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Abstract. Providing an efficient revocation mechanism for attribute-based encryption (ABE) is of
utmost importance since over time a user’s credentials may be revealed or expired. All previously
known revocable ABE (RABE) constructions (a) essentially utilize the complete subtree (CS) scheme
for revocation purpose, (b) are bounded in the sense that the size of the public parameters depends
linearly on the size of the attribute universe and logarithmically on the number of users in the
system, and (c) are either selectively secure, which seems unrealistic in a dynamic system such
as RABE, or adaptively secure but built in a composite order bilinear group setting, which is
undesirable from the point of view of both efficiency and security. This paper presents the first
adaptively secure unbounded RABE using subset difference (SD) mechanism for revocation which
greatly improves the broadcast efficiency compared to the CS scheme. Our RABE scheme is built
on a prime order bilinear group setting resulting in practical computation cost, and its security
depends on the Decisional Linear assumption.

Keywords: attribute-based encryption, revocable attribute-based encryption, key revocation, sub-
set difference method, prime order bilinear groups.

1 Introduction

Attribute-based encryption (ABE) enforces an access control mechanism over encrypted data
using access policies and ascribed attributes among private keys and ciphertexts. The notion of
ABE was first put forward by Sahai and Waters [19] and refined by many subsequent works [9],
[3], [17], [21]. In a (key-policy) ABE system, an encryptor may specify a set of attributes, which
could be any keyword describing the ciphertext, directly while encrypting a certain plaintext.
A user in the system possesses a key associated with an access policy, stating what kind of
ciphertext it can decrypt. Users’ private keys are distributed from a trusted key generation
center. In such a system, a user can decrypt a ciphertext if the policy associated with its key
satisfies the attribute set associated with the ciphertext. ABE has been employed in several
important real-life applications including pay-TV system with package policy and cloud based
data-sharing services.

While using in a practical situation, an ABE scheme must be supported with an efficient
revocation mechanism that can handle dynamic credentials of users, since a user’s credentials
can be revealed or expired. Revocable attribute-based encryption (RABE) is an extension of ABE
that provides enhanced control over dynamic user-credentials. Observe that in many ABE based
practical applications it is extremely important to be able to revoke individual users rather
than a class of users possessing some particular attribute at a time. For instance, in a pay-TV
system it is essential for the broadcasting company to have the control to restrict a user from
viewing subsequently broadcasted programs once its subscription expires without affecting other
subscribed users.
∗ An extended abstract of this paper appears in the proceedings of AFRICACRYPT 2016. This is the full version.
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In 2008, Boldyreva et al. [4] constructed the first RABE scheme. In order to implement
revocation, their RABE scheme uses a key update approach that roughly works as follows: The
encryptor will encrypt a plaintext with an attribute set Γ as usual, and in addition, it also
specifies the time slot attribute for which the ciphertext can be decrypted. The key generation
center manages the revoked user list and periodically announces a key update material at each
time slot, so that only non-revoked users can update their keys and use it to decrypt ciphertexts
encrypted for the legitimate time. This revocation approach termed as indirect revocation in
the literature. The prime disadvantage of this approach is that, the key update phase can be a
bottleneck, since it requires communication from the key generation center to all non-revoked
users at all time periods and the encryptor cannot get a direct control on the revocation list
which may be unsuitable for many practical applications. For instance, in pay-TV system, the
encryptor, i.e., the TV program distributor company needs direct control on the revocation list
to revoke pirate keys instantly without bothering other legitimate customers. In order to avoid
this bottleneck of key update phase, subsequent works [2], [1], [18] adopted a direct revocation
methodology, which allows encryptors to specify the revocation list directly when encrypting
and thus enables instant revocation rather than requiring a key update phase.

Although, a number of RABE schemes exist in the literature [4], [2], [1], [18], the main design
principle of these constructions essentially follows that of Boldyreva et al. [4] and employs the
complete subtree (CS) scheme of Naor et al. [14] for user revocation. Replacing the CS technique
by the subset difference method (SD) [14] or the layered subset difference method (LSD) [10] can
reduce the size of the ciphertext component meant for enforcing revocation from O(r̂ log Nmax

r̂
)

to O(r̂) where Nmax and r̂ respectively denote the total number of users and number of revoked
users. This can provide significant improvement in the broadcast efficiency particularly when the
number of users present in the system is very large compared to the number of revoked users.

Recently Lee et al. [12], utilized the SD scheme to manage revocation for identity-based
encryption (IBE) and pointed out that their technique for RIBE cannot be extended to realize
RABE via SD scheme.

Further, a desirable property of a RABE scheme is its independence from the size of the
attribute universe and the total number of users supported by the system. In all previous RABE
schemes [2], [1], [18], [4], the public parameter size grows linearly with the number of attributes
in the attribute universe and logarithmically with the number of users. Moreover, all previous
RABE schemes except [18] provide only selective security which seems unrealistic in a dynamic
system such as RABE. Although [18] achieves full security, it is built on a composite order bilin-
ear group setting under non-standard assumptions. Note that the bit length of group elements
is very large, as well as, group-operations and pairing computations are prohibitively slow [8] in
composite order bilinear groups than a comparable prime order group.

Our Contribution
Communication bandwidth is of greater concern than user storage in present day applications
like pay-TV and many others. Our goal in this work is to explore applicability of SD mecha-
nism in ABE setting to design an unbounded RABE with reduced communication bandwidth and
simultaneously achieve full security. The starting point of our work is the ABE construction of
Okamoto et al. [16]. However, integrating SD revocation with ABE or replacing CS scheme by
SD technique to construct a broadcast efficient RABE seems to be a quite challenging task.

We construct the first adaptively secure unbounded (key-policy) RABE scheme supporting
direct revocation employing subset difference (SD) mechanism. Towards this end, we build a
rather non-trivial technique in order to integrate the SD scheme with the ABE construction
of [16]. On a more positive note, the full security of our RABE scheme is based on standard
assumption, namely, the Decisional Linear (DLIN) assumption. Most importantly, due to the use
of prime order bilinear group and subset difference revocation scheme, the broadcast efficiency
of our RABE is much higher compared to the existing constructions [2], [1], [18] with reasonable
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computation cost. Furthermore, the proposed RABE scheme is the first to achieve constant size
public parameters and thus overcomes the bottleneck of accommodating large attribute universe
and an unbounded number of users.

Note that, as opposed to the CS scheme, an assigned key for a subset in SD scheme depends
on the keys of some other subsets. This interdependence of keys makes the use of SD method in
attribute-based setting quite challenging. We assign uniformly and independently chosen secrets
to each users and split that secret into two parts– one for the access structure and the other for
revocation. This latter part is further subdivided into random secrets to solve the complex key
assignment problem of the SD method. We integrate SD with ABE by enforcing the condition
that a user can retrieve the first part of its secret if and only if its access structure is satisfied
by the set of attributes specified in the ciphertext, and all the subdivided components of the
other part of its secret can be extracted if and only if its subscription is valid according to the
conditions of SD scheme.

For proving security of our RABE scheme, the main intricacy of this work, we utilize the
(extended) dual system encryption methodology over dual pairing vector spaces introduced in
[16]. However, in order to adopt the technique of [16], for our RABE scheme, we extend some
of the problems and methodology such as indexing and consistent randomness amplification
employed in [16].

Although we use the monotone version of the ABE scheme of [16] to present our RABE
construction for simplicity, we would like to mention that our technique can also be applied to
combine the original non-monotone ABE scheme of [16] with the SD method.

2 Preliminaries

2.1 Notations

– y
$←− A: y is randomly selected from A according to its distribution, when A is a random

variable, and y is uniformly selected from A, when A is a set.
– G → x: x is the output of the algorithm or experiment G.
– #»x : a vector (x1, . . . , xn) ∈ Fnq of length n for some n ∈ N.
– x: an element of vector space V 6= Fnq .
– span〈b1, . . . , bm〉 ⊆ V: the subspace of V generated by {b1, . . . , bm} ⊆ V.
– span〈 #»x 1, . . . ,

#»xm〉 ⊆ Fnq : the subspace of Fnq spanned by { #»x 1, . . . ,
#»xm} ⊆ Fnq .

– (x1, . . . , xm)B:
m∑
i=1

xibi that is a linear combination of vectors in B = {b1, . . . , bm} ⊆ V with

scalars x1, . . . , xm.
– GL(m,Fq): The general linear group of degree m over Fq.

2.2 Dual Pairing Vector Spaces by Direct Product of Symmetric Pairing
Groups

Definition 1 (Symmetric Bilinear Pairing Groups). A symmetric bilinear pairing group
(q,G,GT , G, e) is a tuple of a prime q, cyclic additive group G and multiplicative group GT of
order q each, G 6= 0 ∈ G, and a polynomial time computable non-degenerate bilinear pairing
e : G×G→ GT , i.e., e(sG, tG) = e(G,G)st for all s, t ∈ Fq (bilinearity) and e(G,G) 6= 1 (non-
degeneracy). Let Gbpg be an algorithm that takes input 1λ and outputs a description of bilinear
pairing group (q,G,GT , G, e) with security parameter λ.

Definition 2 (Dual Pairing Vector Spaces (DPVS)). As introduced in [15], a dual pairing
vector space (DPVS) (q,V,GT ,A, E) by a direct product of symmetric pairing groups (q,G,GT , G,

e) is a tuple of prime q, n dimensional vector space V = Gn =
n︷ ︸︸ ︷

G× . . .×G over Fq, cyclic
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group GT of order q, canonical basis A = {a1, . . . ,an} of V, where ai = (
i−1︷ ︸︸ ︷

0, . . . , 0, G,
n−i︷ ︸︸ ︷

0, . . . , 0),

and pairing E : V × V → GT . The pairing E is defined by E(x,y) =
n∏
i=1

e(Gi, Hi) ∈ GT

where x = (G1, . . . , Gn) ∈ V and y = (H1, . . . ,Hn) ∈ V. The map E is non-degenerate
bilinear, i.e., E(sx, ty) = E(x,y)st for s, t ∈ Fq, and if E(x,y) = 1 for all y ∈ V, then
x = 0. For all i and j, E(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) 6= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N), n ∈ N together with
paramG = (q,G,GT , G, e), and outputs a description of paramV = (q,V,GT ,A, E) with security
parameter λ and n-dimensional V. It can be constructed by using Gbpg as a subroutine.

For matrix W = (wi,j)i,j=1,...,n ∈ Fn×nq and element x = (G1, . . . , Gn) in n-dimensional V,

xW denotes
(

n∑
i=1

Giwi,1, . . . ,
n∑
i=1

Giwi,n

)
=
(

n∑
i=1

wi,1Gi, . . . ,
n∑
i=1

wi,nGi

)
by a natural multipli-

cation of an n-dimensional row vector and an n×n matrix. Thus it satisfies an associative law,
i.e., (xW1)W2 = x(W1W2).

In Figure 1 we describe random dual orthogonal basis generator Gob, which is used as a
subroutine in our RABE scheme.

Gob(1λ, (nt)t=0,1): This algorithm performs the following operations:

– Generate (paramG = (q,G,GT , G, e)
$←− Gbpg(1λ), ψ $←− F×q , where F×q = Fq\{0}.

– For t = 0, 1 execute the following:

• Obtain paramVt
= (q,Vt,GT ,At, E) $←− Gdpvs(1λ, nt, paramG) such that Vt =

nt︷ ︸︸ ︷
G× . . .×G and At =

{at,1, . . . ,at,nt} is the canonical basis of Vt.
• Choose Xt = (χt,i,j)i,j=1,...,nt

$←− GL(nt,Fq).
• Compute X∗t = (ϑt,i,j)i,j=1,...,nt = ψ(Xᵀ

t )−1, where Y ᵀ denotes transpose of the matrix Y . Hereafter,
#»χ t,i and #»

ϑ t,i represent the i-th rows of Xt and X∗t respectively, for i = 1, . . . , nt. Note that, for

i, i′ = 1, . . . , nt, #»χ t,i ·
#»

ϑ t,i′ =
nt∑
j=1

χt,i,jϑt,i′,j = ψ, if i = i′, and 0, otherwise.

• Set bt,i = ( #»χ t,i)At =
nt∑
j=1

χt,i,jat,j = (χt,i,1G, . . . , χt,i,ntG), b∗t,i = ( #»

ϑ t,i)At =
nt∑
j=1

ϑt,i,jat,j =

(ϑt,i,1G, . . . , ϑt,i,ntG) for i = 1, . . . nt, and define Bt = {bt,1, . . . , bt,nt}, B∗t = {b∗t,1, . . . , b∗t,nt
}.

– Compute gT = e(G,G)ψ and set param = ({paramVt
}t=0,1, gT ).

– Return (param, {Bt,B∗t }t=0,1).

Observe that

E(bt,i, b∗t,i′ ) =E(( #»χ t,i)At , (
#»

ϑ t,i′ )At )
=E((χt,i,1G, . . . , χt,i,ntG), (ϑt,i′,1G, . . . , ϑt,i′,ntG))

=
nt∏
j=1

e(G,G)χt,i,jϑt,i′,j = e(G,G)
#»χ t,i·

#»
ϑ t,i′

=gT , if i = i′, and 0, otherwise for t = 0, 1; i, i′ = 1, . . . , nt.

Fig. 1: Dual orthogonal basis generator Gob(1λ, (nt)t=0,1)

Henceforth, for simplicity, we denote n = n1, V = V1, A = A1, B = B1 and B∗ = B∗1 for
variables with t = 1.
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2.3 Complexity Assumptions Derived from the Decisional Linear (DLIN)
Assumption

Definition 3 (DLIN: Decisional Linear Assumption). The DLIN problem is to guess β ∈
{0, 1}, given % = (paramG, G, ξG, κG, δξG, σκG, Yβ) $←− GDLIN

β (1λ), where

GDLIN
β (1λ) : (paramG = (q,G,GT , G, e)

$←− Gbpg(1λ),

κ, δ, ξ, σ
$←− Fq, Y0 = (δ + σ)G, Y1

$←− G,
return % = (paramG, G, ξG, κG, δξG, σκG, Yβ),

For a probabilistic machine F , we define the advantage of F for the DLIN problem as:

AdvDLIN
F (λ) =

∣∣∣∣Pr
[
F(1λ, %)→ 1|% $←− GDLIN

0 (1λ)
]
− Pr

[
F(1λ, %)→ 1|% $←− GDLIN

1 (1λ)
]∣∣∣∣ .

The DLIN assumption states that for any probabilistic polynomial-time adversary F , the advan-
tage AdvDLIN

F (λ) is negligible in λ.

The validity of the DLIN assumption in the generic group model has been established by Boneh
et al. [5].

Definition 4 (Problem 1). Problem 1 is to guess β ∈ {0, 1} given % = (param, B̂0, B̂∗0, B̂, B̂∗,
eβ,0, {eβ,t,i}t=1,...,d;i=1,2, {eβ,d+υ,$,i}υ=1,2,$=1,...,r̂max,i=1,2) $←− GP1

β (1λ, d, r̂max), where

GP1
β (1λ, d, r̂max) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
ϕ0, ω

$←− Fq, τ
$←− F×q ,

B̂0 = {b0,1, b0,3, b0,5}, B̂ = {b1, . . . , b4, b13, b14},
B̂∗0 = {b∗0,1, b∗0,3, b∗0,4}, B̂∗ = {b∗1, . . . , b∗4, b∗11, b

∗
12},

e0,0 = (ω, 0, 0, 0, ϕ0)B0 , e1,0 = (ω, τ, 0, 0, ϕ0)B0 ,
#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2

q ,

for t = 1, . . . , d,
Zt

$←− GL(2,Fq),
for i = 1, 2,

σt,i, ϕt,i,1, ϕt,i,2
$←− Fq,

e0,t,i = (σt,i(1, t), ω #»e i, 06, 02, ϕt,i,1, ϕt,i,2, 02)B,
e1,t,i = (σt,i(1, t), ω #»e i, τ

#»e i, 02, τ #»e iZt, 02, ϕt,i,1, ϕt,i,2, 02)B,

for υ = 1, 2;$ = 1, . . . , r̂max,

Zd+υ,$
$←− GL(2,Fq),

for i = 1, 2,
σd+υ,$,i, ϕd+υ,$,i,1, ϕd+υ,$,i,2

$←− Fq,
e0,d+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, 06, 02, ϕd+υ,$,i,1, ϕd+υ,$,i,2, 02)B,
e1,d+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ

#»e i, 02, τ #»e iZd+υ,$, 02, ϕd+υ,$,i,1, ϕd+υ,$,i,2, 02)B,
return % = (param, B̂0, B̂∗0, B̂, B̂∗, eβ,0, {eβ,t,i}t=1,...,d;i=1,2, {eβ,d+υ,$,i}υ=1,2;$=1,...,r̂max;i=1,2).

For a probabilistic adversary B the advantage of B for Problem 1 is given by

AdvP1
B (λ) =

∣∣∣∣Pr
[
B(1λ, %)→ 1|% $←− GP1

0 (1λ, d, r̂max)
]
− Pr

[
B(1λ, %)→ 1|% $←− GP1

1 (1λ, d, r̂max)
]∣∣∣∣ .

Lemma 1. Problem 1 is computationally intractable under the DLIN assumption. Formally,
for any probabilistic polynomial-time adversary B there exist probabilistic machines F1, F2, F3,
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whose running times are essentially the same as that of B, such that for any security parameter
λ,

AdvP1
B (λ) ≤ AdvDLIN

F1 (λ) +
d∑
p=1

2∑
j=1

AdvDLIN
F2-p-j (λ) +

2∑
υ=1

r̂max∑
$=1

2∑
j=1

AdvDLIN
F3-(d+υ)-$-j(λ) + ε,

where F2-p-j(·) = F2(p, j, ·), F3-(d+υ)-$-j(·) = F3(d+ υ,$, j, ·) and ε = [5 + 10d+ 20r̂max]/q.

Definition 5 (Problem 2). Problem 2 is to guess β ∈ {0, 1}, given (param, B̂0, B̂∗0, B̂, B̂∗,h∗β,0,
e0, {h∗β,t,i, et,i}t=1,...,d;i=1,2, {h∗β,d+υ,$,i, ed+υ,$,i}υ=1,2;$=1,...,ℵ;i=1,2) $←− GP2

β (1λ, d,Nmax, r̂max),
where

GP2
β (1λ, d,Nmax, r̂max) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
γ, η0, ϕ0, ω

$←− Fq, τ, δ
$←− F×q ,

B̂0 = {b0,1, b0,3, b0,5}, B̂ = {b1, . . . , b4, b13, b14},
B̂∗0 = {b∗0,1, . . . , b∗0,4}, B̂∗ = {b∗1, . . . , b∗4, b∗11, b

∗
12},

h∗0,0 = (γ, 0, 0, η0, 0)B∗0 , h
∗
1,0 = (γ, δ, 0, η0, 0)B∗0 , e0 = (ω, τ, 0, 0, ϕ0)B0 ,

#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2
q ,

for t = 1, . . . , d,
Zt

$←− GL(2,Fq), Ut = (Z−1
t )ᵀ,

for i = 1,2,
µt,i, σt,i, ηt,i,1, ηt,i,2, ϕt,i,1, ϕt,i,2

$←− Fq,
h∗0,t,i = (µt,i(t,−1), γ #»e i, 04, 02, ηt,i,1, ηt,i,2, 02, 02)B∗ ,
h∗1,t,i = (µt,i(t,−1), γ #»e i, 04, δ #»e iUt, ηt,i,1, ηt,i,2, 02, 02)B∗ ,
et,i = (σt,i(1, t), ω #»e i, τ

#»e i, 02, τ #»e iZt, 02, ϕt,i,1, ϕt,i,2, 02)B,

for υ = 1, 2;$ = 1, . . . , log2Nmax + r̂max,

Zd+υ,$
$←− GL(2,Fq), Ud+υ,$ = (Z−1

d+υ,$)ᵀ,
for i = 1, 2,

µd+υ,$,i, σd+υ,$,i, ηd+υ,$,i,1, ηd+υ,$,i,2, ϕd+υ,$,i,1, ϕd+υ,$,i,,2
$←− Fq,

h∗0,d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 04, 02, ηd+υ,$,i,1, ηd+υ,$,i,2, 02, 02)B∗ ,
h∗1,d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 04, δ #»e iUd+υ,$, ηd+υ,$,i,1, ηd+υ,$,i,2, 02, 02)B∗ ,
ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ

#»e i, 02, τ #»e iZd+υ,$, 02, ϕd+υ,$,i,1, ϕd+υ,$,i,2, 02)B,
return % = (param, B̂0, B̂∗0, B̂, B̂∗,h∗β,0, e0, {h∗β,t,i, et,i}t=1,...,d;i=1,2,

{h∗β,d+υ,$,i, ed+υ,$,i}υ=1,2;$=1,...,ℵ;i=1,2).

For a probabilistic adversary B, the advantage of B for Problem 2 is given by

AdvP2
B (λ) =

∣∣∣∣Pr
[
B(1λ, %)→ 1|% $←− GP2

0 (1λ, d,Nmax, r̂max)
]

− Pr
[
B(1λ, %)→ 1|% $←− GP2

1 (1λ, d,Nmax, r̂max)
] ∣∣∣∣.

Lemma 2. Problem 2 is computationally intractable under the DLIN assumption. More for-
mally, for any probabilistic polynomial-time adversary B, there exist probabilistic machines
F1,F2-1, . . . ,F2-11, whose running times are essentially the same as that of B, such that for
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any security parameter λ,

AdvP2
B (λ) ≤ AdvDLIN

F1 (λ) +
2∑
j=1

 d∑
p=1

{
AdvDLIN

F2-p-1-j (λ) + AdvDLIN
F2-p-2-j (λ) +

d+2∑
l=1
l 6=p

(
AdvDLIN

F2-p-3-j-l(λ)+

AdvDLIN
F2-p-4-j-l(λ)

)
+ AdvDLIN

F2-p-5-j (λ)
}

+
2∑

υ=1

ℵ∑
$=1

{
AdvDLIN

F2-(d+υ)-$-6-j
(λ) + AdvDLIN

F2-(d+υ)-$-7-j
(λ)+

d+2∑
l=1

l 6=d+υ

(
AdvDLIN

F2-(d+υ)-$-8-j-l
(λ) + AdvDLIN

F2-(d+υ)-$-9-j-l
(λ)
)

+

ℵ∑
ι=1
ι6=$

AdvDLIN
F2-(d+υ)-$-10-j-ι

(λ) + AdvDLIN
F2-(d+υ)-$-11-j

(λ)
}+ ε,

where

F2-p-1-j(·) = F2-1(p, j, ·),F2-p-2-j(·) = F2-2(p, j, ·),
F2-p-3-j-l(·) = F2-3(p, j, l, ·),F2-p-4-j-l(·) = F2-4(p, j, l, ·),
F2-p-5-j(·) = F2-5(p, j, ·),F2-(d+υ)-$-6-j(·) = F2-6(d+ υ,$, j, ·) etc.,

ℵ = log2Nmax + r̂max and ε =
[
5 + 40d+ 10d2 + 2ℵ(30 + 10d+ 10ℵ)

]
/q.

Problems 1 and 2 are extended from Problems 1-ABE and 2-ABE in [16] respectively. We provide
the proofs of Lemmas 1 and 2 respectively in Appendix B and Appendix C.

Remark 1. Note that in Problems 1 and 2 the coefficients of {b7, b8}, {b∗7, b∗8} and {b15, b16},
{b∗15, b

∗
16} are always set to zero. One may wonder about the requirement of these additional

subspaces. However, note that these subspaces would be extremely important while reducing
Problems 1 and 2 to the DLIN problem (see the proof of Lemma 39 in Appendix C).

2.4 Monotone Span Programs and Access Structures

Definition 6 (Monotone Span Programs). Let {p1, . . . , pm} be a set of variables. A mono-
tone span program over Fq is a labeled matrix M̂ = (M , ρ) where M is a ` × r matrix over
Fq and ρ is a labeling of rows of M by variables from {p1, . . . , pm} (every row is labeled by one
variable), i.e., ρ : {1, . . . , `} → {p1, . . . , pm}.

A monotone span program accepts or rejects an input by the following criterion. For every
input sequence ς ∈ {0, 1}m, define the submatrix Mς of M consisting of those rows whose labels
are set to 1 by the input ς, i.e., rows labeled by some pi such that ςi = 1. The span program
M̂ accepts ς if and only if #»1 ∈ span〈Mς〉 = span〈Mj |ρ(j) = pi ∧ ςi = 1〉, i.e., some linear
combination of the rows of Mς gives the all one vector #»1 . Monotone span programs compute
monotone Boolean functions.

We assume that no row Mi (i = 1, . . . , `) of the matrix M is #»0 . We now define a monotone
access structure that is essentially the same as the one defined in [16]. This access structure will
be employed in our proposed RABE scheme.

Definition 7 (Monotone Access Structure). Let U be an universe of attributes each of
which is expressed by a pair of attribute id and value of attribute, i.e., U = {(t, At)|t ∈ {1, . . . , d}∧
At ∈ Fq}. We now define such an attribute (t, At) to be a variable pt of a monotone span program
M̂ = (M , ρ), i.e., pt = (t, At). A monotone access structure S is monotone span program
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M̂ = (M , ρ) along with variables pt = (t, At) for t ∈ {1, . . . , d}, i.e., S = (M , ρ) such that
ρ : {1, . . . , `} → {p1, . . . , pd}.

Let Γ be a set of attributes, i.e., Γ ⊆ U. The access structure S = (M , ρ) accepts Γ if and
only if #»1 ∈ span〈Mi|ρ(i) = (t, At) ∈ Γ 〉.

We now describe a linear secret-sharing scheme for a monotone access structure or span
program.

Definition 8 (Linear Secret-Sharing Scheme). Let M̂ = (M , ρ) be a monotone span pro-
gram where M is an ` × r matrix over Fq and ρ is a labeling of the rows of M . Let column

vector #»

f ᵀ = (f1, . . . , fr)ᵀ
$←− Frq. Then, s0 = #»1 · #»

f ᵀ =
r∑

k=1
fk is the secret to be shared, and

#»s ᵀ = (s1, . . . , s`)ᵀ = M · #»

f ᵀ is the vector of ` shares of the secret s0 and the share si belongs to
ρ(i).

If span program M̂ = (M , ρ) accepts ς ∈ {0, 1}m or access structure S = (M , ρ) accepts Γ ,
i.e., #»1 ∈ span〈Mi|ςρ(i) = 1〉 or #»1 ∈ span〈Mi|ρ(i) ∈ Γ 〉, then there exist constants {αi ∈ Fq|i ∈
I} such that I ⊆ {i|i ∈ {1, . . . , `} ∧ [ςρ(i) = 1 or ρ(i) ∈ Γ ]} and

∑
i∈I

αisi = s0. Furthermore,

these constants {αi} can be computed in time polynomial in the size of matrix M .

2.5 The Notion of Revocable Attribute-Based Encryption (RABE)

• Syntax of Revocable Attribute-Based Encryption: As described in [1], [18], a (key-
policy) revocable attribute-based encryption (RABE) scheme that is associated with the attribute
universe U, a collection of admissible access structures S and message space M, consists of the
following algorithms:

RABE.Setup(1λ, Nmax): Taking as input a security parameter 1λ and the maximum number of
users Nmax, the key generation center publishes public parameters PP and a state ST, while
generates a master secret key MK for itself.

RABE.GenKey(PP,MK, ST, ID,S): The key generation center takes as input the public param-
eters PP, the master secret key MK, the state ST, a user identity ID and the access structure
S = (M , ρ) ∈ S of that user. It provides a private key SKS,ID to that user and publishes an
updated state ST.

RABE.Encrypt(PP, ST, Γ,RL,M): On input the public parameters PP, the state ST, an attribute
set Γ ⊆ U, a set of revoked user identities RL and a message M ∈M, the encryptor outputs
a ciphertext CTΓ,RL.

RABE.Decrypt(CTΓ,RL, SKS,ID,S, ID,PP,ST): A user takes as input a ciphertext CTΓ,RL, its
private key SKS,ID, its access structure S, user identity ID, the public parameters PP and
the state ST. It obtains an encrypted message M or the distinguished symbol ⊥.

• Correctness: The correctness of RABE is defined as follows: For all PP,ST,MK generated
by RABE.Setup(1λ, Nmax), SKS,ID generated by RABE.GenKey(PP,MK,ST, ID,S) for any S, ID,
CTΓ,RL generated by RABE.Encrypt(PP,ST, Γ,RL,M) for any Γ,RL and M , it is required that

– If S accepts Γ and ID /∈ RL, then RABE.Decrypt(CTΓ,RL, SKS,ID, S, ID,PP, ST) = M .

– If S does not accept Γ or ID ∈ RL, then RABE.Decrypt(CTΓ,RL, SKS,ID, S, ID,PP, ST = ⊥
with all but negligible probability.
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• Security Model: The security of RABE under chosen plaintext attacks (CPA) is defined in
terms of the following experiment between a challenger B and a probabilistic polynomial-time
adversary A:

Setup: B generates a master secret key MK, a state ST, and public parameters PP by running
RABE.Setup(1λ, Nmax). It keeps MK to itself and gives PP,ST to A.

Phase 1: A adaptively requests a polynomial number of private keys for access structure-
user identity pairs (S1, ID1), . . . , (Sq̂1

, IDq̂1
), and B gives the corresponding private keys

SKS1,ID1 , . . . ,SKS
q̂1
,ID

q̂1
along with the updated state ST toA by executing RABE.Genkey(PP,

MK,ST, IDı,Sı) for ı = 1, . . . , q̂1.

Challenge: A submits a challenge attribute set Γ ∗, a revocation list RL∗, and two challenge mes-
sages M∗0 ,M∗1 with equal length satisfying the following restriction: If a private key query for
an access structure-user identity pair (Sı, IDı) such that Sı accepts Γ ∗ was requested, then
IDı must belong to RL∗. B flips a random coin b ∈ {0, 1} and gives the challenge ciphertext
CT∗ to A by performing RABE.Encrypt(PP, ST, Γ ∗,RL∗,M∗b ).

Phase 2: A may continue to request a polynomial number of additional private key queries for
access structure-user identity pairs (Sq̂1+1, IDq̂1+1), . . . , (Sq̂, IDq̂) subject to the same restric-
tion as before, and B gives the corresponding private keys to A.

Guess: Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b = b′.

The advantage of A is defined as AdvRABE,IND-CPA
A (λ) = |Pr[b = b′]− 1/2| where the probability

is taken over all the randomness of the experiment. An RABE scheme is adaptively secure under
chosen plaintext attacks if for all probabilistic polynomial-time adversary A, the advantage of
A in the above experiment is negligible in the security parameter λ.

2.6 The Subset difference Revocation Scheme

• Some Notations Related to Full Binary Tree: A full binary tree T is a tree data structure
where each node except the leaf nodes has two child nodes. We define some notations concerning
a full binary tree that will be used in the subsequent discussions:

– Nmax: The number of leaf nodes in T . The number of all nodes in T is 2Nmax − 1.
– νi: A node in T for any i, 1 ≤ i ≤ 2Nmax − 1.
– Di: The depth of a node νi, i.e., the length of the path from the root node to the node νi.

The root node is at depth zero. The depth of T is the length of the path from the root node
to a leaf node.

– Ti: A subtree of T that is rooted at νi for any node νi in T .
– Ti,j : The subtree Ti\Tj for any two nodes νi, νj in T such that νj is a descendant of νi, i.e.,

all nodes that are descendants of νi but not of νj .
– Si: The set of leaf nodes in Ti.
– Si,j : The set of leaf nodes in Ti,j , i.e., Si,j = Si\Sj .
– Li: An identifier for a node νi in T , that is a fixed and unique string. The identifier of each

node in the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending
on whether the edge connects a node to its left or right child node. The identifier Li of a
node νi is the bit string obtained by reading all the labels of edges in the path from the root
to the node νi.

– (Li‖Dj): The integer representation of the string formed by concatenation of the binary
representation of Dj , the depth of the node νj , with Li, the identifier of νi for any subset
Si,j of leaf nodes defined by the nodes νi and νj .
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– (Li‖Lj): The integer representation of the string obtained by concatenating Lj with Li for
any subset Si,j of leaf nodes defined by the nodes νi and νj .

– ST (T , R) (or simply ST (R)): The Steiner Tree induced by a subset R of leaf nodes and the
root node of the full binary tree T , i.e., the minimal subtree of T that connects all the leaf
nodes in R and the root node.

• Subset Difference Method: The subset difference (SD) revocation method is a special
instance of a general methodology for revocation schemes proposed by Naor et al., known as
the subset cover (SC) framework [14]. The well-known complete subtree (CS) scheme used in all
the previous RABE schemes [4], [1], [18] is another instance of the subset cover framework. The
original subset cover framework consists of a subset assignment part and a key assignment part.
As in [12], in this paper, we define the subset cover framework by using the subset assignment
part only. The formal definition of subset cover framework is given as follows:

Definition 9 (Subset Cover Framework). A subset cover (SC) scheme for the set N =
{1, . . . , Nmax} of users consists of the following probabilistic polynomial-time algorithms:

SC.Setup(Nmax): The trusted authority takes as input the maximum number Nmax of users and
publishes a collection S of subsets S1, . . . , Sw where Si ⊆ N .

SC.Assign(S, u): On input the collection S and a user serial number u ∈ N , the trusted author-
ity provides a private set PVu = {Sj1 , . . . , Sjv} to the user with serial number u.

SC.Cover(S, R): Taking as input the collection S and a revoked set R ⊂ N of users, a cover
generator outputs a covering set CVR = {Si1 , . . . , Siz}, that is a partition of the non-revoked
users N\R into disjoined subsets Si1 , . . . , Siz such that N\R = ∪zl=1Sil.

SC.Match(CVR,PVu): A user takes as input a covering set CVR = {Si1 , . . . , Siz} together with
its private set PVu = {Sj1 , . . . , Sjv} and obtains (Sil , Sjl′ ) such that Sil ∈ CVR, u ∈ Sil, and
Sjl′ ∈ PVu, or obtains ⊥.

• Correctness: The correctness of subset cover framework is defined as follows: For all S
generated by SC.Setup, all PVu generated by SC.Assign, and any R, it is required that:

– If u /∈ R, then SC.Match(CVR,PVu) = (Sil , Sjl′ ) such that Sil ∈ CVR, u ∈ Sil and Sjl′ ∈ PVu.

– If u ∈ R, then SC.Match(CVR,PVu) = ⊥.

Note that the exact conditions of the subsets output by the matching algorithm is defined by the
specific instance of the SC scheme.

As mentioned earlier, the SD scheme is a particular instance of the SC scheme and it was proposed
by Naor et al. [14] as an improvement on the CS scheme. Below we describe the version of SD
scheme almost verbatim from [12]:

SD.Setup(Nmax): The trusted authority takes as input the maximum number Nmax of users.
Let Nmax = 2nmax for simplicity. It first sets a full binary tree T of depth nmax. Each user
is assigned to a different leaf node in T . The collection S of SD scheme is the set of all sub-
sets Sj,k = Sj\Sk where νj , νk are nodes in T , νk is a descendant of νj ; where Sj (resp. Sk)
is the set of leaf nodes of the subtree rooted at νj (resp. νk). It publishes the full binary tree T .

SD.Assign(T , u): Taking as input the tree T and a user serial number u ∈ N , the trusted au-
thority computes the private set PVu for the user u as follows: Let ν(u) be the leaf node of
T that is assigned to the user u. Let (νl0 , . . . , νlnmax ) be the path from the root node νl0 to
the leaf node νlnmax = ν(u). It first sets a private set PVu = ∅. For all j, k ∈ {l0, . . . , lnmax}
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such that νk is a descendant of νj , it adds into PVu the subset Sj,k defined by the two nodes
νj and νk.

SD.Cover(T , R): On input the tree T and a revoked set R of users, a cover generator proceeds
as follows: It first sets a subtree T as ST (R), and then it outputs a covering set CVR built
iteratively by removing nodes from T until T consists of just a single node as described
below:
1. It finds two leaf nodes νj and νk in T such that the least-common-ancestor ν of νj and νk

does not contain any other leaf nodes of T in its subtree. Note that such a pair (νj , νk) can
always be found. Let νl and νm be the two child nodes of ν such that νj is a descendant
of νl and νk is a descendant of νm. If there is only one leaf node left, it makes νj = νk to
be that leaf node, ν to be the root of T and νl = νm = ν.

2. If νl 6= νj , then it adds the subset Sl,j to CVR; likewise, if νm 6= νk, then it adds the
subset Sm,k to CVR.

3. It removes from T all the descendants of ν and makes ν a leaf node.

SD.Match(CVR,PVu): A user takes as input a covering set CVR and its private set PVu. If it
finds two subsets Sj,k and Sj′,k′ such that Sj,k ∈ CVR, Sj′,k′ ∈ PVu, and (j = j′) ∧ (Dk =
Dk′) ∧ (k 6= k′), then it outputs (Sj,k, Sj′,k′). Otherwise, it obtains ⊥.

The correctness property of SD scheme is formally stated by the following lemma:

Lemma 3. If u /∈ R, then there exists a unique pair of subsets (Sj,k, Sj′,k′) such that Sj,k ∈ CVR,
Sj′,k′ ∈ PVu and (j = j′) ∧ (Dk = Dk′) ∧ (k 6= k′) holds. Otherwise, such a pair of subsets
cannot be found.

Observation: Note that for any fixed pair (νj , D) of node and depth value, there is at most
one subset Sj,k ∈ CVR and at most one subset Sj,k′ ∈ PVu such that Dk = Dk′ = D. Moreover,
the defining nodes νj , νk of the subsets Sj,k ∈ CVR are all distinct. This observation is very
important in our RABE construction.

Lemma 4 ([14]). Let Nmax be the number of leaf nodes in a full binary tree and r̂ be the size
of a revoked set. In the SD scheme, the size of a private set is O(log2Nmax) and the size of a
covering set is at most 2r̂ − 1.

Remark 2. The covering algorithm of the SD scheme is only defined for r̂ ≥ 1. One simple way
to handle the case r̂ = 0 is to use a dummy user that is always revoked. In the SD scheme, the
size of the covering set is at most 2r̂−1, but it is rough worst-case analysis and the size is always
smaller than that of the CS scheme since a subset in the CS scheme is also a subset in the SD
scheme [14]. The better analysis of this covering set size is given by Martin et al. [13].

Note that the layered subset difference scheme (LSD) was proposed by Halevy and Shamir [10]
to reduce the size of a private set in the SD scheme. The SD scheme in a cryptosystem generally
can be replaced by the LSD scheme since the LSD scheme is a special case of the SD scheme.

Lemma 5 ([10]). Let Nmax be the number of leaf nodes in a full binary tree and r̂ be the size
of a revoked set. In the LSD scheme, the size of a private set is O(log1.5Nmax) and the size of
a covering set is at most 4r̂ − 2.

3 Our RABE Scheme

3.1 Construction

Let N = {1, . . . , Nmax = 2nmax} be the universe of user key serial numbers. Let d be the
total number of attributes in the attribute universe U = {(t, At)|t ∈ {1, . . . , d} ∧ At ∈ Fq}.
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Further, assume that r̂max be the maximum of ]CVRI, the cardinality of the covering set CVRI,
for all revoked set RI ⊂ N used in the system. Our RABE scheme supports access structures
S = (M , ρ) defined in Section 2.4, the collection of which is denoted by S. In the proposed
RABE scheme, we assume that ρ is injective for S = (M , ρ) ∈ S. The message space in our
RABE scheme is M = GT . Our RABE scheme is described as follows:

RABE.Setup(1λ, Nmax): The key generation center takes as input a security parameter 1λ and
the maximum number Nmax of users and proceeds as follows:
1. It first runs Gob(1λ, (n0 = 5, n = 16)), described in Figure 1, to obtain (param =

(paramV0 , paramV, gT ), {B0,B∗0},
{B,B∗}). It sets B̂0 = {b0,1, b0,3, b0,5}, B̂ = {b1, . . . , b4, b13, b14}, B̂∗0 = {b∗0,1, b∗0,3, b∗0,4},
B̂∗ = {b∗1, . . . , b∗4, b∗11, b

∗
12}.

2. It obtains T by running SD.Setup(Nmax). Let S be the collection of all subsets Sj,k of T .
It initializes the user list UL = ∅.

3. It publishes the public parameters PP = (param, B̂0, B̂), and a state ST = (T ,UL), while
it keeps the master secret key MK = (B̂∗0, B̂∗).

RABE.GenKey(PP,MK,ST,S, ID): Taking as input the public parameters PP, the master secret
key MK, the state ST = (T ,UL), an access structure S = (M , ρ) ∈ S such that M is an
`× r matrix and ρ is a labeling of the rows of M , and a user identity ID, the key generation
center provides a private key to the corresponding user as follows:
1. It first chooses #»

f
$←− Frq, computes #»s ᵀ = (s1, . . . , s`)ᵀ = M · #»

f ᵀ, s′0 = #»1 · #»

f ᵀ, selects
η0, s

′′
0

$←− Fq, and sets s0 = s′0 +s′′0. Note that, s1, . . . , s` are shares of s′0. Next, it computes

k∗0 = (−s0, 1, η0)B̂∗0 = −s0b
∗
0,1 + b∗0,3 + η0b

∗
0,4 = (−s0, 0, 1, η0, 0)B∗0 .

For i = 1, . . . , `, if ρ(i) = (t, At), it chooses µi, θi, ηi,1, ηi,2
$←− Fq and computes

k∗i =(µi(t,−1), si + θiAt,−θi, ηi,1, ηi,2)B̂∗
=µitb∗1 − µib∗2 + (si + θiAt)b∗3 − θib∗4 + ηi,1b

∗
11 + ηi,2b

∗
12

=(µi(t,−1), si + θiAt,−θi, 06, ηi,1, ηi,2, 02, 02)B∗ .

We mention that, k∗0 and k∗i are actually some linear combinations of vectors in B̂∗0
and B̂∗ respectively, where B̂∗0 and B̂∗ are extractable from MK. However, for ease of
discussion, we have represented k∗0 and k∗i as linear combinations of vectors in B∗0 and B∗
respectively taking the coefficients of vectors in B∗0\B̂∗0 and B∗\B̂∗ as zeros. Hereafter, a
similar notation will be followed for representing linear combinations in V0 and V.

2. It assigns the user identity ID to a leaf node ν(u) in T that is not yet assigned, where
u ∈ N is a serial number that is assigned to ID. It saves (ID, u) to UL. Next it obtains
PVu by running SD.Assign(T , u).

3. For each Sj,k ∈ PVu, it performs the following operations: It first selects sj,k,1, sj,k,2
$←− Fq

such that s′′0 = sj,k,1 + sj,k,2, i.e., it breaks s′′0 into two random parts. It further chooses
µj,k,1, µj,k,2, θj,k, ηj,k,1,1, ηj,k,1,2, ηj,k,2,1, ηj,k,2,2,

$←− Fq and computes

k∗j,k,1 = (µj,k,1(d+ 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 06, ηj,k,1,1, ηj,k,1,2, 02, 02)B∗
k∗j,k,2 = (µj,k,2(d+ 2,−1), sj,k,2((Lj‖Lk),−1), 06, ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ .

4. Finally, it publishes the updated state ST = (T ,UL) and provides a private key

SKS,ID = (PVu,k∗0, {k∗i }i=1,...,`, {k∗j,k,1,k∗j,k,2}Sj,k∈PVu)

to the user.
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RABE.Encrypt(PP,ST, Γ,RL,M): On input the public parameters PP, the state ST = (T ,UL),
an attribute set Γ ⊆ U, a revocation list RL of user identities and a message M ∈ GT , the
encryptor executes the following steps:

1. It first extracts gT from PP, chooses ω, ζ, ϕ0
$←− Fq and computes

c0 = (ω, 0, ζ, 0, ϕ0)B0 ,

and c = gζTM.

2. For all (t, At) ∈ Γ , it selects σt, ϕt,1, ϕt,2
$←− Fq, and computes

ct = (σt(1, t), ω(1, At), 06, 02, ϕt,1, ϕt,2, 02)B.

3. Then it defines the revoked user serial number set RI ⊆ N from RL by using UL. Next it
obtains the covering set CVRI by executing SD.Cover(T ,RI).

4. For each Sj,k ∈ CVRI, it performs the following steps: It chooses σj,k,1, σj,k,2, ϕj,k,1,1, ϕj,k,1,2,
ϕj,k,2,1, ϕj,k,2,2

$←− Fq and computes

cj,k,1 = (σj,k,1(1, d+ 1), ω(1, (Lj‖Dk)), 06, 02, ϕj,k,1,1, ϕj,k,1,2, 02)B,
cj,k,2 = (σj,k,2(1, d+ 2), ω(1, (Lj‖Lk)), 06, 02, ϕj,k,2,1, ϕj,k,2,2, 02)B.

5. The encryptor outputs the ciphertext

CTΓ,RL = (CVRI, c, c0, {ct}(t,At)∈Γ , {cj,k,1, cj,k,2}Sj,k∈CVRI).

RABE.Decrypt(CTΓ,RL, SKS,ID,S, ID,PP,ST): A user takes as input a ciphertext CTΓ,RL =
(CVRI, c, c0, {ct}(t,At)∈Γ , {cj,k,1, cj,k,2}Sj,k∈CVRI), its private key SKS,ID = (PVu,k∗0, {k∗i }i=1,...,`,
{k∗j,k,1,k∗j,k,2}Sj,k∈PVu), its access structure S = (M , ρ), user identity ID, the public param-
eters PP and the state ST. It proceeds as follows:
1. If S accepts Γ , then it computes I and {αi}i∈I such that #»1 =

∑
i∈I

αiM i and hence

s′0 =
∑
i∈I

αisi, where M i is the i-th row of M and I ⊆ {i ∈ {1, . . . , `}|ρ(i) = (t, At) ∈ Γ}.

Otherwise, it obtains ⊥.
2. If ID /∈ RL for (ID, u) ∈ UL, then it obtains (Sj,k, Sj′,k′) by running SD.Match(CVRI,PVu)

such that Sj,k ∈ CVRI, Sj′,k′ ∈ PVu and (j = j′) ∧ (Dk = Dk′) ∧ (k 6= k′). Otherwise, it
outputs ⊥.

3. It computes π′ =
∏
i∈I

ρ(i)=(t,At)

E(ct,k∗i )αi , π′′ = E(cj,k,1,k∗j′,k′,1)E(cj,k,2,k∗j′,k′,2)
1

(Lj′ ‖Lk′ )−(Lj‖Lk)

and π = E(c0,k
∗
0)π′π′′.

4. It retrieves the message as M = c/π.

3.2 Correctness

Let SKS,ID = (PVu,k∗0, {k∗i }i=1,...,`, {k∗j,k,1,k∗j,k,2}Sj,k∈PVu) be a private key for a user with iden-
tity ID together with an access structure S = (M , ρ), and CTΓ,RL = (CVRI, c, c0, {ct}(t,At)∈Γ ,
{cj,k,1, cj,k,2}Sj,k∈CVRI) be a ciphertext for an attribute set Γ together with a revocation list RL of
user identities. If ID /∈ RL, then a pair of subsets (Sj,k, Sj′,k′) such that Sj,k ∈ CVRI, Sj′,k′ ∈ PVu
and (j = j′) ∧ (Dk = Dk′) ∧ (k 6= k′), i.e., (Lj‖Dk) = (Lj′‖Dk′) and (Lj‖Lk) 6= (Lj′‖Lk′), can
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be found from the correctness of the SD scheme (Lemma 3). Now,

π′ =
∏
i∈I

ρ(i)=(t,At)

E(ct,k∗i )αi

=
∏
i∈I

ρ(i)=(t,At)

E
(
(σt(1, t), ω(1, At), 08, ϕt,1, ϕt,2, 02)B, (µi(t,−1), (si + θiAt,−θi, 06, ηi,1, ηi,2, 04)B∗

)αi
=

∏
i∈I

ρ(i)=(t,At)

[
E(b1, b

∗
1)σtµitE(b2, b

∗
2)−σtµitE(b3, b

∗
3)(si+θiAt)ωE(b4, b

∗
4)−θiωAt

]αi

=
∏
i∈I

ρ(i)=(t,At)

[
gσtµitT g−σtµitT g

(si+θiAt)ω
T g−θiωAtT

]αi =
∏
i∈I

ρ(i)=(t,At)

gωαisiT = g

∑
i∈I

ρ(i)=(t,At)

ωαisi

T = g
ωs′0
T ,

as
∑
i∈I

ρ(i)=(t,At)

αisi = s′0, since S = (M , ρ) accepts Γ . Similarly,

π′′ = g
ωsj′,k′,1
T g

ωsj′,k′,2
(Lj′ ‖Lk′ )−(Lj‖Lk)
(Lj′ ‖Lk′ )−(Lj‖Lk)

T = g
ωs′′0
T , as sj′,k′,1 + sj′,k′,2 = s′′0, since Sj′,k′ ∈ PVu. Thus,

π = g
[−ωs0+ζ+ωs′0+ωs′′0 ]
T = g

[ω(−s0+s′0+s′′0 )+ζ]
T = gζT .

So, c/π = gζTM/gζ = M .

4 Security Analysis

Theorem 1. The RABE scheme, introduced in Section 3, is adaptively secure against cho-
sen plaintext attacks (CPA) under the DLIN assumption. More precisely, for any probabilistic
polynomial-time adversary A, there exists probabilistic machines F1-1, . . . ,F1-3, F2-1-1, . . . ,F2-1-12,
F2-2-1, . . . ,
F2-2-12 whose running times are essentially the same as that of A, such that for any security
parameter λ,

AdvRABE,IND-CPA
A (λ) ≤ AdvDLIN

F1-1 (λ) +
d∑
p=1

2∑
j=1

AdvDLIN
F1-2-p-j (λ) +

2∑
υ=1

r̂max∑
$=1

2∑
j=1

AdvDLIN
F1-3-(d+υ)-$-j

(λ)+

q̂∑
h=1

2∑
i=1

AdvDLIN
F2-h-i-1(λ) +

2∑
j=1

 d∑
p=1

{
AdvDLIN

F2-h-i-p-2-j (λ) + AdvDLIN
F2-h-i-p-3-j (λ) +

d+2∑
l=1
l 6=p

(
AdvDLIN

F2-h-i-p-4-j-l(λ) +

AdvDLIN
F2-h-i-p-5-j-l(λ)

)
+ AdvDLIN

F2-h-i-p-6-j (λ)
}

+
2∑

υ=1

ℵ∑
$=1

{
AdvDLIN

F2-h-i-(d+υ)-$-7-j
(λ)+

AdvDLIN
F2-h-i-(d+υ)-$-8-j

(λ) +
d+2∑
l=1

l 6=d+υ

(
AdvDLIN

F2-h-i-(d+υ)-$-9-j-l
(λ) + AdvDLIN

F2-h-i-(d+υ)-$-10-j-l
(λ)
)

+

ℵ∑
ι=1
ι6=$

AdvDLIN
F2-h-i-(d+υ)-$-11-j-ι

(λ) + AdvDLIN
F2-h-i-(d+υ)-$-12-j

(λ)
}
+ ε,
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where

F1-2-p-j(·) = F1-2(p, j, ·), F1-3-(d+υ)-$-j(·) = F1-3(d+ υ,$, j, ·),
and, for i = 1, 2,

F2-h-i-1(·) = F2-i-1(h, ·), F2-h-i-p-2-j(·) = F2-i-2(h, p, j, ·),
F2-h-i-p-3-j(·) = F2-i-3(h, p, j, ·), F2-h-i-p-4-j-l(·) = F2-i-4(h, p, j, l, ·),
F2-h-i-p-5-j-l(·) = F2-i-5(h, p, j, l, ·), F2-h-i-p-6-j(·) = F2-i-6(h, p, j, ·),
F2-h-i-(d+υ)-$-7-j(·) = F2-i-7(h, d+ υ,$, j, ·) F2-h-i-(d+υ)-$-8-j(·) = F2-i-8(h, d+ υ,$, j, ·),

etc., q̂ is the maximum number of A’s private key queries, d is the size of the attribute universe
used in the system, Nmax is the upper bound of user key serial numbers, r̂max is the maximum
size of a covering set of non-revoked users used in the system, ℵ = log2Nmax + r̂max, and
ε =

[
6 + 10d+ 20r̂max + 14q̂ + 80dq̂ + 20d2q̂ + 4q̂ℵ(30 + 10d+ 10ℵ)

]
/q.

Proof. At the top level of strategy of the security proof, we follow the dual system encryption
methodology over dual pairing vector space (DPVS) described in [15], [16]. To prove the security
of our RABE scheme, we use Problem 1 and 2.

To prove Theorem 1, we consider the following games. In Game 0, a part framed by a box
indicates positions of coefficients to be changed in a subsequent game. In the other games, a
part framed by a box indicates coefficients which were changed in a transition from the previous
game. Games proceed as follows:

Game 0 =⇒ Game 1 =⇒ {Game 2-h-1 =⇒ Game 2-h-2 =⇒ Game 2-h-3}h=1,...,q̂ =⇒ Game 3

Game 0: Game 0 is the original security game, i.e., the reply to a key query for an access
structure-user identity pair (Sı = (M (ı), ρı), IDı) is given by SKSı,IDı = (PVuı ,k∗0, {k∗i }i=1,...,`,
{k∗j,k,1,k∗j,k,2}Sj,k∈PVuı ), where

k∗0 = (−s0, 0 , 1, η0, 0)B∗0 , (1)
for i = 1, . . . , ` such that ρı(i) = (t, At),

k∗i = (µi(t,−1), si + θiAt,−θi, 04, 02 , ηi,1, ηi,2, 02, 02)B∗ , (2)

in which νi, θi, η0, ηi,1, ηi,2
$←− Fq, s0 = s′0 + s′′0, s′0 = #»1 · #»

f ᵀ, #»s ᵀ = (s1, . . . , s`)ᵀ = M (ı) · #»

f ᵀ,
s′′0

$←− Fq,
#»

f
$←− Frq, M (ı) being an `× r matrix, and for all Sj,k ∈ PVuı , such that ν(uı) is the

leaf node of T assigned to IDı,

k∗j,k,1 = (µj,k,1(d+ 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 04, 02 , ηj,k,1,1, ηj,k,1,2, 02, 02)B∗ , (3)

k∗j,k,2 = (µj,k,2(d+ 2,−1), sj,k,2((Lj‖Lk),−1), 04, 02 , ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ , (4)

such that sj,k,1, sj,k,2, µj,k,1, µj,k,2, θj,k, ηj,k,1,1, ηj,k,1,2, ηj,k,2,1, ηj,k,2,2
$←− Fq so that s′′0 = sj,k,1 +

sj,k,2.
The challenge ciphertext for challenge plaintext(M∗0 ,M∗1 ), attribute set Γ ∗ = {(t, At)|1 ≤ t ≤
d} and revocation list RL∗ is given by CT∗ = (CVRI∗ , c, c0, {ct}(t,At∈Γ ∗ , {cj,k,1, cj,k,2}Sj,k∈CVRI∗ )
where

c = gζTM
∗
b , b

$←− {0, 1}, (5)

c0 = (ω, 0 , ζ , 0, ϕ0)B0 , (6)

for (t, At) ∈ Γ ∗,

ct = (σt(1, t), ω(1, At), 02 , 02, 02 , 02, ϕt,1, ϕt,2, 02)B, (7)
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such that ω, ζ, ϕ0, σt, ϕt,1, ϕt,2
$←− Fq, and for all Sj,k ∈ CVRI∗ , RI∗ being the set of revoked

user serial numbers obtained from RL∗,

cj,k,1 = (σj,k,1(1, d+ 1), ω(1, (Lj‖Dk)), 02 , 02, 02 , 02, ϕj,k,1,1, ϕj,k,1,2, 02)B (8)

cj,k,2 = (σj,k,2(1, d+ 2), ω(1, (Lj‖Lk)), 02 , 02, 02 , 02, ϕj,k,2,1, ϕj,k,2,2, 02)B, (9)

such that σj,k,1, σj,k,2, ϕj,k,1,1, ϕj,k,1,2, ϕj,k,2,1, ϕj,k,2,2
$←− Fq. Note that there is at most one

Sj,k in CVRI∗ for any j and any k, as mentioned in Section 2.6.

Game 1: This game is identical to Game 0 except that the components of the challenge ci-
phertext CT∗ is computed as follows:

c = gζTM
∗
b , b

$←− {0, 1}, (10)
c0 = (ω, τ , ζ, 0, ϕ0)B0 , (11)
for (t, At) ∈ Γ ∗,

ct = (σt(1, t), ω(1, At), τ(1, At) , 02, τ(1, At) ·Zt , 02, ϕt,1, ϕt,2, 02)B, (12)

where τ $←− F×q , Zt
$←− GL(2,Fq). For all Sj,k ∈ CVRI∗ ,

cj,k,1 = (σj,k,1(1, d+ 1), ω(1, (Lj‖Dk)), τ(1, (Lj‖Dk)) , 02,

τ(1, (Lj‖Dk)) ·Zd+1,j,k , 02, ϕj,k,1,1, ϕj,k,1,2, 02)B, (13)

cj,k,2 = (σj,k,2(1, d+ 2), ω(1, (Lj‖Lk)), τ(1, (Lj‖Lk)) , 02,

τ(1, (Lj‖Lk)) ·Zd+2,j,k , 02, ϕj,k,2,1, ϕj,k,2,2, 02)B, (14)

where Zd+1,j,k,Zd+2,j,k
$←− GL(2,Fq). All other variables are generated as in Game 0.

Game 2-h-1 (h = 1, . . . , q̂): We denote Game 1 as Game 2-0-3. Game 2-h-1 is the same as
Game 2-(h−1)-3 other than the components of the h-th queried key for access structure-user
identity pair (Sh = (M (h), ρh), IDh) are constructed as follows:

k∗0 = (−s0, −a0 , 1, η0, 0)B∗0 (15)
for i = 1, . . . , ` such that ρh(i) = (t, At),

k∗i = (µi(t,−1), si + θiAt,−θi, 04, (ai + πiAt,−πi) ·Ut , ηi,1, ηi,2, 02, 02)B∗ , (16)

where #»g
$←− Frq, a0 = a′0 + a′′0, a′0 = #»1 · #»g ᵀ, (a1, . . . , a`)ᵀ = M (h) · #»g ᵀ, a′′0

$←− Fq, Ut = (Z−1
t )ᵀ

for Zt
$←− GL(2,Fq), πi

$←− Fq for i = 1, . . . , `, M (h) being an `×r matrix. For all Sj,k ∈ PVuh ,

k∗j,k,1 = (µj,k,1(d+ 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 04,

(aj,k,1 + πj,k(Lj‖Dk),−πj,k) ·Ud+1,j,k , ηj,k,1,1, ηj,k,1,2, 02, 02)B∗ (17)

k∗j,k,2 = (µj,k,2(d+ 2,−1), sj,k,2((Lj‖Lk),−1), 04,

(aj,k,2((Lj‖Lk),−1) ·Ud+2,j,k , ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ , (18)

where aj,k,1, aj,k,2, πj,k
$←− Fq such that aj,k,1 + aj,k,2 = a′′0, Ud+1,j,k = (Z−1

d+1,j,k)ᵀ,Ud+2,j,k =

(Z−1
d+2,j,k)ᵀ for Zd+1,j,k,Zd+2,j,k

$←− GL(2,Fq). All the other variables are constructed as in
Game 2-(h− 1)-3.
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Game 2-h-2 (h = 1, . . . , q̂): This game is similar to Game 2-h-1 with the exception that
the component k∗0 of the h-th queried key for an access structure-user identity pair (Sh =
(M (h), ρh), IDh) is computed as follows:

k∗0 = (−s0, r0 , 1, η0, 0)B∗0 , (19)

where r0
$←− Fq, and all the other variables are as in Game 2-h-1.

Game 2-h-3 (h = 1, . . . , q̂): This game is almost identical to Game 2-h-2 except that the compo-
nents of the h-th queried key for an access structure-user identity pair (Sh = (M (h), ρh), IDh)
is constructed as follows:

k∗0 = (−s0, r0, 1, η0, 0)B∗0 (20)
for i = 1, . . . , `,

k∗i = (µi(t,−1), si + θiAt,−θi, 04, 02 , ηi,1, ηi,2, 02, 02)B∗ , (21)

and for all Sj,k ∈ PVuh ,

k∗j,k,1 = (µj,k,1(d+ 1,−1), sj,k,1 + θj,k(Lj‖Dk),−θj,k, 04, 02 , ηj,k,1,1, ηj,k,1,2, 02, 02)B∗ (22)

k∗j,k,2 = (µj,k,2(d+ 2,−1), sj,k,2((Lj‖Lk),−1), 04, 02 , ηj,k,2,1, ηj,k,2,2, 02, 02)B∗ ,(23)

where r0
$←− Fq, and all the other variables are generated as in Game 2-h-2.

Game 3: This game is similar to Game 2-q̂-3 with the only exception that the components c0
and c of the challenge ciphertext CT∗ are computed as follows:

c0 = (ω, τ, ζ ′ , 0, ϕ0)B0 , (24)

c = gζTM
∗
b , (25)

where ζ ′ $←− Fq (i.e., independent from ζ
$←− Fq), and all other variables are generated as in

Game 2-q̂-3.

Let Adv(0)
A (λ), Adv(1)

A (λ), Adv(2-h-)
A (λ) (h = 1, . . . , q̂;  = 1, 2, 3) and Adv(3)

A (λ) be the
advantage of A in Game 0, 1, 2-h- and 3 respectively. Clearly, Adv(0)

A (λ) is equivalent to
AdvRABE,IND-CPA

A (λ) and Adv(3)
A (λ) = 0.

Lemmas 6–10 will evaluate the gaps between pairs of Adv(0)
A (λ), Adv(1)

A (λ), {Adv(2-h-1)
A (λ), . . . ,

Adv(2-h-3)
A (λ)}h=1,...,q̂, and Adv(3)

A (λ). From these lemmas we obtain,

AdvRABE,IND-CPA
A (λ) = Adv(0)

A (λ)

≤
∣∣∣Adv(0)

A (λ)− Adv(1)
A (λ)

∣∣∣+ q̂∑
h=1

[ ∣∣∣Adv(2-(h−1)-3)
A (λ)− Adv(2-h-1)

A (λ)
∣∣∣+

2∑
=1

∣∣∣Adv(2-h-)
A (λ)− Adv(2-h-(+1))

A (λ)
∣∣∣ ]+

∣∣∣∣Adv(2-q̂-3)
A (λ)− Adv(3)

A (λ)
∣∣∣∣+ Adv(3)

A (λ)

≤AdvP1
B1(λ) +

q̂∑
h=1

[
AdvP2

B2-h-1(λ) + AdvP2
B2-h-2(λ)

]
+ (4q̂ + 1)/q.

Therefore, from lemmas 1 and 2, we obtain the upper bound of AdvRABE,IND-CPA
A (λ). This com-

pletes the proof of Theorem 1. ut
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Lemma 6. For any probabilistic polynomial-time adversary A, there exists a probabilistic ma-
chine B1 whose running time is essentially the same as that of A, such that for any security
parameter λ, ∣∣∣Adv(0)

A (λ)− Adv(1)
A (λ)

∣∣∣ ≤ AdvP1
B1(λ).

Lemma 7. For any probabilistic polynomial-time adversary A, there exists probabilistic ma-
chine B2-1, whose running time is essentially the same as that of A, such that for any security
parameter λ, ∣∣∣Adv(2-(h−1)-3)

A (λ)− Adv(2-h-1)
A (λ)

∣∣∣ ≤ AdvP2
B2-h-1(λ) + 2/q,

where B2-h-1(·) = B2-1(h, ·).

Lemma 8. For any adversary A, for any security parameter λ, Adv(2-h-1)
A (λ) = Adv(2-h-2)

A (λ).

Lemma 9. For any probabilistic polynomial-time adversary A, there exists a probabilistic ma-
chine B2-2 whose running time is essentially the same as that of A, such that for any security
parameter λ, ∣∣∣Adv(2-h-2)

A (λ)− Adv(2-h-3)
A (λ)

∣∣∣ ≤ AdvP2
B2-h-2(λ) + 2/q,

where B2-h-2(·) = B2-2(h, ·).

Lemma 10. For any adversary A, for any security parameter λ,∣∣∣∣Adv(2-q̂-3)
A (λ)− Adv(3)

A (λ)
∣∣∣∣ ≤ 1/q.

The proofs of Lemmas 6–10 are given in Appendix A.

5 Efficiency

Table 1 and 2 compare our RABE scheme with the adaptively secure RABE scheme [18] and the
selectively secure construction [1] which are currently the best known results for RABE. Note
that we do not consider [4] for comparison as, unlike ours, it uses a key update mechanism for
managing revocation.

Table 1: Communication and storage comparison
RABE ]PP ]SKS,ID ]CTΓ,RL ]paramG Security Complexity

Assumptions

[1] d+ logNmax + 1
in G, 1 in GT

2(`+ 1) logNmax in G ]Γ + ]RI log Nmax
]RI in G,

1 in GT

q
(prime) Selective DBDH

[18] d+ logNmax + 1
in G, 1 in GT

2`+ 2 logNmax in G 1 + ]Γ + ]RI log Nmax
]RI in G,

1 in GT

n
(composite) Full SD, GSD,

Composite DH

Ours 111 in G,
1 in GT

5 + 16`+
16[log2 Nmax + logNmax] in G

16]Γ + 64]RI− 27 in G,
1 in GT

q
(prime) Full DLIN

Here, DBDH, SD, GSD and Composite DH respectively stand for the Decisional Bilinear Diffie-Hellman, Subgroup Decision,
Generalized Subgroup Decision and Composite Diffie-Hellman assumptions.

Our scheme is the first adaptively secure unbounded RABE construction built in prime order
bilinear group setting. We note the following facts:

• Our RABE protocol is the first to achieve constant public parameter size and thus, unlike
[1], [18], can accommodate large attribute universe and an unbounded number of users.
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Table 2: Computation comparison
RABE RABE.Setup RABE.GenKey RABE.Encrypt RABE.Decrypt

[1] 1in GT ;1 (logNmax + 1)[`(d+ 4)+
logNmax + 4] in G

1 + (d+ 4)]Γ + ]RI log Nmax
]RI (logNmax + 2)

in G, 1 in GT
2`+ 2 in G,
1 in GT ; 2`+ 2

[18] d+ logNmax in G,
1 in GT ;1

3`+ log2 Nmax+
4 logNmax + 4 in G

1 + ]Γ + ]RI log Nmax
]RI (logNmax + 2) in G,

1 in GT
2` in G;
2`+ 2

Ours 111 in G,
1 in GT ;1

10 + 96`+
96(log2 Nmax + logNmax) in G

80]Γ + 160]RI− 49 in G,
1 in GT

16`+ 16 in G;
16`+ 37

Here, ‘x; y’ denotes ‘x many exponentiations and y many pairings’.

• Our scheme provides adaptive security instead of selective security achieved in [1] at the
expense of some amount of efficiency loss. Note that it is usual to compromise in efficiency
in order to achieve better security [6], [20].

• Our scheme uses prime order bilinear group as opposed to composite order bilinear group
used in the adaptively secure RABE construction of [18]. As noted by Freeman [8] and sev-
eral other researchers, the only known instantiation of composite order bilinear group uses
elliptic curves (or more generally, abelian varieties) over finite fields. Since the elliptic curve
group order must be infeasible to factor, it must be at least 1024 bits. On the other hand,
the size of a prime order elliptic curve group that provides an equivalent level of security is
only 160 bits which is almost 7 times smaller. This difference in the group order results in
great reduction of the ciphertext size when compared in terms of bit length.

• On a more positive note, we employ the subset difference (SD) method, which always pro-
vides a smaller covering set compared to the complete subtree (CS) scheme [12], while all
previous RABE constructions use CS scheme. Consequently, we could achieve a much smaller
ciphertext size, particularly when dealing with large number of users in the system, at the
expense of a relatively large private key size, which is primarily due to the large size of
private sets of the SD method as opposed to the CS method.

• Regarding computational efficiency of our RABE scheme, note that due to the excessive bit
length of the group order, group-operations and pairing computations are prohibitively slow
on composite order elliptic curves[8]. In particular, an exponentiation is nearly 25 times
slower and a pairing computation is roughly 50 times slower on a 1024 bit composite order
elliptic curve than the corresponding operations on a comparable prime order curve [8]. In
this light, we can readily see from Table 2 that the computational cost of the encryption
algorithms of our RABE scheme is close to that of [18], the only existing RABE scheme with
full security to the best of our knowledge, and the decryption algorithm is much faster than
that of [18]. However, our key generation algorithm is slower compared to [18].

6 Conclusion

In this paper, we have developed the first adaptively secure unbounded RABE scheme in prime
order bilinear groups that realizes user revocation through the subset difference (SD) scheme – a
more efficient variant of the subset cover (SC) framework of Naor et al. [14] as compared to the
complete subtree (CS) scheme used in all previous RABE constructions. The full security of our
RABE scheme has been proven under the DLIN assumption by extending the technique of dual
system encryption over dual pairing vector spaces described in [15], [16]. Due to the application
of prime order bilinear groups and the SD scheme, our RABE scheme is highly broadcast efficient.
Note that, like the RIBE scheme of [12], our RABE scheme can also be integrated with the layered
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subset difference (LSD) scheme [10] which is an improved variant of SD. One may attempt to
construct an RABE scheme that specifies the decryption policies along with the revocation list
in the ciphertext rather than incorporating the access structure in the private keys of the users.
Moreover, it would be interesting to investigate the use the dynamic version of SD [7] in order to
overcome the problem of maintaining a large static binary tree within the state. The possibility
to apply SD in designing more advanced primitives such as revocable storage attribute-based
encryption (RSABE) or revocable storage predicate encryption (RSPE) [11] is another interesting
direction of research.

References

1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Cryp-
tography and Coding, pp. 278–300. Springer (2009)

2. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption. In: Pairing-Based
Cryptography–Pairing 2009, pp. 248–265. Springer (2009)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Security and Privacy,
2007. SP’07. IEEE Symposium on. pp. 321–334. IEEE (2007)

4. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of
the 15th ACM conference on Computer and communications security. pp. 417–426. ACM (2008)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in Cryptology–CRYPTO 2004. pp.
41–55. Springer (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in Cryptology–
CRYPTO 2001. pp. 213–229. Springer (2001)

7. Chen, W., Ge, Z., Zhang, C., Kurose, J., Towsley, D.: On dynamic subset difference revocation scheme.
In: NETWORKING 2004. Networking Technologies, Services, and Protocols; Performance of Computer and
Communication Networks; Mobile and Wireless Communications, pp. 743–758. Springer (2004)

8. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups.
In: Advances in Cryptology–EUROCRYPT 2010, pp. 44–61. Springer (2010)

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of
encrypted data. In: Proceedings of the 13th ACM conference on Computer and communications security. pp.
89–98. ACM (2006)

10. Halevy, D., Shamir, A.: The lsd broadcast encryption scheme. In: Advances in Cryptology–CRYPTO 2002,
pp. 47–60. Springer (2002)

11. Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption: Time constrained access
control with hidden attributes and better efficiency. In: Advances in Cryptology-ASIACRYPT 2013, pp.
235–254. Springer (2013)

12. Lee, K., Lee, D.H., Park, J.H.: Efficient revocable identity-based encryption via subset difference methods.
IACR Cryptology ePrint Archive 2014, 132 (2014)

13. Martin, T., Martin, K., Wild, P.: Establishing the broadcast efficiency of the subset difference revo-
cation scheme. Designs, Codes and Cryptography 51(3), 315–334 (2009), http://dx.doi.org/10.1007/
s10623-008-9263-x

14. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Advances in
Cryptology–CRYPTO 2001. pp. 41–62. Springer (2001)

15. Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional
linear assumption. In: Advances in Cryptology–CRYPTO 2010, pp. 191–208. Springer (2010)

16. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In:
Advances in Cryptology–ASIACRYPT 2012, pp. 349–366. Springer (2012)

17. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In:
Proceedings of the 14th ACM conference on Computer and communications security. pp. 195–203. ACM
(2007)

18. Qian, J.l., Dong, X.l.: Fully secure revocable attribute-based encryption. Journal of Shanghai Jiaotong Uni-
versity (Science) 16, 490–496 (2011)

19. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Advances in Cryptology–EUROCRYPT 2005, pp.
457–473. Springer (2005)

20. Waters, B.: Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions. In: Ad-
vances in Cryptology-CRYPTO 2009, pp. 619–636. Springer (2009)

21. Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure real-
ization. In: Public Key Cryptography–PKC 2011, pp. 53–70. Springer (2011)

http://dx.doi.org/10.1007/s10623-008-9263-x
http://dx.doi.org/10.1007/s10623-008-9263-x


Adaptively Secure Unrestricted ABE with SD Revocation 21

A Proofs of Lemmas 6–10

• Proof of Lemma 6: In order to prove Lemma 6, we construct a probabilistic machine B1
against Problem 1 using an adversary A in a security game (Game 0 or 1) as a black box as
follows:
B1 is given a Problem 1 instance

% = (param, B̂0, B̂∗0, B̂, B̂∗, eβ,0, {eβ,t,i}t=1,...,d;i=1,2, {eβ,d+υ,$,i}υ=1,2;$=1,...,r̂max;i=1,2).

B1 plays a role of the challenger in the security game against adversary A as follows:

Setup: B1 provides A with the public parameters PP = (param, B̂0, B̂) of Game 0 (and 1), where
B̂0 = {b0,1, b0,3, b0,5}, B̂ = {b1, . . . , b4, b13, b14} and a state ST = (T ,UL), where T is a full
binary tree having Nmax leaf nodes and UL = ∅.

Phase 1: When a private key query is issued by A for an access structure-user identity pair
(Sı = (M (ı), ρı), IDı) such that M (ı) is an `× r matrix, B1 answers normal key

SKSı,IDı = (PVuı ,k∗0, {k∗i }i=1,...,`, {k∗j,k,1,k∗j,k,2}Sj,k∈PVuı ),

as defined in equations (1)–(4) that is computed using B̂∗0, B̂∗ of the Problem 1 instance, and
the updated state ST.

Challenge: When B1 receives a challenge from A with challenge plaintexts M∗0 ,M∗1 , an attribute
set Γ ∗ = {(t, At)|1 ≤ t ≤ d} and set of revoked user identities RL∗, B1 computes the challenge
ciphertext as follows:
1. It first chooses ζ $←− Fq and computes

c0 = eβ,0 + ζb0,3.

2. For all (t, At) ∈ Γ ∗, it sets
ct = eβ,t,1 +Ateβ,t,2.

3. It defines the revoked user serial number set RI∗ ⊆ N from RL∗ by using UL. Next it
obtains CVRI∗ = {Sj1,k1 , . . . , Sjm,km}, wherem ≤ r̂max, by running SD.Cover(T ,RI∗). Note
that, as explained in Section 2.6, here j$ and k$ are all distinct. For all Sj$,k$ ∈ CVRI∗ ,
B1 sets

cj$,k$,1 = eβ,d+1,$,1 + (Lj$‖Dk$)eβ,d+1,$,2,

cj$,k$,2 = eβ,d+2,$,1 + (Lj$‖Lk$)eβ,d+2,$,2.

4. It selects b $←− {0, 1} and computes c = gζTM
∗
b .

5. It returns the challenge ciphertext

CT∗ = (CVRI∗ , c, c0, {ct}(t,At)∈Γ ∗ , {cj$,k$,1, cj$,k$,2}Sj$,k$∈CVRI∗ ).

Phase 2: A may continue to query private keys, and B1 executes the same procedure as in Phase
1.

Guess: A finally outputs bit b′. If b = b′, B1 outputs β′ = 1. Otherwise, B1 outputs β′ = 0.

It is straightforward that the distribution by B1’s simulation given a Problem 1 instance with
β ∈ {0, 1}, is equivalent to that in Game 0 or Game 1, according as β = 0 or β = 1 respectively.

ut
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• Proof of Lemma 7: In order to prove Lemma 7, we construct a probabilistic machine B2-1
against Problem 2 using an adversary A in a security game (Game 2-(h − 1)-3 or 2-h-1) as a
black box. B2-1 is given an integer h and a Problem 2 instance

% = (param, B̂0, B̂∗0, B̂, B̂∗,h∗β,0, e0, {h∗β,t,i, et,i}t=1,...,d;i=1,2,

{h∗β,d+υ,$,i, ed+υ,$,i}υ=1,2;$=1,...,log2 Nmax+r̂max;i=1,2).

B2-1 plays a role of the challenger in the security game against adversary A as follows:
Setup: B2-1 provides A the public parameters PP = (param, B̂0, B̂) of Game 2-(h − 1)-3 (and

2-h-1), where B̂0 and B̂ are obtained from the Problem 2 instance, and a state ST = (T ,UL),
where T is a full binary tree with Nmax leaf nodes and UL = ∅.

Phase 1: When the ı-th private key query is issued by A for access structure-user identity pair
(Sı = (M (ı), ρı), IDı) such that M (ı) is an `× r matrix, B2-1 answers as follows:

(a) When 1 ≤ ı ≤ h− 1, B2-1 answers semi-functional key

SKSı,IDı = (PVuı ,k∗0, {k∗i }i=1,...,`, {k∗j,k,1,k∗j,k,2}Sj,k∈PVuı ),

as defined in equations (20)–(23), that is computed using B̂∗0 and B̂∗ of the Problem 2
instance.

(b) When ı = h, B2-1 generates the queried key as follows:
1. It picks π̃t, π̃d+1,logNmax(ι−1)+ε, ξt, ξd+1,logNmax(ι−1)+ε, g̃k, g̃0, ξ̃k, ξ̃0

$←− Fq for t = 1, . . . , d;
ι, ε = 1, . . . , logNmax; k = 1, . . . , r.

2. It computes

for k = 1, . . . , r,
p̃∗β,0,k = g̃kh

∗
β,0 + ξ̃kb

∗
0,1,

p̃∗β,0,0 = g̃0h
∗
β,0 + ξ̃0b

∗
0,1,

and sets
k∗0 = −

r∑
k=1

p̃∗β,0,k − p̃∗β,0,0 + b∗0,3.

3. For t = 1, . . . , d, it computes

for  = 1, 2,
p∗β,t, = π̃th

∗
β,t, + ξtb

∗
2+ and

for k = 1, . . . , r,
p̃∗β,t,k = g̃kh

∗
β,t,1 + ξ̃kb

∗
3.

Next, for each i = 1, . . . , `, it sets

k∗i = Atp
∗
β,t,1 − p∗β,t,2 +

r∑
k=1

M
(h)
i,k p̃

∗
β,t,k,

where ρh(i) = (t, At), for i = 1, . . . , `, and (M (h)
i,k )i=1,...,`;k=1,...,r = M (h).

4. For each Sjι,kε ∈ PVuh , it performs the following operations: It first selects g̃jι,kε,1,
g̃jι,kε,2, ξ̃jι,kε,1, ξ̃jι,kε,2

$←− Fq such that g̃jι,kε,1 + g̃jι,kε,2 = g̃0 and ξ̃jι,kε,1 + ξ̃jι,kε,2 = ξ̃0,
and computes for  = 1, 2,

p∗β,jι,kε,1, = π̃d+1,logNmax(ι−1)+εh
∗
β,d+1,logNmax(ι−1)+ε, + ξd+1,logNmax(ι−1)+εb

∗
2+,

p̃∗β,jι,kε,1 = g̃jι,kε,1h
∗
β,d+1,logNmax(ι−1)+ε,1 + ξ̃jι,kε,1b

∗
3,

p̃∗β,jι,kε,2, = g̃jι,kε,2h
∗
β,d+2,logNmax(ι−1)+ε, + ξ̃jι,kε,2b

∗
2+.
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Then it obtains

k∗jι,kε,1 = (Ljι‖Dkε)p∗β,jι,kε,1,1 − p
∗
β,jι,kε,1,2 + p̃∗β,jι,kε,1,

k∗jι,kε,2 = (Ljι‖Lkε)p̃∗β,jι,kε,2,1 − p̃
∗
β,jι,kε,2,2.

5. It returns the queried key as

SKSh,IDh = (PVuh ,k∗0, {k∗i }i=1,...,`, {k∗jι,kε,1,k
∗
jι,kε,2}Sjι,kε∈PVuh ).

(c) When h+ 1 ≤ ı ≤ q̂, B2-1 answers normal key

SKSı,IDı = (PVuı ,k∗0, {k∗i }i=1,...,`, {k∗j,k,1,k∗j,k,2}Sj,k∈PVuı )

as defined in equations (1)–(4), that is computed using B̂∗0, B̂∗ of the Problem 2 instance.

Challenge: When B2-1 receives a challenge fromA with challenge plaintextsM∗0 ,M∗1 , an attribute
set Γ ∗ = {(t, At)|1 ≤ t ≤ d} and revocation list RL∗, B2-1 computes the challenge ciphertext
as described below. For the ease of explanation, we assume that the h-th private key query
occurs before the challenge is submitted. The simulation would be similar for the other case.
1. It computes

c0 = e0 + ζb0,3 + q0,

where ζ $←− Fq, q0
$←− span〈b0,5〉.

2. For all (t, At) ∈ Γ ∗, it sets
ct = et,1 +Atet,2 + qt,

where qt
$←− span〈b13, b14〉.

3. It defines the revoked user serial number set RI∗ ⊆ N from RL∗ by using UL. Next it
obtains CVRI∗ = {Sj1,k1 , . . . , Sjm,km}, where m ≤ r̂max, by performing SD.Cover(T ,RI∗).
Note that, here jι′ ’s and kι′ ’s are all distinct. For all Sjι′ ,kι′ ∈ CVRI∗ , B2-1 sets

cjι′ ,kι′ ,1 = ed+1,ι′,1 + (Ljι′‖Dkι′ )ed+1,ι′,2 + qd+1,ι′ ,

cjι′ ,kι′ ,2 = ed+2,ι′,1 + (Ljι′‖Lkι′ )ed+2,ι′,2 + qd+2,ι′ ,

where qd+1,ι′ , qd+2,ι′
$←− span〈b13, b14〉. While computing the above values for any Sjι′ ,kι′ ∈

CVRI∗ , if it is found that (jι′ = jι) ∧ (Dkι′ = Dkε) for some Sjι,kε ∈ PVuh corresponding
to the h-th private key query, then the values ed+1,ι′,, ed+2,ι′, for  = 1, 2, that are
used in the above computation are respectively ed+1,logNmax(ι−1)+ε,, ed+2,logNmax(ι−1)+ε,,
where 1 ≤ ι, ε ≤ logNmax. Otherwise, fresh ed+1,ι′,, ed+2,ι′, for  = 1, 2 with ι′ 6=
logNmax(ι− 1) + ε, 1 ≤ ι, ε ≤ logNmax, are used.

4. It chooses b $←− {0, 1} and computes c = gζTM
∗
b .

5. It returns the challenge ciphertext

CT∗ = (CVRI∗ , c, c0, {ct}(t,At)∈Γ ∗ , {cjι′ ,kι′ ,1, cjι′ ,kι′ ,2}Sjι′ ,kι′∈CVRI∗ ).

Phase 2:Amay continue to request additional private keys. B2-1 performs the same procedure as
in Case (c) of Phase 1. Note that, here we have assumed that the h-th key query occurred be-
fore the challenge has been submitted. The modification for the other case is straightforward.

Guess: A finally outputs a bit b′. If b = b′, then B2-1 outputs β′ = 1. Otherwise, B2-1 outputs
β′ = 0.
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One can readily verify that the distribution by B2-1’s simulation given a Problem 2 instance with
β ∈ {0, 1} is equivalent to that in Game 2-(h− 1)-3 or Game 2-h-1 according as β = 0 or β = 1
respectively, except that γ defined in Problem 2 is zero, i.e., except with probability 1/q. ut

• Proof of Lemma 8: We make use of the following key probabilistic (or information-theoretic)
lemma to prove Lemma 8:

Lemma 11 (Lemma 8 in [16]). For p ∈ Fq, let Cp = {( #»x , #»v )| #»x · #»v = p} ⊂ V×V∗, where V
is n dimensional vector space Fnq and V∗ its dual. For all ( #»x , #»v ) ∈ Cp, for all ( #»r , #»w) ∈ Cp,

Pr[ #»x ·U = #»r ∧ #»v ·Z = #»w] = Pr[ #»x ·Z = #»r ∧ #»v ·U = #»w] = 1
]Cp

,

where Z $←− GL(n,Fq), U = (Z−1)ᵀ.

It is clear that the distribution of the public parameters and the ı-th private key query’s answer
for ı 6= h in Game 2-h-1 and Game 2-h-2 are exactly the same, namely, in both games, for
ı < h the ı-th queried key are generated as per equations (20)–(23), and for ı > h, those are
formed according as equations (1)–(4). Therefore, to prove Lemma 8, we will show that the joint
distribution of the h-th private key query’s answer and the challenge ciphertext in Game 2-h-1
and Game 2-h-2 are equivalent in the view of the adversary A. For this we will show that a0 in
equation (15) is uniformly and independently distributed from the other variables in the joint
distribution of adversary A’s view. Since a0 = a′0 + a′′0, where a′0 = #»1 · #»g ᵀ, a′′0 = aj,k,1 + aj,k,2,
a0 is related only to (a1, . . . , a`)ᵀ = M (h) · #»g ᵀ, {aj,k,1, aj,k,2}Sj,k∈PVuh . Also,

Ut = (Z−1
t )ᵀ for 1 ≤ t ≤ d with ρh(i) = (t, At), and

Ud+1,j,k = (Z−1
d+1,j′,k′)

ᵀ,Ud+2,j,k = (Z−1
d+2,j′,k′)

ᵀ for Sj,k ∈ PVuh ;Sj′,k′ ∈ S; (j′ = j) ∧ (Dk′ = Dk),

where S is the collection of all subsets Sj,k of leaf nodes of T . Thus, a0 is dependent only on
{ #»wi}i=1,...,`, { #»wj,k,1,

#»wj,k,2}Sj,k∈PVuh and { #»r t}1≤t≤d;ρh(i)=(t,At), {
#»r j′,k′,1,

#»r j′,k′,2|Sj′,k′ ∈ S; (j′ =
j) ∧ (Dk′ = Dk) for some Sj,k ∈ PVuh}, where

for i = 1, . . . , `,
#»wi = (ai + πiAt,−πi) ·Ut,
for Sj,k ∈ PVuh ,
#»wj,k,1 = (aj,k,1 + πj,k(Lj‖Dk),−πj,k) ·Ud+1,j,k,

#»wj,k,2 = (aj,k,2((Lj‖Lk),−1) ·Ud+2,j,k;
and for 1 ≤ t ≤ d with ρh(i) = (t, At),

#»r t = τ(1, At) ·Zt,
for Sj′,k′ ∈ S with (j′ = j) ∧ (Dk′ = Dk) for some Sj,k ∈ PVuh ,
#»r j′,k′,1 = τ(1, (Lj′‖Dk′))Zd+1,j′,k′ ,

#»r j′,k′,2 = τ(1, (Lj′‖Lk′)) ·Zd+2,j′,k′ .

With respect to the joint distribution of these variables there are the following cases. Note that
for any i ∈ {1, . . . , `}, (Zt,Ut) with ρh(i) = (t, At) is independent from the other variables,
since as per our assumption ρh is injective. Also for all Sj,k ∈ PVuh and Sj′,k′ ∈ S with (j′ =
j) ∧ (Dk′ = Dk), (Zd+1,j′,k′ ,Ud+1,j,k), (Zd+2,j′,k′ ,Ud+2,j,k) are independent from the other
variables since these values are utilized for one particular (j,Dk) = (j′, Dk′) pair which appears
in both PVuh and CVRI∗ at most once.

I. [ρh(i) = (t, At) ∧ (t, At) ∈ Γ ∗]: In this case from Lemma 11, the joint distribution of
( #»wi,

#»r t) is uniformly and independently distributed on Cτai = {( #»x , #»v )| #»x · #»v = τai} (over
Zt

$←− GL(2,Fq)).
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II. [ρh(i) = (t, At) ∧ (t, At) /∈ Γ ∗]: Here, the distribution of #»wi is uniformly and independently
distributed on F2

q (over Zt
$←− GL(2,Fq)).

III. [Sj,k ∈ PVuh , Sj′,k′ ∈ CVRI∗ such that (j′ = j) ∧ (Dk′ = Dk)]: Again from Lemma
11, the joint distribution of ( #»wj,k,1,

#»r j′,k′,1) is uniformly and independently distributed on
Cτaj,k,1 = {( #»x , #»v )| #»x · #»v = τaj,k,1} (over Zd+1,j′,k′

$←− GL(2,Fq)); and the joint distribution
of ( #»wj,k,2,

#»r j′,k′,2) is uniformly and independently distributed on Cτaj,k,2((Lj‖Lk)−(Lj′‖Lk′ ))

or on C0 (over Zd+2,j′,k′
$←− GL(2,Fq)) according as k′ 6= k or k′ = k.

IV. [Sj,k ∈ PVuh does not satisfy the condition j′ = j for any Sj′,k′ ∈ CVRI∗ ]: Then the
distribution of #»wj,k,1 and #»wj,k,2 are uniformly distributed on F2

q (over Zd+1,j′,k′ ,Zd+2,j′,k′
$←−

GL(2,Fq)).

We then observe that the joint distribution of a0, τ, { #»wi}i=1,...,`, { #»r t}1≤t≤d;ρh(i)=(t,At), and
{ #»wj,k,1,

#»wj,k,2}Sj,k∈PVuh , {
#»r j′,k′,1,

#»r j′,k′,2|Sj′,k′ ∈ S; (j′ = j) ∧ (Dk′ = Dk) for some Sj,k ∈
PVuh} in Cases II and IV are obviously independent from a0.

Now, as per the restriction of the RABE security game, the adversaryA cannot query a private
key for an access structure-user identity pair such that the access structure satisfies the attribute
set Γ ∗ and, at the same time, the user identity is not contained in the revocation list RL∗. Due to
this constraint on adversary A’s private key queries, #»1 /∈ span〈M (h)

i |ρh(i) = (t, At) ∈ Γ ∗〉 or for
all Sj,k ∈ PVuh , there does not exist Sj′,k′ ∈ CVRI∗ such that (j′ = j) ∧ (Dk′ = Dk) ∧ (k′ 6= k).
Therefore, a0 = a′0 + a′′0 where a′0 = #»1 · #»g ᵀ, a′′0 = aj,k,1 + aj,k,2, is independent from the
joint distribution of τ , {τai = τM

(h)
i · #»g ᵀ|ρh(i) = (t, At) ∈ Γ ∗} (over the random selection of

#»g ) and {τaj,k,1, τaj,k,2((Lj‖Lk) − (Lj′‖Lk′))|Sj,k ∈ PVuh , Sj′,k′ ∈ CVRI∗ , (j′ = j) ∧ (Dk′ =
Dk)} (where τaj,k,2((Lj‖Lk) − (Lj′‖Lk′)) = 0 if k′ = k) over the subdivision of the randomly
selected element a′′0 into random parts aj,k,1, aj,k,2; which can be given by ( #»wi,

#»r t) in Case I, and
( #»wj,k,1,

#»r j′,k′,1), ( #»wj,k,2,
#»r j′,k′,2) in Case III.

Thus a0 is uniformly and independently distributed from the other variables in the joint
distribution. Hence, the view of the adversary A in Game 2-h-1 is the same as that in Game
2-h-2. ut

• Proof of Lemma 9: In order to prove Lemma 9, we construct a probabilistic machine B2-2
against Problem 2 using an adversary A in a security game (Game 2-h-2 or 2-h-3) as a black
box. B2-2 acts in the same way as B2-1 in the proof of Lemma 7 except the following two points:

I. In Step 2 of Case (b), in Phase 1, k∗0 is computed as

k∗0 = −
r∑

k=1
p̃∗β,0,k − p̃∗β,0,0 + r′0b

∗
0,2 + b∗0,3,

where r′0
$←− Fq; p̃∗β,0,k, p̃∗β,0,0 are computed from h∗β,0, b∗0,1, in the same way as in the proof

of Lemma 7; and b∗0,2, b∗0,3 are obtained from the Problem 2 instance.
II. In the Guess step, if b = b′, B2-2 outputs β′ = 0, otherwise, it outputs β′ = 1.

When β = 0 or β = 1, it is straightforward that the distribution by B2-2’s simulation is
equivalent to that in Game 2-h-2 or Game 2-h-3 respectively except that γ defined in Problem 2
is zero, i.e., except with probability 1/q in each case. ut

• Proof of Lemma 10: To prove Lemma 10, we will show that the distribution (param, B̂0, B̂,
{SKSı,IDı}ı=1,...,q̂,CT∗) in Game 2-q̂-3 and that in Game 3 are equivalent, where SKSı,IDı is the
answer to the ı-th private key query and CT∗ is the challenge ciphertext. By definition of the two
games, we only need to consider elements on V0 or V∗0, where V0 = span〈B0〉, V∗0 = span〈B∗0〉.
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We define new bases D0 of V0 and D∗0 of V∗0 as follows: We generate θ $←− Fq and set

d0,2 = (0, 1,−θ, 0, 0)B0 = b0,2 − θb0,3,

d∗0,3 = (0, θ, 1, 0, 0)B∗0 = b∗0,3 + θb∗0,2.

We define D0 = {b0,1,d0,2, b0,3, b0,4, b0,5},D∗0 = {b∗0,1, b∗0,2,d∗0,3, b∗0,4, b∗0,5}. We then easily
verify that D0 and D∗0 are dual orthogonal bases and are distributed the same as the original
bases B0 and B∗0.

The V0 components ({k∗(ı)0 }ı=1,...,q̂, c0) in queried keys, challenge ciphertext ({SKSı,IDı}ı=1,...,q̂,

CT∗) in Game 2-q̂-3 are expressed over B∗0 and B0 respectively as k∗(ı)0 = (−s(ı)
0 , r

(ı)
0 , 1, η(ı)

0 , 0)B∗0
and c0 = (ω, τ, ζ, 0, ϕ0)B0 . Note that here we index the k∗0 component of the queried key SKSı,IDı
and all its forming coefficients by ı for ease of explanation. Then,

k
∗(ı)
0 = (−s(ı)

0 , r
(ı)
0 , 1, η(ı)

0 , 0)B∗0 = (−s(ı)
0 , r

(ı)
0 − θ, 1, η

(ı)
0 , 0)D∗0 = (−s(ı)

0 , ϑ
(ı)
0 , 1, η(ı)

0 , 0)D∗0 ,

where ϑ(ı)
0 = r

(ı)
0 − θ which are uniformly, independently distributed since r(ı)

0
$←− Fq. Again,

c0 = (ω, τ, ζ, 0, ϕ0)B0 = (ω, τ, ζ + τθ, 0, ϕ0)D0 = (ω, τ, ζ ′, 0, ϕ0)D0 ,

where ζ ′ = ζ + τθ which is uniformly, independently distributed since θ $←− Fq.
In the light of the adversary’s view, both {B0,B∗0} and {D0,D∗0} are consistent with public

parameters PP = (param, B̂0, B̂). Therefore, {SKSı,IDı}ı=1,...,q̂ and CT∗ can be expressed as keys
and ciphertext in two ways, in Game 2-q̂-3 over bases {B0,B∗0} and in Game 3 over bases {D0,D∗0}.
Thus Game 2-q̂-3 can be conceptually changed to Game 3 if τ 6= 0, i.e., except with probability
1/q. ut

B Proofs of Lemma 1

The proof of this lemma is based on the following result:

Definition 10 (Basic Problem 1). Basic Problem 1 is to guess β ∈ {0, 1}, given % =
(param,B0, B̂∗0,B, B̂∗, eβ,0, {eβ,i}i=1,2) $←− GBP1

β (1λ),

GBP1
β (1λ) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
B̂∗0 = {b∗0,1, b∗0,3, . . . , b∗0,5}, B̂∗ = {b∗1, . . . , b∗6, b∗9, . . . , b∗16},
ω, ϕ0

$←− Fq, τ
$←− F×q , e0,0 = (ω, 0, 0, 0, ϕ0)B0 , e1,0 = (ω, τ, 0, 0, ϕ0)B0 ,

#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2
q ,

for i = 1, 2,
#»ϕ i

$←− F2
q ,

e0,i = (02, ω #»e i, 06, 02, #»ϕ i, 02)B
e1,i = (02, ω #»e i, τ

#»e i, 04, 02, #»ϕ i, 02)B,
return % = (param,B0, B̂∗0,B, B̂∗, eβ,0, {eβ,i}i=1,2).

For a probabilistic adversary C, the advantage of C for Basic Problem 1, is given by,

AdvBP1
C (λ) =

∣∣∣∣Pr
[
C(1λ, %)→ 1|% $←− GBP1

0 (1λ)
]
− Pr

[
C(1λ, %)→ 1|% $←− GBP1

1 (1λ)
]∣∣∣∣ .

Lemma 12. For any probabilistic polynomial-time adversary C, there exists a probabilistic ma-
chine F , whose running time is essentially the same as that of C, such that for any security
parameter λ, AdvBP1

C (λ) ≤ AdvDLIN
F (λ) + 5/q.
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Basic Problem 1 defined above is essentially Basic Problem 1 of [16] with two additional dimen-
sions. The proof of Lemma 12 is exactly identical to that of Lemma 34 in [16].

In order to prove Lemma 1 we consider the following experiments. Problem 1 is the hybrid
of the following Experiment 0, 1, 2-1-1-1, . . . , 2-d-2-2, 3-(d+ 1)-1-1-1, . . . , 3-(d+ 2)-r̂max-2-2,
i.e.,

AdvP1
B (λ) =

∣∣∣∣Pr
[
Exp(0)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+2)-r̂max-2-2)

B (λ)→ 1
]∣∣∣∣ .

Therefore from Lemma 12 and the following lemmas we obtain Lemma 1.

Experiments: In Experiment 0, a part framed by a box indicates positions of coefficients
to be changed in subsequent experiment. In the other experiments, a part framed by a box indi-
cates coefficients which were changed in a transition from the previous experiment. Experiments
proceed as follows:

Experiment 0 =⇒ Experiment 1 =⇒ {Experiment 2-p-j-l}p=1,...,d;j=1,2;l=1,2 =⇒
{Experiment 3-(d+ υ)-$-j-l}υ=1,2;$=1,...,r̂max;j=1,2;l=1,2

Experiment 0 (Exp(0)
B ): β = 0 case of Problem 1. For a probabilistic adversary B, we define

an experiment Exp(0)
B using Problem 1 generator GP1

β (1λ, d, r̂max) in Definition 4:
1. B is given %

$←− GP1
0 (1λ, d, r̂max), i.e.,

e0 = (ω, 0 , 0, 0, ϕ0)B0 , (26)
for t = 1, . . . , d; i = 1, 2,

et,i = (σt,i(1, t), ω #»e i, 02 , 02, 02 , 02, #»ϕ t,i, 02)B, (27)
for υ = 1, 2;$ = 1, . . . , r̂max; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, 02 , 02, 02 , 02, #»ϕd+υ,$,i, 02)B, (28)

where all variables are generated as in Problem 1. Note that here we have dropped β = 0
suffix of e’s for simplicity.

2. The output of the experiment is defined as β′ ← B(1λ, %).

Experiment 1 (Exp(1)
B ): The same as Experiment 0 except that

e0 = (ω, τ , 0, 0, ϕ0)B0 , (29)
for t = 1, . . . , d; i = 1, 2,

et,i = (σt,i(1, t), ω #»e i, τ
#»e i , 02, 02, 02, #»ϕ t,i, 02)B, (30)

for υ = 1, 2;$ = 1, . . . , r̂max; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i , 02, 02, 02, #»ϕd+υ,$,i, 02)B, (31)

where τ $←− F×q and all the other variables are generated as in Experiment 0.

Experiment 2-p-j-1 (Exp(2-p-j-1)
B for p = 1, . . . , d; j = 1, 2): We denote Experiment 1 by

Experiment 2-0-2-2. This experiment is similar to Experiment 2-(p − 1)-2-2 if j = 1, or
Experiment 2-p-1-2 if j = 2 except that

ep,j = (σp,j(1, p), ω #»e j , τ
#»e j , 02, σ̃p,j(1, p) , 02, #»ϕp,j , 02)B, (32)

where σ̃p,j
$←− Fq, and all the other variables are generated as in Experiment 2-(p− 1)-2-2 if

j = 1, or Experiment 2-p-1-2 if j = 2.
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Experiment 2-p-j-2 (Exp(2-p-j-2)
B for p = 1, . . . , d; j = 1, 2): This experiment is equivalent to

Experiment 2-p-j-1 with the exception that

ep,j = (σp,j(1, p), ω #»e j , τ
#»e j , 02, τ(zp,j,1, zp,j,2) , 02, #»ϕp,j , 02)B, (33)

where zp,j,1, zp,j,2
$←− Fq, and all other variables are generated as in Experiment 2-p-j-1.

Experiment 3-(d+ υ)-$-j-1 (Exp(3-(d+υ)-$-j-1)
B , for υ = 1, 2;$ = 1, . . . , r̂max; j = 1, 2): We

denote Experiment 2-d-2-2 by Experiment 3-(d+0)-r̂max-2-2. This experiment is identical to
Experiment 3-(d+υ−1)-r̂max-2-2 or Experiment 3-(d+υ)-($−1)-2-2 if j = 1, or Experiment
3-(d+ υ)-$-1-2 if j = 2 except that

ed+υ,$,j = (σd+υ,$,j(1, d+ υ), ω #»e j , τ
#»e j , 02, σ̃d+υ,$,j(1, d+ υ) , 02, #»ϕd+υ,$,j , 02)B, (34)

where σ̃d+υ,$,j
$←− Fq and all the other variables are generated as in Experiment 3-(d + υ −

1)-r̂max-2-2 or Experiment 3-(d + υ)-($ − 1)-2-2 if j = 1, or Experiment 3-(d + υ)-$-1-2 if
j = 2.

Experiment 3-(d+υ)-$-j-2 (Exp(3-(d+υ)-$-j-2)
B , for υ = 1, 2;$ = 1, . . . , r̂max; j = 1, 2): This

experiment is the same as Experiment 3-(d+ υ)-$-j-1 except that

ed+υ,$,j = (σd+υ,$,j(1, d+ υ), ω #»e j , τ
#»e j , 02, τ(zd+υ,$,j,1, zd+υ,$,j,2) , 02, #»ϕd+υ,$,j , 02)B,

(35)
where zd+υ,$,j,1, zd+υ,$,j,2

$←− Fq, and all the other variables are generated as in Experiment
3-(d+ υ)-$-j-1.

Let Zt =
(
zt,1,1 zt,1,2
zt,2,1 zt,2,2

)
for t = 1, . . . , d and Zd+υ,$ =

(
zd+υ,$,1,1 zd+υ,$,1,2
zd+υ,$,2,1 zd+υ,$,2,2

)
for υ =

1, 2;$ = 1, . . . , r̂max. Then et,j , ed+υ,$,j in the final experiment (Experiment 3-(d+ 2)-r̂max-2-2)
are expressed as

for t = 1, . . . , d; j = 1, 2,
et,j = (σt,j(1, t), ω #»e j , τ

#»e j , 02, τ #»e j ·Zt, 02, #»ϕ t,j , 02)B, (36)
for υ = 1, 2;$ = 1, . . . , r̂max; j = 1, 2,
ed+υ,$,j = (σd+υ,$,j(1, d+ υ), ω #»e j , τ

#»e j , 02, τ #»e j ·Zd+υ,$, 02, #»ϕd+υ,$,j , 02)B, (37)

where Zt,Zd+υ,$
$←− GL(2,Fq). Therefore, the distribution in Experiment 3-(d+ 2)-r̂max-2-2 and

that in the β = 1 case of Problem 1 are equivalent except for the case that det(Zt) = 0 for some
t or det(Zd+υ,$) = 0 for some υ,$, i.e., except with probability (d+ 2r̂max)/q.

Lemmas: In the following we consider canonical (monomial) linear order in N2 and N3. For
(t1, i1), (t2, i2) ∈ N2 and (t1, i1, j1), (t2, i2, j2) ∈ N3,

(t1, i1) < (t2, i2)⇔ (t1 < t2) or (t1 = t2 and i1 < i2),
(t1, i1, j1) < (t2, i2, j2)⇔ (t1 < t2) or (t1 = t2 and i1 < i2) or (t1 = t2 and i1 = i2 and j1 < j2)

Lemma 13. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C1, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(0)

B (λ)→ 1
]
− Pr

[
Exp(1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C1 (λ).
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Lemma 14. For any probabilistic polynomial-time B, there exists a probabilistic machine C2,
whose running time is essentially the same as that of B, such that for any security parameter λ,∣∣∣Pr

[
Exp(2-(p−1)-2-2)

B (λ)→ 1
]
− Pr

[
Exp(2-p-1-1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C2-p-j (λ) (j = 1),

or
∣∣∣Pr

[
Exp(2-p-1-2)

B (λ)→ 1
]
− Pr

[
Exp(2-p-2-1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C2-p-j (λ) (j = 2),

where C2-p-j(·) = C2(p, j, ·).

Lemma 15. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(2-p-j-1)

B (λ)→ 1
]

= Pr
[
Exp(2-p-j-2)

B (λ)→ 1
]
.

Lemmas 13, 14 and 15 can be proven similarly as Lemmas 45, 46 and 47 of [16], respectively.

Lemma 16. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣∣Pr

[
Exp(3-(d+υ−1)-r̂max-2-2)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-1-1-1)

B (λ)→ 1
]∣∣∣∣ ≤ AdvBP1

C3-(d+υ)-1-j
(λ)

for 1 < $ ≤ r̂max,∣∣∣Pr
[
Exp(3-(d+υ)-($−1)-2-2)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-1-1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C3-(d+υ)-$-j
(λ)

 (j = 1)

or for 1 ≤ $ ≤ r̂max,∣∣∣Pr
[
Exp(3-(d+υ)-$-1-2)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-2-1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C3-(d+υ)-$-j
(λ) (j = 2),

where C3-(d+υ)-$-j(·) = C3(d+ υ,$, j, ·).

Proof. Given integers d, υ,$, j and a BP1 instance (param,B0, B̂∗0,B, B̂∗, eβ,0, {eβ,i}i=1,2), C3 sets
new dual orthogonal bases D = {d1, . . . ,d16} = {b3, b4, b1, b2, b9, b10, b7, b8, b5, b6, b11, . . . , b16}
and D∗ = {d∗1, . . . ,d∗16} = {b∗3, b∗4, b∗1, b∗2, b∗9, b∗10, b

∗
7, b
∗
8, b
∗
5, b
∗
6, b
∗
11, . . . , b

∗
16}.

C3 then sets B̂0 = {b0,1, b0,3, b0,5}, B̂∗′0 = {b∗0,1, b∗0,3, b∗0,4}, D̂ = {d1, . . . ,d4,d13,d14}, D̂∗ =
{d∗1, . . . ,d∗4,d∗11,d

∗
12}. Note that C3 can compute {D̂, D̂∗} from {B, B̂∗} of the BP1 instance.

C3 then compute et,i for t = 1, . . . , d; i = 1, 2 and ed+υ′,$′,i for (d+ υ′, $′, i) < (d+ υ,$, j)
as in equations (36), (37) respectively and for (d+ υ,$, j) < (d+ υ′, $′, i) as in equation (31),
using D together with ω̃, σt,i, zt,i,1, zt,i,2, ϕt,i,1, ϕt,i,2, σd+υ′,$′,i, zd+υ′,$′,i,1, zd+υ′,$′,i,2, $d+υ′,$′,i,1,

$d+υ′,$′,i,2
$←− Fq, τ̃

$←− F×q . Using ω̃, τ̃ , C3 computes

g0 = (ω̃, τ̃ , 0, 0, ϕ0)B0 ,

gd+υ,$,j = eβ,1 + (d+ υ)eβ,2 + ω̃d2+j + τ̃d4+j ,

where ϕ0
$←− Fq.

C3 then gives

% = (param, B̂0, B̂∗′0 , D̂, D̂∗, g0, {et,i}t=1,...,d;i=1,2, {ed+υ′,$′,i}(d+υ′,$′,i)≶(d+υ,$,j), gd+υ,$,j)

to B, and outputs β′ ∈ {0, 1} if B outputs β′.
When j = 1, if β = 0 (resp. β = 1), the distribution of % is exactly same as that of instances

in Experiment 3-(d + υ − 1)-r̂max-2-2 or Experiment 3-(d + υ)-($ − 1)-2-2 (resp. Experiment
3-(d+ υ)-1-1-1 or Experiment 3-(d+ υ)-$-1-1). On the other hand, when j = 2, if β = 0 (resp.
β = 1), the distribution of % is exactly same as that of instances in Experiment 3-(d+ υ)-$-1-2
(resp. Experiment 3-(d+ υ)-$-2-1). ut
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Lemma 17. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp3-(d+υ)-$-j-1)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-j-2)

B (λ)→ 1
]
.

Proof. We generate Z $←− GL(2,Fq), U = (Z−1)ᵀ, and set
(
d9
d10

)
= Uᵀ ·

(
b9
b10

)
and

(
d∗9
d∗10

)
=

Z ·
(
b∗9
b∗10

)
.

We then define D = (b1, . . . , b8,d9,d10, b11, . . . , b16}, D∗ = {b∗1, . . . , b∗8,d∗9,d∗10, b
∗
11, . . . , b

∗
16}.

Note that {D,D∗} are consistent with {B̂, B̂∗}. Since,
for t = 1, . . . , d; i = 1, 2,

et,i = (σt,i(1, t), ω #»e i, τ
#»e i, 02, τ #»z t,i, 02, #»ϕ t,i, 02)B

= (σt,i(1, t), ω #»e i, τ
#»e i, 02, τ #»z ′t,i, 02, #»ϕ t,i, 02)D,

for (d+ υ′, $′, i) < (d+ υ,$, j),

ed+υ′,$′,i = (σd+υ′,$′,i(1, d+ υ′), ω #»e i, τ
#»e i, 02, τ #»z d+υ′,$′,i, 02, #»ϕd+υ′,$′,i, 02)B

= (σd+υ′,$′,i(1, d+ υ′), ω #»e i, τ
#»e i, 02, τ #»z ′d+υ′,$′,i, 02, #»ϕd+υ′,$′,i, 02)D,

for (d+ υ′, $′, i) = (d+ υ,$, j),

ed+υ,$,j = (σd+υ,$,j(1, d+ υ), ω #»e j , τ
#»e j , 02, σ̃d+υ,$,j(1, d+ υ), 02, #»ϕd+υ,$,j , 02)B

= (σd+υ,$,j(1, d+ υ), ω #»e j , τ
#»e j , 02, τ #»z d+υ,$,j , 02, #»ϕd+υ,$,j , 02)D,

for (d+ υ,$, j) < (d+ υ′, $′, i),

ed+υ′,$′,i = (σd+υ′,$′,i(1, d+ υ′), ω #»e i, τ
#»e i, 02, 02, 02, #»ϕd+υ′,$′,i, 02)B

= (σd+υ′,$′,i(1, d+ υ′), ω #»e i, τ
#»e i, 02, 02, 02, #»ϕd+υ′,$′,i, 02)D,

where #»z d+υ,$,j = τ−1σ̃d+υ,$,j(1, d + υ) · Z and #»z t,i = (zt,i,1, zt,i,2), #»z ′t,i = #»z t,i · Z for t =
1, . . . , d; i = 1, 2 and #»z d+υ′,$′,i = (zd+υ′,$′,i,1, zd+υ′,$′,i,2), #»z ′d+υ′,$′,i = #»z d+υ′,$′,i · Z for (d +
υ′, $′, i) < (d+ υ,$, j).

Therefore #»z ′t,i for t = 1, . . . , d; i = 1, 2, #»z ′d+υ′,$′,i for (d+υ′, $′, i) < (d+υ,$, j) and #»z d+υ,$,j
are uniformly and independently distributed. Hence, the joint distribution for Experiment 3-(d+
υ)-$-j-1 and that for Experiment 3-(d+ υ)-$-j-2 are equivalent. ut

C Proof of Lemma 2
The proof of Lemma 2 is based on Lemma 12 and the following results:
Definition 11 (Basic Problem 2). Basic Problem 2 is to guess β ∈ {0, 1}, given % =
(param, B̂0,B∗0, B̂,B∗,h∗β,0, e0, {h∗β,i, ei}i=1,2) $←− GBP2

β (1λ), where

GBP2
β (1λ) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
B̂0 = {b0,1, b0,3, . . . , b0,5}, B̂ = {b1, . . . , b6, b9, . . . , b16},
γ, ω, η0

$←− Fq, δ, τ
$←− F×q ,

h∗0,0 = (γ, 0, 0, η0, 0)B∗0 , h
∗
1,0 = (γ, δ, 0, η0, 0)B∗0 , e0 = (ω, τ, 0, 0, 0)B0

#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2
q,

for i =1, 2,
#»η i

$←− F2
q,

h∗0,1 = (02, γ #»e i, 06, #»η i, 02, 02)B∗ ,
h∗1,i = (02, γ #»e i, δ

#»e i, 04, #»η i, 02, 02)B∗ ,
ei = (02, ω #»e i, τ

#»e i, 04, 02, 02, 02)B,
return % = (param, B̂0,B∗0, B̂,B∗,h∗β,0, e0, {h∗β,i, ei}i=1,2).
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For a probabilistic adversary C, the advantage of C for Basic Problem 2, AdvBP2
C (λ), is defined

similarly as in Definition 10.

Lemma 18. For any probabilistic polynomial-time adversary C, there exists a probabilistic ma-
chine F , whose running time is essentially the same as that of C, such that for any security
parameter λ,

AdvBP2
C (λ) ≤ AdvDLIN

F (λ) + 5/q.

Definition 12 (Basic Problem 3-p for p = 1, . . . , d+ 2). Basic Problem 3-p is to guess
β ∈ {0, 1}, given % = (param,B0,B∗0, B̂,B∗, e0, {h∗β,p,i, ei, gi}i=1,2) $←− GBP3-p

β (1λ, d+ 2), where

GBP3-p
β (1λ, d+ 2) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
B̂ = {b1, . . . , b6, b11, . . . , b16}, τ

$←− F×q , e0 = (0, τ, 0, 0, 0)B0 ,
#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2

q ,

for i =1, 2,
#»η p,i

$←− F2
q , µp,i, θp,i

$←− Fq,
h∗0,p,i = ( µp,i(p,−1), 02, 06, #»η p,i, 02, 02)B∗ ,
h∗1,p,i = ( µp,i(p,−1), 02, −θp,i #»e i, θp,i

#»e i, 02, #»η p,i, 02, 02)B∗ ,
ei = ( 04, τ #»e i, τ

#»e i, 02, 02, 02, 02)B,
gi = ( 04, 04, τ #»e i, 02, 02, 02)B,

return % = (param,B0,B∗0, B̂,B∗, e0, {h∗β,p,i, ei, gi}i=1,2).

For a probabilistic adversary C, the advantage of C for Basic Problem 3-p, AdvBP3-p
Cp (λ), is defined

in a similar fashion as in Definition 10, where Cp(·) = C(p, ·).

Lemma 19. For any Probabilistic polynomial-time adversary C, there exists a probabilistic ma-
chine F , whose running time is essentially the same as that of C, such that for any security
parameter λ,

AdvBP3-p
Cp (λ) ≤

2∑
j=1

AdvDLIN
Fp-j (λ) + 10/q,

where Fp-j(·) = F(p, j, ·).

Definition 13 (Basic Problem 4-p for p = 1, . . . , d+ 2). Basic Problem 4-p is to guess
β ∈ {0, 1}, given % = (param,B0,B∗0, B̂,B∗, {h∗β,p,i}i=1,2) $←− GBP4-p

β (1λ, d+ 2), where

GBP4-p
β (1λ, d+ 2) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
B̂ = {b1, . . . , b6, b9, . . . , b16},
#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2

q ,

for i =1, 2,
#»η p,i

$←− F2
q , µp,i, θp,i

$←− Fq,
h∗0,p,i = (µp,i(p,−1), 02, 06, #»η p,i, 02, 02)B∗ ,
h∗1,p,i = (µp,i(p,−1), 02, 02, θp,i

#»e i, 02, #»η p,i, 02, 02)B∗ ,
return % = (param,B0,B∗0, B̂,B∗, {h∗β,p,i}i=1,2).

For any probabilistic adversary C, the advantage of C for Basic Problem 4-p, AdvBP4-p
Cp (λ), is

analogously defined as in Definition 10, where Cp(·) = C(p, ·).

Lemma 20. For any probabilistic polynomial-time adversary C, there exists a probabilistic ma-
chine F , whose running time is essentially the same as that of C, such that for any security
parameter λ,

AdvBP4-p
Cp (λ) ≤

2∑
j=1

AdvDLIN
Fp-j (λ) + 10/q,

where Fp-j(·) = F(p, j, ·).
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Definition 14 (Basic Problem 5-p for p = 1, . . . , d+2). Basic Problem 5-p is to guess β ∈
{0, 1}, given % = (param,B0,B∗0,B, B̂∗,h∗0, {h∗p,i, eβ,l,i}l=1,...,p−1,p+1,...,d+2;i=1,2, {h̃

∗
j}j=5,6,9,10) $←−

GBP5-p
β (1λ, d+ 2), where

GBP5-p
β (1λ, d+ 2) : (param, {B0,B∗0}, {B,B∗})

$←− Gob(1λ, (n0 = 5, n = 16)),
B̂∗ = {b∗1, . . . , b∗6, b∗9, . . . , b∗16},
#»e 1 = (1, 0), #»e 2 = (0, 1) ∈ F2

q ,

δ
$←− F×q , h∗0 = δb∗0,2, h̃

∗
j = δb∗j , for j = 5, 6, 9, 10,

for i =1, 2,
#»η p,i

$←− F2
q , µp,i

$←− Fq,
h∗p,i = (µp,i(p,−1), 02, 02, δ #»e i, 02, #»η p,i, 02, 02)B∗
for l =1, . . . , p− 1, p+ 1, . . . , d+ 2,

#»χ l,i,
#»ϕ l,i

$←− F2
q , σl,i

$←− Fq,
e0,l,i = (σl,i(1, l), 02, 06, 02, #»ϕ l,i, 02)B,
e1,l,i = (σl,i(1, l), 02, 02, #»χ l,i, 02, 02, #»ϕ l,i, 02)B,

return % = (param,B0,B∗0,B, B̂∗,h∗0, {h∗p,i, eβ,l,i}l=1,...,p−1,p+1,...,d+2;i=1,2, {h̃
∗
j}j=5,6,9,10).

For a probabilistic adversary C, the advantage of C for Basic Problem 5-p, AdvBP5-p
Cp (λ), is simi-

larly defined as in Definition 10.

Lemma 21. For any probabilistic polynomial-time adversary C, there exists a probabilistic ma-
chine F , whose running time is essentially the same as that of C, such that for any security
parameter λ,

AdvBP5-p
Cp (λ) ≤

2∑
j=1

d+2∑
l=1
l 6=p

AdvDLIN
Fp-j-l(λ) + 5(d+ 1)/q,

where Fp-j-l(·) = F(p, j, l, ·).

Basic Problems 2–5-p are essentially Basic Problems 2–5-p defined in [16] with two additional
dimensions. The proofs of Lemmas 18–21 are similar to Lemmas 35, 36, 38 and 39 of [16]
respectively.

In order to prove Lemma 2, we consider the following experiments. Problem 2 is the hybrid
of the following experiments performed with a probabilistic adversary B:

Exp(0)
B =⇒ Exp(1)

B =⇒ {Exp(2-p-1)
B =⇒ . . . =⇒ Exp(2-p-8)

B }p=1,...,d

=⇒ {Exp(3-(d+υ)-$-1)
B =⇒ . . . =⇒ Exp(3-(d+υ)-$-7)

B =⇒ {Exp(3-(d+υ)-$-8-ι-j-1)
B

=⇒ Exp(3-(d+υ)-$-8-ι-j-2)
B }ι=1,...,$−1,$+1,...,ℵ;j=1,2 =⇒ Exp(3-(d+υ)-$-9)

B }υ=1,2;$=1,...,ℵ
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Thus, AdvP2
B (λ) =

∣∣∣Pr
[
Exp(0)

B → 1
]
− Pr

[
Exp(3-(d+2)-ℵ-9)

B → 1
]∣∣∣. Therefore, from Lemmas 12, 18–

21 and the following lemmas we obtain

AdvP2
B (λ) =

∣∣∣Pr
[
Exp(0)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+2)-ℵ-9)

B (λ)→ 1
]∣∣∣

≤AdvBP2
C1 (λ) +

d∑
p=1

[
AdvBP3-p

C2-p-1
(λ) + AdvBP3-p

C2-p-2
(λ) + AdvBP5-p

C2-p-3
(λ) + AdvBP5-p

C2-p-4
(λ) + AdvBP4-p

C2-p-5
(λ)
]
+

2∑
υ=1

ℵ∑
$=1

[
AdvBP3-(d+υ)

C3-(d+υ)-$-1
(λ) + AdvBP3-(d+υ)

C3-(d+υ)-$-2
(λ) + AdvBP5-(d+υ)

C3-(d+υ)-$-3
(λ) + AdvBP5-(d+υ)

C3-(d+υ)-$-4
(λ)+

ℵ∑
ι=1
ι6=$

2∑
j=1

AdvBP1
C3-(d+υ)-$-5-ι-j

(λ) + AdvBP4-(d+υ)
C3-(d+υ)-$-6

(λ)
]

≤AdvDLIN
F1 (λ) +

2∑
j=1

[
d∑
p=1

{
AdvDLIN

F2-p-1-j (λ) + AdvDLIN
F2-p-2-j (λ) +

d+2∑
l=1
l 6=p

(
AdvDLIN

F2-p-3-j-l(λ)+

AdvDLIN
F2-p-4-j-l(λ)

)
+ AdvDLIN

F2-p-5-j (λ)
}

+
2∑

υ=1

ℵ∑
$=1

{
AdvDLIN

F2-(d+υ)-$-6-j
(λ) + AdvDLIN

F2-(d+υ)-$-7-j
(λ)+

d+2∑
l=1

l 6=d+υ

(
AdvDLIN

F2-(d+υ)-$-8-j-l
(λ) + AdvDLIN

F2-(d+υ)-$-9-j-l
(λ)
)

+

ℵ∑
ι=1
ι6=$

AdvDLIN
F2-(d+υ)-$-10-j-ι

(λ) + AdvDLIN
F2-(d+υ)-$-11-j

(λ)
}]

+
[
5 + 40d+ 10d2 + 2ℵ(30 + 10d+ 10ℵ)

]
/q,

and thus we get Lemma 2.

Experiments: In Experiment 0, a part framed by a box indicates positions of coefficients
to be changed in subsequent experiments. In the other experiments a part framed by a box indi-
cates coefficients which were changed in a transition from the previous experiment. Experiments
proceed as follows:

Experiment 0 (Exp(0)
B ): β = 0 case of Problem 2. For a probabilistic adversary B, we define

an experiment Exp(0)
B using Problem 2 generator GP2

β (1λ, d,Nmax, r̂max) in Definition 5 as
follows:
1. B is given %

$←− GP2
0 (1λ, d,Nmax, r̂max), i.e.,

h∗0 = (γ, 0 , 0, η0, 0)B∗0 , (38)
e0 = (ω, τ, 0, 0, ϕ0)B0 , (39)
for t = 1, . . . , d; i = 1, 2,

h∗t,i = (µt,i(t,−1), γ #»e i, 06 , #»η t,i, 02, 02)B∗ , (40)

et,i = (σt,i(1, t), ω #»e i, τ
#»e i, 02 , τ #»e iZt, 02, #»ϕ t,i, 02)B, (41)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 06 , #»η d+υ,$,i, 02, 02)B∗ , (42)

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, 02 , τ #»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B. (43)

2. The output of the experiment is defined as β′ $←− B(1λ, %).
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Experiment 1 (Exp(1)
B ): The same as Experiment 0, except that

h∗0 = (γ, δ , 0, η0, 0)B∗0 , (44)
for t = 1, . . . , d; i = 1, 2,

h∗t,i = (µt,i(t,−1), γ #»e i, δ
#»e i , 04, #»η t,i, 02, 02)B∗ , (45)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, δ
#»e i , 04, #»η d+υ,$,i, 02, 02)B∗ , (46)

where δ $←− F×q and all other variables are generated as in Experiment 0.

Experiment 2-p-1 (Exp(2-p-1)
B , for p = 1, . . . , d): We denote Experiment 1 as Experiment 2-0-8.

This experiment is similar to Experiment 2-(p− 1)-8 except that

for t = 1, . . . , d; i = 1, 2,

et,i = (σt,i(1, t), ω #»e i, τ
#»e i, τ

#»e i , τ
#»e iZt, 02, #»ϕ t,i, 02)B, (47)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, τ

#»e i , τ
#»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B, (48)

where all the variables are generated as in Experiment 2-(p− 1)-8.

Experiment 2-p-2 (Exp(2-p-2)
B for p = 1, . . . , d): Equivalent to Experiment 2-p-1 with the only

exception that for i = 1, 2,

h∗p,i = (µp,i(p,−1), γ #»e i, (δ − θp,i) #»e i, θp,i
#»e i , 02, #»η p,i, 02, 02)B∗ , (49)

where θp,i
$←− Fq, and all the other variables are generated as in Experiment 2-p-1.

Experiment 2-p-3 (Exp(2-p-3)
B for p = 1, . . . , d): The same as Experiment as Experiment 2-p-2

with the difference that for i = 1, 2,

h∗p,i = (µp,i(p,−1), γ #»e i, θp,i
#»e i, (δ − θp,i) #»e i , 02, #»η p,i, 02, 02)B∗ , (50)

where all the variables are generated as in Experiment 2-p-2.

Experiment 2-p-4 (Exp(2-p-4)
B for p = 1, . . . , d): Analogous to Experiment 2-p-3 except that

for i = 1, 2,
h∗p,i = (µp,i(p,−1), γ #»e i, 02, δ #»e i , 02, #»η p,i, 02, 02)B∗ , (51)

where all the variables are generated as in Experiment 2-p-3.

Experiment 2-p-5 (Exp(2-p-5)
B for p = 1, . . . , d): The same as Experiment 2-p-4 except that

for l = 1, . . . , p− 1, p+ 1, . . . , d; i = 1, 2,

el,i = (σl,i(1, l), ω #»e i, τ
#»e i,

#»χ l,i , τ
#»e iZl, 02, #»ϕ l,i, 02)B (52)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i,

#»χd+υ,$,i , τ
#»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B, (53)

where #»χ l,i,
#»χd+υ,$,i

$←− F2
q and all the other variables are generated as in Experiment 2-p-4.
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Experiment 2-p-6 (Exp(2-p-6)
B for p = 1, . . . , d): Equivalent to Experiment 2-p-5 except that

for i = 1, 2,

h∗p,i = (µp,i(p,−1), γ #»e i, 02, ξ #»e i, δ
#»e iUp ,

#»η p,i, 02, 02)B∗ , (54)

ep,i = (σp,i(1, p), ω #»e i, τ
#»e i, 02 , τ #»e iZp, 02, #»ϕp,i, 02)B, (55)

where ξ $←− Fq, Zp
$←− GL(2,Fq), Up = (Z−1

p )ᵀ, and all other variables are generated as in
Experiment 2-p-5.

Experiment 2-p-7 (Exp(2-p-7)
B for p = 1, . . . , d): The same as Experiment 2-p-6 with the

exception that

for l = 1, . . . , p− 1, p+ 1, . . . , d; i = 1, 2,

el,i = (σl,i(1, l), ω #»e i, τ
#»e i, 02 , τ #»e iZl, 02, #»ϕ l,i, 02)B, (56)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, 02 , τ #»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B, (57)

where all the variables are generated as in Experiment 2-p-6.

Experiment 2-p-8 (for p = 1, . . . , d): The same as Experiment 2-p-7 except that for i = 1, 2,

h∗p,i = (µp,i(p,−1), γ #»e i, 02, 02 , δ #»e iUp,
#»η p,i, 02, 02)B∗ , (58)

where all the variables are generated as in Experiment 2-p-7.

Experiment 3-(d + υ)-$-1 (Exp(3-(d+υ)-$-1)
B for υ = 1, 2;$ = 1, . . . ,ℵ): We denote Ex-

periment 2-d-8 as Experiment 3-(d + 0)-ℵ-9. This experiment is identical to Experiment
3-(d+ υ − 1)-ℵ-9, if $ = 1, or Experiment 3-(d+ υ)-($ − 1)-9, if 1 < $ ≤ ℵ, except that

for t = 1, . . . , d; i = 1, 2,

et,i = (σt,i(1, t), ω #»e i, τ
#»e i, τ

#»e i , τ
#»e iZt, 02, #»ϕ t,i, 02)B, (59)

for υ = 1, 2;$ = 1, . . . ,ℵ; i = 1, 2,

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, τ

#»e i , τ
#»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B, (60)

where all the variables are generated as in Experiment 3-(d+ υ− 1)-ℵ-9, if $ = 1, or Exper-
iment 3-(d+ υ)-($ − 1)-9, if 1 < $ ≤ ℵ.

Experiment 3-(d+ υ)-$-2 (Exp(3-(d+υ)-$-2)
B for υ = 1, 2;$ = 1, . . . ,ℵ): The same as Exper-

iment 3-(d+ υ)-$-1 except that for i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, (δ − θd+υ,$,i) #»e i, θd+υ,$,i
#»e i , 02, #»η d+υ,$,i, 02, 02)B∗ ,

(61)
where θd+υ,$,i

$←− Fq, and all the other variables are generated as in Experiment 3-(d+υ)-$-1.

Experiment 3-(d+ υ)-$-3 (Exp(3-(d+υ)-$-3)
B for υ = 1, 2;$ = 1, . . . ,ℵ): Equivalent to Ex-

periment 3-(d+ υ)-$-2 with the exception that for i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, θd+υ,$,i
#»e i, (δ − θd+υ,$,i) #»e i , 02, #»η d+υ,$,i, 02, 02)B∗ ,

(62)
where all the variables are generated as in Experiment 3-(d+ υ)-$-2.
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Experiment 3-(d+ υ)-$-4 (Exp(3-(d+υ)-$-4)
B for υ = 1, 2;$ = 1, . . . ,ℵ): The same as Exper-

iment 3-(d+ υ)-$-3 with the only exception that for i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 02, δ #»e i , 02, #»η d+υ,$,i, 02, 02)B∗ , (63)

where all the variables are generated as in Experiment 2-(d+ υ)-$-3.

Experiment 3-(d+ υ)-$-5 (Exp(3-(d+υ)-$-5)
B for υ = 1, 2;$ = 1, . . . ,ℵ): The same as Exper-

iment 3-(d+ υ)-$-4 except that

for l = 1, . . . , d; i = 1, 2,

el,i = (σl,i(1, l), ω #»e i, τ
#»e i,

#»χ l,i , τ
#»e iZl, 02, #»ϕ l,i, 02)B, (64)

for k = 1, . . . , υ − 1, υ + 1, . . . , 2; ι = 1, . . . ,ℵ; i = 1, 2,

ed+k,ι,i = (σd+k,ι,i(1, d+ k), ω #»e i, τ
#»e i,

#»χd+k,ι,i , τ
#»e iZd+k,ι, 02, #»ϕd+k,ι,i, 02)B, (65)

where #»χ l,i,
#»χd+k,ι,i

$←− F2
q and all the other variables are generated as in Experiment 3-(d +

υ)-$-4.

Experiment 3-(d+ υ)-$-6 (Exp(3-(d+υ)-$-6)
B for υ = 1, 2;$ = 1, . . . ,ℵ): The same as Exper-

iment 3-(d+ υ)-$-5 except that

for i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 02, ξ #»e i, δ
#»e iUd+υ,$ , #»η d+υ,$,i, 02, 02)B∗ , (66)

ed+υ,$,i = (σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, 02 , τ #»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B, (67)

for ι = 1, . . . , $ − 1, $ + 1, . . . ,ℵ; i = 1, 2,

ed+υ,ι,i = (σd+υ,ι,i(1, d+ υ), ω #»e i, τ
#»e i,

#»χd+υ,ι,i , τ
#»e iZd+υ,ι, 02, #»ϕd+υ,ι,i, 02)B, (68)

where ξ $←− Fq, Zd+υ,$
$←− GL(2,Fq), Ud+υ,$ = (Z−1

d+υ,$)ᵀ, #»χd+υ,ι,i
$←− F2

q , and all the other
variables are generated as in Experiment 3-(d+ υ)-$-5.

Experiment 3-(d+υ)-$-7 (Exp(3-(d+υ)-$-7)
B for υ = 1, 2;$ = 1, . . . ,ℵ): Analogous to Exper-

iment 3-(d+ υ)-$-6 with the exception that

for l = 1, . . . , d; i = 1, 2,

el,i = (σl,i(1, l), ω #»e i, τ
#»e i, 02 , τ #»e iZl, 02, #»ϕ l,i, 02)B, (69)

for k = 1, . . . , υ − 1, υ + 1, . . . , 2; ι = 1, . . . ,ℵ; i = 1, 2,

ed+k,ι,i = (σd+k,ι,i(1, d+ k), ω #»e i, τ
#»e i, 02 , τ #»e iZd+k,ι, 02, #»ϕd+k,ι,i, 02)B, (70)

where all the variables are generated as in Experiment 3-(d+ υ)-$-6.

Experiment 3-(d+υ)-$-8-ι-j-1 (Exp(3-(d+υ)-$-8-ι-j-1)
B for υ = 1, 2;$ = 1, . . . ,ℵ; ι = 1, . . . , $−

1, $+1, . . . ,ℵ; j = 1, 2): We view Experiment 3-(d+υ)-$-7 as Experiment 3-(d+υ)-$-8-0-2-2.
This experiment is similar to Experiment 3-(d+υ)-$-8-(ι−1)-2-2 (if ι 6= $+1) or Experiment
3-(d+ υ)-$-8-(ι− 2)-2-2 (if ι = $ + 1), provided j = 1, or Experiment 3-(d+ υ)-$-8-ι-1-2,
provided j = 2, except that

ed+υ,ι,j = (σd+υ,ι,j(1, d+υ), ω #»e j , τ
#»e j , σ̃d+υ,ι,j(1, d+ υ) , τ #»e jZd+υ,ι, 02, #»ϕd+υ,ι,j , 02)B, (71)
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where σ̃d+υ,ι,j
$←− Fq and all the other variables are generated as in Experiment 3-(d +

υ)-$-8-(ι − 1)-2-2 or Experiment 3-(d + υ)-$-8-(ι − 2)-2-2, provided j = 1, or Experiment
3-(d+ υ)-$-8-ι-1-2, provided j = 2.

Experiment 3-(d+υ)-$-8-ι-j-2 (Exp(3-(d+υ)-$-8-ι-j-2)
B for υ = 1, 2;$ = 1, . . . ,ℵ; ι = 1, , . . . , $−

1, $ + 1, . . . ,ℵ; j = 1, 2): The same as Experiment 3-(d + υ)-$-8-ι-j-1 with the exception
that

ed+υ,ι,j = (σd+υ,ι,j(1, d+ υ), ω #»e j , τ
#»e j , 02 , τ #»e jZd+υ,ι, 02, #»ϕd+υ,ι,j , 02)B, (72)

where all the variables are generated as in Experiment 3-(d+ υ)-$-8-ι-j-1.

Experiment 3-(d + υ)-$-9 (Exp(3-(d+υ)-$-9)
B for υ = 1, 2;$ = 1, . . . ,ℵ): This experiment

is equivalent to Experiment 3-(d + υ)-$-8-ℵ-2-2, if 1 ≤ $ ≤ ℵ − 1, or Experiment 3-(d +
υ)-$-8-(ℵ − 1)-2-2, if $ = ℵ, except that for i = 1, 2,

h∗d+υ,$,i = (µd+υ,$,i(d+ υ,−1), γ #»e i, 02, 02 , δ #»e iUd+υ,$,
#»η d+υ,$,i, 02, 02)B∗ , (73)

where all the variables are generated as in Experiment 3-(d+υ)-$-8-ℵ-2-2, if 1 ≤ $ ≤ ℵ−1,
or Experiment 3-(d+ υ)-$-8-(ℵ − 1)-2-2, if $ = ℵ.

Experiment 3-(d+ 2)-ℵ-9 is the β = 1 case of Problem 2.

Lemmas: Here also we consider canonical (monomial) linear order in N2 and N3, as defined
in Appendix B.

Lemma 22. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C1, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(0)

B (λ)→ 1
]
− Pr

[
Exp(1)

B (λ)→ 1
]∣∣∣ ≤ AdvBP2

C1 (λ).

Lemma 23. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(2-(p−1)-8)

B (λ)→ 1
]

= Pr
[
Exp(2-p-1)

B (λ)→ 1
]
.

Lemma 24. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C2-1, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(2-p-1)

B (λ)→ 1
]
− Pr

[
Exp(2-p-2)

B (λ)→ 1
]∣∣∣ ≤ AdvBP3-p

C2-p-1
(λ),

where C2-p-1(·) = C2-1(p, ·).

Lemma 25. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(2-p-2)

B (λ)→ 1
]

= Pr
[
Exp(2-p-3)

B (λ)→ 1
]
.

Lemma 26. For any probabilistic polynomial-time adversary B, there exists probabilistic ma-
chine C2-2, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(2-p-3)

B (λ)→ 1
]
− Pr

[
Exp(2-p-4)

B (λ)→ 1
]∣∣∣ ≤ AdvBP3-p

C2-p-2
(λ),

where C2-p-2(·) = C2-2(p, ·).
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Lemma 27. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C2-3, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(2-p-4)

B (λ)→ 1
]
− Pr

[
Exp(2-p-5)

B (λ)→ 1
]∣∣∣ ≤ AdvBP5-p

C2-p-3
(λ),

where C2-p-3(·) = C2-3(p, ·).

Lemma 28. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(2-p-5)

B (λ)→ 1
]

= Pr
[
Exp(2-p-6)

B (λ)→ 1
]
.

Lemma 29. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C2-4, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(2-p-6)

B (λ)→ 1
]
− Pr

[
Exp(2-p-7)

B (λ)→ 1
]∣∣∣ ≤ AdvBP5-p

C2-p-4
(λ),

where C2-p-4(·) = C2-4(p, ·).

Lemma 30. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C2-5, whose running time is essentially the same as that of B, such that for any security
parameter λ, ∣∣∣Pr

[
Exp(2-p-7)

B (λ)→ 1
]
− Pr

[
Exp(2-p-8)

B (λ)→ 1
]∣∣∣ ≤ AdvBP4-p

C2-p-5
(λ),

where C2-p-5(·) = C2-5(p, ·).

The proofs of Lemmas 22–30 are similar to Lemmas 48–56 of [16] respectively with straightfor-
ward extension.

Lemma 31. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(3-(d+υ−1)-ℵ-9)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-1-1)

B (λ)→ 1
]

($ = 1)

or Pr
[
Exp(3-(d+υ)-($−1)-9)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-1)

B (λ)
]

(1 < $ ≤ ℵ).

Lemma 32. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-1, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣Pr

[
Exp(3-(d+υ)-$-1)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-2)

B (λ)→ 1
]∣∣∣ ≤ AdvBP3-(d+υ)

C3-(d+υ)-$-1
(λ),

where C3-(d+υ)-$-1(·) = C3-1(d+ υ,$, ·).

Lemma 33. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(3-(d+υ)-$-2)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-3)

B (λ)→ 1
]
.

Lemma 34. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-2, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣Pr

[
Exp(3-(d+υ)-$-3)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-4)

B (λ)→ 1
]∣∣∣ ≤ AdvBP3-(d+υ)

C3-(d+υ)-$-2
(λ),

where C3-(d+υ)-$-2(·) = C3-2(d+ υ,$, ·).
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Lemmas 31–34 can be proven in an analogous fashion as Lemmas 49–52 of [16] respectively by
extending the simulation.

Lemma 35. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-3, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣Pr

[
Exp(3-(d+υ)-$-4)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-5)

B (λ)→ 1
]∣∣∣ ≤ AdvBP5-(d+υ)

C3-(d+υ)-$-3
(λ),

where C3-(d+υ)-$-3(·) = C3-3(d+ υ,$, ·).

Proof. C3-3 is given integers d+ υ,$ and a BP5-(d+ υ) instance

(param,B0,B∗0,B, B̂∗,h∗0, {h∗d+υ,i, eβ,l,i}l=1,...,d+υ−1,d+υ+1,...,d+2;i=1,2, {h̃
∗
j}j=5,6,9,10).

C3-3 calculates
g0 = (ω, τ, 0, 0, ϕ0)B0 ,

using B0 and ω, ϕ0
$←− Fq, τ

$←− F×q . C3-3 then calculates

p∗0 = h∗0 + (γ, 0, 0, η0, 0)B∗0 ,
for l = 1, . . . , d; i = 1, 2,

p∗l,i =
2∑
j=1
Ul,i,jh̃

∗
8+j + (µl,i(l,−1), γ #»e i, 06, #»η l,i, 02, 02)B∗

for (d+ k, ι′) < (d+ υ,$); i = 1, 2,

p∗d+k,ι′,i =
2∑
j=1
Ud+k,ι′,i,jh̃

∗
8+j + (µd+k,ι′,i(d+ k,−1), γ #»e i, 06, #»η d+k,ι′,i, 02, 02)B∗ ,

for (d+ k, ι′) = (d+ υ,$); i = 1, 2,
p∗d+υ,$,i = h∗d+υ,i + (02, γ #»e i, 012)B∗ ,
for (d+ υ,$) < (d+ k, ι′); i = 1, 2,

p∗d+k,ι′,i =
2∑
j=1
h̃
∗
4+j + (µd+k,ι′,i(d+ k,−1), γ #»e i, 06, #»η d+k,ι′,i, 02, 02)B∗ ,

for l = 1, . . . , d; i = 1, 2,
gl,i = eβ,l,i + (02, ω #»e i, τ

#»e i, τ
#»e i, τ

#»e iZl, 06)B,
for k = 1, . . . , υ − 1, υ + 1, . . . , 2; ι′ = 1, . . . ,ℵ; i = 1, 2,

gd+k,ι′,i = αd+k,ι′,ieβ,d+k,i + (02, ω #»e i, τ
#»e i, τ

#»e i, τ
#»e iZd+k,ι′ , 06)B +

2∑
j=1

ϕd+k,ι′,i,jb12+j ,

for k = υ; ι′ = 1, . . . ,ℵ; i = 1, 2,
gd+υ,ι′,i = (σd+υ,ι′,i(1, d+ υ), ω #»e i, τ

#»e i, τ
#»e i, τ

#»e iZd+υ,ι′ , 02, #»ϕd+υ,ι′,i, 02)B,

using B∗,B and γ, η0, µl,i, µd+k,ι′,i, αd+k,ι′,i, ϕd+k,ι′,i,j , σd+υ,ι′,i
$←− Fq; #»η l,i,

#»η d+k,ι′,i,
#»ϕd+υ,ι′,i

$←−
F2
q ;Zl,Zd+k,ι′ ,Zd+υ,ι′

$←− GL(2,Fq);Ul = (Ul,i,j)i,j = (Z−1
l )ᵀ,Ud+k,ι′ = (Ud+k,ι′,i,j)i,j = (Z−1

d+k,ι′)ᵀ.
C3-3 then sets

B̂0 = {b0,1, b0,3, b0,5}, B̂∗0 = {b∗0,1, . . . , b∗0,4},
B̂′ = {b1, . . . , b4, b13, b14}, B̂∗ = {b∗1, . . . , b∗4, b∗11, b

∗
12}.
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Next C3-3 gives

% = (param, B̂0, B̂∗0, B̂′, B̂∗,p∗0, g0, {p∗l,i, gl,i}l=1,...,d;i=1,2, {p∗d+k,ι′,i, gd+k,ι′,i}k=1,2;ι′=1,...,ℵ;i=1,2)

to B, and outputs β′ ∈ {0, 1} if B outputs β′.
If β = 0 (resp. β = 1) , the distribution of % is exactly same as that of instances in Experiment

3-(d+ υ)-$-4 (resp. Experiment 3-(d+ υ)-$-5). ut

Lemma 36. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(3-(d+υ)-$-5)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-6)

B (λ)→ 1
]
.

Proof. To prove lemma 36 we will show that the distribution (paramV, B̂, B̂∗{h∗t,i, et,i}t=1,...,d;i=1,2,
{hd+k,ι′,i, ed+k,ι′,i}k=1,2;ι′=1,...,ℵ;i=1,2) in Experiment 3-(d+υ)-$-5 and that in Experiment 3-(d+
υ)-$-6 are equivalent. For that purpose, we define new dual orthogonal bases {D,D∗} of V as
follows: We generate ξ̃i

$←− F×q , Zd+υ,$
$←− GL(2,Fq), set Ud+υ,$ = (Z−1

d+υ,$)ᵀ, and define
d∗7
d∗8
d∗9
d∗10

 =


ξ̃I2 −Ud+υ,$

02 I2



b∗7
b∗8
b∗9
b∗10

 ,

d7
d8
d9
d10

 =


ξ̃−1I2 02

ξ̃−1Z−1
d+υ,$ I2



b7
b8
b9
b10

 ,
D = {b1, . . . , b6,d7, . . . ,d10, b11, . . . , b16},
D∗ = {b∗1, . . . , b∗6,d∗7, . . . ,d∗10, b

∗
11, . . . , b

∗
16},

where I2 and 02 respectively denote the 2×2 identity and zero matrices. It can be easily verified
that {D,D∗} are dual orthogonal bases and are distributed the same as the original bases {B,B∗}.
Below we show how ({h∗t,i, et,i}t=1,...,d;i=1,2, {hd+k,ι′,i, ed+k,ι′,i}k=1,2;ι′=1,...,ℵ;i=1,2) in Experiment
3-(d+ υ)-$-5 can be expressed over bases {B,B∗} and {D,D∗} in two different ways.
For t = 1, . . . , d; i = 1, 2,

h∗t,i =(µt,i(t,−1), γ #»e i, 04, δ #»e iUt,
#»η t,i, 02, 02)B∗

=(µt,i(t,−1), γ #»e i, 04, δ #»e iUt,
#»η t,i, 02, 02)D∗ .

For (d+ k, ι′) < (d+ υ,$); i = 1, 2,

h∗d+k,ι′,i =(µd+k,ι′,i(d+ k,−1), γ #»e i, 04, δ #»e iUd+k,ι′ ,
#»η d+k,ι′,i, 02, 02)B∗

=(µd+k,ι′,i(d+ k,−1), γ #»e i, 04, δ #»e iUd+k,ι′ ,
#»η d+k,ι′,i, 02, 02)D∗ .

For (d+ k, ι′) = (d+ υ,$); i = 1, 2,

h∗d+υ,$,i =(µd+υ,$,i(d+ υ,−1), γ #»e i, 02, δ #»e i, 02, #»η d+υ,$,i, 02, 02)B∗
=(µd+υ,$,i(d+ υ,−1), γ #»e i, 02, ξ #»e i, δ

#»e iUd+υ,$,
#»η d+υ,$,i, 02, 02)D∗ ,

where ξ = ξ̃−1δ.
For (d+ υ,$) < (d+ k, ι′); i = 1, 2,

h∗d+k,ι′,i =(µd+k,ι′,i(d+ k,−1), γ #»e i, δ
#»e i, 04, #»η d+k,ι′,i, 02, 02)B∗

=(µd+k,ι′,i(d+ k,−1), γ #»e i, δ
#»e i, 04, #»η d+k,ι′,i, 02, 02)D∗ .

For t = 1, . . . , d; i = 1, 2,

et,i =(σt,i(1, t), ω #»e i, τ
#»e i,

#»χ t,i, τ
#»e iZt, 02, #»ϕ t,i, 02)B

=(σt,i(1, t), ω #»e i, τ
#»e i,

#»χ ′t,i, τ
#»e iZt, 02, #»ϕ t,i, 02)D,
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where #»χ ′t,i = ξ̃( #»χ t,i − τ #»e iZtZ
−1
d+υ,$).

For k = 1, . . . , υ − 1, υ + 1, . . . , 2; ι′ = 1, . . . ,ℵ; i = 1, 2,

ed+k,ι′,i =(σd+k,ι′,i(1, d+ k), ω #»e i, τ
#»e i,

#»χd+k,ι′,i, τ
#»e iZd+k,ι′ , 02, #»ϕd+k,ι′,i, 02)B

=(σd+k,ι′,i(1, d+ k), ω #»e i, τ
#»e i,

#»χ ′d+k,ι′,i, τ
#»e iZd+k,ι′ , 02, #»ϕd+k,ι′,i, 02)D,

where #»χ ′d+k,ι′,i = ξ̃( #»χd+k,ι′,i − τ #»e iZd+k,ι′Z
−1
d+υ,$).

For k = υ; ι′ = 1, . . . , $ − 1, $ + 1, . . . ,ℵ; i = 1, 2,

ed+υ,ι′,i =(σd+υ,ι′,i(1, d+ υ), ω #»e i, τ
#»e i, τ

#»e i, τ
#»e iZd+υ,ι′ , 02, #»ϕd+υ,ι′,i, 02)B

=(σd+υ,ι′,i(1, d+ υ), ω #»e i, τ
#»e i,

#»χd+υ,ι′,i, τ
#»e iZd+υ,ι′ , 02, #»ϕd+υ,ι′,i, 02)D,

where #»χd+υ,ι′,i = ξ̃(τ #»e i − τeiZd+υ,ι′Z
−1
d+υ,$).

For k = υ; ι′ = $; i = 1, 2,

ed+υ,$,i =(σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, τ

#»e i, τ
#»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)B

=(σd+υ,$,i(1, d+ υ), ω #»e i, τ
#»e i, 02, τ #»e iZd+υ,$, 02, #»ϕd+υ,$,i, 02)D.

Note that #»χ ′t,i,
#»χ ′d+k,ι′,i are uniformly, independently distributed since #»χ t,i,

#»χd+k,ι′,i
$←− F2

q

(t = 1, . . . , d; k 6= υ). Also #»χd+υ,ι′,i are uniformly, independently distributed since ξ̃ $←− Fq and
Zd+υ,ι′

$←− GL(2,Fq).
In the light of adversary’s view, both {B,B∗} and {D,D∗} are consistent with (paramV, B̂, B̂∗).

Therefore, ({h∗t,i, et,i}t=1,...,d;i=1,2, {h∗d+k,ι′,i, ed+k,ι′,i}k=1,2;ι′=1,...,ℵ;i=1,2) can be expressed in two
ways, in Experiment 3-(d + υ)-$-5 over bases {B,B∗} and in Experiment 3-(d + υ)-$-6 over
bases {D,D∗}. Thus Experiment 3-(d + υ)-$-5 can be conceptually changed to Experiment
3-(d+ υ)-$-6. ut

Lemma 37. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-4, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣Pr

[
Exp(3-(d+υ)-$-6)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-7)

B (λ)→ 1
]∣∣∣ ≤ AdvBP5-(d+υ)

C3-(d+υ)-$-4
(λ),

where C3-(d+υ)-$-4(·) = C3-4(d+ υ), $, ·).

The proof of Lemma 37 is similar to that of Lemma 35.

Lemma 38. For any probabilistic adversary B, for any security parameter λ,

Pr
[
Exp(3-(d+υ)-$-8-(ι−1)-2-2)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-8-ι-1-1)

B (λ)→ 1
]

(ι 6= $ + 1)

Pr
[
Exp(3-(d+υ)-$-8-(ι−2)-2-2)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-8-ι-1-1)

B (λ)→ 1
]

(ι = $ + 1)

 (j = 1),

or Pr
[
Exp(3-(d+υ)-$-8-ι-1-2)

B (λ)→ 1
]

= Pr
[
Exp(3-(d+υ)-$-8-ι-2-1)

B (λ)→ 1
]

(j = 2).

Proof. Suppose that in experiment previous to Experiment 3-(d+ υ)-$-8-ι-j-1,

ed+υ,ι,j = (σd+υ,ι,j(1, d+ υ), ω #»e j , τ
#»e j ,

#»χd+υ,ι,j , τ
#»e jZd+υ,ι, 02, #»ϕd+υ,ι,j , 02)B,

where #»χd+υ,ι,j = (χd+υ,ι,j,1, χd+υ,ι,j,2) $←− F2
q . We select σ̃d+υ,ι,j

$←− F×q and consider

Z =
(
χd+υ,ι,j,1σ̃

−1
d+υ,ι,j 0

0 χd+υ,ι,j,2σ̃
−1
d+υ,ι,j(d+ υ)−1

)
,U = (Z−1)ᵀ
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and set (
d7
d8

)
= Z

(
b7
b8

)
,

(
d∗7
d∗8

)
= U

(
b∗7
b∗8

)
.

We define

D = {b1, . . . , b6,d7,d8, b9, . . . , b16},D∗ = {b∗1, . . . , b∗6,d∗7,d∗8, b∗9, . . . , b∗16}.

Note that {D,D∗} are consistent with {B̂, B̂∗}.
Since the coefficients of {b∗7, b∗8} in all of {h∗t,i}t=1,...,d;i=1,2, {hd+k,ι′,i}(d+k,ι′)≶(d+υ,$);i=1,2 are

zero, replacing B∗ with D∗ would not affect these elements. For i = 1, 2,

h∗d+υ,$,i =(µd+υ,$,i(d+ υ,−1), γ #»e i, 02, ξd+υ,$,i
#»e i, δ

#»e iUd+υ,$,
#»η d+υ,$,i, 02, 02)B∗

=(µd+υ,$,i(d+ υ,−1), γ #»e i, 02, ξ̃d+υ,$,i
#»e i, δ

#»e iUd+υ,$,
#»η d+υ,$,i, 02, 02)D∗ ,

where ξ̃d+υ,$,1 = ξd+υ,$,1χd+υ,ι,j,1σ̃
−1
d+υ,ι,j , ξ̃d+υ,$,2 = ξd+υ,$,2χd+υ,ι,j,2σ̃

−1
d+υ,ι,j(d + υ)−1 are uni-

formly, independently distributed since ξd+υ,$,1, ξd+υ,$,2
$←− Fq.

Again, since the coefficients of {b7, b8} in {et,i}t=1,...,d;i=1,2, {ed+k,ι′,i}k=1,...,υ−1,υ+1,...,2;ι′=1,...,ℵ;i=1,2,
{ed+υ,ι′,i}(ι′,i)<(ι,j)

ι′ 6=$
, {ed+υ,$,i}i=1,2 are all zero, replacing B with D would also not affect these

elements. For (ι, j) < (ι′, i) such that ι′ 6= $,

ed+υ,ι′,i =(σd+υ,ι′,i(1, d+ υ), ω #»e i, τ
#»e i,

#»χd+υ,ι′,i, τ
#»e iZd+υ,ι′ , 02, #»ϕd+υ,ι′,i, 02)B

=(σd+υ,ι′,i(1, d+ υ), ω #»e i, τ
#»e i,

#»χ ′d+υ,ι′,i, τ
#»e iZd+υ,ι′ , 02, #»ϕd+υ,ι′,i, 02)D,

where #»χ ′d+υ,ι′,i = #»χd+υ,ι′,iU
ᵀ is uniformly, independently distributed since #»χd+υ,ι′,i

$←− F2
q .

Finally,

ed+υ,ι,j =(σd+υ,ι,j(1, d+ υ), ω #»e j , τ
#»e j ,

#»χd+υ,ι,j , τ
#»e jZd+υ,ι, 02, #»ϕd+υ,ι,j , 02)B

=(σd+υ,ι,j(1, d+ υ), ω #»e j , τ
#»e j , σ̃d+υ,ι,j(1, d+ υ), τ #»e jZd+υ,ι, 02, #»ϕd+υ,ι,j , 02)D,

where σ̃d+υ,ι,j
$←− Fq.

Thus the joint distribution for Experiment 3-(d + υ)-$-8-ι-j-1 and that for its previous
experiment are equivalent. ut

Lemma 39. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-5, whose running time is essentially the same as that of B, such that for any security
parameter λ,∣∣∣Pr

[
Exp(3-(d+υ)-$-8-ι-j-1)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-8-ι-j-2)

B (λ)→ 1
]∣∣∣ ≤ AdvBP1

C3-(d+υ)-$-5-ι-j
(λ),

where C3-(d+υ)-$-5-ι-j(·) = C3-5(d+ υ,$, ι, j, ·).

Proof. Given integers d, υ,$, ι, j, and a BP1 instance

(param,B0, B̂∗0,B, B̂∗, eβ,0, {eβ,i}i=1,2),

C3-5 sets new dual orthogonal bases

D0 = {d0,1, . . . ,d0,5} = {b0,1, b0,5, b0,3, b0,4, b0,2},
D∗0 = {d∗0,1, . . . ,d∗0,5} = {b∗0,1, b∗0,5, b∗0,3, b∗0,4, b∗0,2},
D = {d1, . . . ,d16} = {b3, b4, b1, b2, b15, b16, b5, b6, b9, b10, b11, . . . , b14, b7, b8},
D∗ = {d∗1, . . . ,d∗16} = {b∗3, b∗4, b∗1, b∗2, b∗15, b

∗
16, b

∗
5, b
∗
6, b
∗
9, b
∗
10, b

∗
11, . . . , b

∗
14, b

∗
7, b
∗
8}.
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C3-5 then defines

D̂0 = {d0,1,d0,3,d0,5}, D̂∗0 = {d∗0,1, . . . ,d∗0,4},
D̂ = {d1, . . . ,d4,d13,d14}, D̂∗ = {d∗1, . . . ,d∗4,d∗11,d

∗
12}.

Note that C3-5 can calculate {D̂0, D̂∗0}, {D̂, D̂∗} from {B0, B̂∗0}, {B, B̂∗} in the BP1 instance.

C3-5 then calculates

{et,i}t=1,...,d;i=1,2 as in equation (69),
{ed+k,ι′,i}k=1,...,υ−1,υ+1,...,2;ι′=1,...,ℵ;i=1,2 as in equation (70),
{ed+υ,ι′,i}(ι′,i)<(ι,j)

ι′ 6=$
as in equation (72),

{ed+υ,ι′,i}(ι,j)<(ι′,i)
ι′ 6=$

as in equation (68) and

{ed+υ,$,i}i=1,2 as in equation (67)

using D and ω̃
$←− Fq, τ̃

$←− F×q and other necessary random elements from suitable spaces.

C3-5 also computes

h∗0 as in equation (44),
{h∗t,i}t=1,...,d;i=1,2 as in equation (58),
{h∗d+k,ι′,i}(d+k,ι′)<(d+υ,$);i=1,2 as in equation (73),
{h∗d+k,ι′,i}(d+υ,$)<(d+k,ι′);i=1,2 as in equation (46) and
{h∗d+υ,$,i}i=1,2 as in equation (66)

using D∗ and required random elements from suitable spaces.

Using ω̃, τ̃ , C3-5 computes

g0 = (ω̃, τ̃ , 0, 0, ϕ0)D0 ,

gd+υ,ι,j = eβ,1 + (d+ υ)eβ,2 + ω̃d2+j + τ̃d4+j + τ̃
2∑

m=1
Zd+υ,ι,j,md8+m,

where ϕ0
$←− Fq and Zd+υ,ι = (Zd+υ,ι,i,m)i,m=1,2

$←− GL(2,Fq) (has been chosen during the com-
putation of ed+υ,ι,2 or ed+υ,ι,1 according as j = 1 or 2).

C3-5 then gives

% =(param, D̂0, D̂∗0, D̂, D̂∗,h∗0, g0, {ht,i, et,i}t=1,...,d;i=1,2, {h∗d+k,ι′,i}k=1,2;ι′=1,...,ℵ;i=1,2,

{ed+k,ι′,i}(d+k,ι′,i)≶(d+υ,ι,j), gd+υ,ι,j)

to B and outputs β′ ∈ {0, 1} if B outputs β′.
If β = 1 (resp. β = 0), the distribution of % is exactly identical to that of instances in

Experiment 3-(d+ υ)-$-8-ι-j-1 (resp. Experiment 3-(d+ υ)-$-8-ι-j-2). ut
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Lemma 40. For any probabilistic polynomial-time adversary B, there exists a probabilistic ma-
chine C3-6, whose running time is essentially the same as that of B, such that for any security
parameter λ,

for 1 ≤ $ ≤ ℵ − 1,∣∣∣Pr
[
Exp(3-(d+υ)-$-8-ℵ-2-2)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-$-9)

B (λ)→ 1
]∣∣∣ ≤ AdvBP4-(d+υ)

C3-(d+υ)-$-6
(λ),

or, for $ = ℵ,∣∣∣Pr
[
Exp(3-(d+υ)-ℵ-8-(ℵ−1)-2-2)

B (λ)→ 1
]
− Pr

[
Exp(3-(d+υ)-ℵ-9)

B (λ)→ 1
]∣∣∣ ≤ AdvBP4-(d+υ)

C3-(d+υ)-$-6
(λ),

where C3-(d+υ)-$-6(·) = C3-6(d+ υ,$, ·).

Lemma 40 can be proven analogously as Lemma 56 of [16] by extending the simulation.
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