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Abstract. We propose a method for integrating NTRUEncrypt into the ntor key exchange protocol
as a means of achieving a quantum-safe variant of forward secrecy. The proposal is a minimal change
to ntor, essentially consisting of an NTRUEncrypt-based key exchange performed in parallel with the
ntor handshake. Performance figures are provided demonstrating that the client bears most of the
additional overhead, and that the added load on the router side is acceptable.

We make this proposal for two reasons. First, we believe it to be an interesting case study into the
practicality of quantum-safe cryptography and into the difficulties one might encounter when transi-
tioning to quantum-safe primitives within real-world protocols and code-bases. Second, we believe that
Tor is a strong candidate for an early transition to quantum-safe primitives; users of Tor may be jus-
tifiably concerned about adversaries who record traffic in the present and store it for decryption when
technology or cryptanalytic techniques improve in the future.

1 Introduction

A key exchange protocol allows two parties who share no common secrets to agree on a common key over a
public channel. In addition to achieving this basic goal, key exchange protocols may satisfy various secondary
properties that are deemed important to security in particular settings. Modern key exchange protocols
typically satisfy some of the following properties:

One-way or mutual authentication. A protocol achieves mutual authentication if both parties executing it
can be assured of their peer’s identity. Protocols such as [4], [13], and [14] must assume that each party
possesses a certified copy of their peer’s public key in order to achieve this goal. While desirable, mutual
authentication is often difficult to achieve in practice, and the weaker property of one-way authentication,
in which only one party is authenticated, is more common.

Anonymity. One-way authentication is well suited for networks, such as Tor [6], that aim to provide their
clients with strong anonymity guarantees. In such systems, one party (usually the server) publishes a long-
term identity key that may be used for authentication, while the other party (the client) remains anonymous.
One-way anonymity is provided by some Key Encapsulation Mechanisms (KEMs) such as [12,23], as well as
some Diffie-Hellman protocols, such as ntor [8].

Forward secrecy. A protocol achieves forward secrecy if the compromise of any party’s long-term key material
does not affect the secrecy of session keys derived prior to said compromise. This property is typically achieved
by mixing long-term key material with ephemeral, single-use, keys. It is an essential requirement for some
applications, particularly those where an attacker may be able to store encrypted data for long periods of
time until legal, technological, or cryptanalytic means become available for revealing keys.

This feature is more and more desirable with the advent of quantum computers, through which cryptan-
alytic compromise of long-term keys may become a real possibility rather than mostly theoretical concern.
There are currently no widely deployed key-exchange mechanisms capable of resisting quantum adversaries.



(Forward) quantum-resistance. A protocol is quantum-resistant (or quantum-safe) if it remains secure under
the assumption that the adversary can perform polynomial time quantum computations. There are no widely
deployed quantum-safe key exchange protocols in use today. All methods based on discrete log (Diffie-
Hellman, ECDH) and integer factorization (RSA) can be broken in polynomial time using quantum Fourier
sampling techniques [19,20].

There are several proposals for quantum-safe key exchange mechanisms in the literature, including sev-
eral direct constructions of Diffie-Hellman-like protocols from problems thought to be hard for quantum
computers [10,16,3]. Another approach, the one taken here, is to instantiate a key-encapsulation mechanism
with a quantum-safe encryption primitive such as NTRUEncrypt [9,25]. An example of such an instantiation
was proposed in [23].

In order for these schemes to be fully quantum-resistant they would need to maintain their secondary
attributes in the presence of quantum adversaries. For instance, authentication could be achieved using a
pre-shared symmetric key or a quantum-safe signature scheme, however both approaches present practical
challenges. In the short term it seems reasonable to investigate key exchange mechanisms that do not
provide quantum-safe authenticity, but that otherwise resist active classical adversaries and passive quantum
adversaries. We will call such schemes forward quantum-resistant. The scheme presented in [3] and the one
presented here both achieve this property.

Disaster-resistance. We say that a protocol is disaster-resistant if its security rests on a heterogeneous set
of assumptions in such a manner that the failure of any one assumption would not compromise the security
of the entire scheme. This is an especially desirable property when deploying new cryptographic primitives.

1.1 Our contribution

We demonstrate how to incorporate NTRUEncrypt into the ntor protocol as a means of achieving forward
quantum-resistance. The resulting scheme is easily seen to inherit the forward secrecy and one-way anonymity
properties of ntor.

We propose an instantiation of our scheme at the 128-bit security level that uses ntruees439ep1 in addition
to the primitives present in the production instantiation of ntor. We have implemented our proposal within
the existing Tor codebase, and have made our implementation freely available [18].

The primary disadvantage of our scheme is the increased byte-size of the handshake messages; NTRU-
Encrypt keys and ciphertexts at the recommended security level are approximately 600 bytes. Unfortunately
this exceeds the 512-byte cell size for the Tor protocol, so incorporating our handshake into Tor would not
be entirely trivial and would require either the definition of a new control message, or an increase in cell size.

Furthermore, since we have avoided heavy cryptographic methods such as quantum-resistant signatures,
our protocol does not provide security against active quantum adversaries. Fully quantum-resistant key
exchange may be required in some settings, but we believe that a security model that includes passive, but
not active, quantum adversaries is realistic for the near future.

Paper Organization In the next section, we review the background necessary for this paper. In Section 3,
we review the building blocks of our protocol. The protocol will be presented in Section 4 and its security
will be analyzed in Section 5. In Section 6, we compare the performance of our protocol with ntor, and in
Section 7 we explore the feasibility of integrating our handshake into the production Tor environment.

2 Background

2.1 Notation

In the rest of the paper, G is always a cyclic group of known prime order q, and g is a fixed generator of
G. We use multiplicative notation for group operations. Sampling the uniform distribution on a set X is
denoted by x←R X. We freely associate any object with a bitstring representing it, for instance Hash(gx) is
presumed to be well defined and unambiguous. The concatenation of the strings a and b is denoted by a|b.



Â : B̂ : (b,B)

(x,X)← DHGen(1λ) (y, Y )← DHGen(1λ)

(pkN , skN )← NTRUGen(1λ)
X, pkN−−−−−−−−−→

s1 = Xy|Xb

s2 ←R M
c← NTRUEnc(s2, pkN )

(vk,K) = H(s1|B̂|X|Y |s2|pkN )

auth = Hmac(vk|B̂|Y |X|c|pkN )
Y, c, auth←−−−−−−−−−−−

s1 = Y x|Bx
s2 = NTRUDec(c, skN )

(vk,K) = H(s1|B̂|X|Y |s2|pkN )

ensure auth = Hmac(vk|B̂|Y |X|c|pkN )

Fig. 1. The proposed protocol: ntrutor

The protocols we will discuss involve two honest parties who we will call Alice and Bob. Their identities
are represented by Â and B̂. In a client-server scenario, Bob is the server and Alice is the client. Party P̂
has access to a memory MP̂ in which they can store session state. The state for session Ψ is denoted MP̂ [Ψ ].

2.2 Cryptographic primitives

Public key primitives The protocols described below involve both Diffie-Hellman and NTRUEncrypt op-
erations and thus make use of the following PPT algorithms. Relevant parameters, G, q, g for Diffie-Hellman
and M for NTRUEncrypt, are implicitly defined as functions of the security parameter λ.

• DHGen(1λ) : Let x←R [1, q− 1], and X = gx. Outputs the Diffie-Hellman keypair (x,X), where x is the
private key and X is the public key.

• NTRUGen(1λ) : Outputs an NTRUEncrypt keypair (sk, pk) where sk is the secret key and pk is the public
key.

• NTRUEnc(m, pk) : Takes as input a message m ∈ M, and an NTRUEncrypt public key pk. Outputs a
ciphertext c.

• NTRUDec(c, sk) : Takes as input a ciphertext c, and an NTRUEncrypt secret key sk. Outputs a message
m ∈M.

Key derivation functions A Key Derivation Function (KDF) [22,1] is a function that takes three inputs and
outputs a string of ` bits. The three inputs are: a sample from a source of keying material, K ∈ K; a sample
from a set of possible salt values, S ∈ S; and a bitstring specifying additional, or contextual, information,
I. It is understood that the source from which the keying material is derived leaks some information to the
environment1, so the role of a key derivation function is to ensure that, despite this inevitable leakage, the
` output bits are uniformly random.

Krawczyk presented an instantiation of a KDF based on a Hash-based Message Authentication Code
(HMAC) in [11] and provided a formal definition of security for KDFs called m-entropy security. This
definition captures the idea that the output of a KDF should be indistinguishable from a uniform ` bit string
so long as that the conditional min-entropy of the keying material, given the naturally leaked information,
is at least m bits.

The KDF appearing in our protocol is assumed to be λ-entropy secure.

1 For instance, a Diffie-Hellman handshake might use gxy as keying material and leak gx, gy and the group parameters
to the environment.



2.3 Related work

From Diffie-Hellman to ntor. Two parties, Alice and Bob, who have publicly agreed on parameters –
namely a generator g of a group G of prime order q – may derive a shared secret in the presence of passive
eavesdroppers using the Diffie-Hellman protocol [5].

Alice selects x in [1, q − 1] and sends X = gx to Bob. Similarly, Bob selects y in [1, q − 1] and sends
Y = gy to Alice. They arrive at the common value gxy by computing Y x and Xy respectively.

The security of this protocol requires that the decisional Diffie-Hellman assumption holds for the group
G. That is, given g, gx, gy ∈ G, the element gxy is indistinguishable from an element chosen uniformly at
random from G. This is one of the core assumptions of modern cryptography; its apparent validity with
respect to non-quantum distinguishers for some cyclic groups has enabled many cryptographic schemes.

Â : (a,A) B̂ : (b,B)

(x,X)← DHGen(1λ) (y, Y )← DHGen(1λ)

σA = Signa(X|B̂) σB = Signb(Y |Â)
X,σA−−−−−−−−→
Y, σB←−−−−−−−−

K = Y x K = Xy

Fig. 2. The signed Diffie-Hellman key exchange protocol.

The authenticated version of the Diffie-Hellman protocol presented in Figure 2 was formally analyzed by
Shoup in [21], although it was likely known prior to that analysis. It is sometimes referred to as the signed
Diffie-Hellman protocol.

In this protocol each party must produce a signature on their public group element and their peer’s
identity. By verifying Alice’s signature, Bob is convinced that the group element he received has come from
Alice, and vice versa.

Signed Diffie-Hellman suffers from several shortcomings, the most troubling being that leakage of an
ephemeral key allows an adversary to impersonate the leaked key’s owner in subsequent sessions.

Â : (a,A) B̂ : (b,B)

(x,X)← DHGen(1λ) (y, Y )← DHGen(1λ)
X−−−−−→
Y←−−−−−

K = Hash(Y a|Bx|Â|B̂) K = Hash(Ay|Xb|Â|B̂)

Fig. 3. The KEA+ key exchange protocols

This and other weaknesses are addressed in the KEA+ protocol of Lauter and Mityagin [14]. KEA+
avoids the aforementioned impersonation attack by deriving the shared secret from a combination of long-
and short-term key material contributed by both parties (see Figure 3). Specifically, the parties derive two
shared secrets gay, and gbx where a, b are long-term secrets and x, y are short-term secrets. These values
are hashed, along with the identities of both parties, produce the final key. The inclusion of the identities is
crucial for preventing unknown key share attacks[14].

Finally, we have arrived at ntor [8], the one-way authenticated key exchange protocol that is used in
recent versions of Tor [6]. The ntor protocol can be seen as a variant of KEA+ in which Alice does not reveal



a long-term secret, is not authenticated, and is allowed to remain anonymous. As detailed in Figure 4, the
parties derive two shared secrets, the first gxy combines the parties’ short-term key material, and the second
gbx mixes Alice’s short-term key with Bob’s long-term key. The latter value ensures that Alice maintains the
ability to authenticate Bob, and the former provides forward secrecy against leakage of Bob’s long-term key.

Â : B̂ : (b,B)

(x,X)← DHGen(1λ) (y, Y )← DHGen(1λ)
X−−−−−→

s1 = Xy|Xb

(vk,K) = H1(s1|B̂|X|Y )

auth = H2(vk|B̂|Y |X)
Y, auth←−−−−−−−−−

s1 = Y x|Bx

(vk,K) = H1(s1|B̂|X|Y )

ensure auth = H2(vk|B̂|Y |X)

Fig. 4. The ntor protocol

Key encapsulation mechanisms. Diffie-Hellman protocols are far from the only method by which two
parties may derive a common key over a public channel. Among the many alternatives are Key Encapsulation
Mechanisms (KEMs).

Â : B̂ : (b,B)
m←R M
c← EncryptB(m)

c−−−−→
m = DecryptB(c)

K = KDF(m) K = KDF(m)

Fig. 5. The key encapsulation mechanisms

In a KEM, Alice encrypts a random message to Bob using Bob’s long-term public key. Bob then decrypts
the received ciphertext and the parties derive a shared secret from Alice’s message using a Key Derivation
Function (KDF). Such a KEM provides one-way authentication and one-way anonymity: Alice may remain
anonymous during the execution of the protocol, as the shared secret does not depend on any value linked
to her identity; and Alice is able to authenticate Bob, as she has an authentic copy of his public key and
only he can decrypt her message. Forward secrecy, however, is notably lacking. If Bob’s long-term key is
compromised then confidentiality is lost for every session previously established.

3 Security model

The ntor protocol was analyzed in a variant of the extended Canetti-Krawczyk (eCK) model with support
for one-way authentication [8]. For continuity with this work we will use essentially the same model, but
we must make a slight modification in order to argue for quantum-safe forward-secrecy. Fortunately most
of the machinery needed for this was developed in [15], which proposed an extension to the model of [8] for



the purpose of analyzing authenticated quantum key expansion protocols. In the model of [15] (hereafter
MSU) all parties, including the adversary, have access to a quantum Turing machine capable of executing
algorithms with runtime bounded by tq(λ) and memory bounded by mq(λ). The inclusion of explicit bounds
allows us to more accurately model the types of quantum computations which are feasible today and in the
near future.

3.1 Communication and adversary model

In the MSU model a party is an interactive classical Turing machine. A party has access to a memory, a
random tape, and a bounded time/memory quantum Turing machine.

Each party has a public identifier represented by a capital letter with a hat (e.g. Â). These identifiers are
used for routing communication and for registering certificates. There is a privileged party, labeled by Ĉ,
that serves the role of certificate authority and with whom all communication is guaranteed to be authentic.
As in the eCK model, parties do not prove knowledge of a private key when registering a public key with the
certificate authority. This allows the adversary to bind an arbitrary public key to an identity they control,
even if that public key is owned by another party. The adversary cannot, however, register a public key for
a party that they do not control.

Parties may have several asymmetric value pairs in memory at any given time. These are denoted by
(x,X) where x is a secret value, such as a private key, and X is a public label for x (often the corresponding
public key).

Parties communicate with each other via activation requests. These requests are created either directly by
the adversary or in response to previous requests from the adversary. The parties are assumed to execute the
protocol honestly, but the adversary can record, modify, delete, or attempt to forge requests made by other
parties. A session is started when the adversary requests that a party initiate a protocol with another party
of the adversary’s choosing. Each party participating in a session ascribes a locally unique session identifier,
ΨP̂ , to the session. Session identifiers are known to the adversary.

After running their respective parts of the protocol, the participating parties output either an error
symbol, ⊥, or a tuple of the form (sk, pid,v,u). Once all parties have produced an output the session is
considered completed. Prior to completion a session is called active.

The values in a party’s output tuple,2 (sk, pid,v,u), respectively identify: the session key, the identity of
the peer with whom the session key is believed to have been established, a nested list of the public values
used to derive sk, and a nested list of the public values used for authenticating the peer pid. If the peer was
unauthenticated (anonymous) during the execution of the protocol then the token ~ is used for pid and the
list u will be empty.

The following activation requests are defined:3

• Req(id, command, arguments, protocol): This activation request directs the intended recipient (specified
by id) to perform the action specified by command using arguments as input. The protocol is included
to ensure that the command is well defined. This is the only request type that ordinary parties can issue,
the rest may only be issued by the adversary.

• RevealNext(id, type) → X: This request allows the adversary to learn the public value of the specified
type that the party id will use next. For instance, RevealNext(Â,DH) causes Â to generate a new Diffie-
Hellman key (x,X) ← DHGen and to return X to the adversary. The pair (x,X) is marked as unused
and the next time Â would call DHGen (in response to a request other than RevealNext) it will retrieve

2 The output tuple was introduced in [8] as an enhancement to traditional AKE security models where the adversary-
learnable values must be specified at the model level. The output tuple encodes which values are learnable at the
protocol level, and thereby allows for the comparison of protocols that would have been incomparable in earlier
AKE models.

3 Several more requests are defined in the full MSU model; for simplicity we have omitted requests for describing
quantum communication and the requests describing the interaction of classical and quantum Turing machines. We
have also merged the two variants of the SendC request from MSU into our Req request, and added id parameters
where they were implicit in MSU. These are purely syntactic changes.



(x,X) instead. Successive RevealNext queries allow the adversary to learn the next k public values of any
type that the party will use.
• Partner(id, label) → x: This request allows the adversary to learn the secret value associated with the

given public label. For instance, in response to Partner(Â,X) the Turing machine Â returns x. The session
key is labeled by the session ID its owner ascribes to it, i.e. the adversary can learn the key for a session
Ψ owned by the party Â by querying Partner(Â, Ψ).

The adversary can issue any number of these requests in any order.
Partnering to a value is a very important concept in this model.

Definition 1 (Partnering). If (x,X) is a value pair owned by Â, then the adversary is said to be a partner
to X if and only if it has queried Partner(Â,X).

The structure of honest parties’ output vectors, i.e. the segregation of labeled values into those associated
with keying material, v, and those associated with authentication, u, allows for fine grained control over
which values the adversary may learn through partnering as well as when the adversary may them. With
the exception of the session key, labeled values that appear in neither v nor u are not able to be learned by
the adversary through partnering.

3.2 Security definitions

We now give the security definitions that will be used in our security arguments in Section 5.

Definition 2 (Correctness [15]). A key exchange protocol is said to be correct if, when all protocol mes-
sages are relayed faithfully, without changes to content or ordering, the peer parties output the same session
key K and vector v.

Security will be defined with respect to a game the adversary plays after making some (polynomial in λ)
number of activation requests and observing/manipulating the honest parties’ results. The adversary starts
the game by issuing the following query to an oracle:

• Test(id, Ψ)→ {0, 1}λ : If the party specified by id has not output a vector for session Ψ the oracle returns
⊥. Otherwise, the oracle chooses b← {0, 1} uniformly. If b = 1 it returns the session key corresponding
to Ψ . If b = 0 it returns a uniform random string in {0, 1}λ.

The adversary may only issue one Test query.

Definition 3 (Fresh session [15]). A session Ψ owned by an honest party P̂i is fresh if all of the following
occur:

1. For every vector vj, in P̂i’s output for session Ψ , there is at least one element X in vj such that the
adversary is not a partner to X.

2. The adversary did not issue Partner(P̂j , Ψ
′) to any honest party P̂j for which Ψ ′ has the same public

output vector as Ψ (including the case where Ψ ′ = Ψ and P̂j = P̂i.

3. At the time of session completion, for every vector uj, in P̂i’s output for session Ψ , there was at least
one element X in uj, such that the adversary was not a partner to X.

Note that the session is not fresh if either v or u is empty. In particular sessions established with anonymous
peers are not fresh.

Definition 4 (Security [15]). Let λ be a security parameter. An authenticated key exchange protocol is
secure (or (tc(λ), tq(λ),mq(λ))-secure) if, for all adversaries A with classical runtime bounded by tc(λ),
quantum runtime bounded by tq(λ), and quantum memory bounded by mq(λ), the advantage of A in guessing
the bit b used in the Test query of a fresh session is negligible in the security parameter; in other words, the
probability that A can distinguish the session key of a fresh session from a random string of the same length
is negligible in λ.



Freshness delineates the situations in which security is relevant. Note that with these definitions of
freshness and security the adversary can partner to some of the keying material from each vi, and preserve
the freshness of the session, either while the session is active or after the session is complete, but cannot
partner to all values in any vi at any time. The adversary is similarly limited in the ui components to which
it can be partnered while a session is active, but is allowed to partner to the entire u vector after completion.

Definition 5 (Forward-secrecy). An authenticated key exchange protocol provides forward secrecy if it is
secure under Definition 4 and for every fresh session Ψ the following conditions are met:

1. Every long-term value used by an honest party during the execution of session Ψ is labeled by at least
one component of u.

2. If the adversary is not partnered to any component of v, then Ψ would remain fresh if the adversary
partnered to every component of u.

Definition 6 (Quantum-resistance). An authenticated key exchange protocol provides quantum-resistance
if it is (tc(λ), tq(λ),mq(λ))-secure for polynomially bounded tc(λ) = tq(λ) = mq(λ).

In analogy with the definition of long-term security provided in [15] we propose the following definition
of forward quantum-resistance. This definition aims to capture the possibility of an adversary who, in an
attempt to win the Test game, passes a transcript of observed activation requests to a collaborator that has
access to a more powerful quantum Turing machine.

Definition 7 (Forward quantum-resistance). Let π be a (tc(λ), tq(λ),mq(λ))-secure authenticated key
exchange protocol. Let A be an adversary as in Definition 4, let κ ∈ {0, 1}λ be the result of A’s query,
Test(P̂ , Ψ), on a fresh session Ψ . Finally let T be a transcript of classical and quantum bits output by A after
a (tc(λ), tq(λ),mq(λ))-bounded computation.

We say π is forward quantum-resistant with respect to A if, for all quantum Turing machines M with
runtime bounded by t′q = tc(λ) and memory bounded by m′q = tc(λ), the advantage of M, given (T, κ), in
guessing the bit b that was used in the Test query is negligible in λ.

We say that π is forward quantum-resistant if it is forward quantum resistant with respect to all adver-
saries A meeting the above criteria.

4 Protocols

4.1 The ntor protocol

The general outline of ntor was provided in the Section 2.3. So as to fully illustrate our method, we first
present the construction from [8] using the model of [15] before presenting our protocol.

The protocol identifier ntor implicitly defines a security parameter, λ, Diffie-Hellman parameters, and
two hash functions:

Hmac : {0, 1}∗ → {0, 1}λ

H : {0, 1}∗ → {0, 1}λ × {0, 1}λ

Under normal operation the ntor protocol can be modeled by the following sequence of activation requests
involving the parties Â, B̂ and the certificate authority Ĉ:

1. Req(B̂, “init server”, (∅), ntor),
2. Req(Â, “fetch certificates”, (∅), ntor),
3. Req(Â, “start”, (B̂), ntor),
4. Req(B̂, “respond”, (ΨÂ, Â, B̂,X), ntor)),

5. Req(Â, “finish”, (ΨÂ, Y, auth), ntor).

At each step the parties’ behavior is governed by the following rules:



1. On Req(B̂, “init server”, (∅), ntor) B̂:
• Generates a long-term keypair,

(b, B)← DHGen(1λ).

• Issues Req(Ĉ, “register”, (B, B̂), ntor).

2. On Req(Â, “fetch certificates”, (∅), ntor) Â:
• Retrieves a list of all registered certificates from Ĉ.
• Stores the received certificates in memory,

MÂ[“certs”]← (cert1, . . . , certn).

3. On Req(Â, “start”, (B̂), ntor) Â:
• Searches MÂ[“certs”] for a valid certificate for B̂ or outputs ⊥ if none is found.
• Creates a new session, ΨÂ.
• Generates an ephemeral DH keypair

(x,X)← DHGen(1λ).

• Stores MÂ[ΨÂ]← (B̂, (x,X), ntor).

• Issues Req(B̂, “respond”, (ΨÂ, Â, B̂,X), ntor)).

4. On Req(B̂, “respond”, (ΨÂ, Â, B̂,X), ntor)) B̂:
• Verifies X ∈ G, or outputs ⊥.
• Creates a new session, ΨB̂ .
• Generates an ephemeral DH keypair

(y, Y )← DHGen(1λ).

• Sets s1 = Xy|Xb.
• Sets (vk,K) = H(s1|B|X|Y |ntor).
• Sets auth = Hmac(vk|B|Y |X|ntor|“Server”).
• Issues Req(Â, “finish”, (ΨÂ, Y, auth), ntor).
• Deletes y, s1.
• Outputs (K,~, ((X), (Y,B)), ((∅))).

5. On Req(Â, “finish”, (ΨÂ, Y, auth), ntor) Â:
• Verifies MÂ[ΨÂ] exists or outputs ⊥.
• Verifies Y ∈ G and that c is a valid ciphertext or outputs ⊥.
• Sets s1 = Y x|Bx.
• Sets (vk,K) = H(s1|B|X|Y |ntor).
• Ensures auth =

Hmac(vk|B|Y |X|ntor|“Server”)

or outputs ⊥.
• Deletes MÂ[ΨÂ] and s1.

• Outputs (K, B̂, ((X), (Y,B)), ((B))).

If either party outputs ⊥, it is assumed that both parties abort the protocol and delete all temporary
state.

4.2 The proposed protocol

The protocol identifier ntrutor implicitly defines a security parameter, λ, a DH group G, and two hash
functions:

Hmac : {0, 1}∗ → {0, 1}λ

H : {0, 1}∗ → {0, 1}λ × {0, 1}λ



It additionally specifies a λ-bit secure NTRUEncrypt parameter set.
Under normal operation the ntrutor protocol can be modeled by the following sequence of activation

requests involving the parties Â, B̂ and the certificate authority Ĉ:

1. Req(B̂, “init server”, (∅), ntrutor),
2. Req(Â, “fetch certificates”, (∅), ntrutor),
3. Req(Â, “start”, (B̂), ntrutor),
4. Req(B̂, “respond”, (ΨÂ, Â, B̂,X, pkN ), ntrutor)),

5. Req(Â, “finish”, (ΨÂ, Y, c, auth), ntrutor).

At each step the parties’ behavior is governed by the following rules:

1. On Req(B̂, “init server”, (∅), ntrutor) B̂:
• Generates a long-term keypair,

(b, B)← DHGen(1λ)

• Issues Req(Ĉ, “register”, (B, B̂), ntrutor).

2. On Req(Â, “fetch certificates”, (∅), ntrutor) Â:
• Retrieves a list of all registered certificates from Ĉ.
• Stores the received certificates in memory,

MÂ[“certs”]← (cert1, . . . , certn).

3. On Req(Â, “start”, (B̂), ntrutor) Â:
• Searches MÂ[“certs”] for a valid certificate for B̂ or outputs ⊥ if none is found.
• Creates a new session, ΨÂ.
• Generates an ephemeral DH keypair

(x,X)← DHGen(1λ).

• Generates an ephemeral NTRU keypair

(skN , pkN )← NTRUGen(1λ).

• Stores

MÂ[ΨÂ]← (B̂, (x,X), (skN , pkN ), ntrutor).

• Issues Req(B̂, “respond”, (ΨÂ, Â, B̂,X, pkN ), ntrutor)).

4. On Req(B̂, “respond”, (ΨÂ, Â, B̂,X, pkN ), ntrutor)) B̂:
• Verifies X ∈ G and that pkN is a valid NTRUEncrypt key, or outputs ⊥;
• Creates a new session, ΨB̂ .
• Generates an ephemeral DH keypair

(y, Y )← DHGen(1λ).

• Samples s2 ←R {0, 1}λ.
• Encrypts s2 under pkN :

c← NTRUEnc(s2, pkN ).

• Sets s1 = Xy|Xb.
• Sets (vk,K) = H(s1|B|X|Y |s2|pkN |ntrutor).
• Sets auth =

Hmac(vk|B|Y |X|c|pkN |ntrutor|“Server”).

• Issues
Req(Â, “finish”, (ΨÂ, Y, c, auth), ntrutor).
• Deletes y, s1 and s2.
• Outputs (K,~, ((X, pkN ), (Y,B, pkN )), ((∅))).



5. On Req(Â, “finish”, (ΨÂ, Y, c, auth), ntrutor) Â:

• Verifies MÂ[ΨÂ] exists or outputs ⊥.

• Verifies Y ∈ G and that c is a valid ciphertext or outputs ⊥.

• Decrypts c using skN and sets

s2 = NTRUDec(c, skN ).

• Sets s1 = Y x|Bx.

• Sets (vk,K) = H(s1|B|X|Y |s2|pkN |ntrutor).
• Ensures auth =

Hmac(vk|B|Y |X|c|pkN |ntrutor|“Server”)

or outputs ⊥.

• Deletes MÂ[ΨÂ], s1 and s2.

• Outputs

(K, B̂, ((X, pkN ), (Y,B, pkN )), ((B), (X))).

If either party outputs ⊥, it is assumed that both parties abort the protocol and delete all temporary
state.

4.3 Comparison

In ntor the initiating party, Â, outputs

(K, B̂, (v0 = (X),v1 = (Y,B)), (u0 = (B))).

Since the output vector dictates the conditions under which a session is deemed fresh, and freshness is a
necessary precondition for security, we can read Â’s output as specifying the scenarios that would definitely
compromise an ntor session. Clearly each party must contribute some non-compromised keying material in
order for the session to be secure. Consequently we see that the component v0 dictates that the adversary
must never partner to the initiator’s ephemeral key, and v1 dictates that the adversary must never partner
to both B and Y . Likewise, an ntor session cannot possibly be secure if the authenticated party’s longterm
key was compromised prior to or during the session; and so, u0 requires that the adversary does not partner
to B prior to session completion.

In ntrutor the initiating party outputs

(K, B̂, ((X, pkN ), (Y,B, pkN )), ((B), (X))).

By a similar reading, we see that the adversary may partner to Y or pkN at any time, but must not partner
to X or B while the session is active. After the session is completed the adversary may partner to any subset
(or all) of the DH values provided it does not partner to pkN , or it may partner to pkN provided it does not
partner to X. Collectively these rules model the claim that ntrutor is secure against the failure of either the
Diffie-Hellman or the NTRU assumption after session completion, but that it relies on the Diffie-Hellman
assumption while the session is active.

It is also worth pointing out that, to achieve better efficiency, we do not rely on one-time signatures to
bind s1 and s2. See Appendix A for more details.

5 Security

In this section we give an argument for the Definition 4 security of ntrutor in the random oracle model.

Theorem 1. If there exists an algorithm A that breaks the security of ntrutor when KDF is instantiated with
a random oracle, then one can construct an algorithm B that solves the gap Diffie-Hellman problem in G
with non-negligible probability, or breaks the semantic security of NTRUEncrypt.



Proof. Suppose that Ψ is a fresh ntrutor session owned by party P̂ and Test(P̂ , Ψ) does not return ⊥. The
party P̂ is necessarily an initiator (by definition of Test), and has output a tuple of the form

(K, B̂, ((X, pkN ), (Y,B, pkN ), ((B), (X)))).

Since the KDF is modeled as a random oracle, the Test challenge is indistinguishable from a uniform random
λ-bit string unless A has queried the oracle with exactly the same input as P̂ , specifically4:

CDH(X,Y ) | CDH(X,B) | NTRUDec(c, skN ).

The algorithm B is given black-box access to A and simulates the environment with which A interacts.
B takes as input a CDH instance (U, V ) and an instance of the semantic security game for NTRUEncrypt,

specifically a pair of messages m0, m1, a public key p̃k, and a ciphertext c̃ promised to be an encryption of

either m0 or m1 under p̃k.
Let n = poly(λ) be the number of parties A will initialize in the responder role and let ki = poly(λ) for

i ∈ [1, n] be the number of sessions in which P̂i will participate.5

The algorithm B begins by selecting distinct party indices i, j ∈ [1, n], session indices ` ∈ [1, ki], m ∈
[1, kj ], and a bit r uniformly at random. We denote by P̂1 and P̂2 the parties indexed by i and j; similarly

we let Ψ1 and Ψ2 denote the sessions involving P̂1 and P̂2 indexed by ` and m respectively.
Having fixed these values B begins the simulation and handles A’s activation requests in accordance with

the ntrutor protocol with the following exceptions6:

1. If r = 1, then in response to “init server” request number i, B registers V as the longterm public key of
P̂1.

2. We assume that “start” request number ` involving P̂1 is directed at an anonymous party, Â1 (otherwise
B aborts). In response to this request, B simulates Â1 by performing the normal input validation, session
creation, and NTRUGen routines, but skips DHGen and inserts U into the outgoing “respond” request in
place of an ephemeral DH key.
If r = 0 then B simulates the response of P̂1 by generating c honestly, selecting K and auth uniformly
at random, and inserting V into the outgoing “finish” request instead of the ephemeral DH key.
If r = 1 then B simulates the response of P̂1 by generating both c and Y honestly, and selecting K and
auth uniformly at random.
Finally B simulates the response of Â1 to the “finish” request by outputting

(K, P̂1, ((U, pkN ), (V,B, pkN )), ((B), (U)))

in the r = 0 case and

(K, P̂1, ((U, pkN ), (Y, V, pkN )), ((V ), (U)))

in the r = 1 case.
3. We assume that “start” request number m involving P̂2 is directed at an anonymous party, Â2. In

response to this request, B simulates Â2 by performing the normal input validation, session creation,

and DHGen routines, but skips NTRUGen and inserts p̃k into the outgoing “respond” request in place of
an ephemeral NTRU key.
B simulates the response of P̂2 by selecting K and auth uniformly at random, and inserting c̃ into the
“finish” request. The simulated output of Â2 in response is

(K, P̂2, ((X, p̃k), (Y,B, p̃k)), ((B), (X))).

4. If B cannot simulate one of A’s activation requests, for instance a Partner query involving U , then B
aborts the simulation.

4 Here we have rearranged the inputs and omitted public values such as the parties’ public keys and the string
ntrutor for compactness

5 We fix these quantities for convenience, B could search for the correct values with polynomial overhead.
6 Not included in this list, but still important to note, is that if r = 1 then B does not know P̂1’s long-term secret

and is unable to handle any “respond” requests involving P̂1 honestly. However since B simulates all of the parties
it can use the initiator’s ephemeral secret to produce s1 as Xy|Bx and can, otherwise, still follow the protocol in
these situations.



Suppose that B has not aborted the simulation and A queries Test on some session. Since B chose the
sessions to modify uniformly at random, and A cannot distinguish these sessions from the others, there is
a non-negligible probability that A selects either Ψ1 or Ψ2 for its Test query. There are now two cases to
consider.

Case 1. A has queried Test on session Ψ1. Since B did not abort, A has not issued a Partner query for the
initiator’s ephemeral DH key, and is partner to at most one of the responder’s DH keys depending on r. We
show that B can extract a CDH solution from A.

Suppose r = 0. The initiator’s output is

(K, P̂1, ((U, pkN ), (V,B, pkN ), ((B), (U)))),

and since A has not issued partner requests for U or V it cannot distinguish this output from an honestly
generated one. Recall that in the random oracle model A wins the Test challenge iff it queries

CDH(U, V ) | CDH(U,B) | NTRUDec(c, skN ).

B uses the DDH oracle to recognize this query among all of the those made by A, and in doing so extracts
the solution CDH(U, V ) to its input.

Now suppose r = 1. The initiator’s output is

(K, P̂1, ((U, pkN ), (Y, V, pkN ), ((V ), (U)))),

and again A cannot distinguish this output from an honestly generated one. As above, B is able to extract
CDH(U, V ) from A’s random oracle query by checking each query with the DDH oracle.

Case 2. A has queried Test on session Ψ2. Since B did not abort, A has not issued a Partner query for the
initiator’s ephemeral NTRUEncrypt key, but may be partner to any or all of the DH values. We show that
B can break the semantic security of NTRUEncrypt.

The initiator’s output is

(K, P̂2, ((X, p̃k), (Y,B, p̃k), ((B), (X)))).

Without loss of generality assume NTRUDec(c̃, s̃k) = m0. Then A wins the Test challenge iff it queries

CDH(X,Y ) | CDH(Y,B) | m0.

Such queries are easily identified and, with all but negligible probability, A does not make a similar query
containing m1. As such, by examining A’s queries, B can break the semantic security of NTRUEncrypt.

Recall that we assume A wins the Test challenge with non-negligible advantage in a non-simulated en-
vironment. By the freshness condition it can do so either by partnering to the test session’s ephemeral
NTRUEncrypt key and at most one of the DH values, or without partnering to the ephemeral NTRUEn-
crypt key.A cannot detect when it is in the simulated environment, so its advantage carries over. If it succeeds
after partnering to the ephemeral NTRUEncrypt key, then by case 1 above B solves its GDH instance with
non-negligible probability. Otherwise, by case 2, B breaks the semantic security of NTRUEncrypt. ut

5.1 Related security concerns

One-way anonymity The one-way anonymity (as defined in [8]) of our protocol follows immediately from the
one-way anonymity of ntor as proven in [8]. Intuitively, the only additional information in an ntrutor transcript
is a set of ephemeral NTRUEncrypt public keys, and these are non-identifying. For a full proof, Partner(·, pkN )
queries must be forbidden in addition to Partner(·, X) queries.

Forward Secrecy Our protocol clearly meets the criteria for forward secrecy in Definition 5. The responder’s
certified key, B, is the only long-term value appearing in the protocol, and B is included in a u component
of the initiator’s output. Furthermore, the adversary who does not partner to X,Y or pkN may partner to
B after session completion without violating freshness.



Quantum resistance Our protocol is not quantum-resistant under Definition 6, as a fully quantum adversary
can compute the discrete logarithm of a long-term authentication key and use it to violate the authenticity
of new sessions.

Forward quantum-resistance Our protocol is forward quantum-resistant under Definition 7. We model crypt-
analytic attacks on DH components as Partner queries. If an adversary uses a quantum computer to solve
the relevant CDH instances they are partner to X, Y , and B. This precludes them from partnering to pkN
without violating the freshness of the session. By Theorem 1, since the attacker is not partner to pkN , vio-
lating the security of ntrutor implies breaking the semantic security of NTRUEncrypt. Since this is assumed
to be hard even for quantum adversaries, the protocol is forward quantum-resistant.

Multiple Encryptions In [7], Dodis and Katz presented the notion of CCA security of multiple encryptions.
In a multiple encryption setting, one party splits a message into many blocks, and encrypts each block

using a (different) ciphersuite. The other party then decrypts those ciphertext and combines the blocks
to recover the message. It is observed in [7] that although individual ciphersuites are secure, combining
them together may leak information. In such scenarios, depending on the security level, an attacker is given
different powers. We provide more details in the Appendix.

Those assumptions are adequate for encryptions since it is quite usual for different encrypted blocks to
be transmitted via different links, and assuming that some of the links are compromised is quite natural.
While in a key agreement protocol, those settings appear to be unnecessarily strong: the attacker is allowed
to query each encryption scheme on its challenge ciphertext, just not at the same time. In other words, the
attacker can query PartialReveal on both s1 and s2 without compromising the freshness of a session - which
violates the 1-AKE freshness of our model.

Nevertheless, we remark that our protocol is weak Multiple CCA secure. Indeed, a proper security model
for our protocol with respect to MCCA lies in between weak MCCA and normal MCCA. See the Appendix
for more details.

6 Implementation and performance characteristics

TAP ntor ntrutor

client → server bytes 186 84 693
server → client bytes 148 64 673

client computation (stage 1) 280 µs 84 µs 272 µs
server computation 771 µs 263 µs 307 µs

client computation (stage 2) 251 µs 180 µs 223 µs

total computation time 1302 µs 527 µs 802 µs
% client 40.8% 50.1% 61.7%

Table 1. Performance comparison of TAP, ntor, and ntrutor

We have implemented our protocol [18] with curve25519, ntruees439ep1 and sha256 and integrated it into
Tor-0.2.5.6-alpha [17]. This parameterization provides an estimated λ = 128 bit security level against both
active classical adversaries and passive quantum adversaries.

Benchmarks comparing our instantiation’s performance with that of ntor and that of the legacy Tor hand-
shake (TAP) are presented in Table 1. The data was gathered using Tor’s internal benchmarking utility on an
Intel Core i7-2640M CPU at 2.80GHz with TurboBoost disabled. RSA and Z∗p Diffie-Hellman operations for
TAP were provided by OpenSSL 1.0.1i. The elliptic curve DH operations for ntor and ntrutor were performed
by the donna c64 implementation of curve25519 from NaCL-20110221 [2]. The ntruees439ep1 operations were
provided by the NTRU reference code from Security Innovation [24] compiled with SSSE3 support.



7 Conclusion and future work

We have presented a key exchange protocol that satisfies reasonable definitions of security, one-way authen-
ticity, forward secrecy, quantum forward-resistance. We have also demonstrated that the scheme is practical,
and compares favorably with protocols that are currently widely deployed.

Our proposal inherits all of the security properties of the original ntor protocol, but also enjoys forward
quantum-resistance due to NTRUEncrypt. We leave the development of a protocol satisfying our notion
of quantum-resistance (Definition 6), as well as the definition of a model in which disaster-resistance can
be considered, to future work. While it would be relatively straightforward to define a quantum-resistant
authenticated key exchange protocol using available quantum-safe authentication mechanisms, more research
needs to be done into making these mechanisms efficient before a fully quantum-resistant authenticated key
exchange protocols are practical.

Finally we note that our scheme does not depend on any feature of NTRUEncrypt other than its semantic
security in the presence of a quantum adversary. As such any quantum-safe key encapsulation mechanism
could potentially serve as a drop-in replacement for it. While a more modular system may be desirable
in other contexts, Tor’s principal goal of preserving anonymity is best served by allowing only a single
circuit-extension handshake method.
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A Multiple Encryption

To suit the definition of multiple encryption, we re-write our protocol in terms of dual encryption as follows:

• KeyGen: It takes as input a security parameter λ and outputs two key pairs (sk1, pk1) and (sk2, pk2),
where sk1 = {x, y} and pk1 = {g}; (sk2, pk2) is a NTRUEncrypt key pair.

• Encrypt: It takes as input the public key and a message M = (m1,m2), where m1 = NULL and m2 = s2
it outputs C = (c1, c2) where c1 = (gx, gy) and c2 = c.

• Decrypt: It takes as input the secret key and a ciphertext, it outputs s1 = gxy and s2.
• Combine: It takes as input the m1 and m2, it outputs a secret seed s ← H(m1|m2), where H is a

cryptographic hash function.

For the multiple encryption, there exists three levels of CCA security: the weak multiple CCA security
(wMCCA), the standard multiple CCA security (MCCA) and the strong multiple CCA security (sMCCA).
When the attacker is challenged with an ciphertext C, for the first notion, there exists a oracle such that
given any C ′ 6= C it replies with the secret s′; for MCCA, the oracle replies s′ as well as m′1 and m′2; for the
strongest notion, their exist additional oracles such that given c′i it replies with m′i. The difference between
the last two notions is that in the normal setting, the adversary cannot query individual decryption oracles,
i.e., he needs to submit the query in the form of C.

Definition 8 (Multiple CCA Security). A protocol is weak/standard/strong Multiple CCA (w/-/sMCCA)
secure if their is no adversary who can win the following game with a probability more than 1

2 + ε, where ε
is negligible in λ.

• For two messages M0 and M1, the challenge randomly pick b ∈ {0, 1} and encrypts Mb and obtain a
ciphertext C and send M1, M2 and C to the adversary;
• the adversary has access to the following oracles



• for any input M an encryption oracle OE generates corresponding C;
• for any input mi an encryption oracle Oei generates corresponding ci;
• (wMCCA) for any input C ′ 6= C, a decryption oracle OH returns corresponding hashed value s′;
• (MCCA) the above oracles, plus for any input C ′ 6= C, a decryption oracle OD returns corresponding
M ′;

• (sMCCA) the above oracles, plus, for any input ci a decryption oracle Odi returns mi;
• the attacker outputs b.

The adversary wins the game if he guess b correctly.

Our protocol satisfies the requirement of wMCCA, since our construction follows the Dodis-Katz frame-
work for wMCCA secure multiple encryption: s1 and s2 are transmitted via two different ciphersuits, and a
cryptographic hash function is applied to combine them together.

Finally, we argue that a proper model for the dual key exchange lies in between wMCCA and MCCA:
the attacker is allowed to compromise most of the ciphersuits, but there exist at least one ciphersuit that
remains secure; in the MCCA setting, this means for n different encryption schemes, the attacker is given
decryption oracles Oei for as many as n− 1 schemes.
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