ,  2s . 

We first compute * *
zt q

v      = s D P U t  as follows: 

* *

,1 1

2 ,2

1,1 1,2

2,1 2,2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

zt q

ztT

zt q

T

q

v

Rot Rot
' '

Rot Rot

Rot Rot

Rot Rot

     

  
     

   

  
   

   

= s D P U t

p r
= s D U t

r p

v v
= s t

v v

, 

where 1,1 1,1 ,1 1,1 1,2 2 1,1 1,1 1 2,1 1,2 ,2 2,1 1,1 ,1 1,1 1,1zt zt ztq q
           v d p u d r u d r u d p u d p u w , 

1,2 1,1 ,1 1,2 1,2 2 1,2 1,1 1 2,2 1,2 ,2 2,2 1,2zt zt q q
          v d p u d r u d r u d p u w , 

2,1 2,1 ,1 1,1 2,2 2 1,1 2,1 1 2,1 2,2 ,2 2,1 2,1zt zt q q
          v d p u d r u d r u d p u w , 

2,2 2,1 ,1 1,2 2,2 2 1,2 2,1 1 2,2 2,2 ,2 2,2 2,2 ,2 2,2 2,2zt zt ztq q
           v d p u d r u d r u d p u d p u w . 

By 1,2 2,1mod mod 0 d f d f , 1,2 2,1mod mod 0 u f u f , and  
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1
,zt t t t q

   p h f ,  2t , we have 12 2
, , 4t s t sq

n     w w . 

(1) If U  is an encoding of zero, then , mod 0t t t u f ,  2t . That is, 

12 2
, , ,t t zt t t t q

n    d p u ,  2t . 

As such, we derive the following expression: 

1,1 1,2

2,1 2,2

1,1 1,22

2,1 2,2

2
1,1 1,2 2,1 2,2

4 12 2

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

4 5

/ 2

T

q

Rot Rot
v

Rot Rot

Rot Rot
n

Rot Rot

n

n n

q 



  
    
   

 
  

 

   

  



v v
s t

v v

v v
s t

v v

s v v v v t . 

(2) If U  is not an encoding of zero, then , mod 0t t t u f  for at least one  2t . 

That is, by Lemma 4 [GGH13], 1
, , ,t t zt t t t q

q    d p u  with high probability for at least 

one  2t . Without loss of generality, assume , mod 0t t t d f ,  2t , otherwise D  

can be considered as an encoding of zero. 
As such, we derive the following expression: 

1,1 1,2

2,1 2,2

1,1 ,1 1,1

2,2 ,2 2,2

1

1

( ) ( )

( ) ( )

( )
/ 2

( )

/ 2

T

q

ztT

zt q

'

Rot Rot
v

Rot Rot

Rot
q

Rot

q q

q



 







  
    
   

  
   
   

 



v v
s t

v v

d p u
s t

d p u
, 

where , '   are small positive constants. 

As such, isZero(par, , )D U  correctly decides whether U  is an encoding of zero. ■ 

Lemma 3.13 Suppose that D  is a level- 0  encoding and 

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
r r

r
r r

Rot Rot

Rot Rot
  

  
 

u u
U T T

u u
,  2r  two level- k  encodings. If rU ,  2r  

encode the same level- 0  elements, namely, , ,1 , ,2 ( ) modk
t t t t t t t u u a g f ,  2t , then 

we derive the following expression: 

1 2Ext(par, , ) Ext(par, , )D U D U . 

Proof. Given that , ,1 , ,2 ( ) modk
t t t t t t t u u a g f ,  2t , we obtain 

, , ,( )k
t t r t t t r t u a g r f ,  2r . As such, we derive the following expressions using similar 

notations of Lemma 3.12: 
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* *
1

1,1, 1,2,

2,1, 2,2,

1,1 ,1 1,1, 1,1, 1,2,

2,1, 2,2 ,2 2,2, 2,2,

( ) ( )

( ) ( )

( ) ( )

( ) ( )

r zt q

r rT

r r q

zt r r rT

r zt r r q

r q

v

Rot Rot

Rot Rot

Rot Rot

Rot Rot

v w

      

  
    
   

  
      

 

s D P U t

v v
s t

v v

d p u w w
s t

w d p u w

, 

where 1,1 ,1 1 1

2,2 ,2 2 2

( ( ) )

( ( ) )

k
ztT

k
zt q

Rot
v

Rot

  
       

d p a g
s t

d p a g
, 

1,1 ,1 1, 1 1,1, 1,2,

2,1, 2,2 ,2 2, 2 2,2,

( ) ( )

( ) ( )
zt r r rT

r
r zt r r q

Rot Rot
w

Rot Rot

  
      

d p r f w w
s t

w d p r f w
,  2r . 

According to our parameters, 12 2
, , ,t t zt t t r t q

n    d p r f . On the basis of Lemma 3.12, 

we obtain   / 2r q
w q  ,  2r . Thus, the      most significant bits of 1v , 2v , 

which are the same with high probability, are decided on the basis of the first term v .    ■ 

3.3 Security 

The security of our constructions depends on new hardness assumptions and cannot be 
reduced to classic hard problems, such as lattice hard problem or LWE. 

We adaptively extend the definition of ext-GCDH/ext-GDDH in [LSS14] to our 
construction. Consider the following process: 

(1) (par) InstGen(1 ) . 

(2) Select an arbitrary positive integer k . 
(3) For 0t   to k : 

Sample , , 't iw D   ,  i   

Generate level-1 encoding of ,1
( ) modt t i ii

w



 D X M : 

,1
( ) modt t i ii

w



 U Y N . 

(4) Sample 0, , 'ir D   ,  i   and generate 0 0,1
( ) modi ii

r



 R X M . 

(5) Compute 
1

mod
k

tt
U U N . 

(6) Set 0Ext(par, , )C Dv v  D U . 

(7) Set 0Ext(par, , )Rv  R U . 

Definition 3.14 (ideal-ext-GCDH/ideal-ext-GDDH). The extraction k -graded computational 

Diffie-Hellman problem (ideal-ext-GCDH) is on input  0par, , , kU U  to output an 

extraction encoding Cv  . The extraction k -graded decisional Diffie-Hellman problem 

(ideal-ext-GDDH) distinguishes between Dv  and Rv , that is, between the distributions 

 0par, , , ,GDDH k DD v U U  and  0par, , , ,RAND k RD v U U . 

In this study, we assume that the ideal-ext-GCDH/ideal-ext-GDDH is hard. 
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3.4 Cryptanalysis 

 

3.4.1 Easily Computable Quantities 

Given jN , jM ,  j N  in the public parameters, we derive the following expressions: 

1,1, 1,2, 1

2,1, 2,2,

( ) ( )( )

( ) ( )( )
j j

j
j j

Rot RotRot

Rot RotRot
  

   
  

m mq
M S S

m mq
, 

1,1, 1,2,1

2,1, 2,2,

( ) ( )( )

( ) ( )( )
j j

j
j j

Rot RotRot

Rot RotRot
   

   
  

n nq
N T T

n nq
. 

By unimodular matrices S , T , we compute their determinants 

  21,1, 1,2,

2,1, 2,2,

( ) ( )
det( ) det det ( )

( ) ( )
j j

j
j j

Rot Rot
Rot

Rot Rot

 
  

 

m m
M q

m m
, 

     21,1, 1,2,

2,1, 2,2,

( ) ( )
det( ) det det ( )

( ) ( )
j j

j
j j

Rot Rot
Rot

Rot Rot

 
  

 

n n
N q

n n
. 

As a result, the determinants  det ( )Rot q  can be computed by using the GCD 

algorithm. 
Given iY , iX  in the public parameters, we can generate their determinants 

  21,1, 1 1,1, 1 1,2,

2,1, 2,2, 2 2,2, 2

( ) ( )
det( ) det det ( )

( ) ( )
i i i

i
i i i

Rot Rot
Rot

Rot Rot

 
   

a g d f d f
Y h

d f a g d f
, 

  21,1, 1,1, 1 1,2,

2,1, 2,2, 2,2, 2

( ) ( )
det( ) det det ( )

( ) ( )
i i i

i
i i i

Rot Rot
Rot

Rot Rot

 
   

a e f e f
X h

e f a e f
. 

     Similarly, the determinants  det ( )Rot h  can be computed by using the GCD 

algorithm. 

Given that jN , jM ,  j N  are also encodings of zero, the following quantities are 

not reduced modulo q : 
* *

j zt j q
    s P N t , * *

j j zt q
    s M P t ,

1 2 1 2

* *
,j j j zt j q

    s M P N t . 

It is easy to verify that 
1 2 1 2 2 1

* *
, ( )i i i zt i i zt i q

    s X P Y X P Y t ,  1 2,i i   are not 

reduced modulo q . 

For these quantities generated from encodings of zero, building a system of equations is 

possible. In fact, if we define a function , ( ) ( )T
i if Rot  s t w s w t , then integers j , j , 

1 2,j j , and 
1 2,i i  are values of ,fs t . Given only several values of ,fs t , we cannot solve 

,s t  when unknown iw . Currently, we do not find efficient attack for the function ,fs t . 

In addition, we notice the decisional linear (DLIN) and the subgroup membership 

(SubM) problems are easy in our construction since 1( )t tRot M S m q S  and 
1 ( )t tRotN T n q T  are encodings of zero. 
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3.4.2 Attack of Pellet-Mary and Stehlé 

The key point of Pellet-Mary and Stehlé attack [PS15] is to find inverse element of an 
encoding over modulo encoding of zero. Given the public parameters par , one requires to 

find 1( ) modi j
Y N  for  i  ,  4j n . It is easy to see that when = 1h  in our 

scheme, one can compute 1( ) modi j
Y N .  Without loss of generality, assume that 

det( ),det( )i jY N  are coprime. One first computes the adjacent matrices * *,i jY N  of 

,i jY N  such that * det( )i i i Y Y Y I , * det( )j j j N N N I , where I  is identity matrix. 

Then, one finds two integer ,a b  using Euclid algorithm such that 

det( ) det( )i ja b Y I N I I , namely * *( ) ( )i i j ja b   Y Y N N I . Finally, one inputs 

inverse element 1 *( ) ( ) modi ia Y Y N , where modulo N  is to reduce the size of *
iaY . 

However, when 1h , we currently do not know how to compute 1( ) modi
Y N . If 

one uses the above method, then one can only obtains 

  2* *( ) ( ) det ( )i i t ta b Rot   Y Y N N h I . Thus, the Pellet-Mary and Stehlé attack 

[PS15] does not work in our construction. 

3.4.3 Lattice Reduction Attack 

Given that 2 2, n n
j j

N M  ,  4j n , one can attempt to use the lattice reduction 

algorithm to determine the secret elements in our construction. By using jN  and jM , one 

generates the following lattices: 

1

2

1 1 2( , )
j

j

L j j
 

   
 

M

M
, 

1

2

2 1 2( , )
j

j

L j j
 

   
 

N

N
. 

By applying the lattice reduction algorithm [LLL82], one obtains 

1,1, 1,2, 1
1

2,1, 2,2,

( ) ( )

( ) ( )
j j

j j

Rot Rot

Rot Rot
 

 
 

m q m q
E S

m q m q
 and 

1,1, 1,2,

2
2,1, 2,2,

( ) ( )

( ) ( )
j j

j j

Rot Rot

Rot Rot

 
 
 

n q n q
E T

n q n q
. 

However, for large enough n , 1E  and 2E  are not sure identity matrices according to 

current lattice reduction algorithm. If 1 2 E E I , one can solve T  and S . When T  

and S  are known, our construction can be broken. Thus, the dimension n  of ring in our 
construction requires sufficiently large to prevent lattice reduction attack. 

4 Variants 

4.1 Asymmetric Variant 

Asymmetric ideal multilinear maps with different groups are required in some applications. 
Similar to [GGH13], we briefly describe the asymmetric variant as follows: 

In this variant, we use different ideal generators  , ,
,nt l D l


 g


 to represent 

asymmetric maps. Similarly, one can generate the parameters of the inner layer , , ,t s i lx , , , ,t s i ly , 

for  2t ,  2s ,  i  ,  l   and the parameters of the outer layer 
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1,1, , 1,2, , 1
,

2,1, , 2,2, ,

( ) ( )

( ) ( )
i l i l

i l
i l i l

Rot Rot

Rot Rot
 

  
 

x x
X S S

x x
 and 

1,1, , 1,2, ,1
,

2,1, , 2,2, ,

( ) ( )

( ) ( )
i l i l

i l
i l i l

Rot Rot

Rot Rot
  

  
 

y y
Y T T

y y
. 

Thus, the public parameters become       * *
1 , , ,

par , , , , , , ,i l i l zti l
q

  
 M N X Y P s t . 

4.2 Commutative Variant 

In the commutative variant, we switch from the integer ring to the polynomial ring to decrease 
the size of the public parameters. On one hand, the dimension n  in our construction must be 
sufficiently large to guarantee security. On the other hand, the number of level-1 encodings 

in the public parameter 2 ( )n O    should be able to prevent algebraic equation attack. 

Thus, the size of the public parameters is too large to be practical. As such, we use 
( ) [ ]/ 1y mR y y     and ( ) ( ) ( )/y y y

qR R qR  instead of   and q . We set 

( )m O   and (1)n O . Now, the variant works in polynomial ring 

[ , ]/ 1 1m nR y x y x      . In this case, the size of the public parameters is relative 

practical. 
This commutative variant is the same as our construction in Section 3, except all 

operations are conducted over the ring ( )yR  and ( )y
qR  instead of   and q . It is not 

difficult to verify that this variant construction is correct. 

4.3 Variant without Noise 

According to analysis in 3.4.2, we can further construct new variant. Let 

1,1 1,21

2,1 2,2

( ) ( )

( ) ( )

Rot Rot

Rot Rot
  

  
 

y y
Y T T

y y
, 

1,1, 1,2,1

2,1, 2,2,

( ) ( )

( ) ( )
j j

j
j j

Rot Rot

Rot Rot
  

  
 

n n
N T T

n n
,  4j n  

such that for  2t ,  2s , , ,t s t sy ha , , , , ,t s j t s jn hb  with , , , ,2
, , nt s t s j D h a b


. 

Assume that the public parameters     2 4
par , j j n

 Y N . Given a random integer a , one 

generates an encoding ( ) modaU Y N . The security of the variant depends on new 

hardness assumption. That is, we suppose that computing 1 modY N  is hard. Here, we 

assume that 0b , jb  satisfied to 
4

0 1

n n n
j jj

b b 


 Y N 0  are large enough. 

Given 1k   encodings ( ) modj jaU Y N , it is easy to verify that 

( ) modi i jj i
a


 C U N ,  1i k   are same. However, only given 

    2 1
par , j j k 

U , one currently cannot obtain iC . 

Possible attacks. (1) Since 1h , there currently is efficient algorithm to solve 
1 modY N  over the integers. (2) Given an encoding ( ) modaU Y N , one can compute 

41 1

1
( )

n

j jj
a r 


   U Y I N Y  over  . However, one cannot remove the noise term 

and obtain the secret number a . 

5 Applications 

Using our construction of ideal multilinear maps, we describe two applications: the one-round 
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multipartite Diffie–Hellman key exchange protocol and witness encryption. Their security 
relies on the hardness assumption of the ideal-ext-GDDH. 

5.1 Multipartite Key Exchange Protocol 

(1 )Setup . The output (par) InstGen(1 )  is used as the public parameter. 

(par, )jPublish . We let m  be the number of participants. For  j m , each party j  

samples random elements , , 'j iw D   ,  i  , which are used as secret keys. Thereafter, 

level-1 encoding     ,Enc par,1,j j i i
w


U  is computed and published as a public 

key. 

     ,(par, , , )j i ji j i
j w

 
UKeyGen . Each party j  computes a level- 1m   encoding 

j rr j
C U  and a level- 0  encoding ,1

( ) modj j i ii
w




 D X M , and extracts the 

common secret key Ext(par, , )j jsk  D C . 

Remark 5.1 Given that each party merely requires the level-1 encoding be generated in the 

MPKE protocol, the parameters *s , iX , ztP  in par  can be combined into a vector 

,zt i i zt q
    

*p s X P . As such, the public parameters can be 

    *2 ,par , , , ,zt i i i
q


 N p Y t . 

Theorem 5.2 Suppose that the ideal-ext-GDDH is hard. Then our protocol is a one-round 
multipartite Diffie–Hellman key exchange protocol. 
Proof. The proof is similar to the proof presented in Theorem 2 in [GGH13].            ■ 

5.2 Witness Encryption 

5.2.1 Construction 

Let integer K  be a multiple of 3. An instance of 3-exact cover problem consists of a number 

K  and a collection Set  of subsets  1 2, ,...,S S S K  . The problem is to find a 3-exact 

cover of  K .  For an instance of witness encryption, the public key is a collection Set  

and the public parameters par  in our ideal construction, the secret key is a hidden 3-exact 

cover of  K . 

(1 , par, )MEncrypt : 

(1) For each  k K , generate a level-1 encoding ,1
modk k i ii

d



U Y N , where 

,k Z
D  

d . 

(2) Generate an encryption key Ext(par, , )sk  I U , where 
1

( ) mod
K

kk
 U U N , 

and encrypt a message M  into ciphertext C , where I  is the 2 2n n  identity matrix. 

(3) For each subset  1 2 3, ,iS i i i  of Set , generate a level- 3  encoding 

1 2 3
( ) mod

iS i i iU U U U N . 

(4) Output the ciphertext C  and all level- 3  encodings  ,
iS iE S Set U  
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corresponding to Set . 
( , , )C E WDecrypt : 

(1) Given C , E  and a witness set W , compute ( ) mod
ii

SS W
 U U N . 

(2) Generate Ext(par, , )sk  I U , and decrypt C  to get the plaintext M . 

 
Correctness. The correctness of witness encryption directly follows that of our ideal 
construction. 
Security. Similar to [GGSW13], the security of our construction depends on the assumption 
of the Decision Graded Encoding No-Exact-Cover. 
Theorem 5.3 Suppose that the Decision Graded Encoding No-Exact-Cover is hard. Then our 
construction is a witness encryption scheme. 
Proof. The proof is identical to one presented in Theorem 5.2 in [GGSW13].           ■ 

5.2.2 The Hu-Jia Attacks 

(1) The Hu-Jia attack in [HJ15b] does not work in our construction. This is because one 

cannot compute the inverse 1( ) mod
iS

U N  of 
1 2 3

( ) mod
iS i i iU U U U N . Given 

iSU  

and N  , one cannot find 1( ) mod
iS

U N  by analysis in 3.4.2. 

(2) The Hu-Jia attack in [HJ15a] does not apply to our construction. To attack the 
GGH-based WE [GGH13], Hu and Jia [HJ15a] first generate a combined 3-exact cover EC  
and compute the collection of positive factors CPF  and  the collection of negative factors 

CNF  of EC  (see [HJ15a]). Then, they compute ( )' pf
PPF pf CPF

v v  and 

( )' nf
PNF nf CNF

v v , where ( )' pfv , ( )' nfv  are equivalent secrets. Finally, they solve 

( )

1

K k
PTS k

v v  by using equation ( )PPF PTS PNF   v v v g  and a basis of g . 

Now, we adapt their notation to our construction to obtain the following equation 

( ) ( )1
( ) mod ( ) mod ( ) mod

K

pf k nfpf CPF k nf CNF  
   U N U N U N , 

Given ( )( ) modPPF pfpf CPF
 U U N  and ( )( ) modPNF nfnf CNF

 U U N , 

find 
1

( ) mod
K

PTS kk
 U U N . Similar as the above (1), one cannot solve the inverse 

1( ) modPNF
U N  of PNFU .  

Remark 5.4 We select an element  K  such that   ( ) ( )max ,S S K    , 

where  ( ) | ( ) ( )i i iS S S S Set    . For ( )
iS S  , we modify 

1 2 3
( ) mod

iS i i iU U U U N  into *

i iS zt S q
     u s I P U . In this case, we do not increase 

the size of q  since the level- 0  encoding I  (identity matrix) compensates an increase 

multiplied by 
iSU . When decrypting, we compute the secret key as follows: 

( ) ( )

*Extract (msbs ( ( mod ) ))
ii i i i

s SS W S S S W S S q
sk      

    u U N t
 

. 

Using this countermeasure, we merely increase the difficulty that adversary attacks our 

witness encryption using a combined 3-exact cover. Since any subset in ( )S   cannot be used 
in any combined subset. 
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