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Abstract. A new lightweight stream cipher, Sprout, has been presented
at FSE 2015. The main concern in the design philosophy of the cipher
is to decrease the internal state size without compromising the security
against Time-Memory-Data (TMD) tradeoff attacks. In this work, we
have mounted a TMD tradeoff attack to Sprout using 2d output bits in
271.7−d encryptions of Sprout along with 2d table lookups. The memory
complexity is 285−d where d ≤ 40. In one instance, it is possible to
recover the key in faster than 233 encryption time if we have 240 bits of
keystream output by using tables of 770 Terabytes in total. The offline
phase of preparing the tables consists of solving roughly 242 system of
linear equations with 20 unknowns.

1 Introduction

One of the main design principal for stream ciphers is that internal state size
should be at least twice as large as the key size. Otherwise it is possible to
mount Time-Memory-Data (TMD) tradeoff attacks [4, 12, 7, 6, 17]. This design
principal makes lightweight stream cipher design more challenging. Indeed, we
do not see so much examples of lightweight stream cipher designs after the
most popular lightweight stream cipher designs such as Trivium [10], Mickey
[5] or Grain [1, 14, 16, 15] of the eSTREAM project. However, there have been
several lightweight block cipher designs appeared in the literature recently such
as Present [8], ITUBee [18], Lblock [22], Prince [9], Ktantan [11], Twine [21] and
many more.

One contrary example of this common tendency may be considered as the
new stream cipher design Sprout presented in FSE 2015 [2, 3] by Armknecht and
Mikhalev. The cipher makes use of a variable internal state of only 80 bits and
a fixed key of 80 bits as well. The authors show that a cipher design such as
Sprout is resistant to classical TMD tradeoff attacks even though its (variable)
internal state size is less then twice the key size.

Even though Sprout is a very recent cipher presented at FSE 2015, there have
been couple of its analysis instantly appeared on the net. The first attack paper
is by Lallemand and Naya-Plasencia and they have a claim that it is possible to
recover the key with a time complexity equivalent to exhaustive search of roughly



270 attempts by merging the sets of possible LFSRs and NLFSRs by carefully
sieving [19]. Indeed, the actual workload is 274.51 steps but since each step costs
2−5.64 trial in exhaustive search, the overall time complexity is finalized as 269.36.
The memory complexity for leading the values for the registers is 246.

In another analysis, Maitra et. al. show that when the whole (variable) inter-
nal state is known, the key can be found using a SAT solver [20]. Indeed, only a
few number of terms in the system of nonlinear equations with unknown key bits
generated from the output appear and hence the system is easy to solve. This
is demonstrated on a PC and shown that it is possible to solve the system with
roughly 900 keystream bits in less than half second on an ordinary PC. Moreover,
the authors show that it is still possible to solve the system even though two
third of LFSR bits is also unknown. However, solving the system takes around
one minute this time. Hence, guessing the variables of whole NLFSR and one
third of the variables of LFSR and then solving all the corresponding 254 systems
of equations, it is possible to recover the key. On the other hand, the authors do
not compare the time complexity of solving 254 equations with that of exhaustive
search. Moreover, they mount a fault attack.

In [13], a related-key chosen-IV distinguisher is shown. However, the designers
of the Sprout regard related-key attacks as out of scope since the key is assumed
to be fixed.
Our Contribution: We present a new cryptanalysis of full Sprout within the
practical bounds where all data, memory and time complexities can be upper-
bounded by 245. We first show that when the internal state is known (exclud-
ing the key), it is much easier to obtain the secret key when the cipher is run
backwards compared to running the cipher forward. Later, guessing the inter-
nal states from the keystream bits is described based on a time-memory-data
tradeoff approach. For the key-recovery part, our attack is based on both guess-
and-determine and divide-and-conquer approach.
Organization of the paper: Section 2 describes the inner workings of Sprout.
In Section 3, we show how to efficiently recover the secret key when the (variable)
internal state of Sprout is known. Section 4 introduces a TMD tradeoff approach
to deal with filling the internal state and checking its validity. We later provide
the complexity analysis of our attack and conclude the paper with some remarks
in Section 5.

2 Description of Sprout

Sprout [2, 3] is a lightweight stream cipher inspired from Grain family [1, 14, 16,
15]. The (variable) internal state of Sprout consist of an LFSR and an NLFSR,
and there is also a fixed key that is used in the state update function. The sizes
of LFSR and NLFSR are 40-bits each and the key length is 80-bits. An IV of
size 70-bits is also incorporated during the initialization phase. The feedback
functions of NLFSR and LFSR and the nonlinear part of the output function
are denoted by g, f and h respectively (See Figure 2). We follow the notations
below throughout the paper.



– t - the clock-cycle number

– ⊕ - the XOR operation

– Lt := (lt0, l
t
1, . . . , l

t
39) - state of the LFSR at clock-cycle t

– Nt := (nt0, n
t
1, . . . , n

t
39) - state of the NLFSR at clock-cycle t

– Ct := (ct0, c
t
1, . . . , c

t
8) - state of the counter at clock-cycle t

– K := (k0, k1, . . . , k79) - the fixed key

– IV := (iv0, iv1, . . . , iv69) - the initialization vector

– k∗t - the round key bit generated during clock t

– nt - the output bit of NLFSR during clock t

– lt - the output bit of LFSR during clock t

– zt - the keystream bit generated during clock t

– RKF - Round Key Function

A 9-bit counter is used in the algorithm to count the number rounds for the
initialization phase (which has 320 rounds). After initialization, its first seven
bits are used to determine the index of the key bit selected at the current clock-
cycle. Moreover, 4th bit of the counter ct4 is involved in the NLFSR feedback.

The characteristic polynomial of the LFSR, P (x), is given as

P (x) = x40 ⊕ x35 ⊕ x25 ⊕ x20 ⊕ x15 ⊕ x6 ⊕ 1

Hence, lt+1
39 = f(Lt) = lt0⊕ lt5⊕ lt15⊕ lt20⊕ lt25⊕ lt34 and lt+1

i = lti+1 for 0 ≤ i ≤ 38.
We would like to note that the designers does not specify f explicitly in [2, 3].
So, f(Lt) = lt0⊕ lt6⊕ lt15⊕ lt20⊕ lt25⊕ lt35 may also be inferred. However, our attack
works analogously in that case as well.

The function g is the nonlinear feedback function for the NLFSR. Its output
is XORed with the round key bit k∗t , the counter bit ct4 and the output of the
LFSR lt = lt0. So, the feedback of the NLFSR nt+1

39 is given as follows:

nt+1
39 = g(Nt)⊕ k∗t ⊕ lt0 ⊕ ct4

= k∗t ⊕ lt0 ⊕ ct4 ⊕ nt0 ⊕ nt13 ⊕ nt19 ⊕ nt35 ⊕ nt39 ⊕ nt2nt25
⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14nt21 ⊕ nt16nt18 ⊕ nt22nt24 ⊕ nt26nt32
⊕ nt33nt36nt37nt38 ⊕ nt10nt11nt12 ⊕ nt27nt30nt31

where

k∗t = kt, 0 ≤ t ≤ 79

k∗t = kt mod 80 · (lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29)

We will define δt := lt4 ⊕ lt21 ⊕ lt37 ⊕ nt9 ⊕ nt20 ⊕ nt29.



Once the internal state is determined for clock-cycle t, the keystream bit zt is
generated as follows:

zt = h(x)⊕ lt30 ⊕ nt1 ⊕ nt6 ⊕ nt15 ⊕ nt17 ⊕ nt23 ⊕ nt28 ⊕ nt34
= nt4l

t
6 ⊕ lt8lt10 ⊕ lt32lt17 ⊕ lt19lt23 ⊕ nt4lt32nt38

⊕ lt30 ⊕ nt1 ⊕ nt6 ⊕ nt15 ⊕ nt17 ⊕ nt23 ⊕ nt28 ⊕ nt34

l
l

l
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Initialization phase: The feedback registers are initialized as follows:

ni = ivi, for 0 ≤ i ≤ 39
li = iv40+i, for 0 ≤ i ≤ 29
li = 1, for 30 ≤ i ≤ 38
l39 = 0

After filling the registers, the cipher is run 320 clocks without producing keystream
while the output zt is fed back into both feedback registers such that lt+1

39 =
zt ⊕ f(Lt) and nt+1

39 = zt ⊕ k∗t ⊕ lt0 ⊕ ct4 ⊕ g(Nt). The keystream generator starts
generating the keystream after the initialization phase.

The designers of Sprout suggest to generate up to 240 keystream bits with one
(key, IV) pair.
Workload of exhaustive search: To exhaustively search a key, one has to run
the initialization phase first (320 clocks), and then generate 80-bits of keystream



for a unique match. However, since each keystream bit generated matches the
correct one with probability 1

2 , 280 keys are tried for 1 clock and roughly half
of them are eliminated, 279 for 2 clocks and half of the remaining keys are
eliminated, and so on. Hence, the average number of clocks per one trial among
280 keys is

79∑
i=0

(i+ 1)280−i

280
=

79∑
i=0

(i+ 1)
1

2i
≈ 4

As a result, we will assume that clocking the registers once will cost roughly
1

324 ≈ 2−8.34 encryptions.

3 A Key Recovery Attack

Observe that Sprout’s next state function is invertible. So, once we obtain the
whole state (including the key), we can clock the internal states of the cipher
forward and backwards, as well. So, it is straightforward to recover the internal
state at clock-cycle t from the internal state at clock-cycle t+1. We first decrease
the counter. Then, for the LFSR feedback, we have

lt0 = lt+1
39 ⊕ lt5 ⊕ lt15 ⊕ lt20 ⊕ lt25 ⊕ lt34

= lt+1
39 ⊕ l

t+1
4 ⊕ lt+1

14 ⊕ l
t+1
19 ⊕ l

t+1
24 ⊕ l

t+1
33 (1)

and lti+1 = lt+1
i for 0 ≤ i ≤ 38. For the NLFSR feedback, we have

nt0 = k∗t ⊕ lt0 ⊕ ct4 ⊕ nt+1
39 ⊕ nt13 ⊕ nt19 ⊕ nt35 ⊕ nt39 ⊕ nt2nt25

⊕ nt3nt5 ⊕ nt7nt8 ⊕ nt14nt21 ⊕ nt16nt18 ⊕ nt22nt24 ⊕ nt26nt32
⊕ nt33nt36nt37nt38 ⊕ nt10nt11nt12 ⊕ nt27nt30nt31
= k∗t ⊕ ct4 ⊕ lt+1

39 ⊕ l
t+1
4 ⊕ lt+1

14 ⊕ l
t+1
19 ⊕ l

t+1
24 ⊕ l

t+1
33

⊕ nt+1
39 ⊕ n

t+1
12 ⊕ n

t+1
18 ⊕ n

t+1
34 ⊕ n

t+1
38 ⊕ n

t+1
1 nt+1

24

⊕ nt+1
2 nt+1

4 ⊕ nt+1
6 nt+1

7 ⊕ nt+1
13 nt+1

20 ⊕ n
t+1
15 nt+1

17 ⊕ n
t+1
21 nt+1

23 ⊕ n
t+1
25 nt+1

31

⊕ nt+1
32 nt+1

35 nt+1
36 nt+1

37 ⊕ n
t+1
9 nt+1

10 nt+1
11 ⊕ n

t+1
26 nt+1

29 nt+1
30 (2)

where

k∗t = kt, 0 ≤ t ≤ 79

k∗t = kt mod 80 · (lt+1
3 ⊕ lt+1

20 ⊕ l
t+1
36 ⊕ n

t+1
8 ⊕ nt+1

19 ⊕ n
t+1
28 )

and nti+1 = nt+1
i for 0 ≤ i ≤ 38.

Now, we can generate the keystream zt while the index t is decreasing.
Maitra et al. has shown in their recent paper that it is possible to recover the

key once the (variable) internal state is known by solving a system of nonlinear



equations by a SAT Solver in less than half second on a single PC, using roughly
900 bits of keystream sequence [20]. We have a similar problem indeed: We
make a guess for the internal state and then, we just do not want to determine
the key from the internal state but also we would like to check if our guess is
correct simultaneously without recovering the whole set of the key bits. The
simple observation belove gives us a much faster key recovery and internal state
checking mechanism. Indeed, we do not need to solve a system of nonlinear
equations. The following property suggests that recovering key from the internal
state and output is much easier if we trace backwards through the registers.

Proposition 1. Assume that at time t+ 1, we know the internal states of both
registers, but the whole key is unknown and that δt = 1. While clocking the
registers backwards, when a key bit appears in the keystream for the first time,
it will appear as a single unknown inside nt−11 in the keystream bit zt−1. This
happens before the key bit is incorporated into the feedback of NLFSR through
the g function.

The proof of Proposition 1 is straightforward. Assume that while the cipher is
run backwards, at some clock-cycle t+1, we guess the value of the whole internal
state (excluding the key) and δt = 1. One clock later, nt0 becomes a term of the
form ki ⊕ a where a is a known value obtained from the NLFSR feedback and
the counter. Now, at time t, nt0 is not incorporated into the NLFSR feedback
function. Thus, ki ⊕ a shifts to the position nt−11 and nt−10 does not depend
on ki (it may depend on another key bit but that is not important). Now, at
time t − 1, we know all the values except for nt−10 and nt−11 = ki ⊕ a. But,
nt−10 is not involved in the output function. So, we can easily determine ki as
ki = zt−1 ⊕ a⊕ a′ where a′ is a known value coming from the tap points of the
output function.

As a result, when we make a guess for the registers, at each clock, we will
either have opportunity to check if the keystream bit we generate matches the
corresponding output bit, or a key bit will appear as a single unknown and we
will determine the key bit from the output. Hence, if the state candidate does
not yield a contradiction, we again end up with registers that are completely
known except maybe for the first bit nt0 of NLFSR. However, if a key bit is
involved in that term, it will be determined one clock later before going into the
feedback. To sum up, continuing the procedure recursively, either we recover a
single key bit or we have a check bit for each clock. Let us illustrate this with a
simple example.

Example 1. Assume that at time t+ 1 we know the whole internal state but the
secret key and let δt = δt−1 = δt−2 = 1 and δt−3 = 0. Let k0, k1, k2 and k3
be the key bits selected in given order. In Table 1, we show how the values of
NLFSR bits and keystream bits proceed.



Clock-cycle δi ni
0 ni

1 ni
2 ni

3 · · · ni
39 zi D/C

i = t+ 1 - X X X X X X X C

i = t 1 k0 ⊕X X X X X X X C

i = t− 1 1 k1 ⊕X k0 ⊕X X X X X k0 ⊕X D(k0)

i = t− 2 1 k2 ⊕X k1 ⊕X X X X X k1 ⊕X D(k1)

i = t− 3 0 X k2 ⊕X X X X X k2 ⊕X D(k2)

i = t− 4 - X X X X X X X C

Table 1. Xdenotes a known value, D(ki) determining the value of ki and C is a check
if the keystream bit generated matches the actual one.

The probability that a key bit does not appear in the output for p blocks of
length 80 bits is 2−p. Hence, after roughly 160 clocks, 60 different key bits will
appear in the output and will thus be determined. The time complexity of re-
covering roughly 60 bits of the key for a correct guess of internal state is almost
160 clocks of Sprout. The remaining 20 bits can be recovered by searching ex-
haustively. On the other hand, the probability that a guess for an internal state
survives for 2r clocks is 2−r. On average for each 2 clocks, half of the possible
guesses will be eliminated. So, the average number of clocks for each elimination
among 2s possible guesses is

s∑
i=0

2(i+ 1)2s−i

2s
=

s∑
i=0

(i+ 1)
1

2i−1
≈ 8 for 21 ≤ s ≤ 40.

4 A Time-Memory-Data Tradeoff Attack

Recall that to treat the bits of the registers as a sequence, we denote lt+i+j :=

lt+j
i and nt+i+j := nt+j

i . We mount an attack on Sprout by using 2d data with
a time complexity of 280−d steps where d ≤ 40. We make use of memory also,
having roughly 285−d entries. The attack scenario is simple. Assume that δt is
zero for consecutive d clocks. That is, the key bits are not incorporated into the
NLFSR during d consecutive clocks: t−9, t−8, . . . , t+d−10. Then we can make
a guess to the internal state at time t and then check if the guess is correct and
the condition is satisfied since we can produce d bits of outputs without knowing
any key bit.

Assuming that δt−9 = δt−8 = · · · = δt+d−10 = 0 we get the following d linear
equations of the internal state bits.



lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+d−6 ⊕ lt+d+11 ⊕ lt+d+27 ⊕ nt+d−1 ⊕ nt+d+10 ⊕ nt+d+19 = 0

If d ≤ 20 then we have d linear equations with at most 80 unknowns. Note
that we can write an LFSR feedback as a linear equation without adding new
unknowns. So, we simply exclude both the linear equations and new unknowns
coming from LFSR feedback. However, if d > 20 then the new unknowns from
the feedback of the NLFSR will appear with some nonlinear equations. The new
equations coming from the feedback are

ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+d−21
4 ⊕ lt+d−21 ⊕ nt+d+19 ⊕ g(Nt+d−21) = 0,

which are adding d − 20 more equations with d − 20 new unknowns nt+40,. . .,
nt+d+19. We have 2d−20 equations with 60+d unknowns. We see that by guessing
most appropriate 80 − d unknowns, we mostly come up with a 2d − 20 linear
equations with 2d−20 unknowns. Solving the linear system for each counter set,
we can determine 2d − 20 unknown bit. That is, we can determine the whole
internal state. Then we can produce the output up to d+ 3 bits for all possible
counter combinations. See Section 4.1 for solving the system of equations in the
most extreme case.

Let us store all the guessed internal states where δt = 0 for d consecutive
clocks with their outputs up to d+ 3 bits for each counter, sorted according to
the outputs. Note that, we can generate keystream bits zt−10, zt, . . . , zt+d−8 due
to the fact that the output is not affected by the most and the least significant
taps of the NLFSR.

We need 32 tables having 280−d rows each to produce a table for each counter.
During the on-line phase of the attack, any d+3 clock output x at a certain time
(so counter is known) is searched in the table with the related counter. There
are 277−2d internal states producing the output x . Check if any of the internal
state is correct. Repeat this procedure 2d times since the probability that δt = 0
for d consecutive clocks is 2−d. We expect this event to be occurred once. Then,
we can recover the internal state from the tables and then recover the key easily



once the internal state is known. Recovering the key from a known internal state
is explained in Section 3.

For each output of d + 3 bits, we have 277−2d internal states producing the
output. We both check the validity of the internal state and recover the key bits
for each candidate. On average, the output bits of 8 clocks more is enough for
the checking. Hence, the time complexity is 8 · 277−d = 280−d clocks which is
equivalent to 271.7−d encryptions of Sprout along with 2d table lookups.

4.1 Detailed workload for d = 40

We focus on the extreme case d = 40 and give the workloads in detail for this
case. The most complicated part is solving the system of equations during the
precomputation phase where we list all the possible internal states having δt = 0
for 40 consecutive t values.

We need to solve the following systems of equations: a linear system LS and
a non-linear system NS.

LS :=



lt−5 ⊕ lt+12 ⊕ lt+28 ⊕ nt ⊕ nt+11 ⊕ nt+20 = 0
lt−4 ⊕ lt+13 ⊕ lt+29 ⊕ nt+1 ⊕ nt+12 ⊕ nt+21 = 0

·
·
·

lt+4 ⊕ lt+21 ⊕ lt+37 ⊕ nt+9 ⊕ nt+20 ⊕ nt+29 = 0
lt+5 ⊕ lt+22 ⊕ lt+38 ⊕ nt+10 ⊕ nt+21 ⊕ nt+30 = 0

·
·
·

lt+33 ⊕ lt+50 ⊕ lt+66 ⊕ nt+38 ⊕ nt+49 ⊕ nt+58 = 0
lt+34 ⊕ lt+51 ⊕ lt+67 ⊕ nt+39 ⊕ nt+50 ⊕ nt+59 = 0

NS :=



ct4 ⊕ lt ⊕ nt+40 ⊕ g(Nt) = 0
ct+1
4 ⊕ lt+1 ⊕ nt+41 ⊕ g(Nt+1) = 0

·
·
·

ct+18
4 ⊕ lt+18 ⊕ nt+58 ⊕ g(Nt+18) = 0
ct+19
4 ⊕ lt+19 ⊕ nt+59 ⊕ g(Nt+19) = 0

First of all, we can easily write all li’s in LS as linear combinations of lj ’s
for t ≤ j ≤ t + 39. Let LS ′ be the new system of equations of LS where all
li’s for t − 5 ≤ i ≤ t − 1 and t + 40 ≤ i ≤ t + 67 are replaced with lj ’s for
t ≤ j ≤ t + 39 in accordance with the LFSR feedback function. Now denoting
L := (lt, lt+1, . . . , lt+39)T and

B := (nt ⊕ nt+11 ⊕ nt+20, nt+1 ⊕ nt+12 ⊕ nt+21, . . . , nt+39 ⊕ nt+50 ⊕ nt+59)T ,



we can write LS as M·L = B where M is the 40× 40 coefficient matrix of lj ’s
and T is the transpose operation.

We see thatM is invertible. Hence, L =M−1B implying we can equate each
lj , t ≤ j ≤ t+39, to linear combinations of some ni’s for t ≤ i ≤ t+59. Plugging
in the values of lj ’s for t ≤ k ≤ t+ 19 in NS, we end up with a system, denoted
by NS ′, of 20 non-linear equations in 60 variables (ignoring the counter values
for the moment). As a result, the main goal is to find all the solutions of NS ′
and store them in a table with their outputs.

It’s expected that there exist 240 solutions for the system. One approach for
solving it may be to use a SAT solver. However, this approach is quite inefficient
compared to solving a system of linear equations. Having a more detailed look at
the equations in NS ′, we see that by carefully guessing 40 ni values, the system
becomes almost linear. To do that, one possible choice for selected ni values,
SEC{ni} is as follows:

nt+5 nt+6 nt+8 nt+9 nt+11 nt+12 nt+14 nt+15 nt+17 nt+18

nt+19 nt+21 nt+22 nt+23 nt+25 nt+26 nt+27 nt+29 nt+30 nt+31

nt+32 nt+33 nt+34 nt+35 nt+36 nt+38 nt+39 nt+40 nt+41 nt+42

nt+43 nt+45 nt+46 nt+47 nt+48 nt+49 nt+50 nt+52 nt+54 nt+55

Fixing these values, there still exists (at most 3) non-linear terms with prob-
ability 1

2 . We see some nonlinear terms when (nt+48, nt+52, nt+54, nt+55) ∈ S
where

S :={(1, 1, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1)

, (1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 1, 0, 0)}

It is expected that each 40-bit guess in both cases,

(nt+48, nt+52, nt+54, nt+55) ∈ S and (nt+48, nt+52, nt+54, nt+55) 6∈ S

yields 1 solution on average, which we have verified experimentally. Hence, by
solving all the cases where the system is linear, we can obtain around 239 solu-
tions. As a result, we can obtain half of the solutions with an effort of solving
1
2 ·2

40 = 239 systems of linear equations. If one wishes to obtain all the solutions,
then in order to make the system linear, 2 more ni values (e.g adding nt+48 and
nt+55 to SEC{ni} and forming EXSEC{ni}) need to be guessed. Hence, the
effort for finding all the solutions is equivalent to solving 1

2 · 2
42 + 239 ≈ 241.32

systems of linear equations. The non-linear cases can be solved using a SAT
solver as well. However, this is still more inefficient than guessing 2 more bits
and solving a linear system.

We can repeat the computations for each candidate of the counter values. For
d = 40, there are 39 different values of (ct4, c

t+1
4 , . . . , ct+d−21

4 ), which we will refer
as counter array. Observe that the counter values are added to the system NS ′
linearly. Therefore, we can do row reduction operation once and find solutions
for different counter arrays. However, we still need to store separate tables for



each counter array to produce 43 bits of output for each internal state. Since
there are 74 possible counter arrays to produce 43 output bits, we need to store
74 separate tables. Algorithm 1 and Algorithm 2 summarizes the full attack.

Algorithm 1 Creating Tables

for each choice of 40 ni values in SEC{ni} with (nt+48, nt+52, nt+54, nt+55) ∈ S do
Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ←M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , N

Ci
t , LCi

t ) in a table TCi
Z sorted by Zt+32

t−10

end for
end for
for each choice of 42 ni values in EXSEC{ni} with (nt+48, nt+52, nt+54, nt+55) 6∈ S
do

Nt ← Solve(NS′)
for each Ci where Ci’s denote possible counter arrays do

Find NCi
t from Nt by plugging in the values in Ci

LCi
t ←M−1 · B

Zt+32
t−10 ← (zt−10, . . . , zt+32) // generate keystream for 43 clocks.

Store (Zt+32
t−10 , N

Ci
t , LCi

t ) in a table TCi
Z sorted by Zt+32

t−10

end for
end for

We verified that Algorithm 1 produces internal states ((Nt, Lt) pairs) for
which (δt−9, δt−8, . . . , δt+30) = (0, 0, . . . , 0) and that Algorithm 2 finds the cor-
rect key very easily if the guess for the internal state is correct.

The data complexity D = 240 bits of output, not necessarily produced by just
one IV, and we have 74 tables of each having 240 rows. Each row contains 80-bit
internal state and 3 output bits, indexed by 40 bits of the output. Hence, the
memory requirement is roughly 770 Terabytes (this can be reduced by storing
some of the tables and increasing the data complexity). The precomputation
for creating the tables is 241.32 number of row reducing operations of 20 by 20
matrices along with producing 43 bit outputs for each solution. So, we have
74 · 240 · 43 clocks of Sprout keystream generation function which is equivalent
to roughly 243.3 encryptions. The workload of adding an output with its internal
state to the appropriate table in a sorted way is negligible. The time complexity
during the online phase is 240 table look-ups along with the 2−3 ·240 ·23 ·2−8.34 =
232.66 number of encryptions.

4.2 Reducing the data complexity

Let ∆d
t := (δt, δt+1, . . . , δt+d−1). We focused on the case when ∆40

t = (0, 0, . . . , 0)
for some t. However, suppose ∆40

t contains a single 1 at i-th index and ki is



Algorithm 2 Online Phase of the Attack

Take 240 keystream bits (not necessarily generated using the same IV)
for each 43-bit keystream block do

// Cj := corresponding counter array for the current clock-cycle

if Keystream block exists in T
Cj

Z then

Fill NLFSR and LFSR according to values in T
Cj

Z

while Internal state does not produce a contradiction do
Clock cipher backwards
if keystream is in {0, 1} then

Check state!
else

Determine key bit value involved
end if

end while
end if

end for

incorporated into the NLFSR feedback at clock-cycle t+ i. In that case, we can
create the tables for ki = 0 and ki = 1 separately (which would double the
table size) and apply the same attack. If we do this for each possible index i, M
increases by a factor of 2·40 = 80 and D decreases by a factor of 40. Generalizing
this idea, we can create tables for each possible ∆d

t . If there are n 1s in ∆d
t , M

increases by a factor of 2n ·
(
d
n

)
while D decreases by a factor of

(
d
n

)
.

5 Conclusion

We have illustrated a Time-Memory-Data tradeoff attack mounted to Sprout
stream cipher. The attack combines both guess-and-determine and divide-and-
conquer techniques. We have guessed some taps of the internal state satisfying
certain particular property and then determine the remaining taps by solving a
specific system of linear equations. After storing all such internal states in a table
with their outputs (we can produce some output bits without knowing the key
bits, thanks to the special property that the internal states satisfy), we mount a
divide-and-conquer attack to recover the key from the given output keystream
bits. The attack complexities are highly feasible.

One countermeasure against the attack may be decreasing the throughput
of Sprout and giving only one bit output in for instance 16 Sprout clocks. That
output may be the sum of all the 16 bit outputs of original Sprout.
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