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Abstract. Precomputation techniques are useful to improve real-
time performance of complex algorithms at the expense of extra
memory, and extra preparatory computations. This practice is ne-
glected especially in the embedded context where energy and mem-
ory space is limited. Instead, the embedded space favors the imme-
diate reduction of energy and memory footprint. However, the em-
bedded platforms of the future may be different from the traditional
ones. Energy-harvesting sensor nodes may extract virtually limit-
less energy from their surrounding, while at the same time they
are able to store more data at cheaper cost, thanks to Moore’s
law. Yet, minimizing the run-time energy and latency will still
be primary targets for today’s as well as future real-time embed-
ded systems. Another important challenge for the future systems
is to provide efficient public-key based solutions that can thwart
quantum-cryptanalysis. In this article, we address these two con-
cepts. We apply precomputation techniques on two post-quantum
digital signature schemes: hash-based and lattice-based digital sig-
natures. We first demonstrate that precomputation methods are
extensible to post-quantum cryptography and are applicable on cur-
rent energy-harvesting platforms. Then, we quantify its impact on
energy, execution time, and the overall system yield. The results
show that precomputation can improve the run-time latency and
energy consumption up to a factor of 82.7× and 11.8×, respectively.
Moreover, for a typical energy-harvesting profile, it can triple the
total number of generated signatures. We reveal that precompu-
tation enables very complex and even probabilistic algorithms to
achieve acceptable real-time performance on resource-constrained
platforms. Thus, it will expand the scope of post-quantum algo-
rithms to a broader range of platforms and applications.

Keywords: Precomputation, Post-Quantum Signatures, Hash-based
Signatures, Lattice-based Signatures, Energy Harvesting Platforms



1 Introduction

Digital signatures are arguably the most important public-key cryptographic
primitive. We rely heavily on these signatures to authenticate critical electronic
data such as identity information on e-passports, quantity, source, and destina-
tion of financial transactions, consumption amount and time of smart-meters,
and enterprise names on software distribution. Even tough these applications
use well-established standard tools like ECDSA and RSA on a daily basis, re-
cent advances in cryptanalysis and quantum-computers motivate new pillars for
the future of our digital security.

Traditional cryptography, and classic public-key cryptography in particu-
lar, faces an increasing risk at a catastrophic event because of improvements
in quantum computing architectures, and because of continuous progress in the
cryptanalysis of traditional public-key algorithms. Table 1 highlights the impact
of quantum algorithms on the security of fundamental cryptographic construc-
tions. Grover’s algorithm enables a fast database search and hence reduces the
security of an n-bit key to n/2-bits [23]. Likewise, quantum birthday attacks
reduce a collision search complexity from O(n/2) to O(n/3) [11]. While these
security reductions indicate that quantum computers will affect symmetric key
and hash-based constructions, we can still assure pre-quantum security levels by
simply doubling and tripling the key size and the hash output respectively. The
case for public-key encryption is much worse. Shor’s algorithm [45] can solve the
factorization and the (elliptic curve) discrete logarithm problem in polylogarith-
mic time [41]. Hence, we have to increase the key size exponentially which is
infeasible in practice. This is the main motivation of post-quantum public-key
constructions. We need practical public-key building blocks for the post-quantum
era.

Table 1. Security reductions of pre- and post-quantum era

Operation Hash Symmetric Key Public Key
Function Encryption Encryption

Standard SHA-2 AES ECC

Target Security n n n

Pre-Quantum
n/2 n n/2

Security

Post-Quantum
n/3 n/2 (logN)3

Security



1.1 Precomputation as an Emerging Topic in Cryptographic
Computing

In the post-quantum era, not only the security primitives will change but also
the paradigm of computing for the embedded systems. In this paper, we argue
that precomputation, an old practice that is typically overlooked in the em-
bedded domains, will be a re-trending phenomena for the emerging computing
systems. Precomputation in cryptography was previously proposed to acceler-
ate exponentiation or elliptic curve multiplication [29], [12], [44], [10]. A major
disadvantage of precomputation is that it usually requires more computation
(energy) and storage, two resources that are constrained in traditional embed-
ded systems. However, these assumptions are changing. The technology of flash
memory, the predominant storage unit of embedded domains, introduced 15 new
generations of products over the last 20 years, accumulating to a cost improve-
ment of 25,000× [26]. This trend will make the integration of more capable
storage units increasingly cheaper. On the other hand, although the Moore’s law
does not apply to the battery technologies, energy-harvesting platforms make
energy no longer a limited and monotonically decreasing concept.

Evidently, this is not the first research on energy optimization for harvesting
nodes. Previous work like Dewdrop [14] and DEOS [49] propose to relabel iter-
ative operations as atomic tasks and then to (dynamically) schedule them for
maximum computations with the available energy. In contrast, we leverage our
application specific expertise to transform algorithms into a set of divisible tasks.
This transformation enables optimizations like partial evaluation with energy-
aware partitions; the system precomputes and stores static values at energy-
friendly intervals, and minimizes the run-time energy and latency. Mementos
also divides the atomic operations but it aims to allocate checkpoints within
a task to quickly restart in case of power failure or energy depletion [42]. The
techniques we apply in this paper are orthogonal, they can be implemented on
top of the previous work.

Ateniese et al. makes similar claims on precomputation for wireless sensor
nodes implementing pre-quantum primitives like ECDSA [3]. They show that
a mote can precompute intermediate values when there is an (excess) energy
available and then use it to minimize the latency. We extend these method-
ologies for the post-quantum era. We show that two post-quantum signature
schemes, lattice-based and hash-based digital signatures can be accelerated by
precomputation techniques. Then, we quantify the savings of this methodology
in terms of latency, energy, and system yield.

1.2 Organization

The rest of the paper is organized as follows. Section 2 motivates an application
scenario and the benefits of partitioning the computational modes. Section 3
introduces the post-quantum digital signature schemes and the applied precom-
putation methods. Section 4 describes the target platform. Section 5 reports the
implementation results. Section 6 highlights related implementations and section
7 concludes the paper.



Fig. 1. The operations of a road tolling authentication system with digital signatures

Table 2. The asymmetry of the two computing devices

Computing Center of the cloud Edge of the cloud
device (Servers) (Portable embedded

nodes)

Operation Signature verification Signature generation
Platform High-end CPUs Simple microcontrollers
Rate 1000 verifications per min. 1 signing per hour
Optimization Throughput Latency

2 Post-Quantum World

In this section, we will conceptualize a scenario for the post-quantum era and
later argue why we consider precomputation as a very suitable optimization
methodology for these type of applications.

Figure 1 shows a road tolling system, a classic application of digital signatures
using embedded platforms. These systems authenticate motor vehicles as they
drive past a toll booth. The authentication protocol uses digital signatures. The
toll infrastructure sends a random challenge (Rc) and the on-board unit replies
with a digital signature on the challenge, identification attributes, and a time
stamp. The toll infrastructure collects and stores these signatures at fine grain
intervals (as the car passes by). At coarse grain intervals (eg. at the end of the
day), it transmits all signatures to the service provider which is responsible for
verifying the signatures and charging the associated users.

While most contemporary toll roads use a toll booth infrastructure, future
tolling mechanisms will require automatic real-time handling of traffic with min-
imal interruption of traffic flow. Moreover, the future cars could also incorporate
Vehicle-to-Infrastructure backbones which can enable a myriad of applications
[48]. Therefore, we claim that even if the security requirements and the em-



Fig. 2. Principle of operation for the offline phase (a) and the online phase (b)

bedded platforms of the future may change, generating signatures on-demand
with minimal latency and energy will still be of primary importance for many
applications.

Table 2 summarizes the differences of the computing devices for the target
scenario. The cloud server consists of a sea of high-end CPUs that can verify
thousands of signatures per minute. Operations within the cloud are streamlined
and the executions are optimized for throughput, to maximize the number of op-
erations per unit time. In contrast, the edge of the cloud is a portable embedded
node that is typically a low-end microcontroller. These nodes become rarely ac-
tive (eg. once per hour) but they are real-time, hence they are optimized for
latency, to minimize the execution time per signing.

2.1 The need for partitioning and precomputation

The nature of real-time applications allows partitioning computations into of-
fline and online phases. The offline phase refers to the workload that can be
handled before an operation request comes. In our context, it corresponds to all
computations that can be completed without full knowledge of the message to
sign; it includes operations like accumulating an entropy pool, generating keys,
selecting random numbers, and computing message independent variables. On-
line computations include all operations that have an immediate dependency on
the message. These operations appear with the real-time signing request. The
system then transitions to the online phase and quickly generates the output
with precomputed coupons.

Figure 2 shows the principle of operation for the monolithic case (Figure
2(a)) vs. a partitioned one (Figure 2(b)). Typically, the total execution time
of the monolithic mode (tmono) is shorter than the partitioned mode (toff +
ton), making it more suitable for throughput optimization. Therefore, the servers
usually follow a monolithic mode as they constantly execute a streamline of
operations. On the other hand, the embedded nodes can utilize the partitioning
to minimize the execution time if the operations are partitioned such that ton ≤
tmono. The total time of the offline phase toff is the time it takes to precompute
(tpre) and store (tstr) these variables. For simplicity, here we assume that the
execution of precomputation and storage are sequential but in practice they may



also be interleaved. We also assume that toff is not critical and the time between
two consecutive execution is long (tbtw ≥ 0). Indeed, under those assumptions,
the platform can seek energy-efficient solutions, either wait for a pre-configured
amount of harvested energy to start an uninterrupted execution [33] or start
precomputations when the system reached its maximum energy level[8].

3 Post-Quantum Signatures

Post-Quantum signatures are classified into four groups: hash-based signatures,
lattice-based signatures, code-based signatures and multivariate quadratic sig-
natures. In this section, we will give an overview of all these digital signature
schemes, but we will only investigate hash-based and lattice-based signatures in
more detail. All these signature schemes are promising candidates in the post-
quantum era, but the hash-based and the lattice-based signatures have relatively
slower execution time which we can accelerate with precomputation methods.

3.1 Hash-based Signatures

Hash-based constructions provide forward-secure signing schemes. Moreover, de-
pending on the underlying hash function, they can also be provably secure even
in the post-quantum era [32]. In this work, we implement the Winternitz one-
time signature (W-OTS) scheme defined as in [17]. Compared to Lamport-Diffie
signatures [30], Winternitz offers a trade-off between signature size (commu-
nication energy) and execution time (computation energy). We have used the
standard SHA-256 because it is fast and it provides 84-bits and 128-bits post-
quantum security of pre-image and collision resistance respectively. Any secure
hash function that has at least 256-bit outputs (eg. Keccak) can also replace the
SHA-256 in our implementation.

In the Winternitz signature scheme, one generates a hash chain Y = h(h(h(..h(X))))
with the secret key X and the public key Y . A signature of message µ is created
by selecting intermediate values on the hash chain using portions of µ. The veri-
fier can, using µ, check if those intermediate values indeed reveal the public key
Y at the end of the chain. The one-way character of the hash protects the secret
key. Hash-based signatures are one-time signatures, since disclosing hash chain
is equivalent to disclosing the secret key. In what follows, we derive a formal
definition of these operations.

The key idea behind the Winternitz is to sign ω-bit portions of the message
simultaneously. Hence, the Winternitz parameter ω ≥ 2 determines the trade-
off between the execution time and the signature size. The number of required
hash computations grow exponentially while the signature and key size reduce
linearly. The parameters t1, t2, and t of the Winternitz signature are defined as

t1 =
⌈n
ω

⌉
, t2 =

⌈
blog2 t1 + 1 + ωc

ω

⌉
, t = t1 + t2 (1)



The secret key X is t-blocks of 256-bit hash output values (xt−1, ..., x1, x0)
generated from a single random seed and the public key Y is t blocks of 256-bit
hash output values (yt−1, ..., y1, y0) generated using hash chains of 2w−1 length
where yi = h2

w−1(xi), 0 ≤ i ≤ t − 1. The scheme divides the message (or its
hash) into t1 blocks of ω-bits (bt−1, ..., bt−t1) and also computes the checksum of
t2 blocks of ω-bits (bt2−1, ..., b0). Then, depending on the values of these blocks
(from 0 to 2w−1), it calculates the signature σ (st−1, ..., s1, s0) with hash chains
ranging from 0 to 2w − 1 as

σ = (st−1, ..., s1, s0) = (hbt−1(xt−1), ..., hb1(x1), hb0(x0)) (2)

To verify the signature σ, one has to first use the message (or its hash)
to compute the values of t1 and t2 blocks of ω-bits (bt−1, ..., b0). Then, if the
signature is valid, applying the remaining hash chains of 2ω−1−bi (0 ≤ i ≤ t−1)
on the signature σ should reveal the public key Y (yt−1, ..., y1, y0).

Generating the secret and the public key requires t and t(2w − 1) hash com-
putations respectively. The number of hash operations required to compute the
signature depends on the message (or its hash) to be signed and is bounded with
[0,t(2w − 1)]. The length of the secret key, public key and the signature is t× n
bits.

Standalone hash-based constructions offer one-time signatures that can only
sign a single message. However, with Merkle trees [35] or Chaining, they can
be further extended into schemes that can sign multiple messages. Merkle trees
expand a one-time signature to a 2H -time signature by using a hash-tree of
height H. The root node of the hash-tree is a public value and the leaves are
the one-time signatures. Together with each signature, the signer also sends an
index value (≤ 2H) indicating the key position (leaf node), the path from the
root node corresponding to that index, and the one-time public key. The verifier
first checks if the index value is greater than the previous one and if the path is
correct. Then, it validates the one-time signature.

Chaining is simply including the next public key to the message to be signed.
One drawback of Chaining is that it enforces the verifier to validate signatures
in an order. We opt to implement Chaining instead of Merkle tree as they both
achieve similar signature size (even with the latest work on Merkle trees [13],
[27], [28]) while Chaining does not limit the number of signature generations for
a given device.

3.2 Applying Precomputation Methods for Hash-based Signatures

Precomputation can significantly accelerate the signature generation time of
hash-based signatures. The main idea behind this optimization is to store some
of the intermediate states of the hash chain during the offline phase and to start
the chain from the closest possible node during the online phase. There is an
obvious trade-off between the memory and the execution time of this operation.
If there is enough memory space, we could precompute and store all intermediate



Fig. 3. Precomputation of intermediate nodes for the Winternitz scheme

states of the hash chain. Then, the online phase simply becomes selecting and
loading the appropriate values from the memory.

Figure 3 illustrates an example scenario of how precomputation can accelerate
the signature generation. If we assume that the entire hash-chain is generated
online, then the computation of s[0], s[1], and s[t − 1] requires 1, 2ω−1 + 1,
and 2ω − 2 evaluations of the hash function respectively. If we precompute the
intermediate hash-chain step of h2

ω−1

, the number of evaluation steps for x[1]
and x[t−1] shortens to 1 and 2ω−1−2 respectively. The more intermediate steps
we store, the shorter the number of evaluation steps become on average.

Figure 4 highlights the operation flow of several modes (strategies) for two
consecutive hash-based signature executions. To compute the signature of a mes-
sage, we have to generate the one-time secret key (ski) for the current session
and the one-time public key (pki+1) for the next session (due to chaining). There-
fore, the required operations of a single execution are: generating one-time keys,
computing the signature of the message and the next public key, and transmit-
ting those values to the verifier. The generic flow (Figure 4(a)) does not store
any information between two consecutive runs. Hence, it recomputes the current
keys for every session. This can be omitted with an optimized execution (Figure
4(b)) in which the processor stores the secret key of the next session. Now, be-
fore generating a signature, the processor can load the precomputed secret key
and perform signing. Converting the monolithic execution mode to a partitioned
mode (Figure 4(c), (d)) further reduces the latency. In the partitioned mode,
the processor can precompute a number of one-time keys (say j keys) during
the offline phase and later use it for the future signature requests. The processor
can stay in the online phase as long as there is a precomputed key. Once the
system uses all precomputed keys, it has to return back to the offline phase. This
operation effectively removes the generation of the keys from the latency path,
resulting in a shorter execution time. Finally, we can apply the precomputation
of intermediate nodes (Figure 4(d)) to maximize the speed.



Fig. 4. Computation modes for (a) generic, (b) optimized, (c) partitioned, and (d)
partitioned-with-precomputing execution

As usual, precomputation comes with a memory overhead. For the mode (a)
it is enough just to store the root of the secret key which is 256-bits where as
mode (b) requires t× 256-bits of storage. As we precompute j secret and public
keys, mode (c) needs t × j × 256 × 2 amount of memory bits and if the system
utilizes pn precomputed node blocks, then the memory cost of mode (d) becomes
t× j × 256× (2 + pn)-bits.

3.3 Lattice-based Signatures

The family of lattice-based signatures is another promising group of candidates
in the post-quantum era. Currently, lattice-based signatures that utilize Fiat-
Shamir paradigm [21] yields the most efficient constructions. These constructions
first introduce an identification scheme and then transform it to signatures.

The main challenge of lattice-based signatures is to minimize the signature
size as well as public and secret keys. Figure 5 illustrates recent work on practical
lattice-based digital signature schemes using the Fiat-Shamir transformation.
Lyubashevski et al. proposed the majority of the body of work in this field and
hence we will refer these schemes as Lyubashevski-like constructions. The figure
shows that over a couple of years, using several optimization techniques such as,
matrix to polynomial reduction [31], changing the basis of lattice problems [47],
optimizing the parameter set [24], compression [24], [6], [5], and more efficient
sampling [18] reduced the signature size down to 5Kb. This size will probably
even become smaller in the future as there is currently no theoretical limit on
how small they eventually be.



Fig. 5. Practical Lattice-based Digital Signature Schemes

In this paper, we will focus on the basic signature scheme presented in [24]
due to its conceptual simplicity and reasonable signature size. However, the op-
timization methods that we propose apply to all Lyubashevski-like constructions
and we can extrapolate our results to other lattice-based signature schemes as
well.

Algorithm 1 The basic signature scheme of [24]

1: procedure Key Generation(a, s1, s2, t)

2: s1, s2 ← rand(Rpn

1 )
3: a← rand(Rpn)
4: t← as1 + s2
5: end procedure
6: procedure Signing(s1, s2, µ, z1, z2, c)

7: y1, y2 ← rand(Rpn

k )
8: c← H(ay1 + y2, µ)
9: z1 ← s1c+ y1, z2 ← s2c+ y2

10: if z1 or z2 6∈ Rpn

k−32 go to step 7
11: end procedure
12: procedure Verification(z1, z2, c, µ, t,)
13: Validate iff
14: z1, z2 ∈ Rpn

k−32

15: c = H(az1 + z2 + tc, µ)
16: end procedure

The listing in 1 presents the basic signature scheme of Güneysu et al. [24]. We
have implemented this signature scheme with the parameter Set I. All elements
except the message µ are defined as polynomials of degree n and the coefficients
of these polynomials are modulo p. The underlying operations of the signature



Fig. 6. Monolithic (a) and the partitioned (b) computation modes for the GLP signa-
ture scheme

scheme are picking uniformly random polynomials (rand()), polynomial multi-
plication, polynomial addition, and hashing (H).

Key Generation consists of picking the secret key s1, s2 with small coeffi-
cients (either -1,0 or 1), setting a parameter a, and generating the public key
t. Then, the signer uses the unique masking polynomials y1, y2 and generates
the nonce ay1 + y2. This value is concatenated with the message µ and hashed.
Now, the signature z1 and z2 can be generated using the secret key s1, s2, the
output of the hash (c) and the masking polynomials. If the coefficients of z1
and z2 are not bounded with (−k,+k), the signing process has to restart by
picking another two masking polynomials. V erification starts with checking if
the coefficients of the signature polynomials are bounded accordingly. Then, to
validate a signature, the verifier can check if the equation c = H(az1 +z2 + tc, µ)
holds.

3.4 Applying Precomputation Methods for Lattice-based Signatures

There are two different types of precomputation methods for lattice-based signa-
tures. The first one refers to an arithmetic trick on the multiplicative operands
during the Number Theoretic Transform (NTT) [2]. The previous work reports
the effects of generating these operands on-the-fly vs. precomputing them on re-
configurable hardware [4]. In this work, we study its effects on microcontrollers.
We will also discuss another precomputation method that requires latency-
optimized algorithmic transformation for a partitioned execution.

Figure 6 illustrates the operation flow of monolithic (a) and partitioned ex-
ecution (b). To generate the signature, the monolithic execution first processes
all steps of the signature scheme such as picking masking polynomials (y1,y2),
calculating nonce values (init), hashing the output (c), and generating the sig-
nature candidate (z1,z2). Then, it checks if the candidate is valid and repeats the
same process if necessary. In contrast, the partitioned execution selects a num-
ber of masking polynomials (yi1,yi2), then it computes and stores multiple nonce



values. These coupons are used to create the signature during the online phase.
If all attempts fail to generate a single valid signature, the signer has to start
all over and compute new coupons. However, given enough memory space to
store coupons, the probability of failure becomes arbitrarily small. The partition
is especially useful for our application scenario because it outsources the most
complicated operation, NTT-based multiplication of ay1, to the offline phase.
The online phase operations consist of simple operations like hash, sparse poly-
nomial multiplication of sc1, polynomial addition, and coefficient comparison.

3.5 Other Signature Schemes

Code-based and multivariate quadratic (MQ) signature schemes can also be used
in the post-quantum era. Code-based McEllice encryptions follow the equation
x = mG⊕ e. The public key is the generator matrix G of a t-bit error correcting
code that encodes the message m and generates the signature x by adding a
t-bit error vector e. The decoding process computes the syndrome s as s = Hxt

using the secret parity matrix H. Then, the message can be recovered with
bit-flipping algorithms [22] or using more complex decoding techniques [7]. The
nature of the coding algorithms makes this family of crypto-systems very suit-
able for the application scenario; encoding is typically a simple process while
decoding is much more complex. However, they do not additionally accelerate
with precomputation as all the operations have dependency on the input mes-
sage. Currently, the most efficient and secure code-based encryption method is
a McEllice-based construction with a Quasi-Cyclic (QC) Moderate Density Par-
ity Check (MDPC) code using 4801-bits of public and secret keys [36]. Recent
work shows that encryption with QC-MDPC codes takes 42 ms on an ARM
Cortex-M4 microcontroller [34]. The McEllice-based public key encryption can
be transformed to a digital signature [15] but such an implementation utilizing
the QC-MDPC is not available yet.

MQ signatures also have a fast signature generation rate. F is m quadratic
polynomials of n variables, referred to as central map. The polynomials of F
are chosen to make it easily invertible. However, the public key P is a hard-to-
invert mapping computed as P = T ◦ F ◦G where T and G are two additional
maps that obfuscates the structure of F . The secret keys are T , F , and G.
To sign a message m, we evaluate it respectively over T−1, F−1, and G−1.
Hence, these operations depend on m and can not be precomputed without
the full knowledge of the input message. Verification is done by checking if the
evaluation holds over P . Typically, MQ signature generation and the verification
is fast, but the public key sizes are impractical (over hundred KB). Recent work
on MQ signature scheme reduces the public key size significantly to 9kB[38].
On an ATxMega128a1 microcontroller clocked at 32MHz, it takes 110.20 ms to
compute such a signature [16]. However, one should approach these constructions
with caution as previous optimizations with similar features have a track record
of successful cryptanalysis [20], [46].



Fig. 7. The block diagram of the research platform

4 Platform

In this work, we used our research prototype with energy harvesting and mea-
surement capabilities. This section gives a brief overview but we refer the in-
terested readers to [37] for a detailed description of our complete setup. Figure
7 shows a block diagram of the building blocks of our system. A Photovoltaic
cell converts the energy from photons into electricity and transmits it to the
Anagear ANG 1010 energy-harvesting board. Attached to the Anagear, a low-
leakage supercapacitor can accumulate an energy-level up to 710 mJ. This energy
can activate the main processing unit of the system, a low-power 16-bit MSP
microprocessor with 16KBs of SRAM and 128 KBs of Flash memory that ex-
ecutes the digital signature schemes. The RF Frontend of the system (CC2500
transceiver of Texas Instruments) also uses the harvested energy and it can send
the signatures with 64-byte packets. The MSP microprocessor is also responsi-
ble to send trigger signals to the measurement unit, an OpenADC board with a
Spartan-3 FPGA that can measure the energy consumption of both computation
and communication with a high-precision.

5 Implementation Results

We used the C programming language to implement the digital signature schemes.
We compiled the software codes with the gcc 4.6.3 cross compiler with an
optimization level of O2 that minimizes the code size. The processor runs at 10
MHz and does not utilize a hardware multiplier. We used the RELIC 0.3.3 li-
brary [1] to realize the hash primitive and select the SHA-256 hash function as it
provides an acceptable level of collision resistance (84-bits) in the post-quantum
era. Even though the software-efficiency can potentially be improved with assem-
bly level programming, we aim to show the relative savings of precomputation
and argue that it will be similar also on an optimized implementation.

Here we summarize our conclusions from the implementation result. We de-
rive these observations using our platform and the calibration factors of the
results are depending on the experimental setup.



– Communication requires more energy per unit time than computation

– Precomputation can reduce the latency and the run-time energy consump-
tion by an order of magnitude

– GLP is faster and requires less energy than Winternitz

– The parameter ω can be selected to optimize either execution time or energy-
efficiency

– Post-Quantum signatures have comparable time/energy results with pre-
quantum signatures

– Proposed methods extend the operation hours of the system and increase
the number of signature generations for a given energy level

5.1 Impact of Proposed Methods on Single Executions

Figures 8 and 9 report the energy consumption and the execution time of the
post-quantum signature schemes. The results separately show the costs of offline
operations, online operations, and the signature transmission. For hash-based
signatures, the run-time energy and the latency of the monolithic mode (strategy
(b) in Section 3.2) is equal to the sum of all these operations where as the
partitioned modes (strategy (c), and (d) in Section 3.2) do not include the offline
phase. pre = 7, pre = 3, pre = 1, and pre = 0 correspond to chains with 7, 3,
1, and 0 precomputed nodes respectively (ommitting the first node, secret key).
Ideally, we would like to store the complete hash chain but the size of the SRAM
is 16KB and it can not contain more than 7 precomputed nodes for ω = 8 and
3 precomputed nodes for ω = 4. For ω = 8 (resp., ω = 4), the total run-time
energy of strategy (b), (c), and (d) is 100.69 mJ (resp., 20.86 mJ), 32.16 mJ
(resp., 12.05 mJ), and 8.5 mJ (resp., 9.54 mJ). The latency of these strategies
are 52.29 s (resp., 6.98 s), 15.53 s (resp., 2.15 s), and 2.22 s (resp., 0.69 s).

Fig. 8. The energy consumption measurements of signature schemes



Fig. 9. The execution time measurements of signature schemes

As expected, the communication energy reduces linearly while the computa-
tion energy grows exponentially with ω. Likewise, the execution time and the
energy of the online phase scales down linearly with the increase in the precom-
puted nodes. The experiments also reveal that the extra operations of strategy
(d), which is storing intermediate nodes of the hash chains, require minimal
calculations (approximately %1 increase) during the offline phase. Hence, we
conclude that the cost of precomputation is marginal especially compared to its
saving and given more memory space, the precomputation can further reduce
the execution time and the energy of the online phase.

For lattice-based signatures, the run-time energy and latency of the parti-
tioned execution does not include the offline phase, where as the monolithic
execution involve all these operations. The energy consumption of the offline
phase depends largely on how we perform the NTT operation. The naive imple-
mentation computes the powers of multiplicative operands of NTT from scratch
at each iteration while the on-the-fly configuration uses the outer-loop iteration
trick in [2]. Offline table refers to computing and storing all required powers of
the multiplicative operands during design-time, and later loading the appropri-
ate values during NTT [40]. Even with an optimization of 6×, the offline phase
of GLP signature requires a significant amount of energy and the execution time
is several seconds. In contrast, the system can quickly calculate the online phase
which brings a further optimization of 27×, making the total latency 230 ms.
Likewise, the run-time energy drops down to 4.63 mJ. Note that the results show
the computation of one signature candidate, the average number of trials depends
on the parameter set. The parameters that we use requires a repetition rate of 7
on average but this number reduces to 1.6 with more recent constructions [18].

Table 3 summarizes the impact of the proposed methods for signature gen-
eration. On our experimental setup, generating and transmitting a signature
candidate using GLP requires a minimum of 4.63 mJ and 0.23 s whereas it takes



Table 3. The best cases for the signature generations

Signature GLP Winternitz Winternitz
Scheme ω = 8 ω = 4

Optimizations Precomp. Operands Precomp. Chain Nodes
Off/on partition Off/on partition

Offline phase
6.82/3.15 68.53/36.76 8.81/4.83

(mJ/s)
Online phase

0.25/0.10 3.84/2.09 0.77/0.42
(mJ/s)
Transmission

4.38/0.13 4.66/0.13 8.77/0.27
(mJ/s)
Online Total

4.63/0.23 8.5/2.22 9.54/0.69
(mJ/s)

8.5 mJ and 0.69 s with the best cases of Winternitz. With the available mem-
ory and the transmission infrastructure, hash-based signatures with ω = 8 is
more energy-efficient while ω = 4 has a lower latency. BLISS improvements over
GLP signatures enable a reduction in transmission energy/time while moving
to a more sophisticated microprocessor enable a reduction in transmission and
computation energy/time of Winternitz. Since a monolithic ECDSA signature
operation takes 91 mJ and 12.5 s to compute on the same platform[37], we can
conclude that post-quantum signatures are quite competitive, if not better suited
for real-time applications with energy constraints.

5.2 Impact of the Proposed Methods on the System

Apart from latency and run-time energy optimizations of online operations with
the precomputed coupons, we observed two advantages of using the precompu-
tation with partitioned execution modes. First, it extends the availability of the
system. Second, it provides more service (more signature) for the given energy
level. In the remainder of this section, we will describe how we arrived to these
conclusions.

The energy accumulated by the system depends on many factors such as the
quality and the size of the photovoltaic cell and the supercapacitor, the geo-
location of the board and its relative position to the light sources, the timing of
the sunrise/sunset, and the weather condition. Therefore, rather than reporting
our ad-hoc results, we refer to the typical energy levels detailed in [8]. Figure
10 shows these results extrapolated onto our setup. The supercapacitor reaches
its maximum energy level at 12PM on the first day until the light intensity
diminishes at 07.30PM. Since the system can not store more energy during this
interval, the excess energy is wasted unless we spend it. The precomputation
operations of the offline phase is an ideal candidate to consume energy during
this period.



Fig. 10. The typical energy levels on the supercapacitor for two consecutive days (ex-
trapolated from [8])

Fig. 11. Energy of the system vs. the total number of computable signatures for (a)
hash-based and (b) lattice-based signatures



Next, we investigate how different approaches utilize the excess energy and
the impact of offline/online partitioning on the system output. Figure 11 quan-
tifies the energy-efficiency of the precomputation for hash-based (with ω = 8)
and lattice-based signatures respectively. These plots reflect the potentials of the
system right after 7.30PM on the first day until the next excess energy interval
occurs. The x-axis represents the energy level of the supercapacitor from 0 to
the maximum energy level of 710 mJ and the y-axis shows the total number of
signatures that system can generate for the corresponding energy level. For an
excess energy of 823 mJ, the processor can perform the precomputation opera-
tions of 12 hash-based signatures. Hence, the strategy (d) and (c) (see Section
3.2 for an overview of these strategies) require significantly less energy to com-
pute the first 12 signatures. Then, strategy (b) and (c) become equivalent but
(d) still requires less energy to perform a signature due to its precomputation
of the intermediate nodes. ∆s corresponds to the difference of signature gener-
ation capability between different strategies. From these results we can clearly
observe the effect of our optimization methods and deduce that its impact is
much more important for critical energy levels. For example, if a burst signing
request comes when the energy level is 100 mJ, the strategy (d), (c), and (b)
can generate 11, 3, and 0 signatures respectively. This also shows that there are
certain times (energy intervals) where the system can only generate a signature
using an optimized strategy.

The energy required for lattice-based signatures (Figure 11 (b)) is much lower
than its hash-based counterpart. The excess energy enables to precompute nec-
essary values for the next 71 signatures, but the available memory space can only
store 60 of them. Therefore, after the 60th generation, it takes more energy to
compute next signatures. For critical energy levels (eg. 100 mJ) the partitioned
execution makes a significant improvement on the signature generation capabil-
ity. However, maximum difference of 36 occurs around moderate energy levels
following the 60th generation and it remains fixed for the remainder of the energy
spectrum. Note that, this implementation uses an Offline table precomputation
method, and it shows the signature candidate generation.

6 Related Work

There have been several implementations of post-quantum digital signatures.
However, most of them are optimized for execution time, do not quantify the
impact on energy, and none have the notion of precomputation with the of-
fline/online phases. Güneysu et al. introduced the GLP signatures in [24] and
report a baseline implementation on FPGAs. Then, it was optimized towards ex-
ecution time with assembly level coding for high-end multiprocessors [25] and to
lightweight microcontrollers [34], [9]. Recently, Pöppellmann proposed an FPGA
implementation of BLISS which is an improved version of the GLP signature
scheme [39]. On the other hand, hash-based signatures first implemented by Ro-
hde et al. for constrained devices [43]. Then, several work proposed improved
Winternitz and Merkle-tree constructions to reduce the execution time [19], [28].



Yet, the signing process (including the key generation) still is at the order of sec-
onds.

7 Conclusions

Together with security assumptions, the principles of embedded systems may also
change in time. This calls a rethinking of the design and optimization methodolo-
gies. In this paper, we investigated precomputation with partitioned execution
modes as a potential optimization technique for post-quantum digital signatures.
We later provided two proof-of-concept digital signature implementations utiliz-
ing these optimizations. We proved that today’s embedded research platforms
can effectively employ precomputation methodologies. We first showed that pre-
computation can save significant run-time energy and bring the execution time
down to milliseconds range. Then, we highlight its impact on the overall system
and demonstrate that it can increase the total number of signature computations
for a typical use-case. Hence, we argue that in the emerging era of post-quantum
real-time embedded systems, such optimizations will play a significant role. Pre-
computation methods will enable an improved real-time security with faster
signatures and will provide energy-efficient solutions towards a greener future.
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