
Identity-Based Encryption Secure Against Selective Opening
Chosen-Ciphertext Attack

Junzuo Lai⋆, Robert H. Deng⋆⋆, Shengli Liu⋆ ⋆ ⋆, Jian Weng†, and Yunlei Zhao‡

Abstract. Security against selective opening attack (SOA) requires that in a multi-user setting, even
if an adversary has access to all ciphertexts from users, and adaptively corrupts some fraction of the
users by exposing not only their messages but also the random coins, the remaining unopened messages
retain their privacy. Recently, Bellare, Waters and Yilek considered SOA-security in the identity-based
setting, and presented the first identity-based encryption (IBE) schemes that are proven secure against
selective opening chosen plaintext attack (SO-CPA). However, how to achieve SO-CCA security for
IBE is still open.
In this paper, we introduce a new primitive called extractable IBE, which is a hybrid of one-bit IBE and
identity-based key encapsulation mechanism (IB-KEM), and define its IND-ID-CCA security notion. We
present a generic construction of SO-CCA secure IBE from an IND-ID-CCA secure extractable IBE
with “One-Sided Public Openability”(1SPO), a collision-resistant hash function and a strengthened
cross-authentication code. Finally, we propose two concrete constructions of extractable 1SPO-IBE
schemes, resulting in the first simulation-based SO-CCA secure IBE schemes without random oracles.

Key words: identity-based encryption, chosen ciphertext security, selective opening security

1 Introduction

Security against Chosen-Plaintext Attack (CPA) and Security against Chosen-Ciphertext Attack
(CCA) are now well-accepted security notions for encryption. However, they may not suffice in
some scenarios. For example, in a secure multi-party computation protocol, the communications
among parties are encrypted, but an adversary may corrupt some parties to obtain not only their
messages, but also the random coins used to encrypt the messages. This is the so-called “selective
opening attack” (SOA). The traditional CPA (CCA) security does not imply SOA-security [1].

IND-SOA Security vs. SIM-SOA Security. There are two ways to formalize the SOA-security
notion [2, 4, 20] for encryption, namely indistinguishability-based one (IND-SOA) and simulation-
based one (SIM-SOA). IND-SOA security requires that no probabilistic polynomial-time (PPT)
adversary can distinguish an unopened ciphertext from an encryption of a fresh message, which is
distributed according to the conditional probability distribution (conditioned on the opened cipher-
texts). Such a security notion requires that the joint plaintext distribution should be “efficiently
conditionally re-samplable”, which restricts SOA security to limited settings. To eliminate this re-
striction, the so-called full-IND-SOA security [5] was suggested. Unfortunately, there have been no
known encryption schemes with full-IND-SOA security up to now. On the other hand, SIM-SOA
security requires that anything that can be computed by a PPT adversary from all the ciphertexts
and the opened messages together with the corresponding randomness can also be computed by

⋆ Department of Computer Science, Jinan University. Email: laijunzuo@gmail.com
⋆⋆ School of Information Systems, Singapore Management University. Email: robertdeng@smu.edu.sg

⋆ ⋆ ⋆ Department of Computer Science and Engineering, Shanghai Jiao Tong University. Email: slliu@sjtu.edu.cn
† Department of Computer Science, Jinan University. Email: cryptjweng@gmail.com
‡ Software School, Fudan University. Email: yunleizhao@gmail.com

a PPT simulator with only the opened messages. SIM-SOA security imposes no limitation on the
message distribution, and it implies IND-SOA security.

The SOA-security (IND-SOA vs. SIM-SOA) is further classified into two notions, security against
selective opening chosen-plaintext attacks (IND-SO-CPA vs. SIM-SO-CPA) and that against selec-
tive opening chosen-ciphertext attacks (IND-SO-CCA vs. SIM-SO-CCA), depending on whether the
adversary has access to a decryption oracle or not.

SOA for PKE. The initial work about SOA security for encryption was done in the traditional
public-key encryption (PKE) field. In [2], Bellare, Hofheinz and Yilek showed that any lossy en-
cryption is able to achieve IND-SO-CPA security, and SIM-SOA security is achievable as well if the
lossy encryption is “efficiently openable”. This result suggests the existence of many IND-SO-CPA
secure PKEs based on number-theoretic assumptions, such as the Decisional Diffie-Hellman (DDH),
Decisional Composite Residuosity (DCR) and Quadratic Residuosity (QR), and lattices-related as-
sumptions [27, 16, 18, 19, 6, 28, 24]. Later, Hemenway et al. [17] showed that both re-randomizable

public-key encryption and statistically-hiding

(
2
1

)
-oblivious transfer imply lossy encryption.

In [17], Hemenway et al. also proposed a paradigm of constructing IND-SO-CCA secure PKE
from selective-tag weakly secure and separable tag-based PKE with the help of chameleon hashing.
Hofheinz [21] showed how to get SO-CCA secure PKE with compact ciphertexts. Fehr et al. [15]
proved that sender-equivocable (NC-CCA) security implies SIM-SO-CCA security, and showed how
to construct PKE schemes with NC-CCA security based on hash proof systems with explainable
domains and L-cross-authentication codes (L-XAC, in short). Recently, Huang et al. [22, 23] showed
that using the method proposed in [15] to construct SIM-SO-CCA secure PKE, L-XAC needs to be
strong.

SOA for IBE. Compared with SOA security for PKE, SOA-secure IBE is lagged behind. The
subtlety of proving security for IBE comes from the fact that a key generation oracle should be
provided to an adversary to answer private key queries with respect to different identities, and
the adversary is free to choose the target identity. It was not until 2011 that the question how
to build SOA-secure IBE was answered by Bellare et al. in [3]. Bellare et al. [3] proposed a gen-
eral paradigm to achieve SIM-SO-CPA security from IND-ID-CPA secure and “One-Sided Publicly
Openable” (1SPO) IBE schemes. They also presented two 1SPO IND-ID-CPA IBE schemes without
random oracles, one based on the Boyen-Waters anonymous IBE [9] and the other based on Water’s
dual-system approach [30], yielding two SIM-SO-CPA secure IBE schemes. The second SIM-SO-CPA
secure IBE scheme proposed in [3] can be extended to construct the first SIM-SO-CPA secure hierar-
chical identity-based encryption (HIBE) scheme without random oracles. One may hope to obtain
SIM-SO-CCA secure IBEs by applying the BCHK transform [7] to SIM-SO-CPA secure HIBEs.
Unfortunately, as mentioned in [3], the BCHK transform [7] does not work in the SOA setting.
Consequently, how to construct SIM-SO-CCA secure IBEs has been left as an open question.

Our contribution. We answer the open question of achieving SIM-SO-CCA secure IBE with a
new primitive called extractable IBE with One-Sided Public Openability (extractable 1SPO-IBE,
in short) and a strengthened cross authentication codes (XAC).

– We define a new primitive named extractable 1SPO-IBE and its IND-ID-CCA security notion.

2

– We define a new property of XAC: semi-uniqueness. If an XAC is strong and semi-unique, we
say it is a strengthened XAC. We also show that the efficient construction of XAC proposed by
Fehr et al. [15] is a strengthened XAC actually.

– We propose a paradigm of building SIM-SO-CCA secure IBE from IND-ID-CCA secure extractable
1SPO-IBE, collision-resistant hash function and strengthened XAC. Our approach follows the
line of [15], which achieves SIM-SO-CCA secure PKE from hash proof systems with explainable
domains and XAC. Our result further highlights the significance of Fehr et al.’s work [15] in
achieving SIM-SO-CCA security.

– We construct extractable 1SPO-IBE schemes without random oracles by adapting anonymous
IBEs, including the anonymous extension of Lewko-Waters IBE scheme [25] by De Caro, Iovino
and Persiano [13] and the Boyen-Waters anonymous IBE [9].

Extractable 1SPO-IBE. Extractable IBE combines one-bit IBE and identity-based key encap-
sulation mechanism (IB-KEM). The message space of extractable IBE is {0, 1}. An encryption
of 1 under identity ID also encapsulates a session key K, behaving like IB-KEM. More precisely,
(C,K) ← Encryptex(PKex, ID, 1;R) and C ← Encryptex(PKex, ID, 0;R

′), where PKex is the public
parameter and R,R′ are the randomness used in encryption. If C is from the encryption of 1 under
ID, the decryption algorithm, (b,K)← Decryptex(PK,SKID, C), is able to use the private key SKID

to recover message b = 1 as well as the encapsulated session key K. As for an encryption of 0, say
C = Encryptex(PKex, ID, 0;R

′), the decryption algorithm can recover message b = 0 but generate a
uniformly random key K as well.

The security of extractable IBE requires that given a challenge ciphertext C∗ and a challenge key
K∗ under some identity ID∗, no PPT adversary can distinguish, except with negligible advantage,
whether C∗ is an encryption of 1 under identity ID∗ and K∗ is the encapsulated key of C∗, or C∗

is an encryption of 0 under identity ID∗ and K∗ is a uniformly random key, even if the adversary
has access to a key generation oracle for private key SKID with ID ̸= ID∗ and a decryption oracle
to decrypt ciphertexts other than C∗ under ID∗. In formula,

Encryptex(PKex, ID, 1;R)
c≈
(
Encryptex(PKex, ID, 0;R

′), K ′) ,
for all PPT adversaries getting access to key generation and decryption oracles, where K ′ is chosen
uniformly at random from the session key space. Obviously, the security notion of extractable IBE
inherits IND-ID-CCA security of one-bit IBE and IND-ID-CCA security of IB-KEM.

An extractable IBE is called one-sided publicly openable (1SPO), if there exists a PPT public al-
gorithm POpen as follows: given C = Encryptex(PKex, ID, 0;R), it outputs random coins R′ which is
uniformly distributed subject to C = Encryptex(PKex, ID, 0;R

′). Note that, if an extractable 1SPO-
IBE scheme is IND-ID-CPA/CCA secure, then given (Ĉ, K̂) = Encryptex(PKex, ID, 1; R̂), algorithm
POpen is able to output random coins R̂′, subject to Ĉ = Encryptex(PKex, ID, 0; R̂

′). Hence, IND-ID-
CPA/CCA secure extractable 1SPO-IBE implies that one can use algorithm POpen to explain/open
any valid ciphertext C (i.e., an encryption of 1 or 0) as an encryption of 0. We emphasize that this
explanation is done without any secret information.

One-sided public openability [3] is an IBE-analogue of a weak form of deniable PKE [11] (which
plays an essential role in the construction of NC-CPA/CCA secure PKE in [15], consequently achiev-
ing SIM-SO-CPA/CCA secure PKE). In [3], Bellare et al. used one-bit 1SPO-IBE to construct SIM-
SO-CPA secure IBE.

SIM-SO-CCA secure IBE from extractable 1SPO-IBE. We follow the line of [15], which
achieves SIM-SO-CCA secure PKE from sender-equivocable or weak deniable encryption and XAC.

3

We give a high-level description on how to construct a SIM-SO-CCA secure IBE scheme from an
extractable 1SPO-IBE scheme characterized by (Encryptex,Decryptex), with the help of a collision-
resistant hash function H and a strengthened ℓ+ 1-cross-authentication code XAC.

First, we roughly recall the notion of cross-authentication code XAC, which was introduced in
[15]. In an ℓ + 1-cross-authentication code XAC, an authentication tag T can be computed from
a list of random keys K1, . . . ,Kℓ+1 (without a designated message) using algorithm XAuth. The
XVer algorithm is used to verify the correctness of the tag T with any single key K. If K is from
the list, XVer will output 1. If K is uniformly randomly chosen, XVer will output 1 with negligible
probability. If an XAC is strong and semi-unique, we say it is a strengthened XAC. Strongness of XAC
means given (Ki)1≤i≤ℓ+1,i̸=j and T , a new key K̂j which is statistically indistinguishable to Ki, can
be efficiently sampled. Semi-uniqueness of XAC requires that K can be parsed to (Ka,Kb) and for
a fixed T and Ka, there is at most one Kb satisfying XVer((Ka,Kb), T) = 1. The security notion of
(strengthened) XAC requires resistance to substitution attacks, i.e., given T = XAuth(K1, . . . ,Kℓ+1)
and (Ki)1≤i≤ℓ+1,i ̸=j , the probability that XVer(Kj , T

′) = 1 is negligible if T ′ ̸= T.

Our cryptosystem has message space {0, 1}ℓ, and encryption of an ℓ-bit messageM = m1∥ · · · ∥mℓ

for an identity ID is performed bitwise, with one ciphertext element per bit. For each bit mi, the
corresponding ciphertext element Ci is an encryption of mi under ID, which is generated by the
encryption algorithm of the extractable 1SPO-IBE scheme. As shown in [26], a scheme which en-
crypts long message bit-by-bit is vulnerable to quoting attacks. Hence, we use a collision-resistant
hash function and a strengthened ℓ+ 1-cross-authentication code XAC to bind C1, . . . , Cℓ together
to resist quoting attacks.

Specifically, let Ka be a public parameter, in our SIM-SO-CCA secure IBE scheme, encryption
of an ℓ-bit message M = m1∥ · · · ∥mℓ ∈ {0, 1}ℓ for an identity ID is given by the ciphertext CT =
(C1, . . . , Cℓ, T), where {

(Ci,Ki)← Encryptex(PKex, ID, 1) if mi = 1
Ci ← Encryptex(PKex, ID, 0), Ki ← K if mi = 0

,

Kb = H(ID, C1, . . . , Cℓ), Kℓ+1 = (Ka,Kb), T = XAuth(K1, . . . ,Kℓ+1).

Here Ci is from the extractable 1SPO-IBE encryption of bit mi, and Ki is the encapsulated key or
randomly chosen key depending on mi = 1 or 0. Finally, XAC tag T glues all the Cis together. Given
a ciphertext CT = (C1, . . . , Cℓ, T) for identity ID, the decryption algorithm first checks whether

XVer(K ′
ℓ+1, T) = 1 or not, where K ′

ℓ+1 = (Ka,H(ID, C1, . . . , Cℓ)). If not, it outputs message

ℓ︷ ︸︸ ︷
0 · · · 0.

Otherwise, it uses Decryptex of the extractable 1SPO-IBE scheme to recover bit m′
i and a session

key K ′
i from each Ci. If m

′
i = 0, set m′′

i = 0, otherwise set m′′
i = XVer(K ′

i, T). Finally, it outputs
M ′′ = m′′

1∥ · · · ∥m′′
ℓ . We assume that the key space XK of the strengthened XAC and the session

key space K of the extractable 1SPO-IBE are identical (i.e., K=XK), and K is efficiently samplable
and explainable domain.

As for the SIM-SO-CCA security of the IBE scheme, the proving line is to show that encryp-
tions of ℓ ones are “equivocable” ciphertexts, which can be opened to arbitrary messages, and the
“equivocable” ciphertexts are computationally indistinguishable from real challenge ciphertexts in
an SOA setting, i.e., even if the adversary is given access to a corruption oracle to get the opened
messages and randomness, a decryption oracle to decrypt ciphertexts and a key generation oracle
to obtain private keys. If so, a PPT SOA-simulator can be constructed to create “equivocable”

4

ciphertexts (i.e., encryptions of ℓ ones) as challenge ciphertexts, then open them accordingly, and
SIM-SO-CCA security follows.

To prove a challenge ciphertext CT = (C1, . . . , Cℓ, T) under ID, which encrypts m1∥ · · · ∥mℓ,
is indistinguishable from encryption of ℓ ones in the SOA setting, we use hybrid argument. For
each mi = 0, we replace (Ci,Ki) (which is used to create CT under ID) with an extractable
1SPO-IBE encryption of 1. If this replacement is distinguishable to an adversary A, then another
PPT algorithm B can simulate SOA-environment for A by setting (Ci,Ki) to be its own challenge
(C∗,K∗) under ID, and use A to break the IND-ID-CCA security of the extractable 1SPO-IBE. The

subtlety lies in how B deals with A’s decryption query C̃T = (C̃1, . . . , C̃l, T̃) under ID with C̃j = C∗

for some j ∈ [ℓ]. Recall that B is not allowed to issue a private key query ⟨ID⟩ or a decryption
query ⟨ID, C∗⟩ to it’s own challenger in the extractable 1SPO-IBE security game. In this case, B
will resort to XAC to set m̃′′

j = XVer(K∗, T̃). Observe that, if (C∗,K∗) = Encryptex(PKex, ID, 1),

then m̃′′
j = XVer(K∗, T̃) = 1, which is exactly the same as the output of Decrypt algorithm. If

C∗ = Encryptex(PKex, ID, 0) and K∗ is random, then m̃′′
j = XVer(K∗, T̃) = 0 except with negligible

probability, due to XAC’s security against substitution attacks. This is also consistent with the
output of the decryption algorithm, except with negligible probability. Hence, with overwhelming
probability, B simulates SOA-environment for A properly. Note that to apply XAC’s security against
substitution attacks, we require:

1. T̃ ̸= T , which is guaranteed by XAC’s semi-unique property and collision resistance of hash
function.

2. K∗ should not be revealed to adversary A. Therefore, in the corruption phase, if B is asked to
open (C∗,K∗), it first resamples a K̂, which is statistically indistinguishable from K∗. This is
guaranteed by the strongness of XAC. Then, C will be opened to 0 with algorithm POpen, and
K̂ (instead of K∗) is opened with a suitable randomness.

Construction of Extractable 1SPO-IBE. In [3], Bellare et al. proposed two one-bit 1SPO-
IBEs, one based on the anonymous extension of Lewko-Waters IBE scheme [25] by De Caro, Iovino
and Persiano [13] and the other based on the Boyen-Waters anonymous IBE [9]. Both schemes rely
on a pairing e : G×G→ GT . The 1SPO property of the two one-bit IBE schemes is guaranteed by
the fact that G is an efficiently samplable and explainable domain, which is characterized by two
PPT algorithms Sample and Sample−1 for group G. More precisely, Sample chooses an element g
from G uniformly at random, and Sample−1(G, g) will output a uniformly distributed R subject to
g = Sample(G;R). Details of algorithms Sample and Sample−1 are given in [3].

A ciphertext of one-bit 1SPO-IBEs in [3] consists of several group elements in G. Those elements
are structured if the ciphertext is an encryption of 1 under some identity ID, and this structure can
be detected by the private key SKID but not without it1. An encryption of 0 is comprised of random
elements in G, which are generated by algorithm Sample. Given a ciphertext for ID, the decryption
algorithm uses the private key SKID to check whether the ciphertext has a certain structure. If yes,
it outputs message 1; otherwise, it outputs message 0. As for the 1SPO property, the algorithm
POpen obtains randomness by applying Sample−1 to each group element from an encryption of 0.

Unfortunately, the one-bit 1SPO-IBE schemes in [3] are not extractable IBEs. No session keys
can be extracted from encryptions of 1, and the schemes are vulnerable to chosen-ciphertext attacks.
Therefore, we have to resort to new techniques for extractable 1SPO-IBE.

1 In fact, in the schemes proposed by Bellare et al. [3], encryptions of a 1 are random group elements in G, and
encryptions of a 0 have a certain structure. For ease of description, we exchange them.

5

We start from anonymous IBE schemes in [13, 9]. Recall that an encryption of a message M for
an identity ID in anonymous IBEs [13, 9] takes the form of

(c0 = f0(PK, s, s0), c1 = f1(PK, ID, s, s1), c2 = e(g, g)αs ·M), (1)

where PK denotes the system’s public parameter, α is the master secret key, s, s0, s1 are the random-
ness used in the encryption algorithm, f0, f1 are two efficient functions and each of c0, c1 denotes
one or several elements in G. The private key SKID is structured such that pairings with group
elements of (c1, c2) result in e(g, g)αs, hence the message M can be recovered from c2.

The idea of constructing extractable 1SPO-IBE is summerized as follows. Firstly, we generate
ciphertexts of the form

(c′0 = f ′
0(PK, s, s0), c′1 = f ′

1(PK, ID, ID
′, s, s1)), (2)

where ID′ = H(ID, c′0) and H is a collision-resistant hash function. The ciphertext is similar to
Eq.(1), except that it is a 2-hierarchical extension with respect to (ID, ID′). The structure of (c′0, c

′
1)

is characterized by the shared randomness s and this structure can be publicly verified. The master
secret key is now (α, β). Correspondingly the private key SKID = (SKID,1,SKID,2), and SKID,i(i =
1, 2) are generated by the master secret key α and β respectively, in a similar way as that in the
anonymous IBEs [13, 9]. Consequently, SKID,1 and SKID,2 help generate e(g, g)αs and e(g, g)βs from
(c′0, c

′
1).

Next, we use e(g, g)αs to blind (c′0, c
′
1) and obtain

(c′′0 = f ′′
1 (PK, s, s0), c′′1 = f ′′

1 (PK, ID, ID
′, s, s1, e(g, g)

αs)), (3)

which satisfies the following properties:

1. Without the private key SKID = (SKID,1, SKID,2) for ID, the relationship between c′′0 and c′′1
(that they share the same s) is hidden from any PPT adversary.

2. With SKID,1 and SKID,2, it is still possible to generate e(g, g)αs and e(g, g)βs from the blinded
ciphertext (c′′0, c

′′
1).

3. Given the blinded factor e(g, g)αs, (c′′0, c
′′
1) can be efficiently changed back to (c′0, c

′
1).

Finally, we obtain the extractable 1SPO-IBE with the following features:

Encryptex(PKex, ID, b) ={
((c′′0, c

′′
1),K) =

(
(f ′′

1 (PK, s, s0), f
′′
1 (PK, ID, ID

′, s, s1, e(g, g)
αs)), e(g, g)βs)

)
b = 1

(c′′0, c
′′
1)← Sample(G) b = 0

.

– Given a ciphertext C = (c′′0, c
′′
1) for ID, the decryption algorithm first uses SKID,1 to compute a

blinding factor from (c′′0, c
′′
1). Then, it uses the blinding factor to retrieve (c′0, c

′
1) from (c′′0, c

′′
1).

Next, it checks whether (c′0, c
′
1) have a specific structure. If yes, it outputs message 1 and

computes the encapsulated session key from (c′′0, c
′′
1) using SKID,2; otherwise, it outputs message

0 and a uniformly random session key.
– Algorithm POpen for 1SPO can be implemented with Sample−1.

We emphasize that the 2-hierarchical IBE structure (when encrypting 1) helps to answer de-
cryption queries in the IND-ID-CCA security proof of the above extractable 1SPO-IBE. In the
private key SKID = (SKID,1,SKID,2), SKID,2 is used to generate the encapsulated key e(g, g)βs when

6

encrypting 1, and SKID,1 is used to generate a blind factor e(g, g)αs, which helps to convert the
publicly verifiable structure of (c′0, c

′
1) to a privately verifiable structure, resulting in IND-ID-CCA

secure extractable 1SPO-IBE.

Related Work. Non-committing encryption (NCE) [12] was introduced by Canetti, Feige, Gol-
dreich and Naor [12] to achieve adaptively secure multi-party computation. In NCE schemes there
is a simulator, which can generate non-committing ciphertexts, and later open them to any desired
message. In [11], Canetti, Dwork, Naor and Ostrovsky extended the notion of NCE to a new prim-
itive which they called deniable encryption. In deniable encryption schemes, a sender may open
a ciphertext to an arbitrary message by providing coins produced by a faking algorithm. A weak
form of deniable encryption is that encryptions of 1 can be opened as encryptions of 0 even if not
vice versa, and 1SPO-IBE is an IBE analogue of this notion. We refer the reader to [3] for more
discussions on NCE and deniable encryption.

Organization. The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. We introduce the notion and security model of extractable 1SPO-IBE in Section 3.
The notion of strengthened XAC and its efficient construction are given in Section 4. We propose
a paradigm of building SIM-SO-CCA secure IBE from IND-ID-CCA secure extractable 1SPO-IBE,
collision-resistant hash function and strengthened XAC in Section 5. We present two IND-ID-CCA
secure extractable 1SPO-IBE schemes in Section 6. The notion of composite order bilinear groups
and complexity assumptions we use are given in Appendix A. In Appendix B and C, we give the
formal notion of IBE and the simulation-based definition of IBE secure against a selective opening
chosen-ciphertext adversary respectively.

2 Preliminaries

If S is a set, then s1, . . . , st ← S denotes the operation of picking elements s1, . . . , st uniformly at
random from S. If n ∈ N then [n] denotes the set {1, . . . , n}. For i ∈ {0, 1}∗, |i| denotes the bit-
length of i. If x1, x2, . . . are strings, then x1∥x2∥ · · · denotes their concatenation. For a probabilistic
algorithm A, we denote y ← A(x;R) the process of running A on input x and with randomness
R, and assigning y the result. Let RA denote the randomness space of A, and we write y ← A(x)
for y ← A(x;R) with R chosen from RA uniformly at random. A function f(κ) is negligible, if for
every c > 0 there exists a κc such that f(κ) < 1/κc for all κ > κc.

2.1 Key Derivation Functions

A family of key derivation functions [14] KDF = {KDFi : Xi → Ki}, indexed by i ∈ {0, 1}∗, is secure
if, for all PPT algorithms A and for sufficiently large i, the distinguishing advantage AdvAKDF (i) is
negligible (in |i|), where

AdvAKDF (i) = |Pr[A(KDFi,KDFi(x)) = 1 |KDFi ← KDF , x← Xi]−
Pr[A(KDFi,K) = 1 |KDFi ← KDF ,K ← Ki]| .

The above definition is for presentation simplicity. In general, the index i should be generated
by a PPT sampler algorithm on the security parameter κ. For notational convenience, we ignore
the index i of a key derivation function.

7

2.2 Efficiently samplable and explainable domain

A domain D is efficiently samplable and explainable [15] iff there exist two PPT algorithms:

– Sample(D;R) : On input random coins R ← RSample and a domain D, it outputs an element
uniformly distributed over D.

– Sample−1(D, x) : On input D and any x ∈ D, this algorithm outputs R that is uniformly
distributed over the set {R ∈ RSample |Sample(D;R) = x}.

3 Extractable IBE with One-Sided Public Openability (Extractable
1SPO-IBE)

Formally, an extractable identity-based encryption (extractable IBE) scheme consists of the follow-
ing four algorithms:

Setupex(1
κ) takes as input a security parameter κ. It generates a public parameter PK and a

master secret key MSK. The public parameter PK defines an identity space ID, a ciphertext
space C and a session key space K.

KeyGenex(PK,MSK, ID) takes as input the public parameter PK, the master secret key MSK and
an identity ID ∈ ID. It produces a private key SKID for the identity ID.

Encryptex(PK, ID,m) takes as input the public parameter PK, an identity ID ∈ ID and a message
m ∈ {0, 1}. It outputs a ciphertext C if m = 0, and outputs a ciphertext and a session key
(C,K) if m = 1. Here K ∈ K.

Decryptex(PK,SKID, C) takes as input the public parameter PK, a private key SKID and a ciphertext
C ∈ C. It outputs a message m′ ∈ {0, 1} and a session key K ′ ∈ K.

Correctness. An extractable IBE scheme has completeness error ϵ, if for all κ, ID ∈ ID, m ∈ {0, 1},
(PK,MSK)← Setupex(1

κ), C/(C,K)← Encryptex(PK, ID,m), SKID ← KeyGenex(PK,MSK, ID) and
(m′,K ′)← Decryptex(PK, SKID, C):

– The probability that m′ = m is at least 1− ϵ, where the probability is taken over the coins used
in encryption.

– If m = 1 then m′ = m and K ′ = K. If m′ = 0, K ′ is uniformly distributed in K.

Security. The IND-ID-CCA security of extractable IBE is twisted from IND-ID-CCA security of one-
bit IBE and IND-ID-CCA security of identity-based key encapsulation mechanism (IB-KEM). The
security notion is defined using the following game between a PPT adversary A and a challenger.

Setup The challenger runs Setupex(1
κ) to obtain a public parameter PK and a master secret key

MSK. It gives the public parameter PK to the adversary.

Query phase 1 The adversary A adaptively issues the following queries:

– Key generation query ⟨ID⟩: the challenger runs KeyGenex on ID to generate the corresponding
private key SKID, which is returned to A.

– Decryption query ⟨ID, C⟩: the challenger runs KeyGenex on ID to get the private key, then
use the key to decrypt C with Decryptex algorithm. The result is sent back to A.

8

Challenge The adversary A submits a challenge identity ID∗. The only restriction is that, A did
not issue a private key query for ID∗ in Query phase 1. The challenger first selects a random
bit δ ∈ {0, 1}. If δ = 1, the challenger computes (C∗,K∗) ← Encryptex(PK, ID

∗, 1). Otherwise
(i.e., δ = 0), the challenger computes C∗ ← Encryptex(PK, ID

∗, 0) and chooses K∗ ← K. Then,
the challenge ciphertext and session key (C∗,K∗) are sent to the adversary by the challenger.

Query phase 2 This is identical to Query phase 1, except that the adversary does not request a
private key for ID∗ or the decryption of ⟨ID∗, C∗⟩.

Guess The adversary A outputs its guess δ′ ∈ {0, 1} for δ and wins the game if δ = δ′.

The advantage of the adversary in this game is defined as Advccaex-IBE,A(κ) = |Pr[δ′ = 1|δ = 1]−Pr[δ′ =
1|δ = 0]|, where the probability is taken over the random bits used by the challenger and the
adversary.

Definition 1 An extractable IBE scheme is IND-ID-CCA secure, if the advantage in the above
security game is negligible for all PPT adversaries.

We say that an extractable IBE scheme is IND-sID-CCA secure if we add an Init stage before setup
in the above security game where the adversary commits to the challenge identity ID∗.

Definition 2 (Extractable 1SPO-IBE) An extractable IBE scheme is One-Sided Publicly Open-
able if it is associated with a PPT public algorithm POpen such that for all PK generated by
(PK,MSK) ← Setupex(1

κ), for all ID ∈ ID and any C ← Encryptex(PK, ID, 0), it holds that:
the output of POpen(PK, ID, C) distributes uniformly at random over Coins(PK, ID, C, 0), where
Coins(PK, ID, C, 0) denotes the set of random coins {R̃ | C = Encryptex(PK, ID, 0; R̃)}.

4 Strengthened Cross-authentication Codes

In this section, we first review the notion and security requirements of cross-authentication codes
introduced in [15]. Then we define a new property of cross-authentication codes: semi-unique. If a
cross-authentication code is strong and semi-unique, we say it is a strengthened cross-authentication
code, which will play an important role in our construction of SIM-SO-CCA secure IBE. Finally, we
will show that the efficient construction of cross-authentication code proposed by Fehr et al. [15] is
actually a strengthened cross-authentication code.

Definition 3 (L-Cross-authentication code.) For L ∈ N, an L-cross-authentication code XAC
is associated with a key space XK and a tag space XT , and consists of three PPT algorithms XGen,
XAuth and XVer. XGen(1κ) produces a uniformly random key K ∈ XK, deterministic algorithm
XAuth(K1, . . . ,KL) outputs a tag T ∈ XT , and deterministic algorithm XVer(K,T) outputs a
decision bit2. The following is required:

Correctness. For all i ∈ [L], the probability failXAC(κ) := Pr[XVer(Ki,XAuth(K1, . . . ,KL)) ̸= 1],
is negligible, where K1, . . . ,KL ← XGen(1κ) in the probability.

Security against impersonation and substitution attacks. Advimp
XAC(κ) and AdvsubXAC(κ) as

defined below are both negligible: Advimp
XAC(κ) := max

T ′
Pr[XVer(K,T ′) = 1|K ← XGen(1κ)], where the

2 In Fehr et al.’s original definition [15], algorithm XVer includes an additional input parameter: index i. Let
K1, . . . ,KL ← XGen(1κ) and T ← XAuth(K1, . . . ,KL). Since XVer(Ki, i, T) = XVer(Ki, j, T) in their efficient
construction, we only take a key and a tag as input of algorithm XVer for notational convenience.

9

max is over all T ′ ∈ XT , and

AdvsubXAC(κ) := max
i,K̸=i,F

Pr

 T ′ ̸= T∧
XVer(Ki, T

′) = 1

∣∣∣∣∣∣∣
Ki ← XGen(1κ),

T = XAuth(K1, . . . ,KL),

T ′ ← F (T)

where the max is over all i ∈ [L], all K ̸=i = (Kj)j ̸=i ∈ XKL−1 and all (possibly randomized)
functions F : XT → XT .

Definition 4 (Strengthened XAC.) An L-cross-authentication code XAC is a strengthened XAC,
if it enjoys the following additional properties.

Strongness [22]: There exists another PPT public algorithm ReSamp, which takes as input i,
(Kj)j ̸=i and T , with K1, . . . ,KL ← XGen(1κ) and T ← XAuth(K1, . . . ,KL), outputs K̂i (i.e.,

K̂i ← ReSamp(K̸=i, T)), such that K̂i is statistically indistinguishable with Ki, i.e., the statisti-

cal distance Dist(κ) := 1
2 ·
∑

K∈XK

∣∣∣Pr[K̂i = K |(K ̸=i, T)]− Pr[Ki = K |(K ̸=i, T)]
∣∣∣ is negligible.

Semi-Uniqueness: The key space XK = Ka × Kb. Given an authentication tag T and Ka ∈ Ka,
there exists at most one Kb ∈ Kb such that XVer((Ka,Kb), T) = 1.

Next, we review the efficient construction of L-cross-authentication code secure against imper-
sonation and substitution attacks proposed by Fehr et al. [15], and show that it is strong and
semi-unique as well, i.e. it is a strengthened XAC.

– XK = Ka ×Kb = F2
q and XT = FL

q ∪ {⊥}.
– XGen outputs (a, b), which is chosen from F2

q uniformly at random.

– T ← XAuth((a1, b1), . . . , (aL, bL)). LetA ∈ FL×L
q be a matrix with its i-th row (1, ai, a

2
i , . . . , a

L−1
i)

for i ∈ [L]. Let b1, . . . , bL ∈ FL
q constitute the column vector B. If AT = B has no solution

or more than one solution, set T =⊥. Otherwise A is a Vandermonde matrix, and the tag
T = (T0, . . . , TL−1) can be computed efficiently by solving the linear equation system AT = B.

– Define polyT (x) = T0 + T1x + · · · + TL−1x
L−1 ∈ Fq[x] with T = (T0, . . . , TL−1). XVer((a, b), T)

outputs 1 if and only if T ̸=⊥ and polyT (a) = b.
– (a, b)← ReSamp((aj , bj)j ̸=i, T). Choose a← Fq such that a ̸= aj (1 ≤ j ≤ ℓ, j ̸= i) and compute

b = polyT (a). Conditioned on T = XAuth((a1, b1), . . . , (aL, bL)) (T ̸=⊥) and (aj , bj)j ̸=i, both of
(a, b) and (ai, bi) are uniformly distributed over the same support.

– Fixing a ∈ Fq results in a unique b = polyT (a) such that XVer((a, b), T) = 1, if T ̸=⊥.

5 Proposed SIM-SO-CCA Secure IBE Scheme

Let (Setupex,KeyGenex,Encryptex,Decryptex) be an extractable 1SPO-IBE scheme with identity
space ID, ciphertext space C and session key space K = Ka × Kb, and (XGen,XAuth,XVer) be a
strengthened ℓ + 1-cross-authentication code XAC with key space XK = K = Ka × Kb and tag
space XT . We require that key space K is also an efficiently samplable and explainable domain3

associated with algorithms Sample′ and Sample′−1. Our cryptosystem has message space {0, 1}ℓ.
Our scheme consists of the following algorithms:

3 As mentioned in [15], the efficiently samplable and explainable key space K can be assumed without loss of
generality, because K can always be efficiently mapped into K′ = {0, 1}l by means of a suitable (almost) balanced
function, such that uniform distribution in K induces (almost) uniform distribution in K′, and where l is linear in
log(|K|).

10

Setup(1κ) : The setup algorithm first chooses Ka ← Ka and a collision-resistant hash function

H : ID ×
ℓ︷ ︸︸ ︷

C × · · · × C → Kb, and calls Setupex to obtain (PKex,MSKex) ← Setupex(1
κ). It sets

the public parameter PK = (PKex,H,Ka) and the master secret key MSK = MSKex.

KeyGen(PK,MSK, ID ∈ ID) : The key generation algorithm takes as input the public parameter
PK = (PKex,H,Ka), the master secret key MSK = MSKex and an identity ID. It calls KeyGenex
to get

SKID ← KeyGenex(PKex,MSKex, ID),

and outputs the private key SKID.
Encrypt(PK, ID ∈ ID,M) : The encryption algorithm takes as input the public parameter PK =

(PKex,H,Ka), an identity ID and a message M = m1∥ · · · ∥mℓ ∈ {0, 1}ℓ. For i ∈ [ℓ], it computes{
(Ci,Ki)← Encryptex(PKex, ID, 1) if mi = 1
Ci ← Encryptex(PKex, ID, 0), Ki ← Sample′(K;RK

i) if mi = 0
,

where RK
i ← RSample′ . Then, it sets Kℓ+1 = (Ka,Kb) where Kb = H(ID, C1, . . . , Cℓ), and com-

putes the tag T = XAuth(K1, . . . ,Kℓ+1). Finally, it outputs the ciphertext CT = (C1, . . . , Cℓ, T).

Decrypt(PK,SKID, CT) : The decryption algorithm takes as input the public parameter PK =
(PKex,H,Ka), a private key SKID for identity ID and a ciphertext CT = (C1, . . . , Cℓ, T). This
algorithm first computes K ′

b = H(ID, C1, . . . , Cℓ) and checks whether XVer(K ′
ℓ+1, T) = 1 with

K ′
ℓ+1 = (Ka,K

′
b). If not, it outputs M

′′ =

ℓ︷ ︸︸ ︷
0 · · · 0. Otherwise, for i ∈ [ℓ], it computes (m′

i,K
′
i)←

Decryptex(PKex,SKID, Ci) and sets

m′′
i =

{
XVer(K ′

i, T) if m′
i = 1

0 if m′
i = 0

.

Then, it outputs the message M ′′ = m′′
1∥ · · · ∥m′′

ℓ .

Correctness. If mi = 1, then (m′
i,K

′
i) = (mi,Ki) by correctness of extractable 1SPO-IBE scheme,

so XVer(K ′
i, T) = 1 (hence m′′

i = 1) except with probability failXAC by correctness of XAC. On the
other hand, if mi = 0, the ϵ-completeness of the extractable 1SPO-IBE guarantees m′

i = 0 (hence
m′′

i = 0) with probability at least 1− ϵ. Consequently, for any CT ← Encrypt(PK, ID,M), we have
Decrypt(PK,SKID, CT) = M except with probability at most ℓ ·max{failXAC, ϵ}.

Theorem 1 If the extractable 1SPO-IBE scheme is IND-ID-CCA secure, the hash function H is
collision-resistant and the strengthened ℓ + 1-cross-authentication code XAC is secure against sub-
stitution attacks, then our proposed IBE scheme is SIM-SO-CCA secure.

Proof. See Appendix D.

6 Proposed IND-ID-CCA Secure Extractable 1SPO-IBE Scheme

In this section, we propose a concrete construction of extractable 1SPO-IBE from the anonymous
IBE [13] in a composite order bilinear group. (In Appendix F, we show how to construct an ex-
tractable 1SPO-IBE from Boyen-Waters anonymous HIBE [9], which is based on a prime order
bilinear group.) The design principle has already been described in the Introduction.

The proposed scheme consists of the following algorithms:

11

Setupex(1
κ): Run an N -order group generator G(κ) to obtain a group description (p1, p2, p3, p4,G,

GT , e), where G = Gp1 × Gp2 × Gp3 × Gp4 , e : G × G → GT is a non-degenerate bilinear map,
G and GT are cyclic groups of order N = p1p2p3p4. Next choose g, u, v, h ← Gp1 , g3 ← Gp3 ,
g4,W4 ← Gp4 and α, β ← ZN . Then choose a collision-resistant hash function H : ZN×G→ ZN ,
and a key derivation function KDF : GT → ZN . The public parameter is

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β , H,KDF).

The master secret key is MSK = (g, g3, α, β). We require the group G be an efficiently samplable
and explainable domain associated with algorithms Sample and Sample−1. Details on how to
instantiate such groups are given in [3].

KeyGenex(PK,MSK, ID ∈ ZN): Choose r, r̄ ← ZN and R3, R
′
3, R

′′
3 , R̄3, R̄

′
3, R̄

′′
3 ← Gp3 (this is done

by raising g3 to a random power). Output the private key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2),
where

D0 = gα(uIDh)rR3, D1 = vrR′
3, D2 = grR′′

3 , D̄0 = gβ(uIDh)r̄R̄3, D̄1 = vr̄R̄′
3, D̄2 = gr̄R̄′′

3 .

Encryptex(PK, ID ∈ ZN ,m ∈ {0, 1}): If m = 1, choose s, t4 ← ZN and compute

c0 = W s
14g

t4
4 , c1 = (uIDvID

′
h)sg

KDF(e(g,g)αs)
4 , K = e(g, g)βs,

where ID′ = H(ID, c0), then output the ciphertext and the session key (C,K) = ((c0, c1),K);
otherwise (i.e., m = 0), choose c0, c1 ← Sample(G), and output the ciphertext C = (c0, c1).

Decryptex(PK,SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2), C = (c0, c1)): Compute ID′ = H(ID, c0) and

X = e(D0D
ID′

1 , c0)/e(D2, c1). (4)

(One can view (D0D
ID′
1 , D2) as a private key associated to the 2-level identity ĨD = (ID, ID′).)

Then, check whether

e(c1/g
KDF(X)
4 ,W14) = e(c0, uIDvID

′
h). (5)

If not, set m = 0 and choose a session key K ← GT . Otherwise, set m = 1 and compute

K = e(D̄0D̄
ID′

1 , c0)/e(D̄2, c1). (6)

Output (m,K).

Correctness. Note that, if C = (c0, c1) is an encryption of 1 under identity ID, then

X = e(D0D
ID′
1 , c0)/e(D2, c1) = e(gα(uIDvID

′
h)r, gs)/e(gr, (uIDvID

′
h)s) = e(g, g)αs,

e(c1/g
KDF(X)
4 ,W14) = e((uIDvID

′
h)s,W14) = e(uIDvID

′
h,W s

14) = e(c0, uIDvID
′
h),

K = e(D̄0D̄
ID′
1 , c0)/e(D̄2, c1) = e(gβ(uIDvID

′
h)r̄, gs)/e(gr̄, (uIDvID

′
h)s) = e(g, g)βs,

so decryption always succeeds. On the other hand, if C = (c0, c1) is an encryption of 0 under identity

ID, then c0, c1 ∈ G are chosen uniformly at random, thus Pr[e(c1/g
KDF(X)
4 ,W14) = e(c0, u

IDvID
′
h)] ≤

1
22κ

where κ is the security parameter. So the completeness error is 1
22κ

.

12

One-Sided Public Openability (1SPO). If C = (c0, c1) is an encryption of 0 under identity ID,
then c0 and c1 are both randomly distributed in G. Since the group G is an efficiently samplable
and explainable domain associated with Sample and Sample−1, POpen(PK, ID, C = (c0, c1)) can
employ Sample−1 to open (c0, c1). More precisely, (R0, R1)← POpen(PK, ID, (c0, c1)), where R0 ←
Sample−1(G, c0) and R1 ← Sample−1(G, c1).

Security. We now state the security theorem of our proposed extractable IBE scheme.

Theorem 2 If Assumptions 1, 2, 3, 4, 5 and 6 hold, H is a collision-resistant hash function and
KDF is a secure key derivation function, then the above extractable 1SPO-IBE scheme is IND-ID-
CCA secure.

Proof. See Appendix E.

References

1. M. Bellare, R. Dowsley, B. Waters, and S. Yilek. Standard security does not imply security against selective-
opening. In EUROCRYPT, pages 645–662, 2012.

2. M. Bellare, D. Hofheinz, and S. Yilek. Possibility and impossibility results for encryption and commitment secure
under selective opening. In EUROCRYPT, pages 1–35, 2009.

3. M. Bellare, B. Waters, and S. Yilek. Identity-based encryption secure against selective opening attack. In TCC,
pages 235–252, 2011.

4. M. Bellare and S. Yilek. Encryption schemes secure under selective opening attack. IACR Cryptology ePrint
Archive, 2009:101, 2009.

5. F. Böhl, D. Hofheinz, and D. Kraschewski. On definitions of selective opening security. In Public Key Cryptog-
raphy, pages 522–539, 2012.

6. A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient construc-
tions without random oracles. In CRYPTO, pages 335–359, 2008.

7. D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. SIAM
J. Comput., 36(5):1301–1328, 2007.

8. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In TCC, pages 325–341, 2005.
9. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles). In

CRYPTO, pages 290–307, 2006.
10. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random oracles). IACR

Cryptology ePrint Archive, 2006:085, 2006.
11. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In CRYPTO, pages 90–104, 1997.
12. R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multi-party computation. In STOC, pages

639–648, 1996.
13. A. D. Caro, V. Iovino, and G. Persiano. Fully secure anonymous HIBE and secret-key anonymous IBE with short

ciphertexts. In Pairing, pages 347–366, 2010.
14. R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive

chosen ciphertext attack. IACR Cryptology ePrint Archive, 2001:108, 2001.
15. S. Fehr, D. Hofheinz, E. Kiltz, and H. Wee. Encryption schemes secure against chosen-ciphertext selective opening

attacks. In EUROCRYPT, pages 381–402, 2010.
16. D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and correlation-secure

trapdoor functions. In Public Key Cryptography, pages 279–295, 2010.
17. B. Hemenway, B. Libert, R. Ostrovsky, and D. Vergnaud. Lossy encryption: Constructions from general assump-

tions and efficient selective opening chosen ciphertext security. In ASIACRYPT, pages 70–88, 2011.
18. B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash proof systems.

Electronic Colloquium on Computational Complexity (ECCC), 16:127, 2009.
19. B. Hemenway and R. Ostrovsky. Homomorphic encryption over cyclic groups implies chosen-ciphertext security.

IACR Cryptology ePrint Archive, 2010:99, 2010.
20. D. Hofheinz. Possibility and impossibility results for selective decommitments. IACR Cryptology ePrint Archive,

2008:168, 2008.

13

21. D. Hofheinz. All-but-many lossy trapdoor functions. In EUROCRYPT, pages 209–227, 2012.

22. Z. Huang, S. Liu, and B. Qin. Sender equivocable encryption schemes secure against chosen-ciphertext attacks
revisited. IACR Cryptology ePrint Archive, 2012:473, 2012.

23. Z. Huang, S. Liu, and B. Qin. Sender-equivocable encryption schemes secure against chosen-ciphertext attacks
revisited. In Public Key Cryptography, pages 369–385, 2013.

24. E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security. In EURO-
CRYPT, pages 673–692, 2010.

25. A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short
ciphertexts. In TCC, pages 455–479, 2010.

26. S. Myers and A. Shelat. Bit encryption is complete. In FOCS, pages 607–616, 2009.

27. C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196, 2008.

28. A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In TCC, pages 419–436, 2009.

29. B. Waters. Efficient identity-based encryption without random oracles. In EUROCRYPT, pages 114–127, 2005.

30. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In CRYPTO,
pages 619–636, 2009.

A Composite Order Bilinear Groups

We review the notion of composite order bilinear groups, introduced in [8] firstly.

Let G be an N -order group generator algorithm that takes as input a security parameter κ and
outputs a tuple (p1, p2, p3, p4, G,GT , e), where p1, p2, p3, p4 ∈ {2κ−1, . . . , 2κ−1} are distinct primes,
G and GT are cyclic groups of order N = p1p2p3p4, and e : G × G → GT is a bilinear map such
that

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab;

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We further require that multiplication inG andGT , as well as the bilinear map e, are computable
in time polynomial in κ. For S ⊆ [4] we let G∏

i∈S pi denote the unique subgroups of G having order∏
i∈S pi. Note also that if g and h are group elements of different co-prime order, then e(g, h) = 1GT

.

We now state the complexity assumptions we use. Assumptions 1, 2 ,3 and 6 are some instan-
tiations of the General Subgroup Decision (GSD) assumption defined in [3]. Assumption 4 and 5
are essentially the same as Assumption 2 and 3 in [13].

Assumption 1 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

g,X1 ← Gp1 , X2, Y2, Z2 ← Gp2 , g3, Y3 ← Gp3 , g4, Z4 ← Gp4 ,

D = (G,GT , e,N, g, g3, g4, X1X2, Y2Y3, Z2Z4),

T1 ← Gp1p3p4 , T2 ← Gp1p2p3p4 .

The advantage of an algorithm A in breaking Assumption 1 is defined as

Adv1A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 5 we say G satisfies Assumption 1 if for any polynomial time algorithm A, Adv1A(κ)
is negligible.

14

Assumption 2 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

g ← Gp1 , g3 ← Gp3 , g4 ← Gp4 ,

D = (G,GT , e,N, g, g3, g4),

T1 ← Gp1 , T2 ← Gp1p2 .

The advantage of an algorithm A in breaking Assumption 2 is defined as

Adv2A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 6 we say G satisfies Assumption 2 if for any polynomial time algorithm A, Adv2A(κ)
is negligible.

Assumption 3 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

g,X1 ← Gp1 , X2, Y2 ← Gp2 , g3, Y3 ← Gp3 , g4 ← Gp4 ,

D = (G,GT , e,N, g,X1X2, Y2Y3, g3, g4),

T1 ← Gp1p3 , T2 ← Gp1p2p3 .

The advantage of an algorithm A in breaking Assumption 3 is defined as

Adv3A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 7 we say G satisfies Assumption 3 if for any polynomial time algorithm A, Adv3A(κ)
is negligible.

Assumption 4 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

a, s ∈ ZN , g ← Gp1 ,

g2, X2, Y2 ← Gp2 , g3 ← Gp3 , g4 ← Gp4 ,

D = (G,GT , e,N, g, g2, g3, g4, g
aX2, g

sY2),

T1 = e(g, g)as, T2 ← GT .

The advantage of an algorithm A in breaking Assumption 4 is defined as

Adv4A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 8 we say G satisfies Assumption 4 if for any polynomial time algorithm A, Adv4A(κ)
is negligible.

15

Assumption 5 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

s ∈ ZN , g, u, v, h← Gp1 , g2, A2 ← Gp2 ,

g3 ← Gp3 , g4,W4 ← Gp4 , B24, X24, Y24, E24 ← Gp2p4 ,

D = (G,GT , e,N, gW4, gA2, u, u
sB24, v, v

sX24, h, h
sY24, g2, g3, g4),

T1 = gsE24, T2 ← Gp1p2p4 .

The advantage of an algorithm A in breaking Assumption 5 is defined as

Adv5A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 9 we say G satisfies Assumption 5 if for any polynomial time algorithm A, Adv5A(κ)
is negligible.

Assumption 6 Let G be as above. We define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

g ← Gp1 , g2, X2 ← Gp2 , X3 ← Gp3 , g4 ← Gp4 ,

D = (G,GT , e,N, g, g2, X2X3, g4),

T1 ← Gp1p2p4 , T2 ← Gp1p2p3p4 .

The advantage of an algorithm A in breaking Assumption 6 is defined as

Adv6A(κ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 10 we say G satisfies Assumption 6 if for any polynomial time algorithm A, Adv6A(κ)
is negligible.

Assumption 7 (Computational Diffie-Hellman (CDH) Assumption) Let G be as above. We
define the following distribution:

(p1, p2, p3, p4,G,GT , e)← G(κ), N = p1p2p3p4,

x, y ← ZN , g ← Gp1 , g2 ← Gp2 , g3 ← Gp3 , g4 ← Gp4 ,

D = (G,GT , e, p1, p2, p3, p4, g, g2, g3, g4, g
x, gy).

The advantage of an algorithm A in breaking CDH Assumption in Gp1 is defined as

AdvCDH
A (κ) = Pr[A(D) = gxy].

Definition 11 we say G satisfies CDH Assumption in Gp1 if for any PPT algorithm A, AdvCDH
A (κ)

is negligible.

16

B Identity-Based Encryption

An IBE scheme consists of the following four algorithms:

Setup(1κ) takes as input a security parameter κ. It generates a public parameter PK and a master
secret key MSK.

KeyGen(PK,MSK, ID) takes as input the public parameter PK, the master secret key MSK and an
identity ID. It outputs a private key SKID for the identity ID.

Encrypt(PK, ID,M) takes as input the public parameter PK, an identity ID and a message M . It
outputs a ciphertext CT .

Decrypt(PK,SKID, CT) takes as input the public parameter PK, a private key SKID and a ciphertext
CT . It outputs either a message M or a failure symbol ⊥.

An IBE scheme has completeness error ϵ if Decrypt(PK,SKID,Encrypt(PK, ID,M)) = M holds with
probability at least 1−ϵ for all ID andM , (PK,MSK)← Setup(1κ) and SKID ← KeyGen(PK,MSK, ID),
where the probability is taken over the coins used in encryption.

C Selective Opening Secure Identity-Based Encryption

We recall a simulation-based definition of IBE secure against a selective opening chosen-ciphertext
adversary that was originally formalized in [3]. Note that, the model considers adaptive sender
corruptions and non-adaptive receiver corruptions. Here an n-message samplerM is a randomized
algorithm that on input string α ∈ {0, 1}∗ outputs an n-vector M = (M (1), . . . ,M (n)) of messages,
and a relation R is any randomized algorithm that outputs a single bit.

Definition 12 An identity-based encryption scheme IBE=(Setup, KeyGen, Encrypt, Decrypt) is
simulation-based chosen-ciphertext secure under selective openings (SIM-SO-CCA secure) iff for
every PPT n-message sampler M, every PPT relation R, every stateful PPT adversary A, there
is a stateful PPT simulator S such that Advso-ccaIBE,A,S,n,M,R(κ) is negligible, where

Advso-ccaIBE,A,S,n,M,R(κ) = Pr
[
Gameso-cca-realIBE,A,n,M,R(κ) = 1

]
− Pr

[
Gameso-idealIBE,S,n,M,R(κ) = 1

]
.

Note that, we require that A never query KeyGen(·) on a challenge identity ID(i) and Decrypt(·, ·)
on a challenge ciphertext (ID(i), CT (i)).

Gameso-cca-realIBE,A,n,M,R(κ)
(PK,MSK)← Setup(1κ);
((ID(i))i∈[n], α)← AKeyGen(·),Decrypt(·,·)(PK);

(M (i))i∈[n] ←M(α);

R(1), . . . , R(n) ←REncrypt;

(CT (i))i∈[n] = (Encrypt(PK, ID(i),M (i);R(i)))i∈[n];

I ← AKeyGen(·),Decrypt(·,·)((CT (i))i∈[n]);

outA ← AKeyGen(·),Decrypt(·,·)((M (i), R(i))i∈I);
return R((ID(i))i∈[n], (M

(i))i∈[n], I, outA).

Gameso-idealIBE,S,n,M,R(κ)

((ID(i))i∈[n], α)← S;
(M (i))i∈[n] ←M(α);
I ← S;
outS ← S((M (i))i∈I);
return R((ID(i))i∈[n], (M

(i))i∈[n], I, outS).

17

D Proof of Theorem 1

Proof. We first show that encryptions of

ℓ︷ ︸︸ ︷
1 · · · 1 are computational indistinguishable to encryptions

of real messages in the SOA setting. We consider the following games (for k from 1 to nℓ):

Game0: This is the real SIM-SO-CCA security game Gameso-cca-realIBE,A,n,M,R(κ).
Gamek(1 ≤ k ≤ nℓ): It is the same as Game0 except for two differences. The first difference is the

way of creating the vector of challenge ciphertexts, where the first k bits sampled from M
(possibly across many messages) are replaced by 1s. The second one is how the adversary A’s
corruption query is answered.
– When adversary A queries the encryption oracle for challenge ciphertexts, the challenger

responds in this way:

1. The challenger sets (M (i))i∈[n] ←M(α). For each i ∈ [n], let M (i) =
(
m

(i)
1 ∥ · · · ∥m

(i)
ℓ

)
.

2. Let k = (ζ − 1)ℓ+ ϱ with ζ ∈ [n] and ϱ ∈ [ℓ].
For each i ∈ [n] such that i ̸= ζ, the challenger sets

CT (i) =

Encrypt(PK, ID(i), 1 · · · 1︸ ︷︷ ︸

ℓ

) if 1 ≤ i < ζ

Encrypt(PK, ID(i),M (i)) if ζ < i ≤ n

.

For i = ζ and each j ∈ [ℓ], the challenger computes
(C

(ζ)
j ,K

(ζ)
j)← Encryptex(PKex, ID

(ζ), 1;R
(ζ)
j) if 1 ≤ j ≤ ϱ

(C
(ζ)
j ,K

(ζ)
j)← Encryptex(PKex, ID

(ζ), 1;R
(ζ)
j) if ϱ < j ≤ ℓ and m

(ζ)
j = 1{

C
(ζ)
j ← Encryptex(PKex, ID

(ζ), 0;R
(ζ)
j),

K
(ζ)
j ← Sample′(K;R(ζ)K

j)
if ϱ < j ≤ ℓ and m

(ζ)
j = 0

,

K
(ζ)
ℓ+1 =

(
Ka,H(ID

(ζ), C
(ζ)
1 , . . . , C

(ζ)
ℓ)
)
, T (ζ) = XAuth(K

(ζ)
1 , . . . ,K

(ζ)
ℓ+1),

where R
(ζ)
j ← REncryptex and R

(ζ)K
j ← RSample′ . Then, the challenger sets CT (ζ) =

(C
(ζ)
1 , . . . , C

(ζ)
ℓ , T (ζ)).

3. Finally, the challenger returns (CT (i))i∈[n] to the adversaryA as its challenge ciphertexts.
At the same time, for i ∈ [n], j ∈ [ℓ], the challenger also records all the random coins

R
(i)
j used to obtain C

(i)
j and all the keys K

(i)
j . The random coins R

(i)K
j , which are used

to sample K
(i)
j when m

(i)
j = 0 and (i− 1)ℓ+ j > k, are also recorded.

– When adversary A queries the corruption oracle with I ⊂ [n], for each i ∈ I, the challenger

responds with
(
M (i) =

(
m

(i)
1 ∥ · · · ∥m

(i)
ℓ

)
, (R̄

(i)
1 , . . . , R̄

(i)
ℓ)
)
. The random coins

(
R̄

(i)
j

)
j∈[ℓ]

are

prepared as follows.

1. If (i− 1)ℓ+ j > k, the challenger sets R̄
(i)
j as R

(i)
j (in case of m

(i)
j = 1) or

(
R

(i)
j , R

(i)K
j

)
(in case of m

(i)
j = 0). In fact, R̄

(i)
j are the original random coins that the challenger used

to generate (C
(i)
j ,K

(i)
j). This behaves just like that in Game0.

18

2. Else (i.e., (i− 1)ℓ+ j ≤ k), the challenger sets

R̄
(i)
j =

{
R

(i)
j if m

(i)
j = 1

(POpen(PK, ID, C
(i)
j), Sample′−1(K, K̂(i)

j)) if m
(i)
j = 0

, (7)

where K̂
(i)
j = ReSamp((K

(i)
w)1≤w≤ℓ+1,w ̸=j , T

(i)). As soon as K̂
(i)
j is computed, reset

K
(i)
j := K̂

(i)
j . Recall that ReSamp is the resample algorithm of strengthened cross au-

thentication code XAC.

We will prove that for 1 ≤ k ≤ nℓ, Gamek−1 and Gamek are computationally indistinguishable in
Lemma 1. Then Game0 and Gamenℓ are also computationally indistinguishable by hybrid argument.
Observe that, in Gamenℓ, when the adversary queries the encryption oracle for challenge ciphertexts,
all messages from M are completely ignored and each challenge ciphertext is an encryption of

message

ℓ︷ ︸︸ ︷
1 · · · 1. This results in a PPT-simulator S for A in Gamenℓ.

Setup The simulator S first runs the algorithm Setup to generate the public parameter PK =
(PKex,H,Ka) and the master secret key MSK = MSKex. Then, it sends PK to A.

Query The adversary A adaptively issues key and decryption queries, and S answers the queries
with the help of the master secret key MSK.

Challenge At some point, A queries the encryption oracle on ((ID(i))i∈[n], α) for challenge cipher-
texts. S forwards the query to its own oracle, receiving nothing in response. S then generates

ciphertexts (CT (i))i∈[n], where each ciphertext is an encryption of message

ℓ︷ ︸︸ ︷
1 · · · 1. Finally, S

returns (CT (i))i∈[n] to the adversary A as its challenge ciphertexts.

Corrupt A queries the corruption oracle on a set I ⊂ [n]. S queries its own corruption oracle on I

and learns (M (i))i∈I . Then, for each index i ∈ I, S finds the coins R̄(i) =
(
R̄

(i)
1 , . . . , R̄

(i)
ℓ

)
that

can open the ciphertext CT (i) to M (i) according to Eq.(7). (Note that, CT (i) is an encryption

of message

ℓ︷ ︸︸ ︷
1 · · · 1. Since

ℓ︷ ︸︸ ︷
1 · · · 1-encryptions are equivocable, thus CT (i) can be opened to any

message and R̄(i) can be found by S with Eq.(7).) Finally, S sends (M (i), R̄(i))i∈I to A.
Output The adversary A halts with output outA, and S halts with the same output.

Obviously, S can serves as the soa-simulator in Gameso-idealIBE,S,n,M,R, so we have that

Pr [Gamenℓ = 1] = Pr
[
Gameso-idealIBE,S,n,M,R(κ) = 1

]
.

To sum up, we get that Pr
[
Gameso-cca-realIBE,A,n,M,R = 1

]
− Pr

[
Gameso-idealIBE,S,n,M,R = 1

]
is negligible, which

proves the theorem. �

Lemma 1 If the extractable 1SPO-IBE scheme is IND-ID-CCA secure, the hash function H is
collision-resistant and the strengthened ℓ+1-cross-authentication code XAC is secure against substi-
tution attacks, then for each k ∈ [nℓ], Gamek−1 and Gamek are computationally indistinguishable.

Proof. Suppose there exists an adversary A that can distinguish Gamek and Gamek−1 with non-
negligible advantage. We build an algorithm B that breaks IND-ID-CCA security of the extractable

19

1SPO-IBE scheme with non-negligible advantage. In the IND-ID-CCA security game of the ex-
tractable 1SPO-IBE scheme, B is given a public parameter, and also is provided with an encryp-
tion oracle for challenge ciphertext, a key generation oracle and a decryption oracle by its own
challenger. Now B simulates an environment for A.

Recall that k ∈ [nℓ]. Let k = (ζ−1)ℓ+ϱ with ζ ∈ [n] and ϱ ∈ [ℓ]. When n messages are sampled

from M, we get totally nℓ bits. In formula, (M (i))i∈[n] ← M(α) with M (i) =
(
m

(i)
1 ∥ · · · ∥m

(i)
ℓ

)
.

Then the index k will locate bit m
(ζ)
ϱ among (M (i))i∈[n]. If m

(ζ)
ϱ = 1, then Gamek−1 and Gamek are

identical. Thus, without loss of generality, we assume that m
(ζ)
ϱ = 0.

Public Parameter. B gets a public parameter PKex of the extractable 1SPO-IBE scheme from
its own challenger. Next, B chooses Ka ← Ka, a collision-resistant hash function H : ID ×

ℓ︷ ︸︸ ︷
C × · · · × C → Kb, and sets the public parameter PK = (PKex,H,Ka). Then, it sends PK to A.

Encryption Query. When A queries the encryption oracle on ((ID(i))i∈[n], α) for challenge cipher-
texts. B proceeds as follows.
1. Compute (ζ, ϱ) such that k = (ζ − 1)ℓ + ϱ with ζ ∈ [n] and ϱ ∈ [ℓ]. B queries its own

encryption oracle with ID(ζ) for challenge ciphertext and session key, and let (C∗,K∗) be
the response of B’s encryption oracle.

2. B samples (M (i))i∈[n] ←M(α). For each i ∈ [n], let M (i) =
(
m

(i)
1 ∥ · · · ∥m

(i)
ℓ

)
.

3. B prepares the vector of challenge ciphertexts for A.
(a) For i ∈ [n] such that i ̸= ζ, B sets

CT (i) = (C
(i)
1 , . . . , C

(i)
ℓ , T (i)) =

Encrypt(PK, ID(i), 1 · · · 1︸ ︷︷ ︸

ℓ

) if 1 ≤ i < ζ

Encrypt(PK, ID(i),M (i)) if ζ < i ≤ n

.

(b) For i = ζ, B embeds its own challenge (C∗,K∗) in the creation of CT (ζ) = (C
(ζ)
1 , . . .,

C
(ζ)
ℓ , T (ζ)) by setting C

(ζ)
ϱ := C∗ and K

(ζ)
ϱ := K∗. More precisely, for each j ∈ [ℓ], B sets

(C
(ζ)
j ,K

(ζ)
j)← Encryptex(PKex, ID

(ζ), 1;R
(ζ)
j) if 1 ≤ j < ϱ

(C
(ζ)
ϱ ,K

(ζ)
ϱ) = (C∗,K∗) if j = ϱ

(C
(ζ)
j ,K

(ζ)
j)← Encryptex(PKex, ID

(ζ), 1;R
(ζ)
j) if ϱ < j ≤ ℓ and m

(ζ)
j = 1{

C
(ζ)
j ← Encryptex(PKex, ID

(ζ), 0;R
(ζ)
j),

K
(ζ)
j ← Sample′(K;R(ζ)K

j)
if ϱ < j ≤ ℓ and m

(ζ)
j = 0

,

K
(ζ)
ℓ+1 =

(
Ka,H(ID

(ζ), C
(ζ)
1 , . . . , C

(ζ)
ℓ)
)
, T (ζ) = XAuth(K

(ζ)
1 , . . . ,K

(ζ)
ℓ+1),

CT (ζ) = (C
(ζ)
1 , . . . , C

(ζ)
ℓ , T (ζ)),

where R
(ζ)
j ←REncryptex and R

(ζ)K
j ← RSample′ .

4. Finally, B returns (CT (i))i∈[n] to A as its challenge ciphertexts. For i ∈ [n], j ∈ [ℓ], B records

all the random coins R
(i)
j used to obtain C

(i)
j and all the keys K

(i)
j . B also records all the

random coins R
(i)K
j that are used to sample K

(i)
j when m

(i)
j = 0 and (i− 1)ℓ+ j > k.

20

Corruption Query. When A queries the corruption oracle on a set I ⊂ [n], for each index i ∈ I,

B responds with (M (i), (R̄
(i)
1 , . . . , R̄

(i)
ℓ)). The random coins

(
R̄

(i)
j

)
j∈[ℓ]

are prepared as follows.

(Recall that, (M (i))i∈[n] ←M(α), M (i) =
(
m

(i)
1 ∥ · · · ∥m

(i)
ℓ

)
and mζ

ϱ = 0.)

1. If (i − 1)ℓ + j > k, B sets R̄
(i)
j as R

(i)
j (in case of m

(i)
j = 1) or

(
R

(i)
j , R

(i)K
j

)
(in case of

m
(i)
j = 0). In fact, R̄

(i)
j are the original random coins that B used to generate (C

(i)
j ,K

(i)
j).

2. Else (i.e., (i− 1)ℓ+ j ≤ k), B sets

R̄
(i)
j =

{
R

(i)
j if m

(i)
j = 1

(POpen(PK, ID, C
(i)
j), Sample′−1(K, K̂(i)

j)) if m
(i)
j = 0

,

where K̂
(i)
j = ReSamp((K

(i)
w)1≤w≤ℓ+1,w ̸=j , T

(i)). As soon as K̂
(i)
j is computed, reset K

(i)
j :=

K̂
(i)
j .

Private Key Query & Decryption Query. B answers the adversary A’s private key and de-
cryption queries as follows.

– A’s private key query on ĨD. Since A is not allowed to query any ID(i) (1 ≤ i ≤ n), we have

ĨD ̸= ID(ζ). B can query its own key generation oracle on ĨD to obtain the private key SK
ĨD
,

and sends it to A.
– A’s decryption query on ⟨ĨD, C̃T ⟩. Since A is not allowed to query ⟨ID(i), CT (i)⟩ for i =

1, . . . , n, we have ⟨ĨD, C̃T ⟩ ̸= ⟨ID(ζ), CT (ζ)⟩.
If ĨD ̸= ID(ζ), B queries its own key generation oracle on ⟨ĨD⟩ to obtain the private key SK

ĨD
,

decrypts C̃T with SK
ĨD

and algorithm Decrypt, and sends the result to A.

Else (i.e., ĨD = ID(ζ)), it follows that C̃T ̸= CT (ζ). B proceeds as follows.

1. B parses C̃T as (C̃1, . . . , C̃ℓ, T̃). Recall that CT (ζ) = (C
(ζ)
1 , . . . , C

(ζ)
ℓ , T (ζ)) with C

(ζ)
ϱ = C∗

and K
(ζ)
ϱ = K∗.

2. B computes K̃b = H(ĨD, C̃1, . . . , C̃ℓ) and set K̃ℓ+1 = (Ka, K̃b). It checks whether XVer(

K̃ℓ+1, T̃) = 1. If not, B returns the message M̃ ′′ =

ℓ︷ ︸︸ ︷
0 · · · 0 to A.

If XVer(K̃ℓ+1, T̃) = 1 holds, then for each j ∈ [ℓ], B does the following:

• In case of C̃j ̸= C∗, B queries its own decryption oracle with ⟨ĨD = ID(ζ), C̃j⟩ to
obtain (m̃′

j , K̃
′
j)← Decryptex(PKex,SKĨD

, C̃j), and sets

m̃′′
j =

{
XVer(K̃ ′

j , T̃) if m̃′
j = 1

0 if m̃′
j = 0

.

• In case of C̃j = C∗ (Recall that B is not allowed to query ⟨ID(ζ) = ĨD, C∗⟩ to its own
decryption oracle), B sets

m̃′′
j =

{
1 if XVer(K∗, T̃) = 1

0 if XVer(K∗, T̃) = 0
.

21

B sets M̃ ′′ = (m̃′′
1∥ · · · ∥m̃′′

ℓ) and returns the message M̃ ′′ to A.

If B’s challenge ciphertext and session key (C∗,K∗), given by B’s challenger, is an encryption
of 1, then Decryptex(PKex,SKID(ζ) , C∗) will always outputs (1,K∗); thus B has simulated Gamek
properly. On the other hand, we will show in the following that if C∗ is an encryption of 0 and K∗

is uniformly distributed in K, with overwhelming probability, B has simulated Gamek−1 properly.
Thus, if A can distinguish Gamek−1 and Gamek with non-negligible advantage, algorithm B breaks
IND-ID-CCA security of the extractable 1SPO-IBE scheme with non-negligible advantage.

Observe that, if C∗ is an encryption of 0 and K∗ is uniformly distributed in K, the differences
between the environment simulated by B and Gamek−1 lie in:

1. Different way to open (C
(ζ)
ϱ ,K

(ζ)
ϱ) in the corruption phase. Recall that, C

(ζ)
ϱ is an encryption of

0, and K
(ζ)
ϱ is a randomly distributed in K.

– In Gamek−1, (C
(ζ)
ϱ ,K

(ζ)
ϱ) is opened with (R

(ζ)
ϱ , R

(ζ)K
ϱ), where R

(ζ)
ϱ is the random coins used

to obtain C
(ζ)
ϱ and R

(ζ)K
ϱ is the random coins used to sample K

(ζ)
ϱ from K.

– In the environment simulated by B, C(ζ)
ϱ = C∗ is an encryption of 0, and K

(ζ)
ϱ = K∗ is a

randomly distributed in K, and (C
(ζ)
ϱ ,K

(ζ)
ϱ) is opened with

(POpen(PKex, ID
(ζ), C∗), Sample′−1(K, K̂(ζ)

ϱ)),

where K̂
(ζ)
ϱ = ReSamp((K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ, T

(ζ)).

Given C
(ζ)
ϱ , the random coins R

(ζ)
ϱ and the output of POpen(PKex, ID

(ζ), C
(ζ)
ϱ = C∗) share the

same probability distribution, hence they are statistically indistinguishable, i.e.

R(ζ)
ϱ

s≈POpen(PKex, ID
(ζ), C∗).

On the other hand, since K̂
(ζ)
ϱ = ReSamp((K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ, T

(ζ)), the resample algorithm of

XAC guaranteed that conditioned on T (ζ) and (K
(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ,

K̂(ζ)
ϱ

s≈K(ζ)
ϱ , hence R(ζ)K

ϱ

s≈Sample′−1(K, K̂(ζ)
ϱ).

Consequently,

(R(ζ)
ϱ , R(ζ)K

ϱ)
s≈
(
POpen(PKex, ID

(ζ), C∗),Sample′−1(K, K̂(ζ)
ϱ)
)

conditioned on CT (ζ) and other opened information.

2. Different way to compute bit m̃′′
j for decryption query

⟨
ĨD, C̃T =

(
C̃1, . . . , C̃ℓ, T̃

)⟩
such that

ĨD = ID(ζ), XVer((Ka,H(ĨD, C̃1, . . . , C̃ℓ)), T̃) = 1 and C̃j = C
(ζ)
ϱ = C∗ for some j ∈ [ℓ].

– In Gamek−1, the challenger computes (m̃′
j , K̃

′
j)← Decryptex(PKex,SKĨD

, C̃j) and sets

m̃′′
j :=

{
XVer(K̃ ′

j , T̃) if m̃′
j = 1

0 if m̃′
j = 0

.

Recall that C̃j = C
(ζ)
ϱ = C∗ is an encryption of 0, hence decryption of C̃j will result in

message bit m̃′
j = 0 and a random key K̃ ′

j , except with negligible probability. Consequently,
m̃′′

j = 0 except with negligible probability.

22

– In the environment simulated by B, m̃′′
j is computed as

m̃′′
j =

{
1 if XVer(K∗, T̃) = 1

0 if XVer(K∗, T̃) = 0
.

Next, we show that m̃′′
j = 0 except with negligible probability. We first show that if ĨD = ID(ζ)

and C̃T ̸= CT (ζ), then T̃ = T (ζ) with negligible probability, due to the collision resistance of
hash function H. The reason is as follows. Recall that, XVer((Ka,H(ĨD, C̃1, . . . , C̃ℓ)), T̃) = 1.
If T̃ = T (ζ), then

XVer((Ka,H(ĨD, C̃1, . . . , C̃ℓ)), T
(ζ)) = 1. (8)

On the other hand, K
(ζ)
ℓ+1 = (Ka,K

(ζ)
b) = (Ka,H(ID

(ζ) = ĨD, C
(ζ)
1 , . . . , C

(ζ)
ℓ)) is used to

generated T (ζ) in the challenge ciphertext CT (ζ), so

XVer(K
(ζ)
ℓ+1, T

(ζ)) = XVer((Ka,H(ĨD, C
(ζ)
1 , . . . , C

(ζ)
ℓ)), T (ζ)) = 1. (9)

Since the ℓ + 1-cross-authentication code XAC is semi-unique, it follows from Eqs.(8) and
(9) that

H(ĨD, C̃1, . . . , C̃ℓ) = H(ĨD, C
(ζ)
1 , . . . , C

(ζ)
ℓ). (10)

The fact that C̃T ̸= CT (ζ) means (C̃1, . . . , C̃ℓ, T̃) ̸= (C
(ζ)
1 , . . . , C

(ζ)
ℓ , T (ζ)). Then T̃ = T (ζ)

implies (C̃1, . . . , C̃ℓ) ̸= (C
(ζ)
1 , . . . , C

(ζ)
ℓ). So

(ĨD, C̃1, . . . , C̃ℓ) ̸= (ĨD, C
(ζ)
1 , . . . , C

(ζ)
ℓ). (11)

Eqs. (10) and (11) suggest a hash collision.

Now we assume T̃ ̸= T (ζ). Recall that K
(ζ)
ϱ = K∗ is used in the generation of T (ζ) in the

challenge ciphertext CT (ζ), so XVer(K∗, T (ζ)) = 1. In the corruption phase, if the adversary

asks to open (C
(ζ)
ϱ ,K

(ζ)
ϱ) (i.e., (C∗,K∗)), it can obtain the information (K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ

and K̂
(ζ)
ϱ , where K̂

(ζ)
ϱ = ReSamp((K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ, T

(ζ)). Strongness of the XAC guarantees

that K̂
(ζ)
ϱ is statistically indistinguishable to K

(ζ)
ϱ (i.e., K∗), even given (K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ

and T (ζ). Observe that, the knowledge of K̂
(ζ)
ϱ does not leak information about K

(ζ)
ϱ (i.e.,

K∗) since K̂
(ζ)
ϱ is generated from (K

(ζ)
w)1≤w≤ℓ+1,w ̸=ϱ and T (ζ). Thus, we have

Pr[m′′
j = 1] = Pr[XVer(K∗, T̃) = 1] ≤ AdvsubXAC(κ).

To sum up, m̃′′
j will be decrypted to 0, except with negligible probability, no matter in Gamek−1

or the environment simulated by B.

�

E Proof of Theorem 2

Proof. Following the approach by Lewko and Waters [25], we define two additional structures:
semi-functional ciphertexts and semi-functional keys. These will not be used in the real system,
but will be used in our proof.

23

Semi-functional Ciphertext Let g2 denote a generator of subgroup Gp2 . A semi-functional ci-
phertext is created as follows. We first use the encryption algorithm to obtain a normal cipher-
text (c′0, c

′
1). Then, we choose t2, t

′
2 ← ZN , and set the semi-functional ciphertext to be

c0 = c′0g
t2
2 , c1 = c′1g

t2t′2
2 .

Semi-functional Key A semi-functional key will take one of two forms. To create a semi-functional
key, we first use the key generation algorithm to form a normal key (ID, D′

0, D
′
1, D

′
2, D̄

′
0, D̄

′
1, D̄

′
2).

Then, we choose r2, r
′
2, r

′′
2 , r̄2, r̄

′
2, r̄

′′
2 ← ZN . The semi-functional key of type 1 is set as:

ID, D0 = D′
0g

r2
2 , D1 = D′

1g
r′2
2 , D2 = D′

2g
r′′2
2 ,

D̄0 = D̄′
0, D̄1 = D̄′

1, D̄2 = D̄′
2.

The semi-functional key of type 2 is set as:

ID, D0 = D′
0g

r2
2 , D1 = D′

1g
r′2
2 , D2 = D′

2g
r′′2
2 ,

D̄0 = D̄′
0g

r̄2
2 , D̄1 = D̄′

1g
r̄′2
2 , D̄2 = D̄′

2g
r̄′′2
2 .

Let q denote the total number of key and decryption queries the adversary makes. We will prove
the IND-ID-CCA security of our scheme using a hybrid argument over a sequence of games.

GameReal The real IND-ID-CCA security game.

GameRestricted1 This game is the same as GameReal except that the challenger outputs reject and
halts if the adversary issues a key query ⟨ID⟩ such that

ID ̸≡ ID∗ mod N, and ID ≡ ID∗ mod p2,

where ID∗ is the challenge identity.

GameRestricted2 This is like GameRestricted1 except for the way that the challenger answers the
decryption queries made by the adversary.
Let (C∗ = (c∗0, c

∗
1),K

∗) be the challenge ciphertext and session key. Recall that, C∗ is a ciphertext
encrypting δ under a challenge identity ID∗, where δ ← {0, 1} is chosen by the challenger. When
the adversary issues a decryption query ⟨ID, C = (c0, c1)⟩, the challenger proceeds just like in
GameRestricted1 , except for the following cases.
1. If ID = ID∗, c0 = c∗0 and c1 ̸= c∗1, then the challenger outputs (0,K) with K ← GT .
2. Else if ID ̸≡ ID∗ mod N and ID ≡ ID∗ mod p2, then the challenger outputs reject and halts.
3. Else if ID = ID∗, c0 ̸= c∗0 and H(ID, c0) = H(ID∗, c∗0), then the challenger outputs reject and

halts.
4. Else if ID = ID∗, H(ID, c0) ̸≡ H(ID∗, c∗0) mod N and H(ID, c0) ≡ H(ID∗, c∗0) mod p2, then

the challenger outputs reject and halts.

Gamech This game is the same as GameRestricted2 except that the challenge ciphertext is replaced
with a semi-functional ciphertext in case of δ = 1.

Gamek,1(1 ≤ k ≤ q) This game is like Gamech except for the way that the challenger answers
the adversary’s queries. The challenger uses semi-functional keys of type 2 to answer the first
k− 1 queries made by the adversary. More precisely, for the i-th (i ≤ k− 1) query made by the
adversary, if it is a key query on ⟨ID⟩ then the challenger responds with a semi-functional key

24

of type 2 for ID; if the i-th query is a decryption query on ⟨ID, C⟩, the challenger first generates
a semi-functional key of type 2 for ID, then calls Decryptex with the semi-functional key of type
2 to decrypt C for the adversary.

To answer the k-th query made by the adversary, the challenger uses a semi-functional key of
type 1 to respond. The challenger uses normal keys to answer the remaining queries made by
the adversary.

Gamek,2(0 ≤ k ≤ q) This game is like Gamech except that the challenger uses a semi-functional
key of type 2 to respond to the k-th query made by the adversary. Consequently, the challenger
uses semi-functional keys of type 2 to answer the first k queries, and uses normal keys to answer
the remaining queries made by the adversary.

GameFinal0 This is like Gameq,2 except that the challenge ciphertext C∗ = (c∗0, c
∗
1) for the challenge

identity ID∗ when δ = 1 is given by

c∗0 = W s
14g

t4
4 gt22 , c∗1 = (uID

∗
vID

∗′
h)sg

KDF(X′)
4 g

t2t′2
2 ,

where s, t4, t2, t
′
2 ← ZN , X ′ ← GT and ID∗′ = H(ID∗, c∗0).

GameFinal1 The game is the same as GameFinal0 except that the challenge ciphertext C∗ = (c∗0, c
∗
1)

under the challenge identity ID∗ for δ = 1 is determined by

c∗0 = W s
14g

t4
4 gt22 , c∗1 = (uID

∗
vID

∗′
h)sg

t′4
4 g

t2t′2
2 ,

where s, t4, t
′
4, t2, t

′
2 ← ZN and ID∗′ = H(ID∗, c∗0).

GameFinal2 This game is the same as GameFinal1 except that the challenge session key K∗ for δ = 1
is given by K∗ ← GT .

GameFinal3 This game is the same as GameFinal2 except that the challenge ciphertext C∗ = (c∗0, c
∗
1)

for δ = 1 is given by c∗0, c
∗
1 ← Gp1p2p4 .

GameFinal4 This game is the same as GameFinal3 except that the challenge ciphertext C∗ = (c∗0, c
∗
1)

for δ = 1 is given by c∗0, c
∗
1 ← G.

We prove these games are indistinguishable in the following lemmas. Note that Gamech =
Game0,2. In GameFinal4 , it is clear that the value of δ is information-theoretically hidden from the
adversary. Hence the adversary has no advantage in GameFinal4 . Therefore, we conclude that the
advantage of the adversary in GameReal is negligible. �

Lemma 2 Suppose that G satisfies Assumption 1. Then GameRestricted1 and GameReal are compu-
tationally indistinguishable.

Proof. Define event E1: the adversary makes a key query of ⟨ID⟩ such that ID ̸≡ ID∗ mod N and
ID ≡ ID∗ mod p2.

If E1 does not happen, GameRestricted1 is identical to GameReal. All we have to do is to prove that
E1 happens with negligible probability.

If E1 happens with non-negligible probability, we construct a PPT algorithm B that breaks
Assumption 1 with non-negligible probability. Observe that, givenG,GT , e,N , g, g3, g4,X1X2, Y2Y3,
Z2Z4, T , algorithm B can perfectly simulate GameReal. During the simulation, for each key query
⟨ID⟩, B computes a = gcd(ID−ID∗, N). B identifies the occurrence of E1 with e(X1X2, Y2Y3)

a = 1GT
.

Set b = N
a . There are three cases: 1. p1 divides b; 2. p3 divides b; 3. p4 divides b.

25

B can determine if case 1 has occurred by testing if e(X1X2, g)
b = 1GT

. If this happens, B can
then learn whether T has a Gp2 component or not by testing if e(T,X1X2)

b = 1GT
. If not, then T

has a Gp2 component, i.e., T ∈ Gp1p2p3p4 ; otherwise, T ∈ Gp1p3p4 .
B can determine if case 2 has occurred by testing if e(Y2Y3, g3)

b = 1GT
. If this happens, B can

then learn whether T has a Gp2 component or not by testing if e(T, Y2Y3)
b = 1GT

. If not, then T
has a Gp2 component, i.e., T ∈ Gp1p2p3p4 ; otherwise, T ∈ Gp1p3p4 .
B can determine if case 3 has occurred by testing if e(Z2Z4, g4)

b = 1GT
. If this happens, B can

then learn whether T has a Gp2 component or not by testing if e(T,Z2Z4)
b = 1GT

. If not, then T
has a Gp2 component, i.e., T ∈ Gp1p2p3p4 ; otherwise, T ∈ Gp1p3p4 . �

Lemma 3 Suppose that G satisfies CDH Assumption in Gp1, Assumption 1 and H is a collision-
resistant hash function. Then GameRestricted2 and GameRestricted1 are computationally indistinguish-
able.

Proof. Let (C∗ = (c∗0, c
∗
1),K

∗) be the challenge ciphertext and session key. Recall that, C∗ is
the ciphertext encrypting δ under a challenge identity ID∗ with δ ← {0, 1}. We observe that
GameRestricted1 and GameRestricted2 are the same unless the following events happen:

– Event E2: the adversary makes a decryption query ⟨ID, C⟩ such that ID = ID∗, C = (c0, c1),
c0 = c∗0 and c1 ̸= c∗1, but the challenger responds with (1,K) in GameRestricted1 . Recall that in
GameRestricted2 , the challenger returns message 0 and a random session key for such a query,
while in GameRestricted1 , the challenge will employ decryption algorithm to answer the query. We
will show that E2 occurs with negligible probability in GameRestricted1 .
In GameRestricted1 , if δ = 1, Decryptex(PK,SKID, C) always outputs bit 0 and a random session key,
and E2 never occurs in this case. Therefore, if E2 happens, we must have δ = 0 in GameRestricted1 .

We will construct a PPT algorithm B to solve the CDH problem over Gp1 , if E2 happens
with non-negligible probability. B is given (G,GT , e, p1, p2, p3, p4, g, g2, g3, g4, g

x, gy) and going
to compute gxy. B simulates GameRestricted1 to the adversary as follows. Set N = p1p2p3p4
and choose α, β, ηu, ηv, ηh, γu, γv, γh, γw ∈ ZN uniformly at random, a collision-resistant hash
function H : ZN × G → ZN and a key derivation function KDF : GT → ZN . B then computes
u = (gx)ηugγu , v = (gx)ηvgγv , h = (gx)ηhgγh ,W4 = gγw4 , and sends the adversary the public
parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β , H,KDF).

Note that B knows the master secret key MSK = (g, g3, α, β) associated with PK, thus is able
to answer the key generation and decryption queries made by the adversary with the help of
MSK. When the adversary submits the target identity ID∗, B sends (C∗ = (c∗0, c

∗
1),K

∗) to the
adversary, where

c∗0 = gy · gt22 gt33 gt44 , c∗1 ← G, K∗ ← GT ,

and t2, t3, t4 ∈ ZN are chosen uniformly at random. Since δ = 0, then from the adversary’s point
of view, the distribution of (C∗,K∗) is identical to that in GameRestricted1 .

Suppose E2 happens during the simulation, i.e., the adversary makes a decryption query for
⟨ID = ID∗, C = (c0 = c∗0, c1 ̸= c∗1)⟩ and B gets (1,K) when decrypting C with the private key
SKID∗ . Let SKID∗ = (ID∗, D0, D1, D2, D̄0, D̄1, D̄2), then

e(c1/g
KDF(X)
4 ,W14) = e(c∗0, uID

∗
vID

∗′
h),

26

where X = e(D0D
ID∗′
1 , c∗0)/e(D2, c1) and ID∗′ = H(ID∗, c∗0). Observe that,

e(c∗0, uID
∗
vID

∗′
h) = e(gy · gt22 gt33 gt44 , (gx)ηuID

∗+ηv ID
∗′+ηhgγuID

∗+γv ID
∗′+γh)

= e((gxy)ηuID
∗+ηv ID

∗′+ηh(gy)γuID
∗+γv ID

∗′+γh , g).

Hence, the Gp1 part of c1 is (g
xy)ηuID

∗+ηv ID
∗′+ηh(gy)γuID

∗+γv ID
∗′+γh . B uses p1, p2, p3, p4 to extract

gxy from c1,

gxy =
((

c1/(g
y)γuID

∗+γv ID
∗′+γh

)p2p3p4)(p2p3p4(ηuID∗+ηv ID
∗′+ηh))

−1 mod p1
,

which is a solution to the CDH problem with respect to (G,GT , e, p1, p2, p3, p4, g, g2, g3, g4, g
x, gy).

(Note that, since ηu, ηv, ηh are chosen uniformly at random in ZN and are hidden by blinding
factors γu, γv, γh, then with overwhelming probability, ηuID

∗ + ηvID
∗′ + ηh is not equal to 0.)

To sum up, event E2 happens with negligible probability if the CDH Assumption holds.

– Event E3: the adversary makes a decryption query for ⟨ID, C⟩ such that ID ̸≡ ID∗ mod N
and ID ≡ ID∗ mod p2. Like the proof of Lemma 2, we can show that this event happens with
negligible probability based on Assumption 1.

– Event E4: the adversary makes a decryption query for ⟨ID, C = (c0, c1)⟩ such that ID = ID∗,
H(ID, c0) = H(ID∗, c∗0) and c0 ̸= c∗0. Clearly, this event happens with negligible probability, due
to collision-resistance of H.

– Event E5: the adversary makes a decryption query for ⟨ID, C = (c0, c1)⟩ such that ID = ID∗,
H(ID, c0) ̸≡ H(ID∗, c∗0) mod N and H(ID, c0) ≡ H(ID∗, c∗0) mod p2. Like the proof of Lemma 2,
we can show that this event happens with negligible probability based on Assumption 1.

Thus, suppose that G satisfies CDH Assumption in Gp1 , Assumption 1 and H is a collision-resistant
hash function, GameRestricted1 and GameRestricted2 are computationally indistinguishable. �

Lemma 4 Suppose that G satisfies Assumption 2. Then Gamech and GameRestricted2 are computa-
tionally indistinguishable.

Proof. Suppose there exists a PPT algorithm A that distinguishes Gamech and GameRestricted2 with
non-negligible advantage. Then we build a PPT algorithm B breaking Assumption 2 with non-
negligible advantage. B is given G,GT , e,N , g, g3, g4, T and going to tell whether T ∈ Gp1p2 or
T ∈ Gp1 . B will simulate Gamech or GameRestricted2 for A. First B chooses α, β, γu, γv, γh, γw ∈ ZN

uniformly at random, a collision-resistant hash function H : ZN × G → ZN and a key derivation
function KDF : GT → ZN . It then sets u = gγu , v = gγv , h = gγh ,W4 = gγw4 , and sends A the public
parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β , H,KDF).

Note that B knows the master secret key MSK = (g, g3, α, β) associated with PK, and B can
answers the key and decryption queries of A with the help of MSK.

At some point, A sends B a challenge identity ID∗. B chooses δ ← {0, 1} and does the following.
If δ = 0, it chooses c∗0, c

∗
1 ← G and K∗ ← GT ; otherwise, it chooses t4 ← ZN and sets

c∗0 = T · gt44 , c∗1 = T γuID
∗+γv ID

∗′+γhg
KDF(e(T,gα))
4 , K∗ = e(T, gβ),

27

where ID∗′ = H(ID∗, c∗0). Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and session key K∗

to A.
If T is a random element of Gp1p2 , then (γuID

∗ + γvID
∗′ + γh) mod p2 is uniformly distributed

over Zp2 according to Chinese Remainder Theorem, and C∗ = (c∗0, c
∗
1) has the same distribution

as semi-functional ciphertexts. Hence B has properly simulated Gamech. If T is a random element
of Gp1 , then C∗ = (c∗0, c

∗
1) has the same distribution as normal ciphertexts. Hence B has properly

simulated GameRestricted2 . Consequently, B can use the output of A to distinguish T ∈ Gp1p2 or
T ∈ Gp1 . Any non-negligible advantage of A is converted to a non-negligible advantage of B. �

Lemma 5 Suppose that G satisfies Assumption 3. Then for each k ∈ [q], Gamek−1,2 and Gamek,1
are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes Gamek−1,2 and Gamek,1. Then we can
build an algorithm B breaking Assumption 3 with non-negligible advantage. B is given G,GT , e,N ,
g,X1X2, Y2Y3, g3, g4, T and going to tell T ∈ Gp1p2p3 or T ∈ Gp1p3 . B will simulate Gamek−1,2 or
Gamek,1 for A. First B chooses α, β, γu, γv, γh, γw ∈ ZN uniformly at random, a collision-resistant
hash function H : ZN × G → ZN and a key derivation function KDF : GT → ZN . It then sets
u = gγu , v = gγv , h = gγh ,W4 = gγw4 , and sends A the public parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β , H,KDF).

Let us now explain how B answers the i-th query made by A, which is a key query for ⟨ID⟩ or a
decryption query for ⟨ID, C⟩. (Notice that, if the cases described in GameRestricted1 or GameRestricted2
happen when A makes a key or decryption query, B responds as in GameRestricted1 or GameRestricted2 .)

1. If i < k, B first chooses r, r̄, r3, r
′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 , r̄2, r̄

′
2, r̄

′′
2 ∈ ZN uniformly at random,

and generates a semi-functional key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2) of type 2 for ID, where

D0 = gα(uIDh)rgr33 (Y2Y3)
r2 , D1 = vrg

r′3
3 (Y2Y3)

r′2 , D2 = grg
r′′3
3 (Y2Y3)

r′′2 ,

D̄0 = gβ(uIDh)r̄gr̄33 (Y2Y3)
r̄2 , D̄1 = vr̄g

r̄′3
3 (Y2Y3)

r̄′2 , D̄2 = gr̄g
r̄′′3
3 (Y2Y3)

r̄′′2 .

Then, B uses SKID to respond A’s query. That is, if the query is a key query, B sends SKID to
A; otherwise (i.e., the query is a decryption query), B runs the algorithm Decryptex with SKID

and returns the decryption results to A.
Note that r3, r

′
3, r

′′
3 , r̄3, r̄

′
3, r̄

′′
3 mod p3 are all randomly distributed in Zp3 and r2, r

′
2, r

′′
2 , r̄2, r̄

′
2, r̄

′′
2

mod p2 are all randomly distributed in Zp2 , according to Chinese Remainder Theorem. Thus,
the private key SKID is a properly distributed semi-functional key of type 2.

2. Else if i > k, B first generate a normal key SKID for ID with the master secret key MSK =
(g, g3, α, β). Then, B uses SKID to respond A’s query.

3. Else (i.e., i = k), B first chooses r̄, r3, r
′
3, r

′′
3 , r̄3, r̄

′
3, r̄

′′
3 ∈ ZN uniformly at random and sets

SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2), where

D0 = gαT γuID+γhgr33 , D1 = T γvg
r′3
3 , D2 = Tg

r′′3
3 ,

D̄0 = gβ(uIDh)r̄gr̄33 , D̄1 = vr̄g
r̄′3
3 , D̄2 = gr̄g

r̄′′3
3 .

Then, B uses SKID to respond to A’s query.

28

At some point, A sends B a target identity ID∗. B chooses δ ← {0, 1} and does the following. If
δ = 0, it chooses c∗0, c

∗
1 ← G and K∗ ← GT ; otherwise (i.e., δ = 1), it chooses t4 ← ZN and sets

c∗0 = X1X2 · gt44 , c∗1 = (X1X2)
γuID

∗+γv ID
∗′+γhg

KDF(e(X1X2,gα))
4 , K∗ = e(X1X2, g

β),

where ID∗′ = H(ID∗, c∗0). Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and session key K∗

to A.
Next, we will show that the challenge ciphertext and SKID appearing in the response of A’s

k-th query are properly distributed. The key point is to show that γuID
∗ + γvID

∗′ + γh mod p2 is
randomly distributed in Zp2 .

1. If T ← Gp1p3 , say T = grgr̂33 , then the first three components of SKID appearing in the response
of A’s k-th query are

D0 = gαT γuID+γhgr33 = gα(uIDh)rg
r̂3(γuID+γh)+r3
3 ,

D1 = T γvg
r′3
3 = vrg

r̂3γv+r′3
3 , D2 = Tg

r′′3
3 = grg

r̂3+r′′3
3 .

Their distribution is exactly the same as that in the normal key.
On the other hand, γuID

∗ + γvID
∗′ + γh mod p2 is also randomly distributed in Zp2 according

to Chinese Remainder Theorem, so the challenge ciphertext is distributed just like a semi-
functional ciphertext.
Therefore, B has perfectly simulated Gamek−1,2.

2. If T ← Gp1p2p3 , say T = grgr̂22 gr̂33 , we consider two cases.
(a) The k-th query made by the adversary is a key query on ⟨ID⟩. Since event E1 that ID ≡ ID∗

mod p2 has already been eliminated in GameRestricted1 , then ID ̸≡ ID∗ mod p2. Observe that,
the first three components of SKID are

D0 = gαT γuID+γhgr33 = gα(uIDh)rg
r̂2(γuID+γh)
2 g

r̂3(γuID+γh)+r3
3 ,

D1 = T γvg
r′3
3 = vrgr̂2γv2 g

r̂3γv+r′3
3 , D2 = Tg

r′′3
3 = grgr̂22 g

r̂3+r′′3
3 .

We want to prove that the private key SKID is a properly distributed semi-functional key
of type 1 and the challenge ciphertext is a properly distributed semi-functional ciphertext.
It suffices to prove that (γuID+ γh)p2 , (γv)p2 and (γuID

∗ + γvID
∗′ + γh)p2 are all uniformly

distributed over Zp2 , where (x)p2 denotes x mod p2. This is justified by the following facts.
– Conditioned on u = gγu , v = gγv , h = gγh , the random variables (γu)p2 , (γv)p2 and (γh)p2

are uniformly distributed over Zp2 , due to Chinese Remainder Theorem.
– The 3 by 3 matrix on the right side has full rank as long as ID ̸≡ ID∗ mod p2. (γuID+ γh)p2

(γv)p2
(γuID

∗ + γvID
∗′ + γh)p2

 =

 (ID)p2 0 1
0 1 0

(ID∗)p2 (ID
∗′)p2 1

 ·
 (γu)p2

(γv)p2
(γh)p2

 .

(b) The k-th query is a decryption query of ⟨ID, C = (c0, c1)⟩.
– If ID = ID∗ and c0 = c∗0, B returns bit 0 and a random session key without using the

private key SKID. This is consistent to the correct answer from decryption, except with
negligible probability (Recall that we have proved in Lemma 3 that event E2 happens
with negligible probability). Hence, no information about SKID is leaked and (γuID

∗ +
γvID

∗′+γh)p2 is uniformly distributed over Zp2 according to Chinese Remainder Theorem.

29

– Else, let ID′ = H(ID, c0), B uses

(D0D
ID′

1 , D2) = (gα(uIDvID
′
h)rg

r̂2(γuID+γv ID
′+γh)

2 g
r̂3(γuID+γv ID

′+γh)+r3+r′3ID
′

3 , grgr̂22 g
r̂3+r′′3
3)

(D̄0D̄
ID′

1 , D̄2) = (gα(uIDvID
′
h)r̄g

r̄3+r̄′3ID
′

3 , gr̄g
r̄′′3
3)

to answer this decryption query according to Eq.(4), Eq.(5), Eq.(6).
Since event E3, E4, E5 have been eliminated in GameRestricted2 , then (ID, ID′) ̸≡ (ID∗, ID∗′)
mod p2. Observe that,

(
(γuID+ γvID

′ + γh)p2
(γuID

∗ + γvID
∗′ + γh)p2

)
=

(
(ID)p2 (ID′)p2 1
(ID∗)p2 (ID

∗′)p2 1

)
·

 (γu)p2
(γv)p2
(γh)p2

 .

The 2 by 3 matrix on the right side of the above equation has rank 2 as long as (ID, ID′) ̸≡
(ID∗, ID∗′) mod p2, so (γuID

∗ + γvID
∗′ + γh)p2 uniformly distributed over Zp2 , and the

challenge ciphertext has the same distribution as the semi-functional ciphertext.
In both cases, B properly simulated Gamek,1.

Hence, if T is a random element of Gp1p3 , then B has properly simulated Gamek−1,2. If T is a
random element of Gp1p2p3 , then B has properly simulated Gamek,1. Hence, B can use the output
of A to distinguish T ∈ Gp1p3 or Gp1p2p3 . Any non-negligible advantage of A is converted to a
non-negligible advantage of B. �

Lemma 6 Suppose that G satisfies Assumption 3. Then for each k ∈ [q], Gamek,1 and Gamek,2 are
computationally indistinguishable.

Proof. This proof is very similar to the proof of the previous lemma. Suppose there exists an
algorithm A that distinguishes Gamek,1 and Gamek,2. Then we can build an algorithm B with
non-negligible advantage in breaking Assumption 3. B is given G,GT , e,N , g,X1X2, Y2Y3, g3, g4, T
and will simulate Gamek,1 or Gamek,2 with A. First B chooses α, β, γu, γv, γh, γw ∈ ZN uniformly
at random, a collision-resistant hash function H : ZN × G → ZN and a key derivation function
KDF : GT → ZN . It then sets u = gγu , v = gγv , h = gγh ,W4 = gγw4 , and sends A the public
parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β ,H,KDF).

Let us now explain how B answers the i-th query made by A, which is a key query for ⟨ID⟩ or
a decryption query for ⟨ID, C⟩.

1. If i ̸= k, B responds as in the previous lemma.
2. Else (i.e., i = k), B first chooses r, r3, r

′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 ∈ ZN uniformly at random and

sets SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2), where

D0 = gα(uIDh)rgr33 (Y2Y3)
r2 , D1 = vrg

r′3
3 (Y2Y3)

r′2 , D2 = grg
r′′3
3 (Y2Y3)

r′′2 ,

D̄0 = gβT γuID+γhgr̄33 , D̄1 = T γvg
r̄′3
3 , D̄2 = Tg

r̄′′3
3 .

Then, B uses SKID to respond A’s query.

30

At some point, A sends B a challenge identity ID∗. B sends the challenge ciphertext C∗ = (c∗0, c
∗
1)

and session key K∗, which are constructed exactly as in the previous lemma, to A.
The rest of analysis is just like that in the previous lemma. �

Lemma 7 Suppose that G satisfies Assumption 4. Then GameFinal0 and Gameq,2 are computation-
ally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes GameFinal0 and Gameq,2. Then we
can build an algorithm B with non-negligible advantage in breaking Assumption 4. B is given
G,GT , e,N , g, g2, g3, g4, g

aX2, gsY2, T and will simulate GameFinal0 or Gameq,2 with A. First B
chooses β, γu, γv, γh, γw ∈ ZN uniformly at random, a collision-resistant hash function H : ZN×G→
ZN and a key derivation function KDF : GT → ZN . It then sets u = gγu , v = gγv , h = gγh ,W4 = gγw4 ,
and sends A the public parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, gaX2) = e(g, g)a, e(g, g)β , H,KDF).

(B sets α = a implicitly.) Now we show how B answers the query made byA, which is a key query
for ⟨ID⟩ or a decryption query for ⟨ID, C⟩. B first chooses r, r̄, r3, r

′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 , r̄2, r̄

′
2, r̄

′′
2 ∈

ZN uniformly at random, and generates a semi-functional key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2)
of type 2 for ID, where

D0 = gaX2 · (uIDh)rgr33 gr22 , D1 = vrg
r′3
3 g

r′2
2 , D2 = grg

r′′3
3 g

r′′2
2 ,

D̄0 = gβ(uIDh)r̄gr̄33 gr̄22 , D̄1 = vr̄g
r̄′3
3 g

r̄′2
2 , D̄2 = gr̄g

r̄′′3
3 g

r̄′′2
2 .

Then, B uses SKID to respond A’s query.
At some point, A sends B a challenge identity ID∗. B chooses δ ← {0, 1} and does the following.

If δ = 0, it chooses c∗0, c
∗
1 ← G and K∗ ← GT ; otherwise (i.e., δ = 1), it chooses t4, t2, t

′
2 ← ZN and

sets

c∗0 = gsY2 · gt44 gt22 , c∗1 = (gsY2)
γuID

∗+γv ID
∗′+γhg

KDF(T)
4 g

t′2
2 , K∗ = e(gβ , gsY2) = e(g, g)βs,

where ID∗′ = H(ID∗, c∗0). Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and session key K∗

to A.
It is clear that, if T = e(g, g)as, then B has properly simulated Gameq,2. If T is a random element

of GT , then B has properly simulated GameFinal0 . Hence, B can use the output of A to distinguish
between two possibilities for T . �

Lemma 8 Suppose that KDF is a secure key derivation function. Then GameFinal1 and GameFinal0
are computationally indistinguishable.

Proof. It is clear that the adversary distinguishes GameFinal1 and GameFinal0 with negligible proba-
bility, since in GameFinal0 , X

′ ← GT and KDF is a secure key derivation function. �

Lemma 9 Suppose that G satisfies Assumption 4. Then GameFinal2 and GameFinal1 are computa-
tionally indistinguishable.

31

Proof. Suppose there exists an algorithm A that distinguishes GameFinal2 and GameFinal1 . Then
we can build an algorithm B with non-negligible advantage in breaking Assumption 4. B is given
G,GT , e,N , g, g2, g3, g4, g

aX2, g
sY2, T and will simulate GameFinal2 or GameFinal1 with A. First B

chooses α, γu, γv, γh, γw ∈ ZN uniformly at random, a collision-resistant hash function H : ZN×G→
ZN and a key derivation function KDF : GT → ZN . It then sets u = gγu , v = gγv , h = gγh ,W4 = gγw4 ,
and sends A the public parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(gaX2, g) = e(g, g)a, H,KDF).

(B sets β = a implicitly.) Now we show how B answers the query made byA, which is a key query
for ⟨ID⟩ or a decryption query for ⟨ID, C⟩. B first chooses r, r̄, r3, r

′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 , r̄2, r̄

′
2, r̄

′′
2 ∈

ZN uniformly at random, and generates a semi-functional key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2)
of type 2 for ID, where

D0 = gα(uIDh)rgr33 gr22 , D1 = vrg
r′3
3 g

r′2
2 , D2 = grg

r′′3
3 g

r′′2
2 ,

D̄0 = gaX2 · (uIDh)r̄gr̄33 gr̄22 , D̄1 = vr̄g
r̄′3
3 g

r̄′2
2 , D̄2 = gr̄g

r̄′′3
3 g

r̄′′2
2 .

Then, B uses SKID to respond A’s query.
At some point, A sends B a challenge identity ID∗. B chooses δ ← {0, 1} and does the following.

If δ = 0, it chooses c∗0, c
∗
1 ← G and K∗ ← GT ; otherwise (i.e., δ = 1), it chooses t4, t

′
4, t2, t

′
2 ← ZN

and sets
c∗0 = gsY2 · gt44 gt22 , c∗1 = (gsY2)

γuID
∗+γvID

∗′+γhg
t′4
4 g

t′2
2 , K∗ = T,

where ID∗′ = H(ID∗, c∗0). Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and session key K∗

to A.
It is clear that, if T = e(g, g)as, then B has properly simulated GameFinal1 . If T is a random

element of GT , then B has properly simulated GameFinal2 . Hence, B can use the output of A to
distinguish between two possibilities for T . �

Lemma 10 Suppose that G satisfies Assumption 5. Then GameFinal3 and GameFinal2 are computa-
tionally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes GameFinal3 and GameFinal2 . Then
we can build an algorithm B with non-negligible advantage in breaking Assumption 5. B is given
G,GT , e,N , gW4, gA2, u, u

sB24, v, v
sX24, h, h

sY24, g2, g3, g4, T and will simulate GameFinal3 or GameFinal2
with A. First B chooses α, β ∈ ZN uniformly at random, a collision-resistant hash function
H : ZN × G → ZN and a key derivation function KDF : GT → ZN . It then sends A the pub-
lic parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(gW1, gA2)
α = e(g, g)α, e(gW1, gA2)

β = e(g, g)β ,H,KDF).

Now we show how B answers the query made by A, which is a key query for ⟨ID⟩ or a decryp-
tion query for ⟨ID, C⟩. B first chooses r, r̄, r3, r

′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 , r̄2, r̄

′
2, r̄

′′
2 ∈ ZN uniformly at

random, and generates a semi-functional key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2) of type 2 for ID,
where

D0 = (gA2)
α · (uIDh)rgr33 gr22 , D1 = vrg

r′3
3 g

r′2
2 , D2 = (gA2)

rg
r′′3
3 g

r′′2
2 ,

D̄0 = (gA2)
β · (uIDh)r̄gr̄33 gr̄22 , D̄1 = vr̄g

r̄′3
3 g

r̄′2
2 , D̄2 = (gA2)

r̄g
r̄′′3
3 g

r̄′′2
2 .

32

Then, B uses SKID to respond A’s query.
At some point, A sends B a challenge identity ID∗. B first chooses δ ← {0, 1} and a session key

K∗ ← GT . Then, if δ = 0, B chooses c∗0, c
∗
1 ← G; otherwise (i.e., δ = 1), it chooses t4, t

′
4, t2, t

′
2 ← ZN

and sets
c∗0 = T · gt44 gt22 , c∗1 = (usB24)

ID∗
(vsX24)

ID∗′
(hsY24)g

t′4
4 g

t′2
2 ,

where ID∗′ = H(ID∗, c∗0). Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and the session key

K∗ to A.
It is clear that, if T = gsE24, then B has properly simulated GameFinal2 . If T is a random

element of Gp1p2p4 , then B has properly simulated GameFinal3 . Hence, B can use the output of A to
distinguish between two possibilities for T . �

Lemma 11 Suppose that G satisfies Assumption 6. Then GameFinal4 and GameFinal3 are computa-
tionally indistinguishable.

Proof. Suppose there exists an algorithm A that distinguishes GameFinal4 and GameFinal3 . Then
we can build an algorithm B with non-negligible advantage in breaking Assumption 6. B is given
G,GT , e,N , g, g2, X2X3, g4, T and will simulate GameFinal4 or GameFinal3 with A. First B chooses
α, β, γu, γv, γh, γw ∈ ZN uniformly at random, a collision-resistant hash function H : ZN ×G→ ZN

and a key derivation function KDF : GT → ZN . It then sets u = gγu , v = gγv , h = gγh ,W4 = gγw4 ,
and sends A the public parameter:

PK = ((G,GT , e,N), u, v, h,W14 = gW4, g4, e(g, g)α, e(g, g)β , H,KDF).

Now we show how B answers the query made by A, which is a key query for ⟨ID⟩ or a decryp-
tion query for ⟨ID, C⟩. B first chooses r, r̄, r3, r

′
3, r

′′
3 , r2, r

′
2, r

′′
2 , r̄3, r̄

′
3, r̄

′′
3 , r̄2, r̄

′
2, r̄

′′
2 ∈ ZN uniformly at

random, and generates a semi-functional key SKID = (ID, D0, D1, D2, D̄0, D̄1, D̄2) of type 2 for ID,
where

D0 = gα(uIDh)r(X2X3)
r3gr22 , D1 = vr(X2X3)

r′3g
r′2
2 , D2 = gr(X2X3)

r′′3 g
r′′2
2 ,

D̄0 = gβ(uIDh)r̄(X2X3)
r̄3gr̄22 , D̄1 = vr̄(X2X3)

r̄′3g
r̄′2
2 , D̄2 = gr̄(X2X3)

r̄′′3 g
r̄′′2
2 .

Then, B uses SKID to respond A’s query.
At some point, A sends B a challenge identity ID∗. B chooses δ ← {0, 1} and a session key

K∗ ← GT . Then, if δ = 0, it chooses c∗0, c
∗
1 ← G; otherwise (i.e., δ = 1), it chooses z ← ZN and sets

c∗0 = T and c∗1 = T z. Finally, B sends the challenge ciphertext C∗ = (c∗0, c
∗
1) and the session key K∗

to A.
It is clear that, if T is a random element of Gp1p2p4 , then B has properly simulated GameFinal3 .

If T is a random element of G, then B has properly simulated GameFinal4 . Hence, B can use the
output of A to distinguish between two possibilities for T . �

F Extractable 1SPO-IBE Based on Boyen-Waters Anonymous HIBE

In this Appendix, we first show how to construct an extractable 1SPO-IBE from Boyen-Waters
anonymous HIBE [9], which is based on a prime order bilinear group. Then, based on some mild
complexity assumptions, we prove that the proposed extractable 1SPO-IBE scheme is IND-sID-
CCA secure. One may modify it to achieve full security using the method proposed in Water’s IBE
scheme [29].

Specifically, the proposed scheme consists of the following algorithms:

33

Setupex(1
κ): Generate a bilinear group (G,GT , e, p) with the security parameter κ, where e :

G × G → GT is a non-degenerate bilinear map, and G,GT are cyclic groups of prime order p.
Next choose g, u, v, d ← G and α, β, {ai, bi, θi,j}0≤i≤3,0≤j≤2 ← Zp. Then, for each 0 ≤ i ≤ 3
and 0 ≤ j ≤ 2, set gi,j = gaiθi,j and hi,j = gbiθi,j . Finally, choose two collision-resistant hash
functions H1 : Zp×G→ Zp, H2 : Zp×G9 → Zp, and a key derivation function KDF : GT → Zp.
The public parameter is

PK = ((G,GT , e, p), g, u, v, d, {gi,j , hi,j}0≤i≤3,0≤j≤2, e(g, g)α, e(g, g)β , H1,H2,KDF).

The master secret key is MSK = (gα, gβ , {gai , gbi , gaibiθi,j}0≤i≤3,0≤j≤2). We require the group
G is an efficiently samplable and explainable domain associated with algorithms Sample and
Sample−1. Details on how to instantiate such groups are given in [3].

KeyGenex(PK,MSK, ID ∈ Zp): Choose {ri, r̄i}0≤i≤3 ← Zp. Output the private key SKID = (ID,
k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3, w̄0), where

k0 = gα
3∏

i=0

(gaibiθi,0(gaibiθi,1)ID)ri , ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri , w0 =

3∏
i=0

(gaibiθi,2)ri ,

k̄0 = gβ
3∏

i=0

(gaibiθi,0(gaibiθi,1)ID)r̄i , k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i , w̄0 =
3∏

i=0

(gaibiθi,2)r̄i .

Encryptex(PK, ID ∈ Zp,m ∈ {0, 1}): If m = 1, choose s, {si}0≤i≤3 ← Zp and compute

c0 = gs, {ci,(a) = (gi,0g
ID
i,1g

ID′
i,2)

si , ci,(b) = (hi,0h
ID
i,1h

ID′
i,2)

s−si}0≤i≤3, c2 = (utvKDF(e(g,g)αs)d)s,

K = e(g, g)βs,

where ID′ = H1(ID, c0) and t = H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)), then output the ciphertext
and the session key (C,K) = ((c0, {ci,(a), ci,(b)}0≤i≤3, c2),K); otherwise (i.e., m = 0), choose c0,
{ci,(a), ci,(b)}0≤i≤3, c2 ← Sample(G), and output the ciphertext C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2).

Decryptex(PK,SKID = (ID, k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3, w̄0), C = (c0, {ci,(a),
ci,(b)}0≤i≤3, c2)): Compute ID′ = H(ID, c0), t = H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)), and

k′0 = k0w
ID′

0 , X = e(c0, k
′
0)

3∏
i=0

(e(ci,(a), ki,(b)) · e(ci,(b), ki,(a))).

(One can view (k′0, {ki,(a), ki,(b)}0≤i≤3) as a private key associated to the 2-level identity ĨD =

(ID, ID′).) Then, check whether e(c2, g) = e(c0, utvKDF(X)d). If not, set m = 0 and choose a
session key K ← GT . Otherwise, set m = 1 and compute

k̄′0 = k̄0w̄
ID′

0 , K = e(c0, k̄
′
0)

3∏
i=0

(e(ci,(a), k̄i,(b)) · e(ci,(b), k̄i,(a))).

Output (m,K).

34

Correctness. Observe that, (k′0, {ki,(a), ki,(b)}0≤i≤3) and (k̄′0, {k̄i,(a), k̄i,(b)}0≤i≤3) can be written as

k′0 = gα
3∏

i=0

(gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID
′
)ri , ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

k̄′0 = gβ
3∏

i=0

(gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID
′
)r̄i , k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i .

If C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2) is an encryption of 1 under identity ID, then

X = e(c0, k
′
0)
∏3

i=0(e(ci,(a), ki,(b)) · e(ci,(b), ki,(a))) = e(g, g)αs,

e(c2, g) = e((utvKDF(e(g,g)αs)d)s, g) = e(c0, utvKDF(X)d),

K = e(c0, k̄
′
0)
∏3

i=0(e(ci,(a), k̄i,(b)) · e(ci,(b), k̄i,(a))) = e(g, g)βs,

so decryption always succeeds. On the other hand, if C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2) is an encryption
of 0 under identity ID, then c0, {ci,(a), ci,(b)}0≤i≤3, c2 ∈ G are chosen uniformly at random, thus

Pr[e(c2, g) = e(c0, utvKDF(X)d)] ≤ 1
2κ where κ is the security parameter. So the completeness error

is 1
2κ .

One-Sided Public Openability (1SPO). If C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2) is an encryption of 0 under
identity ID, then c0, {ci,(a), ci,(b)}0≤i≤3, c2 are randomly distributed in G. Since the group G is an effi-

ciently samplable and explainable domain associated with Sample and Sample−1, POpen(PK, ID, C =
(c0, {ci,(a), ci,(b)}0≤i≤3, c2)) can employ Sample−1 to open (c0, {ci,(a), ci,(b)}0≤i≤3, c2). More precisely,
(R0, {Ri,(a), Ri,(b)}0≤i≤3, R2)← POpen(PK, ID, (c0, {ci,(a), ci,(b)}0≤i≤3, c2)), where

R0 ← Sample−1(G, c0), {Ri,(a) ← Sample−1(G, ci,(a)), Ri,(b) ← Sample−1(G, ci,(b))}0≤i≤3,

R2 ← Sample−1(G, c2).

Security. We first review some mild complexity assumptions in the bilinear group (G,GT , e, p).

Computational Diffie-Hellman (CDH) Problem. The CDH problem in G is defined as fol-
lows: Given a tuple (G,GT , e, p, g, g

x, gy) as input, where g ← G and x, y ← Zp, output g
xy. The

advantage of an algorithm A in solving the CDH problem is defined as Pr[A(G,GT , e, p, g, g
x, gy)

= gxy], where the probability is over the random choices of g ∈ G and x, y ∈ Zp, and the ran-
dom bits of A. We say that the CDH assumption holds in G if all probabilistic polynomial time
algorithms have at most a negligible advantage in solving the CDH problem in G.

Decision Bilinear Diffie-Hellman (DBDH) Problem. The DBDH problem in G is defined
as follows: Given a tuple (G,GT , e, p, g, g

x, gy, gz, e(g, g)ω) as input, output 1 if ω = xyz and 0
otherwise. The advantage of an algorithm A in solving the DBDH problem is defined as

|Pr[A(G,GT , e, p, g, g
x, gy, gz, e(g, g)ω) = 1 : g ∈ G, x, y, z, ω ← Zp]

−Pr[A(G,GT , e, p, g, g
x, gy, gz, e(g, g)xyz) = 1 : g ∈ G, x, y, z ← Zp]|,

where the probability is over the random choices of g ∈ G and x, y, z, ω ∈ Zp, and the random
bits of A. We say that the DBDH assumption holds in G if all probabilistic polynomial time
algorithms have at most a negligible advantage in solving the DBDH problem in G.

35

Decision Linear (DLN) Problem. The DLN problem in G is defined as follows: Given a tuple
(G,GT , e, p, g, g

z1 , gz2 , gz1z3 , gz2z4 , gz) as input, output 1 if z = z3 + z4 and 0 otherwise. The
advantage of an algorithm A in solving the DLN problem is defined as

|Pr[A(G,GT , e, p, g, g
z1 , gz2 , gz1z3 , gz2z4 , gz) = 1 : g ∈ G, z1, z2, z3, z4, z ← Zp]

−Pr[A(G,GT , e, p, g, g
z1 , gz2 , gz1z3 , gz2z4 , gz3+z4) = 1 : g ∈ G, z1, z2, z3, z4 ← Zp]|,

where the probability is over the random choices of g ∈ G and z1, z2, z3, z4, z ∈ Zp, and the
random bits of A. We say that the DLN assumption holds in G if all probabilistic polynomial
time algorithms have at most a negligible advantage in solving the DLN problem in G.

We now state the security theorem of proposed extractable 1SPO-IBE scheme.

Theorem 3 If DBDH, DLN and CDH Assumptions hold in G, H1,H2 are two collision-resistant
hash functions and KDF is a secure key derivation function, then the above extractable 1SPO-IBE
scheme is IND-sID-CCA secure.

Proof. To prove the IND-sID-CCA security of the above extractable 1SPO-IBE scheme, we consider
the following games.

GameReal: This is the real IND-sID-CCA security game.

GameRestricted: This game is the same as GameReal except for the way that the challenger answers
the decryption queries made by the adversary. Let (C∗ = (c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) be the
challenge ciphertext and session key. Recall that, C∗ is a ciphertext encrypting δ under the
challenge identity ID∗, where δ ← {0, 1} is chosen by the challenger. When the adversary issues
a decryption query for ⟨ID, C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2)⟩, the challenger proceeds just like in
GameReal, except for the following cases.

1. If ID = ID∗, c0 ̸= c∗0 and H1(ID
∗, c∗0) = H1(ID, c0), then the challenger outputs reject and

halts.

2. Else if (ID, c0, {ci,(a), ci,(b)}0≤i≤3) = (ID∗, c∗0, {c∗i,(a), c
∗
i,(b)}0≤i≤3) and c2 ̸= c∗2, then the chal-

lenger outputs the message 0 and a random session key.

3. Else if (ID, c0) = (ID∗, c∗0), ({ci,(a), ci,(b)}0≤i≤3) ̸= ({c∗i,(a), c
∗
i,(b)}0≤i≤3) and H2(ID, c0, c0,(a), c0,(b),

. . . , c3,(a), c3,(b)) = H2(ID
∗, c∗0, c

∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b)), then the challenger outputs reject

and halts.

4. Else if (ID, c0) = (ID∗, c∗0) and H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)) ̸= H2(ID
∗, c∗0, c

∗
0,(a), c

∗
0,(b),

. . . , c∗3,(a), c
∗
3,(b)), then the challenger outputs the message 0 and a random session key.

Game−3 This is like GameRestricted except that the challenge ciphertext and session key (C∗ =
(c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) under the challenge identity ID∗ for δ = 1 is,

c∗0 = gs, {c∗i,(a) = (gi,0g
ID∗
i,1 gID

∗′
i,2)si , c∗i,(b) = (hi,0h

ID∗
i,1 hID

∗′
i,2)s−si}0≤i≤3, c∗2 = (utvKDF(X′)d)s,

K∗ = e(g, g)βs,

where s, {si}0≤i≤3 ← Zp, X ′ ← GT , ID∗′ = H1(ID
∗, c∗0) and t = H2(ID

∗, c∗0, c
∗
0,(a), c

∗
0,(b), . . .,

c∗3,(a), c
∗
3,(b)).

36

Game−2 The game is the same as Game−3 except that the challenge ciphertext and session key
(C∗ = (c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) under the challenge identity ID∗ for δ = 1 is,

c∗0 = gs, {c∗i,(a) = (gi,0g
ID∗
i,1 gID

∗′
i,2)si , c∗i,(b) = (hi,0h

ID∗
i,1 hID

∗′
i,2)s−si}0≤i≤3, c∗2 ← GT ,

K∗ = e(g, g)βs,

where s, {si}0≤i≤3 ← Zp and ID∗′ = H1(ID
∗, c∗0).

Game−1 This game is the same as Game−2 except that the challenge ciphertext and session key
(C∗ = (c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) under the challenge identity ID∗ for δ = 1 is,

c∗0 = gs, {c∗i,(a) = (gi,0g
ID∗
i,1 gID

∗′
i,2)si , c∗i,(b) = (hi,0h

ID∗
i,1 hID

∗′
i,2)s−si}0≤i≤3, c∗2 ← G,

K∗ ← GT ,

where s, {si}0≤i≤3 ← Zp and ID∗′ = H1(ID
∗, c∗0).

Gamek(0 ≤ k ≤ 3): This game is like Game−1 except that the challenge ciphertext and session key
(C∗ = (c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) under the challenge identity ID∗ for δ = 1 is,

c∗0 = gs, {c∗i,(a), c
∗
i,(b) ← G}0≤i≤k, {c∗i,(a) = (gi,0g

ID∗
i,1 gID

∗′
i,2)si , c∗i,(b) = (hi,0h

ID∗
i,1 hID

∗′
i,2)s−si}k<i≤3,

c∗2 ← G, K∗ ← GT ,

where s, {si}k<i≤3 ← Zp and ID∗′ = H1(ID
∗, c∗0).

We prove there games are indistinguishable in the following lemmas. In Game3, it is clear that
the value of δ is information-theoretically hidden from the adversary. Hence the adversary has no
advantage in Game3. Therefore, we conclude that the advantage of the adversary in GameReal is
negligible. �

Lemma 12 Suppose that CDH Assumption holds in G and H1,H2 are collision-resistant hash
functions. Then GameReal and GameRestricted are computationally indistinguishable.

Proof. Let (C∗ = (c∗0, {c∗i,(a), c
∗
i,(b)}0≤i≤3, c

∗
2),K

∗) be the challenge ciphertext and session key under

the challenge identity ID∗. Recall that C∗ is the ciphertext encrypting δ under ID∗, where δ ← {0, 1}
is chosen by the challenger. We observe that GameReal and GameRestricted behave equivalently unless
the following events happen:

– event E1: the adversary makes a decryption query for ⟨ID = ID∗, C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2)⟩
such that c0 ̸= c∗0 and H1(ID, c0) = H1(ID

∗, c∗0). It is clear that, suppose that H1 is a collision-
resistant hash function, this event happens with negligible probability.

– event E2: the adversary makes a decryption query for ⟨ID = ID∗, C = (c0 = c∗0, {ci,(a) =
c∗i,(a), ci,(b) = c∗i,(b)}0≤i≤3, c2)⟩ such that c2 ̸= c∗2 and the challenger responds with (1,K) in
GameReal. Recall that in GameRestricted, the challenger returns message 0 and a random session
key for such a query, while in GameReal, the challenger will employ decryption algorithm to
answer the query. We will show that event E2 occurs with negligible probability in GameReal.

In GameReal, if δ = 1, Decryptex(PK,SKID, C) always outputs bit 0 and a random session key
and E2 never occurs in this case. Therefore, if E2 happens, we must have δ = 0 in GameReal. We
show that if E2 happens with non-negligible probability, we can construct a PPT algorithm B

37

to solve the CDH problem over G. B is given (G,GT , e, p, g, g
x, gy) and going to compute gxy.

B simulates GameReal to the adversary as follows.

Initially, the adversary announces the identity ID∗ it wants to be challenged upon. B chooses
α, β, {ai, bi, θi,j}0≤i≤3,0≤j≤2, ηu, ηv, ηd, γu, γv, γd ← Zp and sets

{gi,j = gaiθi,j , hi,j = gbiθi,j}0≤i≤3,0≤j≤2, u = (gx)ηugγu , v = (gx)ηvgγu , d = (gx)ηdgγd .

It also chooses two collision-resistant hash functions H1 : Zp×G→ Zp, H2 : Zp×G9 → Zp, and
a key derivation function KDF : GT → Zp. Then, B sends the adversary the public parameter:

PK = ((G,GT , e, p), g, u, v, d, {gi,j , hi,j}0≤i≤3,0≤j≤2, e(g, g)α, e(g, g)β , H1,H2,KDF).

Note that B knows the master secret key MSK = (gα, gβ , {gai , gbi , gaibiθi,j}0≤i≤3,0≤j≤2) associ-
ated with PK, thus is able to answer the key generation and decryption queries made by the
adversary with the help of MSK. When the adversary asks for the challenge ciphertext and
session key under ID∗, B sends (C∗ = (c∗0 = gy, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗) to the adversary,
where

{c∗i,(a), c
∗
i,(b)}0≤i≤3, c

∗
2 ← G,K∗ ← GT .

Since δ = 0, from the adversary’s point of view, the distribution of (C∗,K∗) is identical of that
in GameReal.

Suppose that event E2 happens during the simulation, i.e., the adversary makes a decryp-
tion query for ⟨ID = ID∗, C = (c0 = c∗0, {ci,(a) = c∗i,(a), ci,(b) = c∗i,(b)}0≤i≤3, c2)⟩ such that

c2 ̸= c∗2 and B gets (1,K) when decrypting C with the private key SKID∗ . Let SKID∗ =
(ID∗, k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3, w̄0), then

e(c2, g) = e(c∗0, utvrd),

where t = H2(ID
∗, c∗0, c

∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b)), r = KDF(X), X = e(c∗0, k0w

ID∗′
0)

∏3
i=0(e(c

∗
i,(a),

ki,(b)) · e(c∗i,(b), ki,(a))) and ID∗′ = H1(ID
∗, c∗0). Observe that,

e(c∗0, u
tvrd) = e(g, (utvrd)y) = e(g, (gxy)tηu+rηv+ηd · (gy)tγu+rγv+γd).

Since ηu, ηv, ηd are chosen uniformly at random in Zp and are hidden by blinding factors
γu, γv, γd, then with overwhelming probability, tηu + rηv + ηd is not equal to 0 and B can

compute gxy =
(
c2/(g

y)tγu+rγv+γd
)1/(tηu+rηv+ηd), which is a solution to the CDH problem with

respect to (G,GT , e, p, g, g
x, gy).

To sum up, event E2 happens with negligible probability if the CDH Assumption holds.

– event E3: the adversary makes a decryption query for ⟨ID = ID∗, C = (c0 = c∗0, {ci,(a), ci,(b)}0≤i≤3,
c2)⟩ such that ({ci,(a), ci,(b)}0≤i≤3) ̸= ({c∗i,(a), ci,(b)∗}0≤i≤3) and H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a),

c3,(b)) = H2(ID
∗, c∗0, c

∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b)). It is clear that, suppose that H2 is a collision-

resistant hash function, this event happens with negligible probability.

– event E4: the adversary makes a decryption query for ⟨ID = ID∗, C = (c0 = c∗0, {ci,(a), ci,(b)}0≤i≤3,
c2)⟩ such that H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)) ̸= H2(ID

∗, c∗0, c
∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b))

and the challenger outputs (1,K) in GameReal. We show that, if this event happens with non-
negligible probability, we can construct a PPT algorithm B to solve the CDH problem over G.
B is given G,GT , e, p, g, g

x, gy and will simulate GameReal with the adversary.
Initially, the adversary announces the identity ID∗ it wants to be challenged upon. B generates
the system’s public parameter and master secret key as follows.

38

1. Choose two collision-resistant hash functions H1 : Zp × G → Zp, H2 : Zp × G9 → Zp and a
key derivation function KDF : GT → Zp.

2. Choose α, β, {ai, bi, θi,j}0≤i≤3,0≤j≤2 ← Zp and set {gi,j = gaiθi,j , hi,j = gbiθi,j}0≤i≤3,0≤j≤2.

3. Choose {si}0≤i≤3 ← Zp, and set c∗0 = gy,

{c̃i,(a) = gsi(aiθi,0+aiθi,1ID
∗+aiθi,2ID

∗′), c̃i,(b) = (gyg−si)biθi,0+biθi,1ID
∗+biθi,2ID

∗′
}0≤i≤3,

where ID∗′ = H1(ID
∗, c∗0). Observe that, for each 0 ≤ i ≤ 3, c̃i,(a) = (gi,0g

ID∗
i,1 gID

∗′
i,2)si and

c̃i,(b) = (hi,0h
ID∗
i,1 hID

∗′
i,2)y−si .

4. Set t∗ = H2(ID
∗, c∗0, c̃0,(a), c̃0,(b), . . . , c̃3,(a), c̃3,(b)) and r∗ = KDF(e(gα, gy)). Choose ηu, ηv, ηd, γu,

γv, γd ← Zp, subject to the constraint that ηd = −(ηut∗ + ηvr
∗), and set

u = (gx)ηugγu , v = (gx)ηvgγv , d = (gx)ηdgγd .

5. Set the public parameter as

PK = ((G,GT , e, p), g, u, v, d, {gi,j , hi,j}0≤i≤3,0≤j≤2, e(g, g)α, e(g, g)β , H1,H2,KDF),

and the master secret key MSK = (gα, gβ , {gai , gbi , gaibiθi,j}0≤i≤3,0≤j≤2). Obviously, from the
perspective of the adversary the distribution of the public parameter is identical to the real
construction.

B sends the adversary the public parameter PK. Since it knows the master secret key MSK
associated with PK, then B is able to answer the key generation and decryption queries made
by the adversary with the help of MSK. When the adversary asks for the challenge ciphertext
and session key under ID∗, B chooses δ ← {0, 1} and sends (C∗ = (c∗0, {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2),K

∗)
to the adversary, where

{c∗i,(a) = c̃i,(a), c
∗
i,(b) = c̃i,(b)}0≤i≤3, c

∗
2 = (gy)t

∗γu+r∗γv+γd ,K∗ = e(gβ , gy) if δ = 1

{c∗i,(a), c
∗
i,(b)}0≤i≤3, c

∗
2 ← G,K∗ ← GT if δ = 0

.

Recall that t∗ = H2(ID
∗, c∗0, c̃0,(a), c̃0,(b), . . . , c̃3,(a), c̃3,(b)), r

∗ = KDF(e(gα, gy)) and ηd = −(ηut∗+
ηvr

∗), thus when δ = 1, c∗2 = (gy)t
∗γu+r∗γv+γd can be written as (ut

∗
vr

∗
d)y. Hence, whether

δ = 1 or δ = 0, from the adversary’s point of view, the distribution of (C∗,K∗) is identical of
that in GameReal.

Suppose that event E4 happens during the simulation, i.e., the adversary makes a decryption
query for ⟨ID = ID∗, C = (c0 = c∗0, {ci,(a), ci,(b)}0≤i≤3, c2)⟩ such that H2(ID, c0, c0,(a), c0,(b), . . .,
c3,(a), c3,(b)) ̸= H2(ID

∗, c∗0, c
∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b)) and B gets (1,K) when decrypting C with

the private key SKID∗ . Let SKID∗ = (ID∗, k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3, w̄0),
then

e(c2, g) = e(c∗0, utvrd),

where t = H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)), r = KDF(X), X = e(c∗0, k0w
ID′
0)

∏3
i=0(e(ci,(a),

ki,(b)) · e(ci,(b), ki,(a))) and ID′ = H1(ID, c0). Observe that,

e(c∗0, u
tvrd) = e(g, (utvrd)y) = e(g, (gxy)tηu+rηv+ηd · (gy)tγu+rγv+γd).

39

Since t ̸= t∗ and ηd = −(ηut∗ + ηvr
∗), then with negligible probability, tηu + rηv + ηd =

(t− t∗)ηu+(r−r∗)ηv is equal to 0. (Note that, ηu, ηv are chosen uniformly at random in Zp and
are hidden by blinding factors γu, γv, γd.) Hence, with overwhelming probability, B can compute

gxy =

(
c2

(gy)tγu+rγv+γd

)1/(tηu+rηv+ηd)

,

which is a solution to the CDH problem with respect to (G,GT , e, p, g, g
x, gy).

Hence, event E4 happens with negligible probability if the CDH Assumption holds.

Thus, suppose that CDH Assumption holds in G and H1,H2 are collision-resistant hash functions,
GameReal and GameRestricted are computationally indistinguishable. �

Lemma 13 Suppose that DBDH Assumption holds in G. Then GameRestricted and Game−3 are
computationally indistinguishable.

Proof. The proof is basically the same as the proof of confidentiality of Boyen-Waters anonymous
HIBE [10] (i.e., Theorem 6 in [10]). Suppose there exists a PPT adversary A that distinguishes
GameRestricted and Game−3. Then we can build an algorithm B with non-negligible advantage in
breaking DBDH Assumption. B is given G,GT , e, p, g, g

x, gy, gz, T and will simulate GameRestricted
or Game−3 with A.

Initially, the adversary A announces the identity ID∗ it wants to be challenged upon. B first
sets c∗0 = gz and ID∗′ = H1(ID

∗, c∗0). Next it chooses β, {ai, bi, θ̂i,j , θ̃i,j}0≤i≤3,0≤j≤2, γu, γv, γd ← Zp,
subject to the constraint that {θ̃i,0 + ID∗θ̃i,1 + ID∗′θ̃i,2 = 0}0≤i≤3, and sets

{gi,j =
(
gθ̂i,j (gx)θ̃i,j

)ai
, hi,j =

(
gθ̂i,j (gx)θ̃i,j

)bi
}0≤i≤3,0≤j≤2, u = gγu , v = gγv , d = gγd .

Then, it chooses two collision-resistant hash functions H1 : Zp ×G→ Zp, H2 : Zp ×G9 → Zp, and
a key derivation function KDF : GT → Zp. The adversary A is provided with the public parameter

PK = ((G,GT , e, p), g, u, v, d, {gi,j , hi,j}0≤i≤3,0≤j≤2, e(gx, gy) = e(g, g)xy, e(g, g)β , H1,H2,KDF).

Note that, it sets α = xy and {θi,j = θ̂i,j + xθ̃i,j}0≤i≤3,0≤j≤2 implicitly, which are unknown by B.

Now we show that how B answers the query made by A, which is a key query for ⟨ID⟩ or a
decryption query for ⟨ID, C⟩.

– When A makes a key query for ⟨ID⟩ such that ID ̸= ID∗, B first defines {ϑ̂i = θ̂i,0 + IDθ̂i,1, ϑ̃i =
θ̃i,0 + IDθ̃i,1}0≤i≤3. Note that, with overwhelming probability, ϑ̃i ̸= 0, since θ̃i,0 and θ̃i,1 are

hidden by blinding factors θ̂i,0 and θ̂i,1, respectively. To proceed, B picks {r̃i, r̄i}0≤i≤3 ← Zp. It

40

also selects {χi}0≤i≤3 ← Zp in a manner to be specified later. Then, B computes

k0 = (gy)−
∑3

i=0 χiϑ̂i/ϑ̃i

3∏
i=0

(
gaibiϑ̂i(gx)aibiϑ̃i

)r̃i
,

ki,(a) = (gai)−r̃i(gy)χi/(biϑ̃i), ki,(b) = (gbi)−r̃i(gy)χi/(aiϑ̃i),

w0 = (gy)−
∑3

i=0 χiθ̂i,2/ϑ̃i

3∏
i=0

(
gaibiθ̂i,2(gx)aibiθ̃i,2

)r̃i
,

k̄0 = gβ
3∏

i=0

(
gaibiϑ̂i(gx)aibiϑ̃i

)r̄i
, k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i ,

w̄0 =
3∏

i=0

(
gaibiθ̂i,2(gx)aibiθ̃i,2

)r̄i
.

If we set ri = r̃i− yχi/(aibiϑ̃i), recall that α = xy and {θi,j = θ̂i,j +xθ̃i,j , ϑ̂i = θ̂i,0+ IDθ̂i,1, ϑ̃i =
θ̃i,0 + IDθ̃i,1}0≤i≤3,0≤j≤2, we have

k0 = (gα)
∑3

i=0 χi

3∏
i=0

(
gaibiθi,0(gaibiθi,1)ID

)ri
,

ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

w0 = (gα)
∑3

i=0 χiθ̃i,2/ϑ̃i

3∏
i=0

(gaibiθi,2)ri ,

k̄0 = gβ
3∏

i=0

(
gaibiθi,0(gaibiθi,1)ID

)r̄i
, k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i , w̄0 =

3∏
i=0

(gaibiθi,2)r̄i .

Observe that, if
∑3

i=0 χi = 1 and
∑3

i=0 χiθ̃i,2/ϑ̃i = 0, then the distribution of the private
key SKID = (ID, k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3, w̄0) is the same as in the

real scheme. As shown in [10] (i.e., Theorem 6 in [10]),
∑3

i=0 χi = 1 and
∑3

i=0 χiθ̃i,2/ϑ̃i = 0
constitute a linear system of 2 equations of 4 unknowns and admit a solution with overwhelming
probability. Finally, B sends the private key SKID to A.

– When A makes a decryption query for ⟨ID, C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2)⟩, let ID′ = H1(ID, c0),
B proceeds as follows.

1. If ID ̸= ID∗, B generates the private key SKID as in the response of key query, and answers
A’s decryption query with the help of SKID.

2. Else if ID = ID∗ and ID′ = ID∗′, B responds as in GameRestricted.

3. Else (i.e., ID = ID∗ and ID′ ̸= ID∗′), B first defines {ϑ̂i = θ̂i,0 + IDθ̂i,1 + ID′θ̂i,2, ϑ̃i = θ̃i,0 +
IDθ̃i,1+ID′θ̃i,2}0≤i≤3. Since θ̃i,0+ID∗θ̃i,1+ID∗′θ̃i,2 = 0 and ID′ ̸= ID∗′, then ϑ̃i ̸= 0. To proceed,
B picks {r̃i, r̄i}0≤i≤3 ← Zp. It also selects {χi}0≤i≤3 ← Zp in a manner to be specified later.

41

Then, B computes

k0 = (gy)−
∑3

i=0 χiϑ̂i/ϑ̃i

3∏
i=0

(
gaibiϑ̂i(gx)aibiϑ̃i

)r̃i
,

ki,(a) = (gai)−r̃i(gy)χi/(biϑ̃i), ki,(b) = (gbi)−r̃i(gy)χi/(aiϑ̃i),

k̄0 = gβ
3∏

i=0

(
gaibiϑ̂i(gx)aibiϑ̃i

)r̄i
, k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i ,

If we set ri = r̃i− yχi/(aibiϑ̃i), recall that α = xy and {θi,j = θ̂i,j +xθ̃i,j , ϑ̂i = θ̂i,0+ IDθ̂i,1+

ID′θ̂i,2, ϑ̃i = θ̃i,0 + IDθ̃i,1 + ID′θ̃i,2}0≤i≤3,0≤j≤2, we have

k0 = (gα)
∑3

i=0 χi

3∏
i=0

(
gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID

′
)ri

,

ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

k̄0 = gβ
3∏

i=0

(
gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID

′
)r̄i

, k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i .

Observe that, if
∑3

i=0 χi = 1, then (k0, {ki,(a), ki,(b)}0≤i≤3, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3) can be

viewed as a private key for the 2-level identity ĨD = (ID, ID′). Similarly,
∑3

i=0 χi = 1, which
constitutes a linear system of 1 equation of 4 unknowns, has a solution with overwhelming
probability. Next, B computes

t = H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)), X = e(c0, k0)

3∏
i=0

(e(ci,(a), ki,(b)) · e(ci,(b), ki,(a))),

and checks whether e(c2, g) = e(c0, utvKDF(X)d). If not, B sets m = 0 and chooses a session
key K ← GT . Otherwise, B sets m = 1 and computes

K = e(c0, k̄0)

3∏
i=0

(e(ci,(a), k̄i,(b)) · e(ci,(b), k̄i,(a))).

Finally, B sends (m,K) to the adversary A.

At some point, the adversary A asks for the challenge ciphertext and session key under ID∗.
B chooses δ ← {0, 1} and does the following. If δ = 0, it chooses {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2 ← G and

K∗ ← GT ; otherwise (i.e., δ = 1), it chooses {si}0≤i≤3 and sets

{c∗i,(a) = (gsi)ai(θ̂i,0+ID∗θ̂i,1+ID∗′θ̂i,2), c∗i,(b) = (gzg−si)bi(θ̂i,0+ID∗θ̂i,1+ID∗′θ̂i,2)}0≤i≤3,

t∗ = H2(ID
∗, c∗0, c

∗
0,(a), c

∗
0,(b), . . . , c

∗
3,(a), c

∗
3,(b)), r

∗ = KDF(T), c∗2 = (gz)t
∗γu+r∗γv+γd ,K∗ = e(gβ , gz).

Finally, B sends the challenge ciphertext C∗ = (c∗0, {c∗i,(a), c
∗
i,(b)}0≤i≤3, c

∗
2) and session key K∗ to the

adversary A. Note that, since θ̃i,0+ ID∗θ̃i,1+ ID∗′θ̃i,2 = 0, when δ = 1, c∗i,(a) and c∗i,(b) can be written

as (gi,0g
ID∗
i,1 gID

∗′
i,2)si and (hi,0h

ID∗
i,1 hID

∗′
i,2)z−si ,respectively.

42

It is clear that, if T = e(g, g)xyz, then B has properly simulated GameRestricted. If T is a random
element of GT , then B has properly simulated Game−3. Hence, B can use the output of A to
distinguish between two possibilities for T . �

Lemma 14 Suppose that KDF is a secure key derivation function. Then Game−3 and Game−2 are
computationally indistinguishable.

Proof. It is clear that the adversary distinguishes Game−3 and Game−2 with negligible probability,
since in Game−3, X

′ ← GT and KDF is a secure key derivation function. �

Lemma 15 Suppose that DBDH Assumption holds in G. Then Game−2 and Game−1 are compu-
tationally indistinguishable.

Proof. This argument follows almost identically to that of Lemma 13, except where the simulation
is done over the parameter β in place of α. �

Lemma 16 Suppose that DLN Assumption holds in G. Then for each 0 ≤ k ≤ 3, Gamek−1 and
Gamek are computationally indistinguishable.

Proof. The proof is basically same as the proof of anonymity of Boyen-Waters anonymous HIBE [10]
(i.e., Theorem 7 in [10]). For ease of description, without loss of generality, we assume k = 0. We will
show that Game−1 and Game0 are computationally indistinguishable. Suppose there exists a PPT
adversary A that distinguishes Game−1 and Game0. Then we can build an algorithm B with non-
negligible advantage in breaking DLN Assumption. B is given G,GT , e, p, g, g

z1 , gz2 , gz1z3 , gz2z4 , T
and will simulate Game−1 or Game0 with A.

Initially, the adversary A announces the identity ID∗ it wants to be challenged upon. B first sets
c∗0 = T and ID∗′ = H1(ID

∗, c∗0). Next it chooses α, β, {θ0,j}0≤j≤2, {ai, bi, θ̂i,j , θ̃i,j}1≤i≤3,0≤j≤2, γu, γv,
γd ← Zp, subject to the constraint that {θ̃i,0 + ID∗θ̃i,1 + ID∗′θ̃i,2 = 0}1≤i≤3, and sets

u = gγu , v = gγv , d = gγd ,

{g0,j = (gz1)θ0,j , h0,j = (gz2)θ0,j}0≤j≤2,

{gi,j =
(
gθ̂i,j (gz1)θ̃i,j

)ai
, hi,j =

(
gθ̂i,j (gz1)θ̃i,j

)bi
}1≤i≤3,0≤j≤2.

Then, it chooses two collision-resistant hash functions H1 : Zp ×G→ Zp, H2 : Zp ×G9 → Zp, and
a key derivation function KDF : GT → Zp. The adversary A is provided with the public parameter

PK = ((G,GT , e, p), g, u, v, d, {gi,j , hi,j}0≤i≤3,0≤j≤2, e(g, g)α, e(g, g)β , H1,H2,KDF).

Note that, it sets a0 = z1, b0 = z2 and {θi,j = θ̂i,j+z1θ̃i,j}1≤i≤3,0≤j≤2 implicitly, which are unknown
by B.

Now we show that how B answers the query made by A, which is a key query for ⟨ID⟩ or a
decryption query for ⟨ID, C⟩.

– When A makes a key query for ⟨ID⟩ such that ID ̸= ID∗, B first defines ϑ0 = θ0,0 + IDθ0,1 and

{ϑ̂i = θ̂i,0 + IDθ̂i,1, ϑ̃i = θ̃i,0 + IDθ̃i,1}1≤i≤3. Note that, with overwhelming probability, ϑ̃i ̸= 0,

since θ̃i,0 and θ̃i,1 are hidden by blinding factors θ̂i,0 and θ̂i,1, respectively. To proceed, B picks

43

{r′i, r̄′i}0≤i≤3 ← Zp. It also selects {χi, χ
′
i}1≤i≤3 ← Zp in a manner to be specified later. Then,

B computes

k0 = gα
3∏

i=1

((
(gz2)−ϑ̂i/ϑ̃i

)ϑ0r′0
(
gaibiϑ̂i(gz1)aibiϑ̃i

)r′i)
,

k0,(a) = (gz1)−3r′0 , k0,(b) = (gz2)−3r′0 ,

{ki,(a) = (gai)−r′i(gz2)χir
′
0ϑ0/(biϑ̃i), ki,(b) = (gbi)−r′i(gz2)χir

′
0ϑo/(aiϑ̃i)}1≤i≤3,

w0 =

(
3∏

i=1

(gz2)−χiθ̂i,2r
′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r′i
,

k̄0 = gα
3∏

i=1

((
(gz2)−ϑ̂i/ϑ̃i

)ϑ0r̄′0
(
gaibiϑ̂i(gz1)aibiϑ̃i

)r̄′i)
,

k̄0,(a) = (gz1)−3r̄′0 , k̄0,(b) = (gz2)−3r̄′0 ,

{k̄i,(a) = (gai)−r̄′i(gz2)χ
′
ir̄

′
0ϑ0/(biϑ̃i), k̄i,(b) = (gbi)−r̄′i(gz2)χ

′
ir̄

′
0ϑo/(aiϑ̃i)}1≤i≤3,

w̄0 =

(
3∏

i=1

(gz2)−χ′
iθ̂i,2r̄

′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r̄′i
,

If we set r0 = 3r′0, {ri = r′i− z2χir
′
0ϑ0/(aibiϑ̃i)}1≤i≤3, r̄0 = 3r̄′0 and {r̄i = r̄′i− z2χ

′
ir̄

′
0ϑ0/(aibiϑ̃i)

}1≤i≤3, recall that a0 = z1, b0 = z2, ϑ0 = θ0,0 + IDθ0,1 and {θi,j = θ̂i,j + z1θ̃i,j , ϑ̂i = θ̂i,0 +

IDθ̂i,1, ϑ̃i = θ̃i,0 + IDθ̃i,1}1≤i≤3,0≤j≤2, we have

k0 = gα
(
(gz2)r

′
0ϑ0

)∑3
i=1(χi−1)ϑ̂i/ϑ̃i

((
ga0b0θ0,0(ga0b0θ0,1)ID

)r0)∑3
i=1 χi/3

3∏
i=1

(
gaibiθi,0(gaibiθi,1)ID

)ri
,

ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

k̄0 = gα
(
(gz2)r̄

′
0ϑ0

)∑3
i=1(χ

′
i−1)ϑ̂i/ϑ̃i

((
ga0b0θ0,0(ga0b0θ0,1)ID

)r̄0)∑3
i=1 χ

′
i/3 3∏

i=1

(
gaibiθi,0(gaibiθi,1)ID

)r̄i
,

k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i .

Observe that, if
∑3

i=1(χi−1)ϑ̂i/ϑ̃i = 0,
∑3

i=1(χi−1) = 0,
∑3

i=1(χ
′
i−1)ϑ̂i/ϑ̃i = 0,

∑3
i=1(χ

′
i−1) =

0,
∑3

i=1 χiθ̃i,2/ϑ̃i = 3θ0,2/ϑ0 and
∑3

i=1 χ
′
iθ̃i,2/ϑ̃i = 3θ0,2/ϑ0, then

44

k0 = gα
3∏

i=0

(gaibiθi,0(gaibiθi,1)ID)ri , ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

w0 =

(
3∏

i=1

(gz2)−χiθ̂i,2r
′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r′i
= (gz1z2r

′
0)3θ0,2−

∑3
i=1 χiθ̃i,2ϑ0/ϑ̃i

(
3∏

i=1

(gz2)−χiθ̂i,2r
′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r′i
=

3∏
i=0

(gaibiθi,2)ri ,

and k̄0 = gβ
∏3

i=0(g
aibiθi,0(gaibiθi,1)ID)r̄i , k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i ,

w̄0 =

(
3∏

i=1

(gz2)−χ′
iθ̂i,2r̄

′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r̄′i
= (gz1z2r̄

′
0)3θ0,2−

∑3
i=1 χ

′
iθ̃i,2ϑ0/ϑ̃i

(
3∏

i=1

(gz2)−χ′
iθ̂i,2r̄

′
0ϑ0/ϑ̃i

)
3∏

i=1

(
gaibiθ̂i,2(gz1)aibiθ̃i,2

)r̄′i
=

3∏
i=0

(gaibiθi,2)r̄i .

Hence, the distribution of the private key SKID = (ID, k0, {ki,(a), ki,(b)}0≤i≤3, w0, k̄0, {k̄i,(a),
k̄i,(b)}0≤i≤3, w̄0) is the same as in the real scheme. As shown in [10] (i.e., Theorem 7 in [10]),∑3

i=1(χi − 1)ϑ̂i/ϑ̃i = 0,
∑3

i=1(χi − 1) = 0,
∑3

i=1(χ
′
i − 1)ϑ̂i/ϑ̃i = 0,

∑3
i=1(χ

′
i − 1) = 0,∑3

i=1 χiθ̃i,2/ϑ̃i = 3θ0,2/ϑ0 and
∑3

i=1 χ
′
iθ̃i,2/ϑ̃i = 3θ0,2/ϑ0 have a solution with overwhelming

probability. Finally, B sends the private key SKID to A.
– When A makes a decryption query for ⟨ID, C = (c0, {ci,(a), ci,(b)}0≤i≤3, c2)⟩, let ID′ = H1(ID, c0),
B proceeds as follows.

1. If ID ̸= ID∗, B generates the private key SKID as in the response of key query, and answers
A’s decryption query with the help of SKID.

2. Else if ID = ID∗ and ID′ = ID∗′, B responds as in GameRestricted.

3. Else (i.e., ID = ID∗ and ID′ ̸= ID∗′), B first defines ϑ0 = θ0,0 + IDθ0,1 + ID′θ0,2 and {ϑ̂i =

θ̂i,0+ IDθ̂i,1+ ID′θ̂i,2, ϑ̃i = θ̃i,0+ IDθ̃i,1+ ID′θ̃i,2}1≤i≤3. Since {θ̃i,0+ ID∗θ̃i,1+ ID∗′θ̃i,2 = 0}1≤i≤3

and ID′ ̸= ID∗′, then {ϑ̃i ̸= 0}1≤i≤3. To proceed, B picks {r′i, r̄′i}0≤i≤3 ← Zp. It also selects
{χi, χ

′
i}1≤i≤3 ← Zp in a manner to be specified later. Then, B computes

k0 = gα
3∏

i=1

((
(gz2)−ϑ̂i/ϑ̃i

)ϑ0r′0
(
gaibiϑ̂i(gz1)aibiϑ̃i

)r′i)
,

k0,(a) = (gz1)−3r′0 , k0,(b) = (gz2)−3r′0 ,

{ki,(a) = (gai)−r′i(gz2)χir
′
0ϑ0/(biϑ̃i), ki,(b) = (gbi)−r′i(gz2)χir

′
0ϑo/(aiϑ̃i)}1≤i≤3,

45

and

k̄0 = gα
3∏

i=1

((
(gz2)−ϑ̂i/ϑ̃i

)ϑ0r̄′0
(
gaibiϑ̂i(gz1)aibiϑ̃i

)r̄′i)
,

k̄0,(a) = (gz1)−3r̄′0 , k̄0,(b) = (gz2)−3r̄′0 ,

{k̄i,(a) = (gai)−r̄′i(gz2)χ
′
ir̄

′
0ϑ0/(biϑ̃i), k̄i,(b) = (gbi)−r̄′i(gz2)χ

′
ir̄

′
0ϑo/(aiϑ̃i)}1≤i≤3.

If we set r0 = 3r′0, {ri = r′i−z2χir
′
0ϑ0/(aibiϑ̃i)}1≤i≤3, r̄0 = 3r̄′0 and {r̄i = r̄′i−z2χ′

ir̄
′
0ϑ0/(aibiϑ̃i)

}1≤i≤3, recall that a0 = z1, b0 = z2, ϑ0 = θ0,0 + IDθ0,1 + ID′θ0,2 and {θi,j = θ̂i,j + z1θ̃i,j , ϑ̂i =

θ̂i,0 + IDθ̂i,1 + ID′θ̂i,2, ϑ̃i = θ̃i,0 + IDθ̃i,1 + ID′θ̃i,2}1≤i≤3,0≤j≤2, we have

k0 = gα
(
(gz2)r

′
0ϑ0

)∑3
i=1(χi−1)ϑ̂i/ϑ̃i

·
((

ga0b0θ0,0(ga0b0θ0,1)ID(ga0b0θ0,2)ID
′
)r0)∑3

i=1 χi/3
3∏

i=1

(
gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID

′
)ri

,

ki,(a) = (gai)−ri , ki,(b) = (gbi)−ri ,

k̄0 = gα
(
(gz2)r̄

′
0ϑ0

)∑3
i=1(χ

′
i−1)ϑ̂i/ϑ̃i

·
((

ga0b0θ0,0(ga0b0θ0,1)ID(ga0b0θ0,2)ID
′
)r̄0)∑3

i=1 χ
′
i/3 3∏

i=1

(
gaibiθi,0(gaibiθi,1)ID(gaibiθi,2)ID

′
)r̄i

,

k̄i,(a) = (gai)−r̄i , k̄i,(b) = (gbi)−r̄i .

Observe that, if if
∑3

i=1(χi − 1)ϑ̂i/ϑ̃i = 0,
∑3

i=1(χi − 1) = 0,
∑3

i=1(χ
′
i − 1)ϑ̂i/ϑ̃i = 0 and∑3

i=1(χ
′
i − 1) = 0, then (k0, {ki,(a), ki,(b)}0≤i≤3, k̄0, {k̄i,(a), k̄i,(b)}0≤i≤3) can be viewed as a

private key for the 2-level identity ĨD = (ID, ID′). On the other hand, similarly,
∑3

i=1(χi −
1)ϑ̂i/ϑ̃i = 0,

∑3
i=1(χi−1) = 0,

∑3
i=1(χ

′
i−1)ϑ̂i/ϑ̃i = 0 and

∑3
i=1(χ

′
i−1) = 0 have a solution

with overwhelming probability. Next, B computes

t = H2(ID, c0, c0,(a), c0,(b), . . . , c3,(a), c3,(b)), X = e(c0, k0)
3∏

i=0

(e(ci,(a), ki,(b)) · e(ci,(b), ki,(a))),

and checks whether

e(c2, g) = e(c0, utvKDF(X)d).

If not, B sets m = 0 and chooses a session key K ← GT . Otherwise, B sets m = 1 and
computes

K = e(c0, k̄0)
3∏

i=0

(e(ci,(a), k̄i,(b)) · e(ci,(b), k̄i,(a))).

Finally, B sends (m,K) to the adversary A.

46

At some point, the adversary A asks for the challenge ciphertext and session key under ID∗.
B chooses δ ← {0, 1} and does the following. If δ = 0, it chooses {c∗i,(a), c

∗
i,(b)}0≤i≤3, c

∗
2 ← G and

K∗ ← GT ; otherwise (i.e., δ = 1), it chooses {si}1≤i≤3 and sets

c∗0,(a) = (gz1z3)θ0,0+ID∗θ0,1+ID∗′θ0,2 , c∗0,(b) = (gz2z4)θ0,0+ID∗θ0,1+ID∗′θ0,2 ,

{c∗i,(a) = (gsi)ai(θ̂i,0+ID∗θ̂i,1+ID∗′θ̂i,2), c∗i,(b) = (Tg−si)bi(θ̂i,0+ID∗θ̂i,1+ID∗′θ̂i,2)}1≤i≤3,

c∗2 ← G, K∗ ← GT .

Finally, B sends the challenge ciphertext C∗ = (c∗0, {c∗i,(a), c
∗
i,(b)}0≤i≤3, c

∗
2) and session key K∗ to the

adversary A. Observe that, if T = gz3+z4 , then {c∗i,(a), c
∗
i,(b)}0≤i≤3 can be written as {(gi,0gID

∗
i,1 gID

∗′
i,2)si ,

(hi,0h
ID∗
i,1 hID

∗′
i,2)s−si}0≤i≤3, where s = z3 + z4 and s0 = z3. (Recall that, a0 = z1, b0 = z2 and

{θ̃i,0 + ID∗θ̃i,1 + ID∗′θ̃i,2 = 0}1≤i≤3.) On the other hand, when T is a random element of G,
c∗0,(a), c

∗
0,(b) are distributed uniformly in G, and {c∗i,(a), c

∗
i,(b)}1≤i≤3 can be written as {(gi,0gID

∗
i,1 gID

∗′
i,2)si ,

(hi,0h
ID∗
i,1 hID

∗′
i,2)s−si}1≤i≤3, where s = logg T .

To sum up, if T = gz3+z4 , then B has properly simulated Game−1. If T is a random element of
G, then B has properly simulated Game0. Hence, B can use the output of A to distinguish between
two possibilities for T .

Note that, one can prove the computational indistinguishability of Gamek−1 and Gamek for
each 0 < k ≤ 3 almost exactly as the above one, by exchanging the roles played by {g0,j , h0,j}0≤j≤2

with those played by {gk,j , hk,j}0≤j≤2 in the simulation, and taking case of the ramifications, etc.
Specifically, a0, b0 will now be chosen by B, whereas the given instance of the DLN problem will
implicitly define ak = z1 and bk = z2. �

47

