
Automating Fast and Secure Translations from

Type-I to Type-III Pairing Schemes

Joseph A. Akinyele
Zeutro, LLC

ayo@zeutro.com

Christina Garman∗

Johns Hopkins University
cgarman@cs.jhu.edu

Susan Hohenberger†

Johns Hopkins University
susan@cs.jhu.edu

March 27, 2015

Abstract

Pairing-based cryptography has exploded over the last decade, as this algebraic setting offers
good functionality and efficiency. However, there is a huge security gap between how schemes
are usually analyzed in the academic literature and how they are typically implemented. The
issue at play is that there exist multiple types of pairings: Type-I called “symmetric” is typically
how schemes are presented and proven secure in the literature, because it is simpler and the
complexity assumptions can be weaker; however, Type-III called “asymmetric” is typically the
most efficient choice for an implementation in terms of bandwidth and computation time.

There are two main complexities when moving from one pairing type to another. First, the
change in algebraic setting invalidates the original security proof. Second, there are usually
multiple (possibly thousands) of ways to translate from a Type-I to a Type-III scheme, and the
“best” translation may depend on the application.

Our contribution is the design, development and evaluation of a new software tool, Auto-
Group+, that automatically translates from Type-I to Type-III pairings. The output of Au-
toGroup+ is: (1) “secure” provided the input is “secure” and (2) optimal based on the user’s
efficiency constraints (excluding software and run-time errors). Prior automation work for pair-
ings was either not guaranteed to be secure or only partially automated and impractically slow.
This work addresses the pairing security gap by realizing a fast and secure translation tool.

∗Supported by the Office of Naval Research under contract N00014-14-1-0333.
†Supported by the National Science Foundation CNS-1228443 and CNS-1414023; the Office of Naval Research

under contract N00014-14-1-0333, and a Microsoft Faculty Fellowship.

i

Contents

1 Introduction 1
1.1 Prior Work . 3

2 Background 4
2.1 Pairings . 4
2.2 The Z3 Satisfiability Modulo Theories (SMT) Solver 5
2.3 A Scheme Description Language (SDL) and Toolchain 5

3 The AutoGroup+ System 5
3.1 How It Works . 5

3.1.1 Step 1: Generating Computer-Readable Inputs 6
3.1.2 Step 2: Extracting Algebraic Dependencies 8
3.1.3 Step 3: Merge Dependency Graphs . 8
3.1.4 Step 4: Assign Variables using the SMT Solver 8
3.1.5 Step 5: Search for Optimal Solution . 9
3.1.6 Step 6: Evaluate and Process the Solution . 10

3.2 Analysis of AutoGroup+ . 10

4 An Automation Example with BB-HIBE 12

5 AutoGroup+: Experimental Evaluation 16
5.1 Comparison with ACSC/Charm . 18
5.2 Comparison with Abe et al. 19
5.3 Comparison with AutoGroup . 20
5.4 Comparison with manual translations . 20

6 Conclusions 20

A Current Efficiency Numbers for Type-I and Type-III Pairings 22

B SDL Descriptions for Section 4 23
B.1 SDL as Input . 23
B.2 Translated Scheme and Assumption SDL Descriptions 28

ii

1 Introduction

Automation is increasingly being explored as a means of assisting in the design or implementation
of a cryptographic scheme. The benefits of using computer assistance include speed, accuracy, and
cost.

Recently, automation for pairing (also called bilinear) cryptographic constructions (e.g., [AGHP12,
AGH13, AGOT14, BFF+14]) has been under exploration. Since the seminal work of Boneh and
Franklin [BF01], interest in pairings is strong: they have become a staple at top cryptography and
security conferences, the free Charm library has been downloaded thousands of times worldwide
(see public Github records of [AGM+13]), and recently pairing-commercializer Voltage Security
was acquired by a major US company (HP) [Kri15].

Pairings are algebraic groups with special properties (see Section 2.1), which are often employed
for their functionality and efficiency. There are different types of pairings: Type-I called “symmet-
ric” is typically how schemes are presented and proven secure in the literature, because it is simpler
and the complexity assumptions can be weaker; however, Type-III called “asymmetric” is typically
the most efficient choice for an implementation in terms of bandwidth and computation time.

Unfortunately, translating a Type-I scheme into the Type-III scheme is complicated. First, there
may be thousands of different Type-III translations of a Type-I scheme and the “best” translation
may depend on the application. For instance, one translation might optimize ciphertext size while
another offers the fastest decryption time. Second, each new translation requires a new proof under
Type-III assumptions. Exploring and analyzing all possible translations is clearly a great burden
on a human cryptographer. Indeed a small subset of manual translations of a scheme or particular
set of schemes is regarded as a publishable result in its own right, e.g., [RCS12, CLL+13, CLL+14].

Given this translation hurdle, common practice today is to analyze a Type-I scheme, but then
use ad-hoc means to derive a Type-III translation that is unproven and possibly non-optimal. The
goal of this work is to address this problem by covering new ground in cryptographic automation.

Our Contribution: The AutoGroup+ Software Tool. Our primary contribution is the de-
sign, development, and performance evaluation of a new publicly-available1 software tool, Auto-
Group+, that automatically translates pairing schemes from Type-I to Type-III. The output of
AutoGroup+ is: (1) “secure” provided the input is “secure” (see Section 3.2) and (2) optimal based
on the user’s efficiency constraints (see Section 3.1.5).2 The input is a computer-readable format
of the Type-I construction, metadata about its security analysis, and user-specified efficiency con-
straints. The output is a translated Type-III construction (in text, C++, Python, or LATEX) with
metadata about its security analysis. (See Figure 1.)

The audience for this tool is: (1) anyone wanting to implement a pairing construction, and (2)
pairing construction designers. We highlight some features.

New SDL Database. The input to AutoGroup+ requires a computer-readable format of the Type-
I construction, the Type-I complexity assumption(s), and the Type-I security proof. It was a
challenge to create a means of translating human-written security proofs into a computer-readable
format. We focused on a common type of proof exhibiting a certain type of black-box reduction.3

We created a Scheme Description Language (SDL) for this and did the tedious work of carefully

1Software will be made available shortly at https://github.com/jhuisi/auto-tools.
2These claims regard the cryptographic transformation and exclude any software or run-time errors.
3The theoretical translation security results of [AGOT14] on which we will base our security are also limited to

this class of proof.

https://github.com/jhuisi/auto-tools

transcribing eight popular constructions, five assumptions and eight reductions. (See Appendix B
for an example of a simple case.) We believe the future of cryptographic automation research will
involve processing the assumptions and proofs; thus our database will be made public as a testbed
for future automation research.

Speed of Tool. AutoGroup+ took less than 21 seconds to process any of the test set, which included
six simple schemes (16 or less solutions), three medium schemes (256 to 512 solutions), and three
complex schemes (1024 to 2048 solutions). (The preference for simple schemes was to compare
with prior work.) This measures from SDL input to a C++ (or alternative) output. Speed is very
important here for usage, because we anticipate that designers may iteratively use this tool like a
compiler and implementors may want to try out many different efficiency optimizations.

In contrast, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [AGOT14] laid out an elegant
theoretical framework for doing pairing translations in four steps. It left open the issue of whether
their framework was practical to implement for a few reasons: (1) they automated only one of four
steps (code not released), (2) their algorithm for this step was exponential time, and (3) they tested
it on only simple and medium schemes, but their medium scheme took over 1.75 hours for one step.
Our fully automated translation of that scheme took 6.5 seconds, which is much more in line with
the “compiler”-like usage we anticipate.

We attribute our drastic efficiency improvement in part to our use of the Z3 SMT Solver. As
described in Section 3, we found a way to encode a scheme, its assumption(s) and its reduction as
an SMT problem and then use Z3 to help find the set of possible translations quickly.

New Results. We evaluated AutoGroup+ on 8 distinct constructions (plus 4 additional variations
of one scheme), with various optimization priorities, for 45 bandwidth-optimizing translations. In
Figure 8, we report the sizes compared to the symmetric case, which are significantly smaller. In
Figure 9, we report on over 130 timing experiments resulting from the translations. Due both to
the asymmetric setting and AutoGroup+’s optimizations, in most cases, the running times were
reduced to less than 10% of the symmetric case. In Figure 10, we report on the effect that different
levels of complexity have on translation time for a single scheme.

In Section 5, we compare the performance of AutoGroup+ to prior automation works, published
manual translations, and translations existing as source code in the Advanced Crypto Software
Collection [Con] and Charm library [AGM+13]. We discovered a few things. In 12 points of
comparison with AutoGroup, AutoGroup+ matches those solutions and provides a security validation
and new assumptions, adding only a few additional seconds of running time. In one point of
comparison with Abe et al., AutoGroup+ appears to find a solution that is one element shorter in
the public key, but this is a complex case as we discuss in Section 5 and strengthens the argument
that a fully-automated tool is needed.

In the four points of overlap with ACSC and Charm, we are able to confirm the security and
ciphertext-size optimality of one broadcast encryption and one hierarchical identity-based encryp-
tion implementation. We are also able to confirm the security and signature-size optimality of
one signature implementation. These confirmations are new results. Our tool was able to confirm
the ciphertext-size optimality, but not the security of the Charm implementation of Dual System
Encryption [Wat09]. That implementation made changes to the keys outside the scope of the trans-
lations here or in [AGH13, AGOT14]. However, our tool did find a secure translation with the same
ciphertext-size.

Overall, our tests show that the tool can produce high-quality solutions in just seconds, demon-
strating that pairing translations can be practically and securely performed by computers.

2

1.1 Prior Work

The desirability of translating Type-I to Type-III pairings is well documented. First, this is an
exercise that cryptographers are still actively doing by hand. In PKC 2012, Ramanna, Chatter-
jee and Sarkar [RCS12] nicely translated the dual system encryption scheme of Waters [Wat09]
from the Type-I pairing setting to a number of different Type-III possibilities. Recently, Chen,
Lim, Ling, Wang and Wee [CLL+13, CLL+14] presented an elegant semi-general framework for
(re-)constructing various IBE, Inner-Product Encryption and Key-Policy Functional Encryption
schemes in the Type-III setting, assuming the SXDH assumption holds.4 These works go into
deeper creative detail (changing the scheme or adding assumptions) than our automator, and thus
mainly get better results, but then, these works appear to have taken significant human resources.
In contrast, our work offers a computerized translation as a starting point.

The Advanced Crypto Software Collection (ACSC) [Con], which includes the Charm pairing
library [AGM+13], contains many Type-III implementations of schemes that were published and
analyzed in the Type-I format. To the best of our knowledge, there is no formal analysis of these
converted schemes and thus also no guarantees that the translations are secure or optimal efficiency-
wise for a user’s specific application. (We remark that ACSC/Charm makes no claims that they
are secure or optimal.) The public Github records for Charm show that it has been downloaded
thousands of times; thus, it would be prudent to verify these implementations. (See our results on
this in Section 5.)

In ACM CCS 2013, Akinyele, Green and Hohenberger [AGH13] presented a publicly-available
software tool called AutoGroup, which offered an automated translation from Type-I to Type-III
pairing schemes. This work employed sophisticated tools, such as the Z3 Satisfiability Modulo
Theories (SMT) solver produced by Microsoft Research (see Section 2), to quickly find a set of
possible assignments of elements into G1 or G2. There was not, however, any guarantee that the
resulting translation remained secure. Indeed, Akinyele et al. [AGH13] explicitly framed their
results as follows: translation has two parts: (1) the search for an efficient translation, and (2) a
security analysis of it. They automated the first part and left the security analysis to a human
cryptographer. Since they made their source code public, we used it as a starting point and thus
named our work after theirs.

While using AutoGroup is certainly faster than a completely manual approach, the lack of a
security guarantee is a real drawback. At that time, there was simply no established theory on how
to generalize these translations.

Fortunately, in CRYPTO 2014, Abe, Groth, Ohkubo and Tango [AGOT14] pushed the theory
forward in this area. They elegantly formalized the notion that if certain dependencies from the
Type-I complexity assumption(s) and the reduction in the security analysis were added to the
dependencies imposed by the scheme itself, then there was a generic way to reason about the
security of the translated scheme. Their main theorem, which we will later use, can informally be
stated as:

Theorem 1.1 (Informal [AGOT14]). Following the conversion method of [AGOT14], if the Type-I
scheme is correct and secure in the generic Type-I group model, then its converted Type-III scheme
is correct and secure in the generic Type-III group model.

4Informally, the SXDH assumption asserts that in a Type-III pairing group, there exist no efficient isomorphisms
from G1 to G2 or from G2 to G1.

3

There are four steps in their translation: (1) build a dependency graph between the group
elements for each algorithm in the construction, the complexity assumption(s) and the security
reduction (In the graph, elements are nodes and a directed edge goes from g to h to if h is derived
from g, such as h = gx.), (2) merge all graphs into a single graph, (3) split this graph into two
graphs (where elements of the first graph will be assigned to G1 and elements of the second assigned
to G2), and (4) derive the converted scheme.

For the four schemes tested in [AGOT14], steps (1), (2), and (4) were done by hand. The
algorithm for step (3) was exponential in two variables5 and the Java program to handle step (3)
reported taking 1.75 hours on a medium scheme. Thus, this is a great theory advance, but it left
open the question of whether the entire translation could be efficiently automated as a “real-time”
tool.

AutoGroup+ in a Nutshell. In short, prior work admitted a public software tool that is fast,
but possibly insecure [AGH13], and a cryptographic framework that is slow, but secure [AGOT14].
Our goal was to realize the best of both worlds. Even though the implementations differed, we
discovered that both works began by tracing generator to pairing dependencies, where [AGH13]
did this bottom up and [AGOT14] used a top down approach. Since both of these representations
can be helpful for different optimizations, AutoGroup+ does both. It also traces these dependencies
for the complexity assumptions and reductions. The pairings and hash variables in the combined
dependency graph are translated into a formula and constraints, and then fed into a SMT solver.
The output set is then efficiently searched for an optimal solution using the SMT solver again, then
verified as a valid graph split (as formalized in [AGOT14]). Finally, if the split is valid, then a
converted scheme and complexity assumption(s) are output.

2 Background

2.1 Pairings

Let G1, G2 and GT be groups of prime order p. A map e : G1 ×G2 → GT is an admissible pairing
(also called a bilinear map) if it satisfies the following three properties:

1. Bilinearity: for all g ∈ G1, h ∈ G2, and a, b ∈ Zp, it holds that e(ga, hb) = e(gb, ha) = e(g, h)ab.
2. Non-degeneracy: if g and h are generators of G1 and G2, resp., then e(g, h) is a generator of

GT .
3. Efficiency: there exists an efficient method that given any g ∈ G1 and h ∈ G2, computes
e(g, h).

A pairing generator is an algorithm that on input a security parameter 1λ, outputs the param-
eters for a pairing group (p, g, h,G1,G2,GT , e) such that p is a prime in Θ(2λ), G1, G2 and GT are
groups of order p where g generates G1, h generates G2 and e : G1 × G2 → GT is an admissible
pairing.

The above pairing is called an asymmetric or Type-III pairing. This type of pairing is generally
preferred in implementations for its efficiency. We also consider symmetric or Type-I pairings,
where there is an efficient isomorphism ψ : G1 → G2 (and vice versa) such that a symmetric map

5Their splitting algorithm runs exponentially in both the number of pairings and the bottom nodes (without
outgoing edges) of the dependency graph. Thus, scalability is a real concern.

4

is defined as e : G1 × ψ(G1) → GT . We generally treat G = G1 = G2 for simplicity and write
e : G × G → GT . These types of pairings are typically preferred for presenting constructions in
the academic literature for two reasons. First, they are simpler from a presentation perspective,
requiring fewer subscripts and other notations. More importantly, they are sometimes preferred
because the underlying symmetric assumption on which the proof is based may be viewed as simpler
or weaker than the corresponding asymmetric assumption.

We include current efficiency numbers for Type-I and Type-III groups in Appendix A, demon-
strating the significant advantages of the latter.

2.2 The Z3 Satisfiability Modulo Theories (SMT) Solver

Our implementation also relies on the power of the state-of-the-art Z3 SMT solver [DMB08] de-
veloped at Microsoft Research. SMT is a generalization of boolean satisfiability (or SAT) solving
where the goal is to decide whether solutions exist to a given logical formula. The publicly available
Z3 is one such tool that is highly efficient in solving constraint satisfaction problems and used in
many different applications.

2.3 A Scheme Description Language (SDL) and Toolchain

This work builds on the efforts of prior automation works [AGHP12, AGH13] which include several
tools such as a scheme description language (or SDL), an accompanying parser for SDL, a code
generator that translates SDL schemes into executable code in either C++ or Python, and a
LATEX generator for SDL descriptions. We obtained all these prior tools from the publicly-available
AutoTools GitHub repository6. Our code and SDL database will be made public in this repository
shortly as well. Since we used the code of AutoGroup as a starting point, we derived our tool name
from it.

3 The AutoGroup+ System

As described in Section 1, AutoGroup+ is a new software tool built to realize the best of both worlds
from a prior tool called AutoGroup [AGH13] (fast, but no security guarantees) and new theoretical
insights [AGOT14] (secure, but exponential time and no public tool.)

3.1 How It Works

We begin with an illustration of the AutoGroup+ system in Figure 1. This system takes in the
description of a symmetric (Type-I) pairing-based scheme S, together with metadata about its
security and user-desired efficiency constraints, and outputs an asymmetric (Type-III) pairing-
based translation S′, together with metadata about its security. Informally, if S was secure, then
S′ will be both secure and optimal for the constraints set by the user over the space of “basic”
translations.

6Project link: https://github.com/jhuisi/auto-tools

5

https://github.com/jhuisi/auto-tools

Input: SDL of
Scheme S

SDL Parser
Extract Dependencies

from S and Assumption(s)

Output: SDL of
Scheme S'

Program Slice/Graph
for each pairing input

Merge Dependency
Graphs into G

AutoGroup+

Execute Z3
1. find all solutions that respect constraints

2. reduce iteratively by user constraint priorities
3. split graph G using selected solution

4. check that split is valid (no security violations)

Efficiency Pass
optimize solution

Input: SDL of
Symmetric

Assumption(s)

Input: SDL of
Reduction

Extract Dependencies
introduced in Reduction

Output: SDL of
Asymmetric

Assumption(s)

Encode
Pairings/Hashes

from G as
Formula & Constraints

Input: User
Optimization
Constraints

Figure 1: A high-level presentation of the AutoGroup+ tool. Components that are new or improved,
over AutoGroup, are included with dashed lines. Both AutoGroup+ and AutoGroup use external tools
Z3, SDL Parser and Code generator (omitted from the figure).

3.1.1 Step 1: Generating Computer-Readable Inputs

AutoGroup+ operates on four inputs: an abstract description of the (1) scheme itself, (2) the
complexity assumption(s) on which the scheme is based, (3) the black-box reduction in the scheme’s
proof of security, and (4) a set of efficiency optimization constraints specified by the user (e.g.,
optimize for smallest key or ciphertext size.). The abstract descriptions are all specified in a
Scheme Description Language (SDL) [AGHP12, AGH13].

The need for SDL representations of the complexity assumptions and security reductions are
new challenges for this work. To run our Section 5 tests, we had to translate the text in the
published papers to the SDL format by hand. This was a time-consuming and tedious task. How-
ever, we maximize the benefit of doing this, by making these SDL files publicly available. This
enables anyone to check their correctness and provides a ready-made base of test files for any future
automation exercises that require this deeper scheme analysis.

One novel and curious observation we made during these experiments was that how group
elements were derived in the symmetric group impacted the dependency graphs and therefore the
asymmetric results. To say this another way, two schemes computing the exact same elements,
but in different ways, could have different dependency graphs and therefore different asymmetric
translations. As a toy example, suppose a scheme has PK = (g,A = ga, B = gb) and SK =
(PK, a, b). Now suppose that as part of a signing algorithm, the holder of SK must compute the
value C = gab. Suppose in Scheme 1, the signer computes this as x = ab mod p and C = gx.
Suppose in Scheme 2, the signer computes this as C = Ab. Then in the dependency graph for
Scheme 1, there is a root node g, with nodes A and C hanging off it. Whereas for the graph of
Scheme 2, there is a root node g with A off it, and C off of A. The importance of these differences
comes alive when we attempt to split the graph (see Step 3.1.4). Suppose there is the pairing
e(A,C). Then in Scheme 1, the generator g must be split, but A can be assigned to G1 and C to
G2, resulting in a 4 element public key. However, in Scheme 2, the generator g and the element A
must be split, with A1 ∈ G1 and A2 ∈ G2, so that one can compute C = (A2)

b ∈ G2. This results
in a 5 element public key. The general rule is that the fewer unnecessary dependencies the better.

6

Interestingly, Abe et al. [AGOT14] sometimes added dependencies that did not exist in the original
schemes. For instance, for the Waters 2005 IBE [Wat05], Waters clearly states to choose g2, u

′, ui
as fresh random generators, but Abe et al. explicitly ”assume” that they are generated from a
separate generator g. For this particular scheme, this does not impact the asymmetric translations,
but in theory it could.

Our experiments did not add any dependencies. We note that in this step, a human is not
being tasked with any job but simple transcription of the input into a language the computer can
understand.

System Limitations and Allowable Inputs This system shares some of the same limitations
as prior works [AGH13, AGOT14]. First, this is a junk-in-makes-junk-out system. AutoGroup+ as-
sumes that the security reduction is correct, the complexity assumptions are true, and that the
SDL was typed in correctly. If any of these turn out to be false, the output cannot be depended on.
Fortunately, we can mitigate these risks as follows. The correctness of the security reductions might
be verified automatically using a number of tools, such as EasyCrypt [Tea]. The pairing-based as-
sumptions may be sanity-checked in the generic group model using the recently developed tool by
Barthe et al. [BFF+14] from CRYPTO 2014. Finally, the SDL transcriptions can be verified in the
usual crowd-based manner which we encourage by making them public.

Second, the system does not accept all possible schemes that might appear in the literature.
For starters, it supports only prime-order symmetric pairing schemes with a “standard” reduction
analysis7 that is based on non-interactive assumptions. It can support dynamic (also called q-based)
assumptions, where the size of the assumption may grow depending on the usage of the scheme.
But it currently does not support interactive (also called oracle-based) assumptions, such as the
LSRW Assumption behind the popular Camenisch-Lysyanskaya pairing-based signatures [CL04],
because it isn’t clear to us how to build a dependency graph when the adversary can arbitrarily
manipulate prior responses into a new oracle input.

Moreover, how the scheme hashes into pairing groups also may disqualify it from being trans-
lated. We now give an example of how to alter the Setup algorithm of the Waters 2005 IBE
scheme [Wat05], so that AutoGroup+ cannot translate it. (Indeed, it is not clear to us if a transla-
tion even exists.) In the original Setup algorithm, the master authority chooses a generator g ∈ G
at random. Then public parameter g1 is derived from g, while parameters g2, u0, . . . , un ∈ G are
chosen independently at random. Instead, suppose we treat the hash function H : {0, 1}∗ → G as a
random oracle. Let generator g ∈ G be computed as g = H(ID), where ID is some string describing
the master authority. Then g1 is derived from g as before, but we set g2 = gr, u0 = gr0 , . . . , un = grn

for random r, r0, . . . , rn ∈ Zp (where p is the order of G). It is easy to see that the public parameters
have the same distribution as before (assuming the random oracle model); all we have changed is
how the master authority samples these parameters. Thus, this variant of the Waters IBE remains
secure in the symmetric setting, and yet it is not clear how to translate it to the asymmetric setting.
We return to this example in Section 5.

These assumption and hashing limitations also appear in the theoretical work of Abe et al. [AGOT14],
and fortunately, these issues seem relatively rare and did not come up for any of the schemes we
tested (except our hand-made counterexample). As in [AGH13, AGOT14], we note that if Au-

7We refer the reader to Abe et al. [AGOT14] for a formal definition of the allowed reductions. Roughly, we mean
an analysis where there is an efficient algorithm called a reduction that is successful in solving the hard problem
(underlying the complexity assumption) given black-box access to an adversary that successfully attacks the scheme.

7

toGroup+ cannot produce a translation, it does not imply that a translation does not exist. A
characterization of untranslatable schemes is an open theoretical problem.

3.1.2 Step 2: Extracting Algebraic Dependencies

Once AutoGroup+ has parsed all its input files, it begins processing them to graph the algebraic
dependencies between source group elements in a scheme, assumption and reduction. All source
group elements are nodes in the graph and a directed edge exists if there is a direct dependency
between two elements. E.g., if h = gx, then h is derived from g and we place an edge from g and h.

AutoGroup+ extracts the dependency graphs automatically from the SDL for each input file and
builds a distinct graph from the SDL representations and metadata. AutoGroup+ defines two new
procedures that programmatically extract the dependency graph for the assumption(s) as well as
the reduction(s) (see Section 4 for an example). Then, AutoGroup+ reuses logic from AutoGroup to
programmatically build the graph of the scheme by tracking the generators in the setup algorithm
and by tracing backward from each pairing in the scheme. It merges the program slice (or trace)
extracted for each pairing input into one dependency graph for the scheme. The resulting graphs
are the same as those produced by Abe et al. [AGOT14] (except where we reduced dependencies
by computing elements more directly as discussed in the last step.)

The work of Abe et al. [AGOT14] required a human to build (and later merge) these dependency
graphs by hand and the graphs were constructed starting from the common generators downward.
The AutoGroup work of Akinyele et al.[AGH13] automatically derived these graphs for the scheme
only from the SDL description of the scheme. They did not consider the assumptions or reduction
dependencies. Indeed, AutoGroup only graphed the dependencies as a traceback from the pairings,
whereas AutoGroup+ also adds a top-down analysis from the assumption down to the pairings for
the security logic.

3.1.3 Step 3: Merge Dependency Graphs

After extracting the dependencies, AutoGroup+ has a set of distinct graphs: one graph that repre-
sents dependencies from the setup, key generation, encryption and decryption algorithms, as well
as a graph for each complexity assumption and one or more graphs for the reduction. These graphs
are then systematically merged together using the metadata provided with the SDL inputs. The
metadata includes a reduction map which relates the names of source group elements in the re-
duction to those in the assumption. We require this map to understand which nodes represent the
same group element (across the scheme, assumption and reduction) to simplify merging into a single
node. See the example in Section 4. AutoGroup+ programmatically checks the type information in
the reduction map across all SDL inputs to ensure correctness during the merge.

3.1.4 Step 4: Assign Variables using the SMT Solver

This is the most complex step in the automation. In the symmetric setting, all group elements
in the scheme were in G. To move to the asymmetric setting, we must assign elements to either
G1 or G2 in such a way that the dependencies between elements are not violated (e.g., if h = gx,
then both g, h must be in the same group) and such that for all variables a, b, if we have a pairing
between them e(a, b), then a and b must be in distinct source groups (e.g., a ∈ G1 and b ∈ G2 or

8

vice versa). Such an assignment may not be feasible (see such an example in Section 3.1.1) or it
may require that one or more variables in the symmetric scheme be duplicated in the asymmetric
scheme with one assigned to G1 and another to G2. E.g., in the symmetric setting if g ∈ G, a = gx

and b = gy and these elements are paired as e(a, b), then in the asymmetric setting, g will be split
into g1 ∈ G1 and g2 ∈ G2, where a = gx1 and b = gy2 , so that one can compute e(a, b).

To efficiently make these variable assignments, AutoGroup+ follows the approach of Auto-
Group in that it uses a powerful Z3 Satisfiability Modulo Theories (SMT) solver produced by
Microsoft Research (see Section 2) to compute the set of all possible splits (i.e., all possible vari-
able assignment combinations) and then later identifies the best one. Z3 takes as input a logical
formula and determines whether valid variable assignments exist that evaluate that formula to
true. Similar to AutoGroup, AutoGroup+ expresses the pairing equations as a logical formula of
conjunctions and inequality operations over binary variables. E.g., e(a, b) · e(c, d) is translated to
the logical formula A 6= B ∧ C 6= D where A is a reference to a, B to b, etc.

One major difference between AutoGroup+ and AutoGroup is that the former’s dependency
graphs include dependencies based on the assumptions and reductions. The formula is derived
from the pairings that occur in the graph (from the construction, reduction and assumption(s))
with a conjunction joining each pairing piece, plus extra constraints added for variables that cannot
be duplicated (regarding hashing). This formula is then fed into the solver. The solver returns a
set of 0 or 1 assignments for each variable. We then apply each solution to the merged dependency
graph to generate the split (variables assigned to 0 on one side and the rest on the other).

3.1.5 Step 5: Search for Optimal Solution

There are often many (possibly thousands) of ways to translate a symmetric scheme into an asym-
metric scheme; thus, we can end up with many feasible graph splits. Indeed, the output of the
SMT solver in the last step is a set of assignments of the variables. In this step, we again use
the SMT solver to deduce which assignment from this set is “best”. AutoGroup+ allows selection
of assignments based on a number of user-specified optimization constraints. For public-key en-
cryption, the user can choose to minimize the public-key, assumption, secret key and/or ciphertext
size. Similarly for signature schemes, the user can mimize the public-key parameters, assumption,
and/or the signature size.

To select an optimal assignment, AutoGroup+ encodes these user requirements as parameters
of some objective function. We then call the solver a second time with this objective function set to
rank/narrow the given solutions to one. Depending on the optimization goal, the objective function
can be specified in one of two ways. If reducing public-key size or the assumption, then we are
concerned with minimizing the duplication of source group elements. As such, we first specify an
EvalGraph function that the solver uses to compute the splits for each element in the public key
or assumption: EvalGraph(Aj , B,G) = S, where Aj = a1, . . . , an represents pairing input variable
assignments for the j-th solution (each ai variable is either 0 = G1 or 1 = G2), B = b1, . . . , bm
represents the source group elements to minimize either in the assumption or public-key, and G
represents the merged dependency graph.

Our search algorithm first applies the EvalGraph function to determine how the bi values are
assigned for each solution. Once the bi values are assigned, we then compute S = s1, . . . , sm where
each si corresponds to one of three values for each bi assignment. That is, let a w1 value denote a
G1 only assignment, w2 is G2 only, and w3 = w1 + w2 is both a G1 and G2 assignment (or simply

9

a split). We then set w1 and w2 to the group size of G1 and G2 for Type-III pairing curves (e.g.,
BN256). Each solution is ranked in terms of splits and the total size of group elements in B. Our
search returns the j-th solution that results in the fewest splits in B with the smallest overall size
Sj . This overall size breaks ties between multiple solutions with the same number of splits.

min
j∈|A|

(CountSplits(Sj),
m∑
i=1

Sj,i) (1)

For the other optimization options (i.e., secret-key, ciphertext, etc), we can reuse the objective
function specified by AutoGroup as is:

min
j∈|A|

F (Aj , C, w1, w2) =
n∑
i=1

((1− ai) · w1 + ai · w2) · ci (2)

where the Aj represents the j-th solution as before, C = {c1, . . . , cn} represent some cost associated
with each ai variable reference, and w1 and w2 correspond to weights (for different Type-III pairing
curves) over groups G1 and G2. By encoding these cost values, it is feasible to create different
weight functions that adhere to the user specified constraints. Once these functions are specified
correctly, we minimize it across the set of assignments and return the solution that yields the lowest
value. Thus, the combination of equations 1 and 2 yield all the possible ways a current user can
optimize a given symmetric scheme. Further optimizations are future work.

Once the “best” solution is found, we have a CheckValidSplit procedure that verifies that the
conditions (1) and (2) of a “valid split” hold as defined in Definition 3.1. If this solution satisfies
these conditions, we are done. If not, we simply test the next best solution, because the solver
caches all solutions and we record metadata about each solution in terms of efficiency and security.

3.1.6 Step 6: Evaluate and Process the Solution

Once a split is chosen, AutoGroup+ must reconstruct SDL for the asymmetric scheme and as-
sumption. It reuses the functionality provided by AutoGroup to construct the SDL as dictated by
the split.8 To output the new asymmetric assumptions, AutoGroup+ follows the logic of Abe et
al. [AGOT14] (although they did not implement this step) and implements a new procedure that
uses the graph split to reconstruct the asymmetric assumption(s). For each element in the asymmet-
ric assumption, we learn the new assignments of the elements using the graph split and mechanically
generate the asymmetric assumption SDL. Finally, we rely on existing tools [AGHP12, AGH13] to
translate the new asymmetric SDL representation into executable code for C++ or Python, or
simply LATEX.

3.2 Analysis of AutoGroup+

We analyze AutoGroup+’s security and optimizations.

Security. At a high-level, the Abe et al. [AGOT14] security argument works as follows. In the
Type-I setting, we treat G1 = G2 because there are efficient isomorphisms between these two
groups. However, suppose we work in the generic Type-I group model, where elements are a

8We further perform an efficiency check on the final scheme as previously done in AutoGroup.

10

black box and to compute this isomorphism, a party must utilize an oracle O. Next, consider
moving to a Type-III group, where every element (for which the discrete logarithm is known with
respect to the base generators) is duplicated; that is, for h = gx ∈ G, we have h1 = gx1 ∈ G1

and h2 = gx2 ∈ G2. Then in the generic Type-III group model, we can simulate having efficiently
computable isomorphisms between these groups by exposing an oracle O′ that on input d1 ∈ G1

outputs d2 ∈ G2 (or vice versa). In essence, by exposing the “corresponding” group element
(through the oracle in the Type-III setting), we “allow” all necessary isomorphism computations
for the scheme itself to operate, however, at the same time, we can argue that any adversary
that breaks this scheme (with these elements exposed) can be turned into an attacker against the
Type-I scheme, where these isomorphisms are natively computable. The resulting theorem was
summarized in Theorem 1.1: namely, the Type-III conversion will be secure in the generic group
model, if one follows the conversion criteria in [AGOT14] and the Type-I input was secure in the
generic group model.

Thus, we must argue that the AutoGroup+ implementation satisfies the criteria in [AGOT14].
The dependency graphs are created and merged according to the same algorithm. (AutoGroup+
tracks some additional information on the side for optimization purposes.) What is required is that
the splitting of the merged dependency graph satisfies Abe et al.’s notion of a “valid split.”

Definition 3.1 (Valid Split [AGOT14]). Let Γ = (V,E) be a dependency graph for Π = (S,R,A), a
tuple representing a scheme, reduction and assumption(s) that are in the set covered by the [AGOT14]
translation. Let P = (p1[0], . . . , pn[1]) ⊂ V be pairing nodes. A pair of graphs Γ0 = (V0, E0) and
Γ1 = (V1, E1) is a valid split of Γ with respect to NoDup ⊆ V if the following hold:

1. merging Γ0 and Γ1 recovers Γ,

2. for each i ∈ {0, 1} and every X ∈ Vi\P , the ancestor subgraph of X in Γ is included in Γi.

3. for each i ∈ {1, . . . , np} pairing nodes pi[0] and pi[1] are separately included in V0 and V1,

4. No node in V0 ∩ V1 is included in NoDup. NoDup is a list of nodes that cannot be assigned to
both V0 and V1.

In terms of AutoGroup+ security, conditions (1) and (2) are satisfied in the search procedure
(step 5). That is, before we admit a split, we do these simple tests. Condition (3) is satisfied by
the SMT solver with the logical formula encoding of pairing nodes (step 4). Condition (4) is also
satisfied by the SMT solver (step 4). We encode the output of hashes as constraints over the logical
formula; specifically, we ask the solver to find splits that keep hashes in G1. This is the only place
we differ slightly. Abe et al. allow G1 or G2 assignment for hashes but not both. Our approach
prioritizes solutions that preserve efficiency. We could give the user the option of relaxing this to
match Abe et al. though. The translation back to SDL is fairly straightforward from the split.

Optimizations. In terms of optimality over the set of solutions admitted by the “valid split”
method, AutoGroup+ finds the “best” one by searching over the entire set. It does this efficiently
by turning the user-specified optimizations into the appropriate objective function and passing this
function into the SMT solver. Our experiments in Section 5 provide evidence that the tool is,
indeed, finding the optimal solutions over the space of valid translations.

As discussed in Section 1.1, we do not rule out the existence of even better solutions that employ
insights outside of this method (such as altering the construction or adding “stronger” assumptions,
such as SXDH.)

11

4 An Automation Example with BB-HIBE

In this section, we illustrate each phase of the AutoGroup+ implementation described in Section 3
by showing the step-by-step translation of the Boneh-Boyen hierarchical identity-based encryp-
tion [BB04a] (or BB HIBE) scheme. We begin by recalling the scheme: an efficient HIBE scheme
(with ` = 2) [BB04b, §4.1] that is selective identity secure based on the standard Decisional
Bilinear-Diffie Hellman (DBDH) assumption.

This scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The Setup
algorithm takes as input a security parameter and defines public keys (ID) of depth ` as vectors
of elements in Z`p. We define ` = 2, thus the identity is comprised of ID = (ID1, ID2) ∈ Z2

p.
The algorithm generates system parameters as follows. First, select a random generator g ∈ G,
a random α ∈ Zp, and sets g1 = gα. Then, pick random h1, h2, g2 ∈ G. Set the master public
parameters params = (g, g1, g2, h1, h2) and the master secret key msk = g2

α.
The KeyGen algorithm takes as input an ID = (ID1, ID2) ∈ Zp2, picks random r1, r2 ∈ Zp and
outputs:

d1 = g2
α · (g1ID1 · h1)r1 · (g1ID2 · h2)r2 , d2 = gr1 , d3 = gr2

and the algorithm outputs dID = (d1, d2, d3)
The Encrypt algorithm takes as input the public parameters params, an identity ID and a message
M ∈ GT . To encrypt the message M under the public key ID = (ID1, ID2), picks a random s ∈ Zp
and computes:

C = (e(g1, g2)
s ·M, gs, (g1

ID1 · h1)s, (g1ID2 · h2)s)

and the algorithm outputs C = (C1, C2, C3, C4).
The Decrypt algorithm takes as input a private key dID = (d1, d2, d3) and a ciphertext C and
computes M as:

M = C1 ·
e(C3, d2) · e(C4, d3)

e(C2, d1)

The scheme is based on the DBDH assumption.

Assumption 1 (Decisional Bilinear Diffie-Hellman). Let g generate group G of prime order p ∈
Θ(2λ) with mapping e : G × G → GT . For all p.p.t. adversaries A, the following probability is
negligible in λ:

|12 − Pr[a, b, c← Zp, z ← {0, 1}, A = ga,

B = gb, C = gc, T0 = e(g, g)abc, T1 ← GT ;

z′ ← A(g,A,B,C, Tz) : z = z′]|.

Step 1: Generating SDL Inputs In order for AutoGroup+ to perform the translation, we first
begin by transcribing the scheme, reduction and the DBDH assumption into SDL. We provide the
SDL description of the above scheme, reduction and assumption in Appendix B. The reader will
notice that the SDL descriptions closely and concisely follow the paper counterpart. This design
is on purpose as to reduce the burden of transcribing these constructions for AutoGroup+ users.
Indeed, in our experience the most time consuming and tedious part is in specifying the reductions
accurately.

12

g

A B C

Figure 2: Dependency graph for the DBDH instance generated by AutoGroup+.

g2

g2alpha P1[1]

d1 C4

P3[0]

h1

C3

P4[1] P2[0]

g

d3 d2g1 C2

P3[1] P2[1]P1[0]

h2

P4[0]

Figure 3: Dependency graph that merges Setup, KeyGen, Encrypt and Decrypt algorithms in BB
HIBE and generated by AutoGroup+. For brevity, we only show the combined scheme graph and
omit the smaller ones for each routine in the scheme. Note that nodes P1 through P4 represent
unique pairing identifiers.

g

AB C

d1 d3 h1

d2

h2

g1g2 g3

C3 C4 C2

Figure 4: Dependency graph for the reduction to DBDH in BB HIBE. This graph was generated
by AutoGroup+.

13

Step 2: Extracting the Dependencies Once the SDLs have been generated along with the
metadata and the user’s desired optimization goal, the user can proceed with executing Auto-
Group+ to begin deriving the dependency graphs for each input file. AutoGroup+ programmati-
cally extracts the dependencies from the SDL descriptions starting with the assumption(s), then
the reduction(s) and finally, the scheme. The dependency graph diagrams for BB HIBE [BB04b,
§4.1] are included in Figures 2, 3, and 4. Note that these diagrams were generated automatically
by our tool; we believe this feature provides more transparency to make it easier for humans to
that the software is operating correctly.

Step 3: Merge the Graphs In Figure 5, we show the third step in AutoGroup+ which is to
merge the multiple dependency graphs (assumption, reduction and scheme graphs) into one single
graph.

g1

P1[0]

d1

h2

C4 C3

h1

P4[1]P3[0]

g

C2

C d2

d3

BA

P2[0]

g3 g2

P1[1]g2alpha

P4[0]

P2[1]

P3[1]

Figure 5: The merged dependency graph for the assumption, reduction to DBDH, and the BB
HIBE scheme. This graph was generated by AutoGroup+.

Step 4: Assignment of Variables With the merged graph, we simply encode the pairing
equations as a logical formula as in AutoGroup but also provide the dependency graph as additional
constraints to the solver (with optimization requirements):

P1[0] 6= P1[1] ∧ P2[0] 6= P2[1] ∧ P3[0] 6= P3[1] ∧ P4[0] 6= P4[1]

Step 5: Search for an Optimal Solution In our BB HIBE example, the goal is to minimize the
number of splits in the master public parameters params, so this requires specifying the following
parameters of the EvalGraph function. Let B = {g, g1, g2, h1, h2} be the set of elements in the
public parameters we wish to minimize and let G be an encoding of the merged dependency graph
shown in Figure 5. As reflected in Table 8, the solver identifies 16 possible solutions for the BB
HIBE scheme and computes the following on each solution as Sj = EvalGraph(Aj , B,G) where
Aj is the j-th set of possible variable assignments. Recall that EvalGraph simply applies a given

14

d1

P4[1]

gG1

g1g2G1 h2G1 h1G1

C4 P1[0] C3g2alpha

P3[0] P2[0]

(a) Showing G1 elements in the scheme

d3

P3[1]

g2G2

P1[1]

gG2

d2 C2

P2[1] P4[0]

(b) Showing G2 elements in the scheme

Figure 6: The dependency graphs for the asymmetric translation of BB HIBE scheme only (with
PK optimization). This graph was generated by AutoGroup+.

gG1

A BG1 CG1

gG2

BG2 CG2

Figure 7: The dependency graph for the co-DBDH assumption and generated by AutoGroup+.

solution to G and records how elements of B are assigned. From the set S, the solver finds
an assignment that has the fewest number of duplicated public key elements with the smallest
overall size. Based on this criteria, the solver returned a optimal solution in the fifth step which
consisted of 2 splits (i.e., two duplicated elements). The new public key elements are assigned as
B′ = {g, g̃, g1, g2, g̃2, h1, h2} ∈ G5

1 × G2
2. This constitutes only an addition of 2 group elements in

G2.

Step 6: Assignment of Variables In the last step, AutoGroup+ splits the graph as dictated
by the optimal solution found by the solver. The resulting graphs for G1 and G2 assignments for
the BB HIBE scheme are shown in Figure 6. AutoGroup+ programmatically converts the split
graph into an asymmetric translation for the scheme and assumption. We improve on code from
AutoGroup to do the former translation and write a new module to do the latter (see Figure 7 for the
graph split of co-DBDH). These resulting SDL files are provided in Appendix B.2. As mentioned
before, there is a publicly-available tool (see Section 2.3) for automatically turning this SDL into

15

Conversion Number of Group Elements Assumption Num.
Time Public Key Secret Key Ciphertext Assumption Solutions

ID-Based Enc.
BB04 HIBE [BB04a, §4] Symmetric (l = 2) - G5 G3 G3 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 592 ms G5

1 ×G2
2 G1 ×G2

2 G2
1 ×G2 ×GT G4

1 ×G3
2 ×GT 16

Asymmetric [Min. SK] 641 ms G5
1 ×G4

2 G3
1 G3

2 ×GT G3
1 ×G3

2 ×GT 16
Asymmetric [Min. CT] 626 ms G4

1 ×G5
2 G3

2 G3
1 ×GT G3

1 ×G3
2 ×GT 16

Asymmetric [Min. Assump] 582 ms G4
1 ×G5

2 G3
2 G3

1 ×GT G3
1 ×G3

2 ×GT 16

BB04 HIBE [BB04a, §4] Symmetric (l = 9) - G12 G10 G10 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 20629 ms G12

1 ×G2
2 G1 ×G9

2 G9
1 ×G2 ×GT G4

1 ×G3
2 ×GT 2048

Asymmetric [Min. SK] 15714 ms G12
1 ×G11

2 G10
1 G10

2 ×GT G3
1 ×G3

2 ×GT 2048
Asymmetric [Min. CT] 15690 ms G11

1 ×G12
2 G10

2 G10
1 ×GT G3

1 ×G3
2 ×GT 2048

Asymmetric [Min. Assump] 20904 ms G11
1 ×G12

2 G10
2 G10

1 ×GT G3
1 ×G3

2 ×GT 2048

GENTRY06 [Gen06, §3.1] Symmetric - G3 Zp ×G G×G2
T G3+q ×GT trunc. dec. q-ABDHE

Asymmetric [Min. PK] 669 ms G2
1 ×G2

2 Zp ×G2 G1 ×G2
T G3+q

1 ×G2+q
2 ×GT 4

Asymmetric [Min. SK] 718 ms G2
1 ×G3

2 Zp ×G1 G2 ×G2
T G2+q

1 ×G3+q
2 ×GT 4

Asymmetric [Min. CT] 723 ms G2
1 ×G2

2 Zp ×G2 G1 ×G2
T G3+q

1 ×G2+q
2 ×GT 4

Asymmetric [Min. Assump] 676 ms G2
1 ×G2

2 Zp ×G2 G1 ×G2
T G3+q

1 ×G1+q
2 ×GT 4

WATERS05 [Wat05, §4] Symmetric - G4+n G2 G2 ×GT G4 ×GT DBDH
Asymmetric [Min. PK] 725 ms G4+n

1 ×G2
2 G1 ×G2 G1 ×G2 ×GT G4

1 ×G3
2 ×GT 8

Asymmetric [Min. SK] 770 ms G4+n
1 ×G3+n

2 G2
1 G2

2 ×GT G3
1 ×G3

2 ×GT 8
Asymmetric [Min. CT] 767 ms G3+n

1 ×G4+n
2 G2

2 G2
1 ×GT G3

1 ×G3
2 ×GT 8

Asymmetric [Min. Assump] 716 ms G4+n
1 ×G3+n

2 G2
1 G2

2 ×GT G3
1 ×G3

2 ×GT 8

WATERS09 (DSE) [Wat09, §3.1] Symmetric - G13 ×GT G8 × Zp Zp ×G9 ×GT (G4 ×GT), (G6), (G6) DBDH, DLIN, DLIN
Asymmetric [Min. PK] 6217 ms G10

1 ×G4
2 ×GT G4

1 ×G4
2 × Zp G5

1 ×G4
2 ×GT (G4

1 ×G3
2 ×GT), (G6

1 ×G6
2) 256

Asymmetric [Min. SK] 5871 ms G7
1 ×G13

2 ×GT G8
1 × Zp G9

2 ×GT (G3
1 ×G3

2 ×GT), (G6
1 ×G6

2), (G6
1 ×G6

2) 256
Asymmetric [Min. CT] 5858 ms G13

1 ×G7
2 ×GT G8

2 × Zp G9
1 ×GT (G3

1 ×G3
2 ×GT), (G6

1 ×G6
2), (G6

1 ×G6
2) 256

Asymmetric [Min. Assump] 6228 ms G12
1 ×G5

2 ×GT G3
1 ×G5

2 × Zp G6
1 ×G3

2 ×GT (G4
1 ×G2

2 ×GT), (G6
1 ×G6

2), (G6
1 ×G6

2) 256

Broadcast Encryption
BGW05 [BGW05, §3.1] Symmetric (n users) - G2n+1 G G3 G2l+1 ×GT decision l-BDHE

Asymmetric [Min. PK] 530 ms G2n+1
1 ×G2n

2 G2 G2
1 ×GT G2l

1 ×G2l+1
2 ×GT 4

Asymmetric [Min. SK] 601 ms G2n
1 ×G2n+1

2 G1 G2
2 ×GT G2l

1 ×G2l+1
2 ×GT 4

Asymmetric [Min. CT] 587 ms G2n+1
1 ×G2n

2 G2 G2
1 ×GT G2l

1 ×G2l+1
2 ×GT 4

Asymmetric [Min. Assump] 544 ms G2n+1
1 ×G2n

2 G2 G2
1 ×GT G2l

1 ×G2l+1
2 ×GT 4

Signature
ACDKNO [ACD+12, §5.3] Symmetric - G15 G2 G8 (G4), (G6), (G6) CDH, DLIN, DLIN
Asymmetric [Min. PK] 18216 ms G14

1 ×G5
2 G2

2 G1 ×G7
2 (G2

1 ×G4
2), (G2

1 ×G6
2), (G2

1 ×G6
2) 1024

Asymmetric [Min. Sig] 14689 ms G6
1 ×G14

2 G2
1 G8

1 (G4
1 ×G2

2), (G6
1 ×G2

2), (G6
1 ×G2

2) 1024
Asymmetric [Min. Assump] 18135 ms G5

1 ×G14
2 G2

1 G7
1 ×G2 (G4

1 ×G2
2), (G6

1 ×G2
2), (G6

1 ×G2
2) 1024

BLS [BLS04, §2.2] Symmetric - G2 Z∗
p G G4 CDH

Asymmetric [Min. PK] 515 ms G2
2 Z∗

p G1 (G4
1 ×G3

2), (G3
1 ×G3

2), (G3
1 ×G3

2) 2
Asymmetric [Min. Sig] 556 ms G2

2 Z∗
p G1 (G4

1 ×G3
2), (G3

1 ×G3
2), (G3

1 ×G3
2) 2

Asymmetric [Min. Assump] 517 ms G2
2 Z∗

p G1 (G4
1 ×G3

2), (G3
1 ×G2

2), (G3
1 ×G3

2) 2

WATERS05 [Wat05, §7] Symmetric - G4+n G G2 G4 ×GT DBDH
Asymmetric [Min. PK] 724 ms G4+n

1 ×G2
2 G1 G1 ×G2 G4

1 ×G2
2 ×GT 8

Asymmetric [Min. Sig] 721 ms G4+n
1 ×G3+n

2 G1 G2
1 G3

1 ×G3
2 ×GT 8

Asymmetric [Min. Assump] 755 ms G4+n
1 ×G2

2 G1 G1 ×G2 G4
1 ×G2

2 ×GT 8

Figure 8: A summary of the experimental evaluations of AutoGroup+ on a variety of schemes and
optimization options. For the symmetric baseline with curve SS1536, elements in G are 1536 bits
and GT are 3072 bits. For the asymmetric translations with BN256, elements in G1 are 256 bits,
G2 are 1024 bits, and GT are 3072 bits. For BGW05, the private key size is listed for a single user.

C++, Python or LATEX.

5 AutoGroup+: Experimental Evaluation

We tested AutoGroup+ on 8 schemes, with 3-4 optimization options and 4 different levels of BB
HIBE, for 45 total translations.9 Figure 8 summarizes the translation times and resulting scheme
sizes.10 To demonstrate the improvement in running times due to both the asymmetric setting
and AutoGroup+’s optimizations, Figure 9 includes over 130 timing experiments, showing drastic
improvements. In Figure 10, we summarize the effect of scheme complexity on AutoGroup+ conver-
sion time by varying the complexity of BB HIBE. We note that even given a more complex scheme
than attempted by any other tool, AutoGroup+ still provides fast conversion times.

9Currently the tool does not support the assumption minimization option for schemes with more than one as-
sumption. This is future work, although we would like to explore how valuable assumption minimization is to tool
users.

10We only give details for two variations of BB HIBE because the results are similar for all levels.

16

Time•

Setup Keygen Encrypt/ Decrypt/
Sign Verify

ID-Based Enc.
BB04 HIBE [BB04a, §4] Symmetric (SS1536) (l = 2) 346.47 ms 84.75 ms 118.64 ms 133.48 ms
Asymmetric (BN256) [Min. PK] 5.09 ms 4.79 ms 12.92 ms 21.36 ms
Asymmetric (BN256) [Min. SK] 8.15 ms 2.95 ms 14.95 ms 21.32 ms
Asymmetric (BN256) [Min. CT] 9.84 ms 6.23 ms 12.38 ms 21.22 ms
Asymmetric (BN256) [Min. Assump] 9.08 ms 7.30 ms 12.27 ms 21.64 ms

BB04 HIBE [BB04a, §4] Symmetric (SS1536) (l = 9) 892.69 ms 283.11 ms 217.39 ms 446.10 ms
Asymmetric (BN256) [Min. PK] 9.25 ms 17.64 ms 17.10 ms 70.84 ms
Asymmetric (BN256) [Min. SK] 20.53 ms 11.14 ms 24.36 ms 71.45 ms
Asymmetric (BN256) [Min. CT] 21.60 ms 27.02 ms 16.48 ms 72.03 ms
Asymmetric (BN256) [Min. Assump] 21.68 ms 31.96 ms 16.77 ms 70.48 ms

GENTRY06 [Gen06, §3.1] Symmetric (SS1536) 172.30 ms 28.23 ms 137.79 ms 48.42 ms
Asymmetric (BN256) [Min. PK] 2.88 ms 2.47 ms 21.08 ms 10.01 ms
Asymmetric (BN256) [Min. SK] 4.22 ms 1.18 ms 22.46 ms 9.96 ms
Asymmetric (BN256) [Min. CT] 2.93 ms 2.53 ms 21.02 ms 10.02 ms
Asymmetric (BN256) [Min. Assump] 2.88 ms 2.53 ms 21.10 ms 10.09 ms

WATERS05 [Wat05, §4] Symmetric (SS1536) 908.94 ms 29.78 ms 78.08 ms 111.76 ms
Asymmetric (BN256) [Min. PK] 10.31 ms 2.04 ms 11.98 ms 14.23 ms
Asymmetric (BN256) [Min. SK] 24.11 ms 1.37 ms 13.68 ms 14.11 ms
Asymmetric (BN256) [Min. CT] 25.39 ms 3.67 ms 11.25 ms 14.23 ms
Asymmetric (BN256) [Min. Assump] 23.81 ms 1.36 ms 13.71 ms 14.38 ms

WATERS09 (DSE) [Wat09, §3.1] Symmetric (SS1536) 755.50 ms 195.27 ms 212.88 ms 414.79 ms
Asymmetric (BN256) [Min. PK] 23.13 ms 9.71 ms 13.70 ms 66.45 ms
Asymmetric (BN256) [Min. SK] 36.83 ms 7.07 ms 20.08 ms 66.42 ms
Asymmetric (BN256) [Min. CT] 34.41 ms 14.82 ms 11.08 ms 66.92 ms
Asymmetric (BN256) [Min. Assump] 29.90 ms 11.09 ms 13.03 ms 66.92 ms

Broadcast Encryption
BGW05 [BGW05, §3.1] Symmetric (SS1536) (n = 10) 376.84 ms 140.27 ms 86.96 ms 68.65 ms
Asymmetric (BN256) [Min. PK] 55.29 ms 13.98 ms 11.457 ms 6.13 ms
Asymmetric (BN256) [Min. SK] 38.45 ms 5.82 ms 12.49 ms 8.122 ms
Asymmetric (BN256) [Min. CT] 37.75 ms 12.32 ms 11.18 ms 6.27 ms
Asymmetric (BN256) [Min. Assump] 37.74 ms 12.31 ms 11.186 ms 6.12 ms

Signature
ACDKNO [ACD+12, §5.3] Symmetric (SS1536) 395.23 ms 497.04 ms 275.99 ms 937.14 ms
Asymmetric (BN256) [Min. PK] 9.05 ms 17.19 ms 15.27 ms 147.62 ms
Asymmetric (BN256) [Min. Sig] 8.31 ms 22.65 ms 14.33 ms 152.60 ms
Asymmetric (BN256) [Min. Assump] 8.43 ms 22.23 ms 13.94 ms 147.77 ms

BLS [BLS04, §] Symmetric (SS1536) - 93.20 ms 92.61 ms 167.73 ms
Asymmetric (BN256) [Min. PK] - 2.99 ms 0.74 ms 14.20 ms
Asymmetric (BN256) [Min. Sig] - 3.00 ms 0.75 ms 14.20 ms
Asymmetric (BN256) [Min. Assump] - 3.03 ms 0.69 ms 14.18 ms

WATERS05 [Wat05, §7] (SS1536) - 720.75 ms 29.72 ms 135.00 ms
Asymmetric (BN256) [Min. PK] - 10.42 ms 2.02 ms 21.44 ms
Asymmetric (BN256) [Min. Sig] - 25.60 ms 1.43 ms 23.13 ms
Asymmetric (BN256) [Min. Assump] - 10.18 ms 2.01 ms 21.42 ms
•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 9: A summary of the running times of the AutoGroup+ translations using curve BN256 as
compared to the running times using the roughly security-equivalent symmetric curve SS1536 in
MIRACL. The asymmetric setting plus AutoGroup+’s optimizations cut the running times by one
or two orders of magnitude.

System Configuration. All of our benchmarks were executed on a standard workstation that has a
2.20GHz quad-core Intel Core i7-2720QM processor with 8GB RAM running Ubuntu 11.04 LTS,
Linux Kernel version 2.6.38-16-generic (x86-64-bit architecture). Our measurements only use a
single core of the Intel processor for consistency. The AutoGroup+ implementation utilizes the
same building blocks as AutoGroup which include the MIRACL library (v5.5.4) and/or RELIC
cryptographic toolkit [AG], Charm v0.43 [AGM+13] in C++ or Python code, and the Z3 SMT
solver (v4.3.2).

Limitations. In Section 3.1.1, we provide an example of a scheme which falls into a category of things
that Abe et al. warned about and on which AutoGroup gets confused. AutoGroup tries to power

17

Conversion Num.
Time Solutions

BB04 HIBE [BB04a, §4] (l = 2) - -
Asymmetric [Min. PK] 592 ms 16
Asymmetric [Min. SK] 641 ms 16
Asymmetric [Min. CT] 626 ms 16
Asymmetric [Min. Assump] 582 ms 16

BB04 HIBE [BB04a, §4] (l = 6) - -
Asymmetric [Min. PK] 2361 ms 256
Asymmetric [Min. SK] 2019 ms 256
Asymmetric [Min. CT] 2023 ms 256
Asymmetric [Min. Assump] 2375 ms 256

BB04 HIBE [BB04a, §4] (l = 7) - -
Asymmetric [Min. PK] 4555 ms 512
Asymmetric [Min. SK] 3644 ms 512
Asymmetric [Min. CT] 3662 ms 512
Asymmetric [Min. Assump] 4519 ms 512

BB04 HIBE [BB04a, §4] (l = 8) - -
Asymmetric [Min. PK] 9344 ms 1024
Asymmetric [Min. SK] 7148 ms 1024
Asymmetric [Min. CT] 7194 ms 1024
Asymmetric [Min. Assump] 9299 ms 1024

BB04 HIBE [BB04a, §4] (l = 9) - -
Asymmetric [Min. PK] 20629 ms 2048
Asymmetric [Min. SK] 15714 ms 2048
Asymmetric [Min. CT] 15690 ms 2048
Asymmetric [Min. Assump] 20904 ms 2048

Figure 10: A summary of the conversion times of AutoGroup+ for various levels/degrees of com-
plexity of BB04 HIBE [BB04a, §4] and a variety of optimization options.

through and split the hash output (which it cannot really do because the discrete log is unknown),
so while it eventually outputs some SDL, this SDL is not a proper translation. Unlike AutoGroup,
AutoGroup+ includes logic to output a warning when processing such inputs and continues trying
to translate the scheme. If the verification check of a valid split fails (e.g., due to hash split), then
AutoGroup+ identifies the split as invalid and attempts checking the next best solution. If there
are no such solutions, AutoGroup+ outputs no solution.

5.1 Comparison with ACSC/Charm

Our experiments have four schemes in common with public implementations in the Advanced
Crypto Software Collection [Con] and Charm [AGM+13]. Where we have matches, our new results
confirm the security and optimality of those (unproven) implemented translations.

For Waters 2009 [Wat09], we compare with the Charm implementation by Fan Zhang. For
our PK-size optimization, our translation is 3 elements shorter (we split only g, whereas they split
g, w, u, h.) For our ciphertext-size optimization, it looks the closest to theirs, but they do not
match. Both translations have short ciphertexts leaving all base elements in G1. However, the
Charm translation appears to have shifted some elements from the public key to the secret key and
dropped some elements from the master secret key (e.g., we split v and include both in the MSK,
because that is the naive way to do it, but they use the v split for G1 only in the Setup and then
drop it from the MSK.) While we cannot confirm the security of this implementation using our tool
(so we believe this is left as an open question), the tool did produce a translation with the same

18

ciphertext-size that is secure.
For BGW 2005 [BGW05], we compared with the C implementation on the ACSC website by

Matt Steiner and Ben Lynn. Indeed, our translations that minimize the public parameters or
ciphertext size are the same, and the same as their manual translation. We confirm security and
PP/ciphertext-size optimality.

For BB HIBE [BB04a], Charm has a full HIBE implementation. We tested it for a minimum of
2 levels, but their implementation matches ours for ciphertext minimization, except that they add
a precomputed pairing (element in GT) to the public key so that it does not have to be done per
encryption. This impacts only efficiency. We confirm security and ciphertext-size optimality.

For BLS [BLS04], our translations also match. This is a simple case with only two translation
options.

Charm [AGM+13] also includes variants of the Waters encryption and signature schemes [Wat05]
from 2005, but we translated the original schemes (as did [AGH13, AGOT14]), so our translations
are not directly comparable to these Charm variants.

5.2 Comparison with Abe et al.

Abe et al. [AGOT14] tested their method on two encryption schemes: Waters 2005 [Wat05] and
Waters 2009 (Dual System Encryption) [Wat09]. They looked at minimizing the size of the public
key and the Type-III assumption. We conjecture that practitioners would be more interested in
minimizing ciphertext or private key size, so our summary also includes those optimizations.

For Waters 2005, AutoGroup+ found the same construction as their semi-automated method.
As remarked in Section 3.1.1, their dependency graph for this scheme included some unnecessary
dependencies. Waters [Wat05] clearly states to choose g2, u

′, ui as fresh random generators, but Abe
et al. explicitly “assume” that they are generated from a common generator g. From a functionality
and security standpoint of the Type-I scheme, this distinction certainly does not matter. However,
it does change the intermediate dependency graphs, which could in some cases affect the output
(though it does not in this situation). Both their partial automation and our full automation of
Waters 2005 took under one second.

For Waters 2009, AutoGroup+ found a PK-optimized construction with one less group element
than the PK-optimized construction of Abe et al. (They published an efficiency summary, but not
the scheme itself.) The way we count public parameters/keys appears to differ from Abe et al.,
so a direct comparison to their tables can be misleading. We count all elements that must appear
in the public key, including generators, whereas they appear to count only elements that must be
calculated (or were perhaps misled by an implicit inclusion in [Wat09].) Waters09 [Wat09] must
have 13 elements in G for the PK in his symmetric construction (because g is needed for encryption,
as we write), but Abe et al. report it as 12 elements in G (we assume they omitted generator g).
We end up with 14 total elements in the asymmetric translation, whereas they report 13, but it
seems they are omitting the splitting of g into generators for G1 and G2, which would make it 15.

A good take-away from this is not whether we found a slightly better construction for one case
or not, but simply that these translations are difficult and complex, and will very much benefit
from a new automation tool. Drawing and merging the dependency graphs for Waters09 by hand
is a nightmare and becomes infeasible for a complex scheme like [ACD+12]. In addition, their
graph splitting program took 1.75 hours for Waters09, whereas our tool handled everything in 6.5
seconds. In fairness, Abe et al. was primarily focused on theoretical results which helped make this
more systems-focused work possible.

19

5.3 Comparison with AutoGroup

The publicly-available AutoGroup software tool [AGH13] was used as the starting point for our
implementation, hence the name of AutoGroup+. Our 45 translation experiments overlap with
AutoGroup in 12 points (six schemes in common and they do fewer optimizations). For these 12,
the tools found the same constructions. However, a major difference is that with AutoGroup+, we
have security guarantees. This required us to write new SDL descriptions for all the assumptions
and proofs involved.

Indeed, one crucial question was how the security logic would increase translation times. We
focused our effort on leveraging an SMT Solver to help handle this security logic, which kept the
running times of AutoGroup+ within a few seconds of AutoGroup.

In addition to the security logic we added, we also found that the public key optimization flag
for encryption was not implemented. Because we wanted to compare our results with [AGOT14],
we implemented it.

AutoGroup was tested on two signature schemes omitted here. Camenisch-Lysyanskaya [CL04]
is not valid for AutoGroup+, because it uses an interactive complexity assumption (also not handled
by [AGOT14].) Boneh-Boyen [BB04c] has a nested proof structure that makes its reduction very
complex to translate to SDL.

5.4 Comparison with manual translations

The Dual System Encryption scheme of Waters [Wat09] has a few manual translations with a secu-
rity analysis. Ramanna, Chatterjee and Sarkar [RCS12] provide a variety of translations, one with
the smallest public parameter/key size, at the cost of introducing some mild complexity assump-
tions. Similarly, Chen, Lim, Ling, Wang and Wee [CLL+13] presented a translation introducing
the SXDH assumption, which achieved the shortest ciphertext size. These results are superior to
those derived by AutoGroup+ and [AGH13, AGOT14], but it is not yet clear how to generalize and
systematize the human creativity used.

6 Conclusions

Automation is the future for many cryptographic design tasks. This work successfully demonstrates
automating a complex translation of a scheme from one algebraic setting to another. There was a
demonstrated need for such a compiler both for pairing designers and implementors. Its realization
combined and improved on contributions from the systems [AGH13] and theory [AGOT14] commu-
nities. The result is a practical software tool, AutoGroup+, that enables secure pairing translations
for everyone.

References

[ACD+12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple assumptions. Cryptology
ePrint Archive, Report 2012/285, 2012. http://eprint.iacr.org/.

[AG] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient Library for Cryptography. http://code.

google.com/p/relic-toolkit/.

20

http://eprint.iacr.org/
http://code.google.com/p/relic-toolkit/
http://code.google.com/p/relic-toolkit/

[AGH13] Joseph A. Akinyele, Matthew Green, and Susan Hohenberger. Using SMT solvers to automate design
tasks for encryption and signature schemes. In ACM Conference on Computer and Communications
Security, CCS’13, pages 399–410, 2013.

[AGHP12] Joseph A. Akinyele, Matthew Green, Susan Hohenberger, and Matthew W. Pagano. Machine-generated
algorithms, proofs and software for the batch verification of digital signature schemes. In ACM CCS,
pages 474–487, 2012.

[AGM+13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano, Michael Rushanan, Matthew
Green, and Aviel D. Rubin. Charm: a framework for rapidly prototyping cryptosystems. Journal of
Cryptographic Engineering, 3(2):111–128, 2013. http://www.charm-crypto.com/Main.html.

[AGOT14] Masayuki Abe, Jens Groth, Miyako Ohkubo, and Takeya Tango. Converting cryptographic schemes from
symmetric to asymmetric bilinear groups. In CRYPTO, pages 241–260, 2014.

[BB04a] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random
oracles. In Christian Cachin and JanL. Camenisch, editors, Advances in Cryptology - EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin Heidelberg,
2004.

[BB04b] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity based encryption without random
oracles. Cryptology ePrint Archive, Report 2004/172, 2004. http://eprint.iacr.org/.

[BB04c] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT, volume 3027,
pages 382–400, 2004.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO,
pages 213–229, 2001.

[BFF+14] Gilles Barthe, Edvard Fagerholm, Dario Fiore, John C. Mitchell, Andre Scedrov, and Benedikt Schmidt.
Automated analysis of cryptographic assumptions in generic group models. In CRYPTO 2014, pages
95–112, 2014.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption with short cipher-
texts and private keys. In CRYPTO’05, pages 258–275, 2005.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Journal of Cryp-
tology, 17(4):297–319, 2004.

[BN06] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In SAC,
volume 3897, pages 319–331, 2006. http://cryptojedi.org/papers/#pfcpo.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In CRYPTO, volume 3152, pages 56–72, 2004.

[CLL+13] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and signatures via
asymmetric pairings. In Pairing-Based Cryptography–Pairing 2012, pages 122–140. Springer, 2013.

[CLL+14] Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter identity-based encryption
via asymmetric pairings. Des. Codes Cryptography, 73(3):911–947, 2014.

[Con] ACSC Contributors. Advanced crypto software collection. http://hms.isi.jhu.edu/acsc/.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Proceedings of the Theory and
practice of Software, TACAS’08/ETAPS’08, pages 337–340, 2008.

[Gal01] Steven D. Galbraith. Supersingular curves in cryptography. In ASIACRYPT, pages 495–513, 2001.

[Gen06] Craig Gentry. Practical identity-based encryption without random oracles. In EUROCRYPT, pages
445–464, 2006.

[GPS06] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers, 2006.
Cryptology ePrint Archive: Report 2006/165.

[Gt12] Torbjorn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision Arithmetic
Library, 5.0.5 edition, 2012. http://gmplib.org/.

[Kri15] Sathvik Krishnamurthy. HP to Acquire Voltage Security to Expand Data Encryption Security Solutions
for Cloud and Big Data. http://www.voltage.com/blog/releases, February 9, 2015.

21

http://www.charm-crypto.com/Main.html
http://eprint.iacr.org/
http://cryptojedi.org/papers/#pfcpo
http://hms.isi.jhu.edu/acsc/
http://gmplib.org/
http://www.voltage.com/blog/releases

[PSV06] Dan Page, Nigel Smart, and Fre Vercauteren. A comparison of MNT curves and supersingular curves.
Applicable Algebra in Eng,Com and Comp, 17(5):379–392, 2006.

[RCS12] Somindu C. Ramanna, Sanjit Chatterjee, and Palash Sarkar. Variants of Waters’ dual system primitives
using asymmetric pairings - (extended abstract). In PKC ’12, pages 298–315, 2012.

[Tea] EasyCrypt Project Team. Easycrypt: Computer-aided cryptographic proofs. https://www.easycrypt.

info/trac/.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT ’05, volume
3494 of LNCS, pages 320–329. Springer, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In
CRYPTO, pages 619–636, 2009.

A Current Efficiency Numbers for Type-I and Type-III Pairings

Size (in bits) Exp. Time (in milliseconds)
Sym. vs. Asym. Setting G1 G2 GT G1 G2 GT Pairing Time

SS1536 (or Type-I) 1536 1536 3072 5.3 ms 5.3 ms 1.0 ms 14.9 ms
BN256 (or Type-III) 256 1024 3072 0.2 ms 1.2 ms 2.1 ms 2.2 ms

Table 1: Comparing Size and Efficiency of Pairing-based Curves.

We include current efficiency numbers for Type-I and Type-III groups as implemented in the
highly efficient RELIC cryptographic toolkit version 0.4 [AG] (using the GMP library [Gt12] for big
number operations and the default configuration options for prime field arithmetic) measured on a
standard workstation.11 In Table 1, we show the differences between Type-I and Type-III pairings
at the same security level in terms of group representation and efficiency. 12 A typical candidate
for Type-I are supersingular elliptic curves (or SS) [Gal01, PSV06] in which the embedding degree
is typically small (i.e., k ≤ 6). One such example is a supersingular curve at the 128-bit security
level where the prime order of the group is large, |p| = 1536-bits, and the embedding degree is
k = 2. Conversely, one common Type-III candidate at the same security level are Barreto-Naehrig
(BN) [BN06] curves in which the embedding degree is much larger (e.g., k = 12) and the prime
order can be as small as |p| = 256-bits. As reflected in Table 1, group operations and pairing times
in the Type-III setting can be drastically more efficient and have shorter representations than the
Type-I setting.

We remark on hashing into Type-I and Type-III pairing groups. In the Type-I setting, it is
feasible to hash arbitrary strings into G, e.g., for the SS curve, hashing arbitrary strings to G takes
on average 36.8 ms. In the Type-III setting (e.g., over ordinary elliptic curves), it is feasible to hash
arbitrary strings into both G1 and G2 independently with different costs, e.g., for the BN curve,
hashing to G1 takes 0.04 ms and to G2 takes 0.37 ms on average (a ratio of roughly 9 to 1 from G2

to G1). See [GPS06] for more details.

112.4 GHz Intel Core i5 processor and 8GB of RAM (1067 MHz DDR3) running Mac OS X Lion version 10.7.5
12A careful reader may observe that the exponentiation time for GT in SS1536 appears surprisingly small. We

reassure the reader that this is not a typo. With the SS1536, GT = Fp
2 is a lower extension of a larger field, whereas

with BN256, GT = Fp
12, which is a higher extension of a smaller field. Thus, even though the elliptic curve points

are larger with SS1536, the field multiplication operation in GT is quite efficient. This does not apply to G1,G2 as
those are doing scalar multiplication.

22

https://www.easycrypt.info/trac/
https://www.easycrypt.info/trac/

B SDL Descriptions for Section 4

We now provide examples of the input and output Scheme Description Language (SDL) for Auto-
Group+.

B.1 SDL as Input

First we will show our SDL transcription of the DBDH assumption:

name := DBDH

setting := symmetric

BEGIN :: types

a := ZR

b := ZR

c := ZR

z := ZR

END :: types

BEGIN :: func:setup

input := None

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

g := random(G1)

assumpKey := list{g, a, b, c, z}

output := assumpKey

END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := expand{g, a, b, c, z}

A := g ^ a

B := g ^ b

C := g ^ c

coinflip := random(bin)

BEGIN :: if

if { coinflip == 0 }

Z := e(g, g) ^ (a * b * c)

else

Z := e(g, g) ^ z

23

END :: if

assumpVar := list{g, A, B, C, Z}

output := assumpVar

END :: func:assump

Then, the full SDL transcription for the symmetric BB HIBE scheme [BB04b]:

name := BB04HIBE

setting := symmetric

BEGIN :: types

M := GT

ID1 := ZR

ID2 := ZR

END :: types

BEGIN :: func:setup

input := None

g := random(G1)

alpha := random(ZR)

g1 := g ^ alpha

h1 := random(G1)

h2 := random(G1)

g2 := random(G1)

g2alpha := g2 ^ alpha

msk := list{g2alpha}

pk := list{g, g1, g2, h1, h2}

output := list{msk, pk}

END :: func:setup

BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}

pk := expand{g, g1, g2, h1, h2}

msk := expand{g2alpha}

r1 := random(ZR)

r2 := random(ZR)

d1 := g2alpha * \

(((g1^ID1)*h1)^r1)* \

(((g1^ID2)*h2)^r2)

d2 := g ^ r1

24

d3 := g ^ r2

sk := list{d1, d2, d3}

output := sk

END :: func:keygen

BEGIN :: func:encrypt

input := list{pk, M, ID1, ID2}

pk := expand{g, g1, g2, h1, h2}

s := random(ZR)

C1 := (e(g1,g2)^s) * M

C2 := g ^ s

C3 := ((g1^ID1) * h1)^s

C4 := ((g1^ID2) * h2)^s

ct := list{C1, C2, C3, C4}

output := ct

END :: func:encrypt

BEGIN :: func:decrypt

input := list{pk, sk, ct}

pk := expand{g, g1, g2, h1, h2}

ct := expand{C1, C2, C3, C4}

sk := expand{d1, d2, d3}

M := C1*((e(C3,d2) * \

e(C4,d3))/(e(C2,d1)))

output := M

END :: func:decrypt

Finally, the reduction from [BB04b] for the BB HIBE scheme:

name := BB04

setting := symmetric

l := 2

k := 2

BEGIN :: types

l := Int

j := Int

k := Int

M := list{GT}

ID := list{ZR}

25

IDstar := list{ZR}

alphai := list{ZR}

h := list{G1}

r := list{ZR}

di := list{G1}

Ci := list{G1}

msk := G1

END :: types

BEGIN :: func:setup

input := list{IDstar}

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

g := random(G1)

A := g^a

B := g^b

C := g^c

coinflip := random(bin)

BEGIN :: if

if { coinflip == 0 }

Z := e(g, g)^(a * b * c)

else

Z := e(g, g)^z

END :: if

g1 := A

g2 := B

g3 := C

BEGIN :: for

for{i := 1, l}

alphai#i := random(ZR)

h#i := (g1^-IDstar#i) * (g^alphai#i)

END :: for

pk := list{g, g1, g2, h}

assumpVar := list{A, B, C, Z}

reductionParams := \

list{g3, alphai, IDstar}

output := list{msk, pk, \

26

reductionParams, assumpVar}

END :: func:setup

BEGIN :: func:queries

input := list{j, pk, ID, reductionParams}

pk := expand{g, g1, g2, h}

reductionParams := \

expand{g3, alphai, IDstar}

BEGIN :: for

for{i := 1, j}

r#i := random(ZR)

END :: for

dotProd1 := init(G1)

BEGIN :: for

for{v := 1, j}

dotProd1 := dotProd1 * \

(((g1^(ID#v - IDstar#v)) * \

(g^alphai#v))^r#v)

END :: for

d1 := (g2^((-alphai#j)/ \

(ID#j - IDstar#j)))*dotProd1

BEGIN :: for

for{i := 1, j}

BEGIN :: if

if {i == j }

di#j := \

(g2^(-1/(ID#j - IDstar#j))) * \

(g^r#j)

else

di#i := g^r#i

END :: if

END :: for

sk := list{d1, di}

output := sk

END :: func:queries

BEGIN :: func:challenge

input := list{M, ID, \

27

reductionParams, assumpVar}

pk := expand{g, g1, g2, h}

assumpVar := expand{A, B, C, Z}

reductionParams := \

expand{g3, alphai, IDstar}

b := random(bin)

C1 := M#b * Z

C2 := g3

BEGIN :: for

for{i := 1, k}

Ci#k := g3 ^ alphai#i

END :: for

ct := list{C1, C2, Ci}

output := ct

END :: func:challenge

We provide the configuration file that embeds the metadata required by AutoGroup+ to perform
the translation:

schemeType = "PKENC"

assumption = ["DBDH"]

reduction = ["reductionBB04HIBE"]

short = "public-keys"

masterPubVars = ["pk"]

masterSecVars = ["msk"]

keygenPubVar = "pk"

keygenSecVar = "sk"

ciphertextVar = "ct"

reducCiphertextVar = "ct"

reducQueriesSecVar = "d"

B.2 Translated Scheme and Assumption SDL Descriptions

We now show the SDL outputs of AutoGroup+. The first is the SDL output of the co-DBDH
assumption:

name := DBDH

setting := asymmetric

28

BEGIN :: types

a := ZR

b := ZR

c := ZR

z := ZR

END :: types

BEGIN :: func:setup

input := None

a := random(ZR)

b := random(ZR)

c := random(ZR)

z := random(ZR)

gG1 := random(G1)

gG2 := random(G2)

assumpKey := \

list{gG1, gG2, a, b, c, z}

output := assumpKey

END :: func:setup

BEGIN :: func:assump

input := assumpKey

assumpKey := \

expand{gG1, gG2, a, b, c, z}

A := (gG1^a)

BG1 := (gG1^b)

BG2 := (gG2^b)

CG1 := (gG1^c)

CG2 := (gG2^c)

coinflip := random(bin)

BEGIN :: if

if {coinflip == 0}

Z := (e(gG1,gG2)^((a * b) * c))

else

Z := (e(gG1,gG2)^z)

END :: if

assumpVar := list{gG1, gG2, A,\

BG1, BG2, CG1, CG2, Z}

output := assumpVar

END :: func:assump

The second SDL output is the asymmetric BB HIBE scheme [BB04b] that optimally minimizes
the public key parameters:

29

name := BB04HIBE

setting := asymmetric

BEGIN :: types

M := GT

ID1 := ZR

ID2 := ZR

END :: types

BEGIN :: func:setup

input := None

gG1 := random(G1)

gG2 := random(G2)

alpha := random(ZR)

g1 := (gG1^alpha)

h1 := random(ZR)

h1G1 := (gG1^h1)

h2 := random(ZR)

h2G1 := (gG1^h2)

g2 := random(ZR)

g2G1 := (gG1^g2)

g2G2 := (gG2^g2)

g2alpha := (g2G1^alpha)

msk := list{g2alpha}

pk := list{gG1, gG2, g1, \

g2G1, g2G2, h1G1, h2G1}

output := list{msk, pk}

END :: func:setup

BEGIN :: func:keygen

input := list{pk, msk, ID1, ID2}

pk := expand{gG1, gG2, g1, \

g2G1, g2G2, h1G1, h2G1}

msk := expand{g2alpha}

r1 := random(ZR)

r2 := random(ZR)

d1 := ((g2alpha * \

(((g1^ID1) * h1G1)^r1)) * \

(((g1^ID2) * h2G1)^r2))

d2 := (gG2^r1)

d3 := (gG2^r2)

sk := list{d1, d2, d3}

30

output := sk

END :: func:keygen

BEGIN :: func:encrypt

input := list{pk, M, ID1, ID2}

pk := expand{gG1, gG2, g1, \

g2G1, g2G2, h1G1, h2G1}

s := random(ZR)

C1 := ((e(g1,g2G2)^s) * M)

C2 := (gG2^s)

C3 := (((g1^ID1) * h1G1)^s)

C4 := (((g1^ID2) * h2G1)^s)

ct := list{C1, C2, C3, C4}

output := ct

END :: func:encrypt

BEGIN :: func:decrypt

input := list{pk, sk, ct}

pk := expand{gG1, gG2, g1, \

g2G1, g2G2, h1G1, h2G1}

ct := expand{C1, C2, C3, C4}

sk := expand{d1, d2, d3}

M := (C1*((e(C3,d2) * \

e(C4,d3))/e(d1,C2)))

output := M

END :: func:decrypt

31

	Introduction
	Prior Work

	Background
	Pairings
	The Z3 Satisfiability Modulo Theories (SMT) Solver
	A Scheme Description Language (SDL) and Toolchain

	The AutoGroup+ System
	How It Works
	Step 1: Generating Computer-Readable Inputs
	Step 2: Extracting Algebraic Dependencies
	Step 3: Merge Dependency Graphs
	Step 4: Assign Variables using the SMT Solver
	Step 5: Search for Optimal Solution
	Step 6: Evaluate and Process the Solution

	Analysis of AutoGroup+

	An Automation Example with BB-HIBE
	AutoGroup+: Experimental Evaluation
	Comparison with ACSC/Charm
	Comparison with Abe et al.
	Comparison with AutoGroup
	Comparison with manual translations

	Conclusions
	Current Efficiency Numbers for Type-I and Type-III Pairings
	SDL Descriptions for Section 4
	SDL as Input
	Translated Scheme and Assumption SDL Descriptions

