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Abstract. Multivariate Quadratic polynomial (MQ) problem serve as the basis of security
for potentially post-quantum cryptosystems. The hardness of solving MQ problem depends
on a number of parameters, most importantly the number of variables and the degree of
the polynomials, as well as the number of equations, the size of the base field etc. We
investigate the relation among these parameters and the hardness of solving MQ problem,
in order to construct hard instances of MQ problem. These instances are used to create
a challenge, which may be helpful in determining appropriate parameters for multivariate
public key cryptosystems, and stimulate further the research in solving MQ problem.

Keywords: Post-quantum cryptography, Multivariate public-key cryptosystems, Gröbner
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1 Introduction

Multivariate public-key cryptosystems [13, 32] (MPKC for short) are candidates for post-quantum
cryptography. MPKC are schemes that use multivariate polynomial maps as public keys. The
security of MPKC is thus based on the one-wayness of the multivariate polynomial maps. In
the same vein, QUAD [3] is a stream cipher (symmetric key cryptography) whose security is
guaranteed by the one-wayness of the multivariate polynomial maps.

The one-wayness of multivariate polynomial maps resides in the difficulty to find solutions of
a system of multivariate polynomial equations (MP problem). In particular, if the multivariate
polynomials involved in a MP problem consist only of quadratic polynomials, the problem is
called MQ problem:
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⋆ This result was presented at the NIST Workshop on Cybersecurity in a Post-Quantum World held in
Washington, D.C. on April 2-3, 2015.
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where m is the number of equations, n the number of variables, and a
(1)
ij , b

(1)
i , c(1), . . . are all

elements in a finite field F .

Since many schemes in MPKCmake use only of quadratic polynomials, the analysis for solving
MQ problems is important. In this paper, we present a sequence of MQ problems of different
level of difficulty, which we propose as a world wide challenge. The construction of these MQ
problems is based both on theoretical and on practical considerations.

MPKC can be used both in encryption schemes and in signature schemes. The original idea of
MPKC was presented by Matsumoto and Imai [25], and their scheme is commonly referred to as
the MI scheme. After MI scheme was proposed, several encryption systems were proposed such
as HFE [27] and ℓ-IC [16]. Unfortunately, most of them including MI, HFE and ℓ-IC were broken
after several security analyses [26, 23, 21]. Nonetheless, recently, two new encryption schemes
have been proposed. First, the “simple matrix” scheme (ABC scheme) [31] which was presented
at PQCrypto 2013 is an encryption scheme using matrix operations whose components consist
of elements in a finite field of small size. An enhanced extension of this scheme was proposed
at PQCrypto 2014 [15]. Second, the ZHFE scheme [29], also proposed at PQCrypto 2014, is an
enhancement of the HFE scheme.

On the other hand, UOV [22] is a signature scheme using polynomials with a distinction on the
variables into two kinds: oil variables and vinegar variables. Rainbow [14] is the “multilayered
version” scheme of UOV. The framework of Rainbow, using (commutative) polynomial rings,
has been extended to non-commutative rings. The security of this scheme was analyzed in [34].
The structure of the associated MQ problems for encryption schemes and signature schemes
are substantially different. For encryption schemes, the associated MQ problem verifies m ≥ n
(overdetermined), while for signature schemes, the associated MQ problem has m ≤ n (underde-
termined). Therefore, we must prepare difficult problems of two kinds e.g. when m ≥ n and when
m ≤ n. In addition, we distinguish finite fields F of characteristic 2 and of odd characteristic,
regarding that the approach to solve the MQ problems is quite different.

On the other hand, the specificity of MQ problem over GF (2) has attracted the attention
of several researchers in cryptography. Concerning signatures, in the extended version of [27],
Patarin introduced two HFE challenges (coming with a prize of US $ 500 for attacking any
of them). HFE challenges include MQ problems over GF (2) saw many researchers trying to
solve the problems [12]. Moreover, the solving technique of MQ problem is also applied to other
cryptography. The technique is used to the security analysis of the block cipher [11]. Therefore,
our instances of MQ problem include those over GF (2).

When creating challenge, one of the most important matter is to guarantee the fairness of
challenging problem. We mean here that the problem is evenly difficult for anybody, including
the creator himself. ECC challenge [17] and Lattice challenge [24] have been built in this way.
Indeed, instances of elliptic curve discrete logarithm problems and short vector problems can be
created without knowing the solution. However, this is not the case for the RSA challenge [30].
Generating a composite number without knowing its factors is indeed difficult. Therefore, RSA
challenge may become an unfair contest. It is also difficult to create MQ problem without knowing
a solution in advance. However, we want to create MQ problem whose fairness is guaranteed.
In order to achieve this, we considered two strategies. One is the use of systems of equations
with completely random coefficients. Generally, these systems may not have solutions. However,
the underdetermined systems have at least one solution with high probability. Another is a
construction from a random solution. For the overdetermined systems, we use this method.

Two fundamental tools for solving MP problem are Gröbner bases and XL. It is known that
the “degree of regularity” which is an invariant of a MQ problem is deeply related to the cost
for computing a Gröbner basis corresponding to the MQ problem [2]. To determine appropriate
parameters for MPKC’s schemes, it is necessary to assess the practical difficulty of this problem as
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precisely as possible. We have experimented solving several MQ problems with small parameters,
and by combining the theoretical complexity bounds involving the degree of regularity, we have
extrapolated the results of these experiments to create hard instances of MQ problems.

2 Fundamental Structure of MPKC

In both cases of encryption and of signature under MPKC, a multivariate quadratic polynomial
map whose inverse map can be computed easily is required. Such a polynomial map is called
a central map. Given a central map G : Kn → Km, a multivariate quadratic polynomial map
F : Kn → Km of the form F = L ◦ G ◦ R can be constructed by where L and R are affine
transformations on Km and Kn, respectively. For a person who does not know the central map
G, nor the two affine transformations L,R, the map F must look like a multivariate quadratic
polynomial map chosen randomly. If so, F plays the role of a trapdoor one-way function, and
thus would be the public key. The private key would consist of the central map G and of the affine
transformations L and R. Hereafter in this section, we review in more details MPKC schemes,
with the distinction encryption/signature.

2.1 Encryption Case

From the feature of an encryption scheme, G and F both must be (almost) injective. This fact
imposes that m ≥ n. For example ABC scheme and ZHFE scheme both use parameters such
that m = 2n. Encryption and decryption are described as follows:
Encryption A plain text M is selected from Kn. An encryptor computes C = F (M) ∈ Km.
This is the associated cipher text.
Decryption The decryptor computes E1 = L−1(C), E2 = G−1(E1), E = R−1(E2) in this
order. Then E coincides with M .

2.2 Signature Case

From the feature of a signature scheme, G and F both must be surjective. This fact imposes
that m ≤ n. UOV and Rainbow satisfy this property. UOV often uses parameters such that
n = 2m, justified by security reasons. For Rainbow, the recommended parameters are estimated
in [28] and n ≈ 1.5m is considered to be suitable for Rainbow. In a signature scheme, signature
generation and verification are performed as follows:
Signature generation A message M is selected from Km. The signer computes S1 = L−1(M),
S2 = G−1(S1), S = R−1(S2) in this order. Then S is the associated signature.
Verification A verifier computes F (S) ∈ Km, and checks if M = F (S), in which case The
signature is accepted.

3 General Attack against MQ Problem

Let Fq denote the finite field of order q and Fq[x1, . . . , xn] the polynomial ring over Fq with
n variables. For any f = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ Fq[x1, . . . , xn]

m, MP problem
indicates the following computational hard problem:

Question: find a common zero x0 ∈ Fn
q of the polynomials f1, . . . , fm.

If the degree of all f1, . . . , fm are equal to 2, the corresponding MP problem is called MQ
problem. A fundamental tool to solve MQ problem are the Gröbner bases. The historical method
for computing Gröbner bases was introduced by Buchberger [4, 5]. Faugère made major improve-
ments upon Buchberger’s algorithm with the introduction of F4 and F5 [18, 19], which are often
as to today considered the best algorithms for Gröbner bases computation.
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3.1 Complexity of F5 Algorithm

Definition 1. Let (h1, . . . , hm) ∈ Fq[x1, . . . , xn]
m be homogeneous polynomials. The degree of

regularity of a homogeneous ideal I = ⟨h1, . . . , hm⟩ is defined by

dreg = min

{
d ≥ 0

∣∣∣∣dim Fq ({f ∈ I, deg(f) = d}) =
(
n+ d− 1

d

)}
.

For non-homogeneous polynomials (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m, the degree of regularity is

defined by that of the ideal ⟨fh
1 , . . . , f

h
m⟩, where fh

i is the homogeneous part of fi of highest degree.
Note that in this last case, it is not an invariant of the ideal, but is attached to the polynomial
system.

For a MQ problem with zero dimensional solution variety, the complexity of F5 algorithm is
given by the following.

Proposition 1. [2] The complexity of computing a Gröbner basis of a zero-dimensional system
of m equations in n variables with F5 is:

O
((

m ·
(
n+ dreg
dreg

))ω)
where dreg is the degree of regularity of the system and 2 ≤ ω ≤ 3 is the linear algebra constant.

Recall that random underdetermined systems are regular. The concept of semi-regularity was
introduced to formalize “random systems”, in the case of overdetermined systems. (though this
fact is not proven in general, the Fröberg’s conjecture has been widely observed in practice).

Definition 2. Let (h1, . . . , hm) ∈ Fq[x1, . . . , xn]
m be homogeneous polynomials of respective de-

gree d1, . . . , dm. This sequence is semi-regular if

– ⟨h1, . . . , hm⟩ ̸= Fq[x1, . . . , xn],
– for all 1 ≤ i ≤ m and g ∈ Fq[x1, . . . , xn],

deg(g · hi) < dreg and g · hi ∈ ⟨h1, . . . , hi−1⟩ ⇒ g ∈ ⟨h1, . . . , hi−1⟩.

For a general system (f1, . . . , fm) ∈ Fq[x1, . . . , xn]
m, this sequence is semi-regular if the sequence

(fh
1 , . . . , f

h
m) is, where fh

i is the homogeneous part of fi of highest degree.

The degree of regularity of semi-regular sequences can be computed explicitly.

Proposition 2. The degree of regularity of a semi-regular sequence h1, . . . , hm of respective de-
gree d1, . . . , dm is given by the first non-positive coefficient of

∑
k≥0

ckz
k =

∏m
i=1(1− zdi)

(1− z)n
.

3.2 Complexity of Hybrid Approach

Bettale et al. [2] proposed an attack against general MP problems defined over finite field of
medium size from 22 to 224 elements, which was called hybrid approach. This technique mixes
exhaustive search and Gröbner bases computation. The raw idea was previously introduced in
the context of XL solvers in [10].
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Concerning systems of dimension zero defined over a finite field of medium size, the hybrid
approach consists in choosing k variables, evaluate them at randomly chosen values, and solve
this system in n − k variables. The choice of k is delicate, but when making some reasonable
assumptions (see Hypothesis 1 below), the authors of [2] succeed to provide a theoretical opti-
mal choice of k depending of the data of the system. This outcome allows them to apply this
hybrid approach to forge signatures based on a MPKC scheme (namely TMRS and UOV signa-
tures, see [10, Section 4.1 & 4.2]) by solving underdetermined systems, where traditional solving
approaches failed.

Despite we have not put into practice this approach in the experiments, we have followed the
same strategy to solve underdetermined systems (Type IV,V,VI): evaluation of m− n variables
to reduce to a zero-dimensional systems. To solve the zero-dimensional system, we have used a
standard approach rather than the hybrid, which we plan to do in the future.

Proposition 3. For f = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ Fq[x1, . . . , xn]
m, let dreg(k) be

the maximum degree of regularity of all the systems:{
{f1(x1, . . . , xn−k, v1, . . . , vk), . . . , fm(x1, . . . , xn−k, v1, . . . , vk)} | (v1, . . . , vk) ∈ Fk

q

}
If the system is zero-dimensional, the complexity of the hybrid approach is bounded from above
by

O
(
min0≤k≤n

{
qk ·

(
mω ·

(
n− k + dreg(k)− 1

dreg(k)

)ω

+ (n− k)d(n−k)ω

)})
where 2 ≤ ω ≤ 3.

The optimal choice of k is usually small from 1 to 4 or 5 for common MQ problems. If the base
field is GF (2), it is better to add the field equations to the system than to resort to the hybrid
approach.

In order to grasp the asymptotic behavior of the hybrid approach, we assume a regularity
condition set in [2].

Hypothesis 1 Let {f1, . . . , fm} ⊂ Fq[x1, . . . , xn] be polynomials of respective degrees d1 ≥
· · · ≥ dm. Let βmin, 0 < βmin < 1 be a value that will be specified later. Then, for any k,
0 ≤ k ≤ ⌈βminn⌉, and for each vector (v1, . . . , vm) ∈ Fk

q , the system,{
{f1(x1, . . . , xn−k, v1, . . . , vk), . . . , fm(x1, . . . , xn−k, v1, . . . , vk)} | (v1, . . . , vk) ∈ Fk

q

}
is semi-regular for n large enough.

4 Construction of the Challenge

We explain how to create MQ problems. The parameters that need to be set for a MQ problem
are the size of base field q, the number of variables n and the number of equations m. As for base
fields, we treat GF (2) as a special case. Otherwise we consider GF (31) and GF (28) because the
situation changes according to whether the characteristic of the base field is two or not. These
two fields are often used as base fields in many papers [7, 28].

For most encryption schemes, overdetermined system (i.e. m ≥ n) are used because the
multivariate polynomial function appearing in the MQ problem underlying the schemes must
be injective. For example, the ABC scheme, ZHFE scheme and the QUAD cipher have all been
set to m = 2n. As for signature schemes, underdetermined systems, i.e. which verify m ≤ n,
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are used because the associated multivariate polynomial functions have to be surjective. Since
Rainbow is a signature scheme which enhances UOV, we treat Rainbow as a representative of
signature scheme in MPKC. In the case of Rainbow with 2 layers, number of polynomials m and
of variables n are often set to n ≈ 1.5m. Therefore, in our challenge, we set problems of six types,
described in Table 1

Table 1. Types of MQ problem

Type (m,n) base field target

I m = 2n GF (2) encryption

II m = 2n GF (28) encryption

III m = 2n GF (31) encryption

IV n ≈ 1.5m GF (2) signature

V n ≈ 1.5m GF (28) signature

VI n ≈ 1.5m GF (31) signature

We consider two construction methods of MQ problem. One is for encryption and another is
for signature. For encryption, m ≥ n, however, for every system m > n, the probability is about

1
qm−n to have a solution, and if we set m = n, it is the case which had the same time complexity
with the signature case. Therefore, we construct the system corresponding to encryption scheme
with a random solution by adjusting the constant coefficients. For the signature case, we construct
the system with all random coefficients.

Algorithm 1: Construction of MQ problem for type I, II, III

Step 1 Fix parameters n and m = 2n with base field over F = GF (2), GF (28) or GF (31).
Step 2 Select randomly a vector x0 in Fn.

Step 3 Select randomly a
(k)
ij , b

(k)
i for all i, j, k.

Step 4 Compute c(k) such that the associated system of equations has a solution x0.

Algorithm 2: Construction of MQ problem for type IV, V, VI

Step 1 Fix parameters m and n = 1.5m with base field over F = GF (2), GF (28) or GF (31).

Step 2 Select randomly a
(k)
ij , b

(k)
i , c(k) for all i, j, k.

5 Experiments

In this section we will present our experimental results of Type I, Type II, Type III, Type IV,
Type V and Type VI systems. In order to get a general analysis to the system, we didn’t apply
any specific technique in solving system and used plain attack only. The experiments were all
conducted on a CPU with four 6-cores Intel® Xeon® CPU E5-4617, running at 2.9GHz with an
Intel® smart cache of 15MB. The Operating System was Linux Mint 15 Olivia with kernel version
GNU/Linux 3.8.0-19-generic x86 64 and 1TB memory. The programming platform was Magma
V2.19-9 in its 64-bit version. We provide average results on 10 experiments. The time unit is
the second, and the memory unit is a MB. All algorithms were implemented in Magma, and we
used the Variety function of Magma to compute the solutions with Gröbner bases, which has no
significant time difference from GroebnerBasis function. All the parameters for the experiments
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Table 2. Experimental results of Type I, Type II and Type III

n m
Type I Type II Type III

Degreg time memory Degreg time memory Degreg time memory

7 14 3 0.001 32.09 3 0.442 32.09 3 0.414 32.09
8 16 3 0.001 32.09 3 0.25 32.09 3 0.167 32.09
9 18 4 0.003 32.09 4 0.207 32.09 4 0.23 32.09
10 20 4 0.008 32.09 4 0.295 32.09 4 0.37 32.09
11 22 4 0.013 32.09 4 0.432 32.09 4 0.314 32.09
12 24 4 0.021 32.09 4 0.24 32.09 4 0.261 32.09
13 26 4 0.041 32.09 4 0.47 32.09 4 0.582 32.09
14 28 4 0.08625 32.09 4 0.559 32.09 4 0.573 32.09
15 30 4 0.163 32.09 4 0.864 32.09 4 1.319 32.09
16 32 5 0.393 64.12 5 0.864 32.09 5 1.319 32.09
17 34 5 0.821 64.12 5 7.427 128.19 5 21.486 96.16
18 36 5 1.565 96.16 5 16.627 192.25 5 53.836 128.19
19 38 5 3.426 128.19 5 36.796 274.66 5 122.647 192.25
20 40 5 6.715 192.25 5 74.733 440.25 5 254.797 320.38
21 42 5 14.101 259.513 5 161.195 649.78 5 543.629 512.56
22 44 5 34.463 394.049 5 507.531 979.34 5 1717.623 809.78
23 46 5 58.006 704.75 5 967.727 1656.528 5 3542.895 1240.798
24 48 6 268.445 4397.994 6 9268.363 10681.12
25 50 6 658.157 7724.88
26 52 6 1437.111 13043.162
27 54 6 2882.882 27617.278
28 56 6 6084.231 34366.371
29 58 6 12521.942 48814.859

Table 3. Experimental results of Type IV, Type V and Type VI

n m
Type IV Type V Type VI

Degreg time memory Degreg time memory Degreg time memory

11 7 8 1.261 32.09 9 2.597 32.09 9 1.981 32.09
12 8 9.3 10.122 32.09 10 30.318 32.09 9.9 18.502 32.09
14 9 10.1 127.182 32.09 11 337.327 64.12 11 377.944 64.12
15 10 11.3 1449.08 94.84 12 3446.797 136.69 12 5075.393 136.69
17 11 12.5 28786.837 292.751
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Fig. 1. Time comparison for Type I, II, and III

Fig. 2. Time comparison for Type IV, V and VI
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applied here were only toy example, and the total time of the experiments would not exceed one
week.

For every experiment, we generated a random multivariate quadratic system with coefficients
in random uniform distribution with specific format. The input format is described in the Ap-
pendix. Then we read the input file and solve the system using Variety() function of Magma.

Table 2 shows the experimental results of Type I, Type II and Type III. Degreg represents the
degree of regularity, which indicates the largest degree appeared during the process of computing
a Gröbner basis. In this case, we simulate an encryption scheme without knowing any structure
of it. Since in this case the system is overdetermined, we adjust the constant coefficients to make
sure that the system has a solution. Actually for an overdetermined system, even if m = n+ 1,
the probability to have a solution is quite small. Let the number of variables to be n, the
number of equations to be m, the size of the coefficient field to be q, then the probability of an
overdetermined system to have a solution is roughly 1

qm−n . For systems of Type I, defined over
the binary field, we add the field equations to the system.

Table 3 shows the experimental results of Type IV, Type V and Type VI. In this case, we
simulate an signature scheme without knowing any structure of it. Note that in this case, since
n = 1.5m, there are more free variables in the MQ system than the equations and thus the
system is underdetermined. Generally when we solve such system, we assign random values to
the free variables and solve the remained determined system. We use this technique here. Hence,
the system may have the same time complexity and degree of regularity with that of the system
n = m. For systems of Type IV, defined over the binary field, we add the field equations to the
system.

Fig. 1 and Fig. 2 show the time comparison for the encryption case and the signature case
respectively. Note that the x-axis indicates the number of variables n for systems of type I, II
and III, whereas it indicates the number of equations m for systems of type IV, V and VI.

6 The Challenge

In Section 4, we explained the method for constructing the MQ challenge, which was used in
Section 5 to construct toy examples of MQ problems. The timings obtained on these toy examples
serve an experimental basis to determine parameters yielding harder instances of MQ systems,
and which would require at least a month to be solved. More precisely, at least one month when
equipped with a similar computational environment described in the beginning of Section 5, and
using “plain” techniques (but possibly adapted to the different six Types of systems). This is
because the systems are essentially random.

This challenge does not include MQ systems which are sparse. However, sparse systems form
an important class of MQ problems, since it provides more efficiency for encryption and verifi-
cation of MPKC. We plan to include this kind of challenge in the future.

In creating MQ challenges, we choose starting values of parameters m,n such that the time
required for solving systems with the same parameters (extrapolation) exceeds a month.

In the boolean case, where systems and solutions are taken over the field GF (2), exhaustive
search and variants are the most efficient practical solvers (as for theoretical complexity, the
improved hybrid approach in [37] gives a better worst case bound for some instances). A software
library libFES [36] dedicated to solving system of polynomial equations over GF (2) by exhaustive
search has been created. In the homepage of this project [35], comparative benchmarks are
provided between libFES and other solvers including Gröbner bases on Magma. The type of
systems that these benchmarks treat are square, i.e. when m = n. Since in Type I case m = 2n,
the exhaustive search for Type I requires twice the time of the exhaustive search against MQ
problem of n equations and n variables. In this way, it is possible to estimate the time of the
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Table 4. Minimum of m and n

Type I II III IV V VI

(m,n) (110, 55) (70, 35) (68, 34) (55, 82) (16, 24) (16, 24)

exhaustive search by using the result of the benchmarks displayed in the homepage of libFES.
According to this estimation, we have that when n = 55 and m = 110 in Type I case, the
exhaustive search takes about a month. On the other hand, in our experiment, when n = 35 and
m = 70, the estimation given by Gröbner basis computation is also about a month. Comparing
our experiments to the estimation of libFES, leads to the following conclusion: for a fixed couple
(m,n), the of Gröbner basis computation time becomes about 1, 000, 000 times that of libFES
exhaustive search. In Type IV case, parameters m,n are set such that n = 1.5m. If we substitute
random values to a number of variables equal to 1.5m−m = 0.5m, this MQ problem of Type IV
can be reduced to MQ problem of square type. By using the result of libFES, we can estimate
that when n = 82 and m = 55 in Type IV case, the exhaustive search takes about a month.

Next consider the case of base field equal to GF (28) and to GF (31). For m,n of small sizes,
the XL method is effective against MQ problems, as well as is the Hybrid approach. The paper
[8] presents a experimental results of the XL method. We make use of these results and of our
experiments of type II, III, V and VI to estimate the starting parameters of MQ challenges. If
we try to solve MQ problem using the Hybrid approach, it is necessary to estimate a suitable
number of variables for substitution. According to theoretical computation of the paper [2], in
practice this number is rarely larger than two. Therefore we choose (m,n) as starting parameter
of MQ challenges such that the time for solving the MQ problem with (m − 2, n − 3) using
Magma F4 algorithm is over a month. From the experiments of Type II and III, the gradient of
the time of attack with respect to n is about 2.31. For Type V and VI, the gradient is about 10.
Using these gradients, we estimated the parameter m,n for which the time of attack of the MQ
problem is over a month.

In case of Type I, II and III systems, the difficulty is graduated by the number of variables:
between two consecutive problems, the harder has one more variable than the easier one. There-
fore, according to Table 2 to solve a new challenge, it would take twice the time required to
solve the previous one. On the other hand, in case of Type IV, V and VI systems, the difficulty
is graduated by the number of equations: between two consecutive problems, the harder has
one more equation than the easier one. Therefore, according to Table 3 the difficulty in term of
computation time increases by a factor 10 between two such problems.

MQ Challenge
For quadratic polynomials fi (i = 1, 2, . . . ,m) of n variables over a finite field F ,
consider the following polynomial system:

S :


f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

Here, the system has one of parameters of the following six types:
Type I: m = 2n, F = GF (2), Type IV: n ≈ 1.5m, F = GF (2),
Type II: m = 2n, F = GF (28), Type V: n ≈ 1.5m, F = GF (28),
Type III: m = 2n, F = GF (31), Type VI: n ≈ 1.5m, F = GF (31).

The goal is to find a solution v = (v1, . . . , vn) ∈ Fn of the system S.
The challenge is hosted at https://www.mqchallenge.org/
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A Input format of the MQ challenge

A.1 GF (2)

Galois Field : GF(2)
Number of variables (n) : 4
Number of polynomials (m) : 8
Order : graded reverse lex order

*********************
1 1 0 0 1 1 0 0 0 0 1 0 0 1 0 ;
0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 ;
1 0 1 1 0 1 1 0 1 0 0 0 1 1 1 ;
0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 ;
0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 ;
0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 ;
1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 ;
0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 ;
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The text box above is an example of a MQ challenge system over GF (2). As we can see in the
example, are specified the coefficient field, the number of variables, the number of equations in
the system, and the monomial order chosen for the MQ system. Every line ends up with the ;
symbol. Data coming after the ************ line in he input file rerepesent polynomials. These
data are made up of the coefficients of the polynomials in the monomial basis, with respect to
the monomial order indicated. For the graded reverse lexicographic order, let x1, x2, x3 and x4

to be the four variables so that x1 > x2 > x3 > x4. The monomials are then ordered as follows:
x2
1 > x1x2 > x1x3 > x1x4 > x2

2 > x2x3 > x2x4 > x2
3 > x3x4 > x2

4 > x1 > x2 > x3 > x4 > 1.
Thus, the first polynomial is x1x3 + x1x4 + x2x3 + x2x4 + x2

3 + x3x4 + x2
4 + x1 + x2 + 1 and the

second polynomial is x1x2 + x1x3 + x2x4 + x2
3 + x3 + 1.

A.2 GF (28)

Galois Field : GF(2)[x] / x∧8 + x∧4 + x∧3 + x∧2 + 1
Number of variables (n) : 4
Number of polynomials (m) : 8
Order : graded reverse lex order

*********************
de 8d 73 3b f0 46 88 50 ca 7b dc 9d 22 cd b2 ;
e1 f7 ac 25 ed b9 74 9b 7b d4 94 4f e6 b5 e0 ;
f2 cf c3 5d c4 cd a1 aa 20 51 85 4b dd b1 bc ;
08 4e 21 48 7e bc 7a ad de d5 0c b3 00 4f 5c ;
81 0e 98 4d 3c 38 d3 07 48 f3 5a 52 27 fc 91 ;
ee 27 47 c9 82 21 99 31 0e cd c4 b8 69 69 9e ;
7b ce 96 c5 37 6a ce 34 ca 19 73 8f 30 34 b6 ;
90 65 bc d0 02 77 6c af 1d 7f 1c 29 9c 55 60 ;

The text box above is an example of a MQ challenge system over GF (28). Most of the format
is similar to the example of GF (2). In the case of GF (28), the input file also displays the structure
of the field by specifying the irreducible polynomial it uses to define the field extension. The hex
representation of the coefficient is the polynomial representation of the GF (28) element. For
example, the first coefficient de indicates 1101 1110, which refers to x7+x6+x4+x3+x2+x ∈
GF (2)[x]/x8 + x4 + x3 + x2 +1. Similarly, the second coefficient 8d indicates 1000 1101, which
refers to x7 + x3 + x2 + 1 ∈ GF (2)[x]/x8 + x4 + x3 + x2 + 1.
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A.3 GF (31)

Galois Field : GF(31)
Number of variables (n) : 4
Number of polynomials (m) : 8
Order : graded reverse lex order

*********************
29 20 25 28 4 7 10 28 8 13 14 29 19 30 8 ;
24 20 3 27 25 28 30 3 23 6 23 25 3 2 18 ;
4 29 29 31 0 19 7 24 18 8 9 23 24 8 27 ;
28 4 4 4 17 16 3 25 14 2 1 6 30 8 16 ;
6 1 11 17 3 1 14 14 6 29 3 23 27 18 22 ;
25 19 7 0 1 14 28 27 6 11 13 26 29 14 24 ;
12 21 28 2 21 25 0 12 1 29 27 7 23 23 14 ;
1 28 21 15 11 30 23 7 9 26 10 29 2 0 7 ;

The text box above is an example of a MQ challenge system over GF (31). All the format is
similar to the example of GF (2) and GF (28). Every number is a coefficient in GF (31).


