
This is the Full Version of the Extended Abstract that appears
in the Proceedings of the 13th International Conference on Applied Cryptography and Network Security (ACNS ’15)
(2–5 June 2015, New York, USA)
Tal Malkin Ed., Springer-Verlag, LNCS ????, pages ???–???.

Scalable Divisible E-Cash

Sébastien Canard1, David Pointcheval2, Olivier Sanders1,2 and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
2 CNRS, ENS, INRIA, and PSL, Paris, France

Abstract. Divisible E-cash has been introduced twenty years ago but no construction is both fully secure
in the standard model and efficiently scalable. In this paper, we fill this gap by providing an anonymous
divisible E-cash construction with constant-time withdrawal and spending protocols. Moreover, the deposit
protocol is constant-time for the merchant, whatever the spent value is. It just has to compute and store
2l serial numbers when a value 2l is deposited, compared to 2n serial numbers whatever the spent amount
(where 2n is the global value of the coin) in the recent state-of-the-art paper. This makes a very huge
difference when coins are spent in several times.
Our approach follows the classical tree representation for the divisible coin. However we manage to build
the values on the nodes in such a way that the elements necessary to recover the serial numbers are common
to all the nodes of the same level: this leads to strong unlinkability and anonymity, the strongest security
level for divisible E-cash.

1 Introduction

Compared to regular cash, electronic payment systems offer greater convenience for end-users, but
usually at the cost of a loss in terms of privacy. Introduced in 1982 by Chaum [11], electronic cash
(E-cash) is one solution to reconcile the benefits of both solutions. As with regular cash, users of such
systems can withdraw coins from a bank and then spend them to different merchants, while remaining
anonymous, with unlinkable transactions. There is however one major difference: if a banknote or a
coin can hardly be duplicated, this is on the contrary very easy to copy the series of bits constituting an
electronic coin, as for any electronic data. It is therefore necessary, when designing an E-cash system,
to provide a way of detecting double-spendings (i.e. two spendings using the same coin) and then
to allow identification of the underlying defrauder. The challenge is to ensure such features without
weakening the anonymity, or the efficiency, of the resulting scheme.

1.1 Related Work

Designing an E-cash system which can handle any amount for a payment (as it is the case for regular
cash) is not a trivial task and several kinds of solutions exist in the literature.

One of them is to make use of coins of the smallest possible denomination (e.g. one cent), but this
raises the problem of storing and spending the thousands of coins which become necessary to handle
any amount. In [5], the authors partially address this latter problem by providing a compact E-cash
system where users can withdraw wallets of N coins at once and store them efficiently. Unfortunately,
each coin must be spent one by one which is unsuitable for practical use.

Another solution is to manage several denominations but, in practice, a user can be unable to
make a payment if his wallet does not contain the kind of denomination he needs, since giving change
back is not easy. For example, a user may have a wallet which only contains coins of $10 while having
to pay $8. Such solution does not permit the user to make such payment, while he has enough money!
This can be solved by using transferable e-cash systems, which in particular permits money change
by the merchant, but at the cost of a larger coin [12].

The last solution to our initial problem has been proposed by Okamoto and Ohta [19] under the
name of divisible E-cash. Such a system enables users to withdraw a coin C of a large value V , and then
to spend it in several transactions, but in such a way that the sum of the amount of these transactions
vi is at most the global amount: V ≥

∑
vi. Typically, the coin is of value V = 2n, and one can spend it

with transactions of values vi = 2`i , with `i ∈ {0, . . . , n}. This is currently the most relevant solution
to solve the above problem and we now focus on this type of E-cash.

Since their introduction, many divisible E-cash schemes have been proposed (e.g. [18, 17, 6–8]),
most of them sharing the same following idea. Every coin of global value 2n is associated with a

c© Springer 2015.



binary tree with 2n leaves, each leaf being associated with a unique serial number. When a user
spends a value of 2`, he reveals some information related to an unspent node s of depth n − ` (and
so with 2` descendant leaves). This allows the bank to recover the 2` serial numbers associated to
the transaction. Such serial numbers, that the bank cannot link to a withdraw, are very convenient
to detect defrauders. Indeed, a double-spending implies two transactions involving two nodes with a
common subtree and so with common descendant leaves. Therefore, there will be a collision in the list
of serial numbers stored by the bank, meaning that there is a double-spending.

Again, the main difficulty is to reconcile this double-spending technique with users’ anonymity. The
first constructions [19, 18, 9] only offered a weak level of anonymity since several spendings involving
the same divisible coin could be linked one to each other. In [17], the first unlinkable system was
proposed but the transaction still revealed which part of the coin was spent. Moreover, a trusted
authority was necessary to recover defrauders’ identity.

The first truly anonymous construction was provided in [6] but is rather inefficient. Indeed, this
scheme makes use of several groups of different orders, whose generation is very expensive. Moreover,
the spending phase requires complex non-interactive zero-knowledge (NIZK) proofs, which make it
impractical. An improvement was later proposed in [7], with a much more efficient spending, but
the resulting tree construction still suffers from similar downsides. In [2], the authors chose a differ-
ent approach to construct their binary tree, using cryptographic hash functions. Unfortunately, such
functions are not compatible with efficient NIZK proofs so that the authors relied on cut-and-choose
protocols to prove the validity of the trees (and so of the coins). The resulting scheme was therefore
proved secure under an unconventional security model where the bank is only ensured that it will
not loose money on average. The security of all these constructions necessitate the use of the random
oracle model (ROM) and the constructions are most of the time incompatible with Groth-Sahai proof
methodology [15], and so the ROM cannot be avoided.

A first attempt to construct a divisible E-cash system secure in the standard model is due to
Izabachène and Libert [16], but the resulting scheme is impractical, because of no efficient double-
spending detection. Indeed, each time a coin is deposited to the bank, the latter has to compare it
(by performing several costly computations) with all already deposited coins. This is due to the lack
of serial numbers which was identified by the authors as the main cause of the inefficiency of their
scheme.

Recently, the first practical E-cash system secure in the standard model was proposed in [8], with
constant-time withdrawal and spending protocols. Unlike the previous schemes, where a new tree was
generated by the users each time they withdrew coins, this new construction considers only one tree
provided in the public parameters. This significantly alleviates the withdrawal and spending protocols
since proving the validity of the tree is no longer necessary. However the scheme has two drawbacks, as
identified by its authors: First, the public parameters must contain many elements allowing to recover
the serial numbers (for double-spending detection), they are thus large; Second, while the deposit
protocol is constant-time for the merchant, even for a one-cent deposit, the bank must perform 2n

pairing computations and store the results in a database. This obviously affects the scalability of the
proposed scheme.

1.2 Our Contribution

In this paper, we improve the latter solution by fixing these two drawbacks. Although our scheme
shares similarities with the one of [8], it differs on the binary tree generation. Indeed, in [8], the
elements gs associated with each node s were randomly and independently generated. This implies
that the elements g̃s 7→f , provided to the bank to recover the serial numbers of leaf f from node s,
differ according to each node s, leading to the above two issues.

Indeed, an anonymous scheme must reveal no information on the coin used in the transaction. So
the bank does not know the involved node s but only its level |s| (since it corresponds to the amount
of the transaction). It follows that the bank does not know which elements g̃s 7→f it should use to
compute the underlying serial numbers. It has no other choice than performing the computations with
all possible nodes s′ of level |s|. This ensures that the valid serial numbers will be recovered but at the

2



cost of many useless computations. This also increases the risk of false double-spending detections,
since additional (fake) serial numbers will be stored.

To prevent this problem, we design our tree differently: The nodes are now related in such a way
that the elements needed to recover the serial numbers are common to every node at the same level.
This reduces the size of the public parameters while avoiding useless computations. Indeed, with our
solution, the bank only computes and stores 2` serial numbers when a value 2` is deposited, compared
to 2n in [8], whatever the value of the transaction (even for 1 cent).

However, these relations between nodes could also be used to break the strong unlinkability ex-
pected from an anonymous divisible E-cash system. To address this problem, we first require that
the users encrypt some of the elements they send to the merchant. Unfortunately, the randomness
used during the encryption is a problem to recover the deterministic serial numbers. We therefore add
some elements in the public parameters which will allow the bank to efficiently cancel the randomness,
without endangering the security of our scheme.

These modifications will slightly increase the complexity of the spending protocol but will lead
to a much more efficient deposit one. Our solution can then be seen as a way to make the practical
divisible E-cash system from [8] highly scalable.

1.3 Organization

In Section 2, we recall some definitions and present the computational assumption our protocol will
rely on. Section 3 reviews the syntax of a divisible E-cash system along with informal definitions of
the security properties. Section 4 provides a high level description of our construction, while Section 5
goes into the details. An improved fair variant is proposed in Section 6. Because of lack of space, the
security analysis is postponed to Appendix A.

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order p, along with a bilinear
map e : G1 ×G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g 6= 1G1 and g̃ 6= 1G2 , e(g, g̃) 6= 1GT ;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [13] defined three types of pairings: in type 1, G1 = G2; in type 2,
G1 6= G2 but there exists an efficient homomorphism φ : G2 → G1, while no efficient one exists in the
other direction; in type 3, G1 6= G2 and no efficiently computable homomorphism exist between G1

and G2, in either direction.
Our construction, as well as the one of [8], requires the use of asymmetric pairings (i.e. of type 2

or type 3). For simplicity, we will only consider pairings of type 3 in this work, which is not a strong
restriction (see [10]) since these pairings offer the best efficiency.

2.2 Computational Assumption

Besides the classical SXDH and q− SDH [4] assumptions in bilinear groups, our construction relies on
a new computational assumption, we call EMXDH, since this is an extension of the multi-cross-Diffie-
Hellman assumption.

Definition 1 (SXDH assumption). For k ∈ {1, 2}, the DDH assumption is hard in Gk if, given
(g, gx, gy, gz) ∈ G4

k, it is hard to distinguish whether z = x · y or z is random. The SXDH assumption
holds if DDH is hard in both G1 and G2

Definition 2 (q − SDH assumption). Given (g, gx, gx
2
, ..., gx

q
) ∈ G1, it is hard to output a pair

(m, g
1

x+m ).

3



Definition 3 (EMXDH Assumption). Given (g, ga, gx, gt, g̃, g̃a) ∈ G4
1 × G2

2, ({gyi}i=ni=1 , {gt·y
i}i=ni=1 ,

{gx·yi}i=n−1i=1 , {gx·t·yi}i=n−1i=1 , {g̃1/yi}i=ni=1 ) ∈ G4n−2
1 × Gn

2 , as well as (gz1 , gz2) ∈ G1, it is hard to distin-
guish whether (z1, z2) = (x · yn/a, x · t · yn/a) or (z1, z2) is random.

We discuss the hardness of the problem related to this assumption in Appendix B. We stress
however that this assumption, as the SXDH one, would clearly be wrong with a symmetric pairing
since the test e(gz1 , ga) = e(gx, gy

n
) would allow distinguishing a random z1 from a valid one.

This assumption will underlie the anonymity of our construction. However, as explained in Section
6, one can rely on a weaker assumption if a weaker level of anonymity is enough.

2.3 Digital Signature Scheme

A digital signature scheme Σ is defined by three algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and verification keys
(sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign which, on input the signing key sk and a message m, outputs a
signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, outputs 1 if σ is a valid
signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeability under chosen
message attacks (EUF-CMA) [14] which means that it is hard, even given access to a signing oracle,
to output a valid pair (m,σ) for a messagem never asked to the oracle. In this paper we will also use two
variants. The first one is the security against selective chosen message attacks (SCMA), which limits
the oracle queries to be asked before having seen the key pk. The second one is a strong unforgeability
(SUF) where the adversary must now output a valid pair (m,σ) which was not returned by the signing
oracle (a new signature for an already signed message is a valid forgery) but can only ask one query
to the signing oracle (OTS, for One-Time Signature).

2.4 Groth-Sahai Proof Systems

In [15], Groth and Sahai propose a non-interactive proofs system, in the common reference string
(CRS) model, which captures most of the relations for bilinear groups. There are two types of CRS
that yields either perfect soundness or perfect witness indistinguishability. These two types of CRS
are computationally indistinguishable (under the SXDH assumption in our setting).

To prove that some variables satisfy a set of relations, the prover first commits to them (by using the
elements from the CRS) and then computes one proof element per relation. Efficient non-interactive
witness undistinguishable proofs are available for pairing-product equations or multi-exponentiation
equations. The former are of the type:

n∏
i=1

e(Ai, X̃i)
n∏
i=1

n∏
j=1

e(Xi, X̃j)
ai,j = tT

for variables {Xi}ni=1 ∈ G1, {X̃i}ni=1 ∈ G2 and constant tT ∈ GT , {Ai}ni=1 ∈ G1, {ai,j}ni,j=1 ∈ Zp.
The latter are of the type:

n∏
i=1

Ayii

n∏
j=1

X
bj
j

n∏
i=1

n∏
j=1

X
yi·ai,j
j = T

for variables {Xi}ni=1 ∈ Gk, {yi}ni=1 ∈ Zp and constant T ∈ Gk, {Ai}ni=1 ∈ Gk, {bi}ni=1 ∈ Zp,
{ai,j}ni,j=1 ∈ Zp for k ∈ {1, 2}.

Multi-exponentiation equations also admit non-interactive zero-knowledge (NIZK) proofs at no
additional cost.

4



3 Divisible E-cash System

For consistency, we recall the syntax of a divisible E-cash system described in [8]. For simplicity, we
borrow their notations.

Syntax. A divisible e-cash system is defined by the following algorithms, that involve at least three
entities: the bank B, a user U and a merchant M.

– Setup(1k, V ): On inputs a security parameter k and an integer V , this probabilistic algorithm
outputs the public parameters p.p. for divisible coins of global value V . We assume that p.p. are
implicit to the other algorithms, and that they include k and V . They are also an implicit input
to the adversary, we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a key pair (bsk, bpk). It
also sets L as an empty list, that will store all deposited coins. We assume that bsk contains bpk.

– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchantM) outputs a key
pair (usk, upk) (resp. (msk,mpk)). We assume that usk (resp. msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between the bank B and a user
U . At the end of this protocol, the user gets a divisible coin C of value V or outputs ⊥ (in case
of failure) while the bank stores the transcript Tr of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk,mpk, v),M(msk, bpk, v)): This is an interactive protocol between a user U
and a merchant M. At the end of the protocol the merchant gets a master serial number Z of
value v (the amount of the transaction they previously agreed on) along with a proof of validity
Π or outputs ⊥. U either updates C or outputs ⊥.

– Deposit(M(msk, bpk, (v, Z,Π)),B(bsk, L,mpk)): This is an interactive protocol between a mer-
chant M and the bank B. B checks that Π is valid on v and Z and that (v, z,Π) has never been
deposited (corresponding to the case of a cheating merchant). B then recovers the m (for some
m ≥ v) serial numbers z1, . . . , zm corresponding to this transaction and checks whether, for some
1 ≤ i ≤ m, zi ∈ L. If none of the serial numbers is in L, then the bank credits M’s account of v,
stores (v, Z,Π) and appends {z1, . . . , zm} to L. Else, there is at least an index i ∈ {1, . . . ,m} and a
serial number z′ in L such that z′ = zi. The bank then recovers the tuple (v′, Z ′, Π ′) corresponding
to z′ and publishes [(v, Z,Π), (v′, Z ′, Π ′)].

– Identify((v1, Z1, Π1), (v2, Z2, Π2), bpk): On inputs two different valid transcripts (v1, Z1, Π1) and
(v2, Z2, Π2), this deterministic algorithm outputs a user’s public key upk if there is a collision
between the serial numbers derived from Z1 and from Z2, and ⊥ otherwise.

Security Model. Besides correctness, the authors of [8] formally defined 3 security properties that a
secure divisible e-cash system must achieve. The first one is traceability which requires that no coalition
of users can spend more than they have withdrawn without revealing one of their identities. The second
one is exculpability which requires that no user can be falsely accused of double-spending, even by a
coalition of the bank, users and merchants. Eventually, the last property expected by such schemes
is anonymity which means that no one can learn anything about a spending except the information
already available from the environment (such as the date, the value of the spending,...).

However, they also describe two variants of anonymity that they called unlinkability and strong
unlinkability. The former requires that two spendings from the same coin cannot be linked except by
revealing which part of the coin is spent. The latter strengthens the level of anonymity by forbidding
this additional leakage of information. A divisible, strongly unlinkable, e-cash system can be made
anonymous by providing a way to identify double-spenders using only public information and so
without the help of a trusted entity.

As explained in [8], a divisible e-cash system which is just unlinkable cannot achieve the anonymity
property. In this paper, we improve on [8] by reducing the storage and computation of the anonymous
version (strongly unlinkable).

The formal security games for traceability, exculpability, anonymity are recalled in Appendix C.

5



4 Our Construction

Notation. Let Sn be the set of bitstrings of size smaller than n and Fn be the set of bitstrings
of size exactly n. For every s ∈ Sn, |s| denotes the length of s, and we define the set Fn(s) as
{f ∈ Fn : s is a prefix of f}. For any i ∈ {0, . . . , n}, we set L(i) as {bi+1...bn : bj ∈ {0, 1}}, i.e. the
set of bitstrings of size n− i, indexed by i+ 1, . . . , n. Therefore, L(n) only contains the empty string,
while L(0) = Fn.

In the following, each node s of a tree of depth n (defining a coin of value 2n) will refer to an
element of Sn. The root will then be associated with the empty string ε and a leaf with an element of
Fn. For all s ∈ Sn \ Fn, the left child (resp. the right child) of s will refer to s||0 (resp. s||1).

4.1 High Level Description

The initial construction [8] works in a bilinear group (p,G1,G2,GT , e), where g (resp. g̃) is a generator
of G1 (resp. G2) and G = e(g, g̃). The core idea of their construction is to define one single tree in the
public parameters which is common to all the coins. Each node s (resp. leaf f) of this tree is associated
with an element gs ← grs ∈ G1 (resp. χf ← Gyf ) for some random scalar rs (resp. yf ). Each (divisible)
coin is associated to a secret scalar x which implicitly defines its serial numbers as {Gx·yf }f∈Fn . To
allow the bank to detect double-spendings, the public parameters contain, for each s ∈ Sn and each
f ∈ Fn(s), the element g̃s 7→f ← g̃yf/rs ∈ G2. Indeed, by using them and the element ts = gxs provided
by the user during the spending, the bank is able to recover the serial numbers {Gx·yf }f∈Fn(s) since
e(ts, g̃s 7→f ) = Gx·yf .

Limitations. However, this solution has two drawbacks. First, it implies public parameters of signifi-
cant size since they must contain (n+1) ·2n elements g̃s 7→f . Second, each of these elements depends on
a node s, so that the bank needs to know the spent node s∗ to select the correct g̃s∗ 7→f and compute the
associated serial numbers. Unfortunately, to achieve the strong unlinkability or the anonymity prop-
erties, a divisible E-cash must not reveal this node s∗. Therefore, the only way for the bank to detect
double-spendings is to compute, for every node s of the same level than s∗ and for every f ∈ Fn(s),
the pairings e(ts∗ , g̃s 7→f ). For a deposit of one cent, the bank must then perform 2n pairings to get the
2n potential serial numbers, only one of them being valid. This additionally increases the risk of false
positive.

Our Approach. In this work, we construct our parameters in such a way that the elements used to
compute the serial numbers do no longer depend on the specific nodes, but only on the levels of the
nodes in the tree (and so only on the spent values, which are publicly known). More precisely, for each
level i, we provide 2n−i pairs of elements of G2 which will be used by the bank each time a node of this
level is deposited. Therefore, the bank will no longer need to perform useless computations and so will
only have to compute V serial numbers when a value V will be deposited. Moreover, it decreases the
size of the public parameters since only 2n+2− 2 elements (instead of (n+ 1) · 2n) of G2 are necessary.

Description. Informally, we associate the root ε of our tree with an element gε ∈ G1, and each
level i, from 1 to n, with two random scalars yi,0, yi,1

$← Zp. Given a node s associated with an

element gs ∈ G1 we can compute the element gs||0 ← g
y|s|+1,0
s associated with its left child and the

element gs||1 ← g
y|s|+1,1
s associated with its right child. Therefore, as illustrated on Figure 1, each node

s = b1 . . . b|s| is associated with an element gs ← gyε
∏|s|
i=1 yi,bi .

To allow the bank to compute the serial numbers associated to this node, we provide, for all

i = 0, . . . , n, and for each f = bi+1 . . . bn ∈ L(i), the value g̃i,f ← g̃
∏n
j=i+1 yj,bj . The point here is that

g̃i,f is common to every node of level i and so will be used by the bank each time a deposit of value 2n−i

is made. As illustrated on Figure 2 (which shows the generic tree without the secret value x), the serial
numbers of a coin associated with the secret x are then implicitly defined as {Gx·yε

∏n
i=1 yi,bi}b1...bn∈Fn .

Unfortunately, we cannot provide ts = gxs during a spending as in [8]. Revealing this element
indeed breaks the anonymity of our new scheme. For example, if s is a node of level n − 1, then a

6



gyε

gyε·y1,0

gyε·y1,0·y2,0

... ...

y2,0

gyε·y1,0·y2,1

gyε·y1,0·y2,1·y3,0

y3,0

gyε·y1,0·y2,1·y3,1

y3,1

y2,1

y1,0

gyε·y1,1

... ...

y1,1

Fig. 1. Divisible coin

spending involving its left child s||0 and a spending involving its right child s||1 should be unlinkable.
However, this is not true when we reveal gxs||0 and gxs||1, since one can simply check whether the equality

e(gxs||0, g̃n−1,1) = e(gxs||1, g̃n−1,0) holds. Indeed:

e(gxs||0, g̃n−1,1) = e(gxs , g̃)yn,0·yn,1 = e(gxs||1, g̃n−1,0).

To overcome this problem, at the spending time, the user will just send an ElGamal encryption of
ts = gxs under the public key k|s|, i.e. a pair (gr1 , ts · kr1|s|) for some random r1

$← Zp. This will slightly
increase the number of elements and the complexity of the proof that the user must produce during a
spending, but it will ensure the strong unlinkability of our scheme. For the same reasons, we cannot
reveal the security tag upkR · hxs (where R is obtained by hashing some public information related to
the transaction), which is used in [8] to identify a double-spender. We will just provide an ElGamal
encryption of it under the same public key.

Despite the randomness used in the ciphertexts, the bank must remain able to compute the deter-
ministic serial numbers. We will then provide some additional elements h̃i,f (see Section 4.2) in the
public parameters to cancel this randomness without endangering the anonymity of our scheme.

Security Analysis. All the differences between our solution and the one of [8] lead to a new proof of
anonymity. Indeed, in the latter, the elements gs are chosen randomly which enables the reduction R
to embed a DDH challenge in one node s∗ without affecting the other ones, but with a few additional
inputs. Therefore, R can handle any query involving the other nodes as long as its guess on s∗ is
correct. This is no longer the case with our solution since the elements gs are now related, hence the
stronger EMXDH assumption described in Section 2.2.

4.2 Setup

Public Parameters. Let (p,G1,G2,GT , e) be the description of bilinear groups of prime order p,
elements g, h, u1, u2, w be generators of G1, and g̃ be a generator of G2. We denote G = e(g, g̃). A

trusted authority generates (yε, a0)
$← Z2

p and, for i = 1, . . . , n, (yi,0, yi,1, ai)
$← Z3

p.
The trusted authority computes (gε, hε) ← (gyε , hyε) and for any node s = b1 . . . b|s|, (gs, hs) ←

(gyε
∏|s|
i=1 yi,bi , hyε

∏|s|
i=1 yi,bi ). Eventually, it computes, for i = 0, . . . , n:

– ki ← gai , the ElGamal encryption key;

– (g̃i,f , h̃i,f )← (g̃
∏n
j=i+1 yj,bj , g̃

−ai
∏n
j=i+1 yj,bj ), for every f = bi+1 . . . bn ∈ L(i).

As said in [8], the bank and a set of users can cooperatively generate such parameters, avoiding the need
of such trusted entity. The public parameters p.p. are set as the bilinear groups (p,G1,G2,GT , e), with

7



gyε

gyε·y1,0 gyε·y1,1

gyε·y1,0·y2,0

...

gyε·y1,1·y2,0

...

Gyε·y1,0·y2,0 Gyε·y1,1·y2,0

g̃0,00

g̃1,0

g̃1,0

g̃2,ε g̃2,ε

Fig. 2. Computing serial numbers

the generators g, h, u1, u2, w and g̃, a collision-resistant full-domain hash function H : {0, 1}∗ → Zp,
as well as all the above elements {(gs, hs), s ∈ Sn}, {ki, i = 0, . . . , n} and {(g̃i,f , h̃i,f ), i = 0, . . . , n, f ∈
L(i)}.

One can remark that the elements (g̃i,f , h̃i,f ) will be used to cancel the ElGamal encryption at
level i, for any leaf f :

e(ki, g̃i,f ) = e(gai , g̃
∏n
j=i+1 yj,bj ) = (g, g̃

ai
∏n
j=i+1 yj,bj ) = e(g, h̃i,f )−1.

As a consequence, it is important to note that ElGamal encryptions under ki are not semantically
secure because of these elements, but the one-wayness will be enough for our purpose.

Although our construction is compatible with both the random oracle and the standard models, we
will only describe, for the sake of clarity, a protocol with provable security in the standard model. We
must therefore add to the public parameters the description of a common reference string (CRS) for
the perfect soundness setting of the Groth-Sahai [15] proofs system and a one-time signature scheme
Σots (e.g. the one of [4]).

5 Our Divisible E-Cash System

In this section, we provide an extended description of our new protocol. Then, we discuss its efficiency.

5.1 The protocol

– BKeygen(): The bank has to sign two different kinds of messages and so selects two signature
schemes denoted Σ0 and Σ1.
• The former will be used to compute signatures τs on pairs (gs, hs) for every node s of the tree.

Such signatures will allow users to prove during a spending that they use a valid pair (gs, hs)
without revealing it.
• The latter will be used by the bank during the Withdraw protocol to certify the secret values

associated with the withdrawn coin.
Both schemes has to allow signatures on elements of G2

1 while being compatible with Groth-
Sahai [15] proofs. We will therefore instantiate them with the structure preserving signature
scheme proposed in [1], since it was proven to be optimal for type 3 pairings.

8



The bank generates the pair (sk1, pk1)← Σ1.Keygen(p.p.) and the pairs (sk
(i)
0 , pk

(i)
0 )← Σ0.Keygen(p.p.),

for each level i = 0, . . . , n of the tree, and computes, for every node s ∈ Sn, τs ← Σ0.Sign(sk
(|s|)
0 , (gs, hs)).

Eventually, it will set bsk as sk1 and bpk as ({pk(i)0 }i, pk1, {τs}s∈Sn). A way to reduce the size of
this public key is described in Remark 5.

– Keygen(): Each user (resp. merchant) selects a random usk← Zp (resp. msk) and gets upk← gusk

(resp. mpk ← gmsk). In the following we assume that upk (resp. mpk) is public, meaning that
anyone can get an authentic copy of it.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user must jointly compute
with the bank a random scalar x (thus without control on it), and then get a certificate. In
practice, the scalar x is computed as x = x1 + x2 where x1 is chosen and kept secret by the user
and x2 is chosen by the bank and given to the user. It is also necessary to bind this secret value
to the user’s identity to allow identification of double-spenders.
The user then computes uusk1 and ux12 , sends them along with upk to the bank, and proves knowledge
of x1 and usk (in a zero-knowledge way, such as the Schnorr’s interactive protocol [20]). If the
proof is valid, the bank chooses a random x2, and checks that u = ux12 · u

x2
2 was not previously

used, the bank computes σ ← Σ1.Sign(sk1, (u
usk
1 , u)) and sends it to the user, together with x2.

The user computes x = x1 + x2, and sets C ← (x, σ). σ is thus a signature on the pair (uusk1 , ux2),
which strongly binds the user to the randomly chosen x.

– Spend(U(usk, C, bpk,mpk, 2`),M(msk, bpk, 2`)): To spend a value 2`, the user selects an unspent
node s of level n−` and two random scalars r1, r2 ← Zp and computes R← H(info), ts ← (gr1 , gxs ·
kr1n−`) and vs ← (gr2 , upkR · hxs · k

r2
n−`), where info is some information related to the transaction

(date, amount, merchant’s public key, . . . ). Actually, ts and vs are ElGamal encryptions of gxs , the
identifier of the node, and of upkR · hxs , the security tag used to identify double-spenders. But of
course, he must additionally prove that the plaintexts in ts and vs are valid, i.e. they are related to
the values certified during a withdrawal. To do so, he will provide Groth-Sahai proof of knowledge
of σ, and proof of existence of τs to attest the validity of the pair (gs, hs).
However, Groth-Sahai [15] proofs can be re-randomized. This can be a problem in our case, since a
dishonest merchant could re-randomize a valid transcript and to deposit it again. This would lead
an honest user to be accused of double-spending, and so would break the exculpability property.
To prevent this bad behavior, the user first generates a one-time signature key pair (skots, pkots)←
Σots.Keygen(1k) and certifies the public key into µ← w

1
usk+H(pkots) . This key pair will then be used

to sign the transcript (including the proofs).
Next, the user computes Groth-Sahai commitments to usk, x, r1, r2, gs, hs, τs, σ, µ, U1 = uusk1 , and
U2 = ux2 , and provides a NIZK proof π that the committed values satisfy:

ts = (gr1 , gxs · k
r1
n−`) ∧ vs = (gr2 , (gR)usk · hxs · k

r2
n−`)

U2 = ux2 ∧ U1 = uusk1 ∧ µ(usk+H(pkots)) = w

along with a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk
(n−`)
0 , (gs, hs), τs) ∧ 1 = Σ1.Verify(pk1, (U1, U2), σ).

Finally, the user computes η ← Σots.Sign(skots, H(R||ts||vs||π||π′)) and sends it to M along with
pkots, ts, vs, π, π

′.
The merchant then checks the validity of the proofs and of the signatures, and accepts the
transaction if everything is correct. In such a case, he stores (2`, Z,Π) where Z ← (ts, vs) and
Π ← (π, π′, pkots, η).

– Deposit(M(msk, bpk, (2`, Z,Π)),B(bsk, L,mpk)): Upon receiving the tuple (2`, Z = (ts, vs), Π =
(π, π′, pkots, η)), the bank first checks the validity of the proofs and signatures. Then, it checks that
it was not previously deposited. To this aim, it parses ts as (ts[1], ts[2]), and for each f ∈ L(n− `),
it computes the serial numbers zf ← e(ts[2], g̃n−`,f ) · e(ts[1], h̃n−`,f ) and checks whether zf ∈ L.
If none of them is in L, which means that none was already spent, the bank adds these elements
to this list L and associates them with the transcript (2`, Z,Π). Else, there is an element z′ ∈ L

9



such that for some f , zf = z′. The bank recovers the corresponding transcript (2`
′
, Z ′, Π ′) and

outputs [(2`, Z,Π), (2`
′
, Z ′, Π ′)].

As remarked above, e(ki, g̃i,f )·e(g, h̃i,f ) = 1, for any level i and any leaf f , and so zf = e(gxs , g̃n−`,f ),
and is thus independent of r1.
As noticed in [8], the bank does not actually have to store and compare the elements zi ∈ GT but
only their fingerprints, that can be small hash values for some collision-resistant hash function.

– Identify((2`1 , Z1, Π1), (2
`2 , Z2, Π2), bpk): To recover the identity of a double-spender from such

a pair of transcripts, one first checks the validity of both transcripts and returns ⊥ if one of them
is not correct. One then parses Zi as (tsi , vsi) and computes the lists Si ← {e(tsi [2], g̃n−`i,f ) ·
e(tsi [1], h̃n−`i,f ),∀f ∈ L(n − `i)}, for i = 1, 2. One returns ⊥ if there is no collision between S1
and S2. In case of collision, there are f1 ∈ L(n− `1) and f2 ∈ L(n− `2) such that

e(gx1s1 , g̃n−`1,f1) = e(ts1 [2], g̃n−`1,f1) · e(ts1 [1], h̃n−`1,f1)

= e(ts2 [2], g̃n−`2,f2) · e(ts2 [1], h̃n−`2,f2) = e(gx2s2 , g̃n−`2,f2).

But then, since the x’s values are mutually chosen by the user and the bank, they are random,
while all the other elements are fixed from the setup. This is thus quite unlikely this equality holds
for different random x and different paths in the tree: such a collision is a double-spending of a
leaf f ∈ L(0) = Fn in the tree parametrized by x = x1 = x2.
In addition, because of the signature σ, and the soundness of the NIWI in the transcript, the
same user is necessarily associated to the two coins: it is quite unlikely two users come up with the
same x. Then, if one lets Ti be e(vsi [2], g̃n−`i,fi) · e(vsi [1], h̃n−`i,fi), for i = 1, 2, since we also have

e(hx1s1 , g̃n−`1,f1) = e(hx2s2 , g̃n−`2,f2), as above, we have the simplification Ti = e(upkRii · hxisi , g̃n−`i,fi),
and even:

T1/T2 = e(upkR1 , g̃n−`1,f1)/e(upkR2 , g̃n−`2,f2) = e(upk, g̃R1
n−`1,f1/g̃

R2
n−`2,f2).

In order to trace the double-spender, one has to compute, for each public key upki, the value
e(upki, g̃

R1
n−`1,f1/g̃

R2
n−`2,f2) until one gets a match with T1/T2, in which case the algorithm outputs

upki.

Remark 4. We stress that a collision on the serial numbers (or on their fingerprints) means that for
the secret values x1, x2, and for the secret nodes s1, s2 at public levels `1, `2, there are f1 ∈ L(n− `1)
and f2 ∈ L(n− `2) verifying:

x1 · yε
n−`1∏
i=1

yi,b1,i

n∏
j=n−`1+1

yj,b1,j = x2 · yε
n−`2∏
i=1

yi,b2,i

n∏
j=n−`2+1

yj,b2,j

Since the secret x1 and x2 are randomly chosen after the values yi,b have been randomly fixed, the
collision is quite unlikely if x1 6= x2. Similarly, because of the random choice of the values yi,b, it is
quite unlikely there exist two disctint sequences (b1,i) 6= (b2,i) such that

∏n
i=1 yi,b1,i =

∏n
i=1 yi,b2,i . As

a consequence, the two sequences are equal, which means that s1||f1 = s2||f2: a collision corresponds
to two spendings involving the same path s1||f1 in the tree parametrized by x = x1 = x2, with
overwhelming probability.

On the other hand, one can easily check that a double-spending automatically leads to a collision.

Remark 5. The appropriate combination of the node s and the final path f into s||f from the root to
the leaf in all the serial number computations comes from the signature τs that involves the key at
the appropriate public level (since this is related to the value of the coin). Our approach consists in

generating (n + 1) public keys pk
(i)
0 (one for each level i) and a signature τs for every node s ∈ Sn,

all in the public key bpk of the bank. Proving that (gs, hs) is valid for a spending of 2` can then be

achieved by proving knowledge of a signature τs such that Σ0.Verify(pk
(n−`)
0 , (gs, hs), τs) = 1.

Unfortunately, this solution implies a bank public key of significant size since it must contain (n+1)
public keys (one for each level) and 2n+1 − 1 structure preserving signatures (one for each node).

10



Schemes Canard-Gouget [7] Canard et al [8] Our work

Standard Model no yes yes

Public
Parameters

2n+3|q| + 1 pk

(n+ 2) pk
+ (1 + (n+ 1)2n) G2

+ (2n+2 + 3) G1

+ (2n+1 − 1) |Sign|

2 pk
+ (2n+2 − 1) G2

+ (2n+2 + n+ 4) G1

+ 2n |Sign|
Withdraw

Computations
(2n+3 + 2n+2 − 5)exp

+ (n+ 2) Sign
1 Sign 1 Sign

Coin Size
(2n+2 + n+ 1) |q|
+ (n+ 2) |Sign| 2 |p| + |Sign| 2 |p| + |Sign|

Spend

Computations

NIZK{ 3 exp∗

+ 2 Sign + 2 Pair }
+ 1 exp

NIZK{ 2 exp

+ 2 Sign } + 3 exp

+ 1 Sign

NIZK{ 4 exp

+ 2 Sign + 2 Pair }
+ 7 exp + 1 Sign

Transfer size of
Spend

3 |q| + |NIZK| 2 G1 + 1 |Sign|
+|NIZK|

4 G1 + 1 |Sign|
+ 1 G2 + |NIZK|

Deposit

Computations
2l+1exp 2n Pair 2l+1 Pair

Deposit size 2l |q| + |Spend| 2n GT + |Spend| 2l GT + |Spend|

Fig. 3. Efficiency comparison between related works and our construction for coins of value 2n and Spend and Deposit of
value 2l (l ≤ n). The space and times complexities are given from the user’s point of view. exp refers to an exponentiation,
pair to a pairing computation, Sign to the cost of the signature issuing protocol whose public key is pk. NIZK{exp}
denotes the cost of a NIZK proof of a multi-exponentiation equation, NIZK{pair} the one of a pairing product
equation and NIZK{Sign} the one of a valid signature. NIZK{exp∗} refers to the cost of a proof of equality of discrete
logarithms in groups of different orders.

Another way of proving the validity of the pair (gs, hs) is to notice that, for every f ∈ L(|s|),
there is a leaf ` ∈ Fn such that s||f = `. Therefore, e(gs, g̃|s|,f ) = e(g`, g̃) and e(hs, g̃|s|,f ) = e(h`, g̃).
Since the element g̃|s|,f is common to every node of level |s|, it can be revealed by the user so only the
validity of the pair (g`, h`) remains to be proved. Therefore, the bank can generate only one key pair
(sk0, pk0) (instead of n + 1 such key pairs) and provide 2n signatures τ` ← Σ0.Sign(sk0, (g`, h`)) for
all the leaves (instead of 2n+1− 1, for all the nodes). This slightly increases the size of the proof since
the user will have to commit to (g`, h`) and prove statements on them, but this allows to significantly
reduce the size of bpk.

The security of our divisible e-cash system is stated by the following theorem, proved in Appendix A.

Theorem 6. In the standard model, assuming that the hash function H is collision-resistant, our
divisible e-cash system is anonymous under the SXDH and the EMXDH assumptions, traceable if Σ0

is an EUF-SCMA secure signature scheme and Σ1 is an EUF-CMA secure signature scheme, and
achieves the exculpability property under the q − SDH assumption if Σots is a SUF-secure one-time
signature scheme.

5.2 Efficiency

We compare in Figure 3 the efficiency of our construction (including the remark 5) with the one of
[8], which is the most efficient scheme regarding the Withdraw and the Spend protocols, and with the
one from [7], whose Deposit protocol is less expensive but which is only compatible with the random
oracle model.

For proper comparison, we add the elements g̃s 7→f (see Section 4.1) to the public parameters of [8].
For a 128-bits security level, we have (see [13]) |q| = |GT | = 3072, |p| = |G1| = 256 and |G2| = 512

by using Barreto-Naehrig curves [3]. Therefore, for n = 10 (allowing to divide the coin in 1024 parts),
the public parameters of [7] require 3.1 MBytes of storage space, those of [8] require 1.1 MBytes while
ours only require 525 KBytes.

Compared to [8], the main advantage of our solution lies in the Deposit protocol. Indeed, in the
former solution, the bank has to compute and store 2n serial numbers zi (most of them being invalid)
for each transaction, no matter which value was spent. Considering the number of transactions that

11



a payment system may have to handle, this may become cumbersome. Our solution significantly
alleviates the computing and storage needs of the bank since the number of zi that it must recover
is exactly the same as the spent value. However, this improvement implies a slight increase of the
complexity of the Spend protocol but we argue that the trade-off remains reasonable. Moreover, it is
possible to get rid of the 2 Pair in the NIZK proof, at the cost of increasing the public parameters,
by not taking into account the Remark 5.

6 Fair Divisible E-Cash System

The protocol described above achieves the strongest level of anonymity where users cannot be identified
as long as they remain honest. However, it may be necessary for legal reasons to allow some entity
(e.g. the police) to identify any spender. Our construction can be modified to add such an entity, that
we will call an opener, leading to a fair divisible E-cash system. The point is that these modifications
will decrease the complexity of our construction and weaken the assumption underlying its anonymity.

Let us consider the Setup algorithm defined in Section 4.2. A trusted authority was needed to
generate the scalars (a0, yε, {ai, yi,0, yi,1}i=ni=1 ) involved in the construction of the tree. Indeed, an en-
tity knowing them can easily break the anonymity of the scheme (but not its exculpability or its
traceability).

Let us assume that the Setup algorithm is run by the opener. Since every transcript of a Spend

protocol contains a pair ts = (gr, gxs · krn−|s|) for some coin secret x and some random scalar r, the
opener can recover:

gx ← (gxs · krn−|s| · (g
r)−a|s|)(yε

∏|s|
i=1 yi,bi )

−1

which only depends on the coin secret x. It then only remains to link this value with the user’s
identity. One way to achieve this is to slightly modify the Withdraw protocol by requiring that users
also send gx, prove that it is well formed and send a signature on it under upk. These elements will
then be stored by the bank in a public register that will be used by the opener to identify spenders
(the signature will ensure the exculpability property).

This new way of identifying spenders allows to alleviate our construction. Regarding the Spend

protocol, computing the pair vs (and proving statement about it) is no longer necessary since it was
only useful to identify double-spenders. Regarding the public parameters, the elements hs can be
discarded since they were only involved in the computation of vs. Finally, the Identify algorithm
which suffers from a linear cost in the number of users is replaced by the constant-time computation
of gx described above.

Another benefit of this fair divisible E-cash system is that its anonymity now relies on the following
assumption, which is clearly weaker than the EMXDH assumption (see Definition 3):

Definition 7 (Weak EMXDH Assumption). Given (g, ga, gx, g̃, g̃a) ∈ G3
1×G2

2, ({gyi}i=ni=1 , {gx·y
i}i=n−1i=1 ,

{g̃1/yi}i=ni=1 ) ∈ G2n−1
1 × Gn

2 , as well as gz ∈ G1, it is hard to distinguish whether z = x · yn/a or z is
random.

7 Conclusion

In this work we have proposed a new divisible E-cash system which improves the state-of-the art paper
[8] by addressing its two downsides, namely the storage and computational costs of the deposit protocol
and the size of the public parameters. Our solution relies on a new way of constructing the binary tree
which induces several modifications compared to [8] leading to the first efficient and scalable divisible
E-cash system secure in the standard model.

Acknowledgments

This work was supported in part by the French ANR Projects ANR-12-INSE-0014 SIMPATIC and
ANR-11-INS-0013 LYRICS, and in part by the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339563 – Crypto-
Cloud).

12



References

1. Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-preserving signatures
in asymmetric bilinear groups. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 649–666.
Springer, August 2011.

2. Man Ho Au, Willy Susilo, and Yi Mu. Practical anonymous divisible e-cash from bounded accumulators. In Gene
Tsudik, editor, FC 2008, volume 5143 of LNCS, pages 287–301. Springer, January 2008.

3. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In Bart Preneel and
Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages 319–331. Springer, August 2005.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in bilinear groups.
Journal of Cryptology, 21(2):149–177, April 2008.

5. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, May 2005.

6. Sébastien Canard and Aline Gouget. Divisible e-cash systems can be truly anonymous. In Moni Naor, editor,
EUROCRYPT 2007, volume 4515 of LNCS, pages 482–497. Springer, May 2007.

7. Sébastien Canard and Aline Gouget. Multiple denominations in e-cash with compact transaction data. In Radu
Sion, editor, FC 2010, volume 6052 of LNCS, pages 82–97. Springer, January 2010.

8. Sébastien Canard, David Pointcheval, Olivier Sanders, and Jacques Traoré. Divisible e-cash made practical. In
Jonathan Katz, editor, PKC ’15, volume 9020 of Lecture Notes in Computer Science, pages 77–100. Springer, 2015.
Cryptology ePrint Archive, Report 2014/785, http://eprint.iacr.org/.

9. Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy go divisible cash. In Kaisa Nyberg, editor,
EUROCRYPT’98, volume 1403 of LNCS, pages 561–575. Springer, May / June 1998.

10. Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing asymmetric pairings - the role of Ψ
revisited. Discrete Applied Mathematics, 159(13):1311–1322, 2011.

11. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T. Sherman,
editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

12. David Chaum and Torben P. Pedersen. Transferred cash grows in size. In Rainer A. Rueppel, editor, EURO-
CRYPT’92, volume 658 of LNCS, pages 390–407. Springer, May 1992.

13. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for cryptographers. Discrete Applied
Mathematics, 156(16):3113–3121, 2008.

14. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17(2):281–308, 1988.

15. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, April 2008.

16. Malika Izabachène and Benôıt Libert. Divisible E-cash in the standard model. In Michel Abdalla and Tanja Lange,
editors, PAIRING 2012, volume 7708 of LNCS, pages 314–332. Springer, May 2012.

17. Toru Nakanishi and Yuji Sugiyama. Unlinkable divisible electronic cash. In Josef Pieprzyk, Eiji Okamoto, and Jennifer
Seberry, editors, Information Security, Third International Workshop, ISW 2000, Wollongong, NSW, Australia,
December 20-21, 2000, Proceedings, volume 1975 of Lecture Notes in Computer Science, pages 121–134. Springer,
2000.

18. Tatsuaki Okamoto. An efficient divisible electronic cash scheme. In Don Coppersmith, editor, CRYPTO’95, volume
963 of LNCS, pages 438–451. Springer, August 1995.

19. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 324–337. Springer, August 1991.

20. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, August 1989.

A Security Proofs

In [8], the security notions were formally defined through games that we recall in Appendix C. In all of
them, the adversary A can add new users (either honest or corrupted) to the system, corrupt existing
ones (in which case A recovers every secret known by them) or ask them to spend any value. This
is modelled by queries to OAdd, OAddCorrupt, OCorrupt and OSpend oracles. According to each
security notion, A has also access to additional oracles that we define below.

A.1 Proof of Traceability

The goal of the adversary A is to output, after qw withdraws, u valid transcripts {(2`i , Zi, Πi)}ui=1

such that Identify((2`i , Zi, Πi), (2
`j , Zj , Πj)) =⊥ for all i 6= j and

∑u
i=1 2`i > qw · 2n . This models a

coalition of malicious users which manages to spend more than it has withdrawn without incriminating
one of its members. To succeed, A has also access to a OWithdrawB oracle which executes the bank’s
side of the Withdraw protocol.

Let us consider a successful adversary A. We distinguish the three following cases:

13



– Type-1 Forgeries: ∃i such that Πi contains commitments to a pair (gs, hs) which was never signed
by the bank.

– Type-2 Forgeries: ∃i such that Πi contains commitments to a pair (uusk1 , ux2) which was never
signed by the bank during a OWithdrawB query.

– Type-3 Forgeries: ∀1 ≤ i ≤ u, ∃τs in bpk which is a valid signature on the pair (gs, hs) committed in
Πi and the pairs (uusk1 , ux2) involved in this transcript were signed by the bank during aOWithdrawB
query.

The Remark 4 implies that type-3 forgeries can only occur with negligible probability. Indeed, let
x1,...,xqw be the secret values associated with coins withdrawn by A during the OWithdrawB queries.
Since an amount of

∑
i 2`i has been deposited, the bank has computed

∑
i 2`i serial numbers zi. All of

them are included in {Gxi·yε
∏n
j=1 yj,bj }b1,...,bn∈Fn,1≤i≤qw (otherwise A would be a Type-2 forger) which

contains qw · 2n <
∑

i 2`i elements. Therefore, there are at least i 6= j such that zi = zj . Such serial
numbers are associated with the same secret value x (see Remark 4) and so with the same public key
upk which would have been returned by the Identify algorithm.

Lemma 8. Any Type-1 forger A succeeding with probability ε can be converted into an adversary
against the EUF-SCMA security of Σ0 succeeding with probability ε/n+ 1.

Proof. The reduction R generates the public parameters as in the Setup algorithm and selects i∗ ∈
[0, n]. He then sends (gs, hs) for every s ∈ Sn such that |s| = i∗ to the challenger of the EUF-SCMA
security experiment which returns the signatures τs along with a public key pk. R then generates the

other key pairs (sk
(i)
0 , pk

(i)
0 ) for i 6= i∗ and uses them to sign the other nodes. Finally, it sets pk

(i∗)
0 = pk

and publishes {pk(i)0 }i along with the signatures τs. Since the keys sk
(i)
0 are no longer involved in the

protocol, R is able to answer any query.
The game ends when A outputs u transcripts such that one of them, (2`, Z,Π), contains commit-

ments to a pair (gs, hs) which was never signed by the bank. The soundness of the proof Π implies
that it also contains commitments to an element τs such that Σ0.Verify((gs, hs), τs, pk

n−`
0 ) = 1. If

` 6= i∗ then R aborts. Else, τs is a valid forgery on (gs, hs) under pk which can be used to break the
EUF-SCMA security of Σ0.

Lemma 9. Any Type-2 forger A succeeding with probability ε can be converted into an adversary
against the EUF-CMA security of Σ1 with the same advantage.

Proof. The reduction R generates the public parameters and its public key as usual excepts that it sets
pk1 as pk, the public key received from the challenger C of the EUF-CMA security. R can then directly
answer all the queries except the OWithdrawB ones for which it will forward the pairs (uusk1 , ux2) to C
and return the resulting signature σ to A.

The game ends when A outputs u transcripts such that one of them, (2`, Z,Π), contains commit-
ments to a pair (uusk1 , ux2) which was never signed by the bank during a OWithdrawB query. Again,
the soundness of the proof implies that it also contains commitments to an element σ such that
Σ1.Verify((uusk1 , ux2), σ, pk1) = 1. Such a forgery can then be used to break the EUF-CMA security of
Σ1.

A.2 Proof of Exculpability

An adversary A against the exculpability property must output two transcripts (v1, Z1, Π1) and
(v2, Z2, Π2) which accuse an honest user upk of double-spending, i.e. such that Identify((v1, Z1, Π1),
(v2, Z2, Π2)) = upk. To succeed, A has access to a OWithdrawU oracle which executes the user’s side
of the Withdraw protocol. This oracle will be used by A playing the role of the bank against an honest
user.

Let us consider a successful adversary A. At least one of the two transcripts that it outputs was
not produced by the reduction R during a OSpend query (otherwise R would have double-spent its
own coins) but was forged by it. We distinguish the two following cases:

14



– Type-1 forgeries: the public key pkots of the one-time signature scheme used in this forged tran-
script is one of those used by R to answer OSpend queries.

– Type-2 forgeries: pkots was never used by R.

The SUF-security of the OTS Σots implies that Type-1 forgeries can only occur with negligible
probability. Indeed, recall that the one-time signature scheme is used to sign all the elements involved
in the transcript. Since the forged transcript is different from those returned by R, it requires a new
one-time signature η, valid under pkots, which is therefore a forgery. Any Type-1 forger can thus be
converted into an adversary against the SUF-security of Σots.

Lemma 10. Let qs (resp. qa) be a bound on the number of OSpend queries (resp. OAdd queries). Any
Type-2 forger A succeeding with probability ε can be converted into an adversary against the qs− SDH
assumption succeeding with probability ε/qa.

Let (g, gα, . . . , gαqs ) be a qs − SDH challenge, R will make a guess on the user upk∗ framed by
A and will act as if its secret key was α. Therefore, it selects 1 ≤ i∗ ≤ qa and generates the public
parameters as in the Setup algorithm except that it sets u1 as gz for some random z ∈ Zp). Next,

it computes qs key pairs (sk
(i)
ots, pk

(i)
ots) ← Σots.Keygen(1k) and sets w as g

∏qs
i=1(α+H(pk

(i)
ots)) (which is

possible using the qs − SDH challenge [4], since the exponent is a polynomial in α of degree qs). The
reduction will answer the oracle queries as follows.

– OAdd() queries: When the adversary makes the i-th OAdd query to register a user, R runs the
Keygen algorithm if i 6= i∗ and set upk∗ ← gα otherwise.

– OCorrupt(upk/mpk) queries: R returns the secret key if upk 6= upk∗ and aborts otherwise.
– OAddCorrupt(upk/mpk) queries: R stores the public key which is now considered as registered.
– OWithdrawU (bsk, upk) queries: R acts normally if upk 6= upk∗ and simulates the interactive proof

of knowledge of α otherwise.
– OSpend(upk, 2`) queries: R acts normally if upk 6= upk∗. Else, to answer the j−th query on upk∗,

it computes µ← g
∏qs
i=1,i 6=j(α+H(pk

(i)
ots)) which verifies µ = w

1

α+H(pk
(j)
ots) and uses sk

(j)
ots as in the Spend

protocol.

The adversary then outputs two valid transcripts (2`1 , Z1, Π1) and (2`2 , Z2, Π2) which accuse upk
of double-spending. If upk 6= upk∗ then R aborts which will occur with probability 1/qa. Else, the
soundness of the proof implies that the forged transcript was signed using a key skots and so that the

proof involves an element µ = w
1

α+H(pkots) . Since here we consider Type-2 attacks, pkots /∈ {pk
(i)
ots}i, so

R extracts from the proof the element µ which can be used to break the qs − SDH assumption in G1

(as in [4]).

A.3 Proof of Anonymity

An adversary A against the anonymity property must distinguish, among two honest users of its
choice, who was involved in a spending. To succeed, it has also access to the OWithdrawU oracle
defined above. Let us consider a successful adversary A with advantage ε. We construct a reduction
R using A against the EMXDH assumption.

Let (g, ga, gt, {gyi}i=ni=1 , {gt·y
i}i=ni=1 , {gx·y

i}i=n−1i=0 , {gx·t·yi}i=n−1i=0 , {g̃y−i}i=ni=0 , g̃
a) ∈ G4n+3

1 × Gn+2
2 and

(gz1 , gz2) ∈ G2
1 be the corresponding challenge. The reduction R selects a random depth d∗, and a

random node s∗ = b∗1...b
∗
|s∗| at depth |s∗| = d∗. It will act as if yε = yn, ad∗ = a and, for 1 ≤ i ≤ d∗,

yi,b∗i = ui,b∗i
$← Zp and yi,b∗i

= y−1 · ui,b∗i with ui,b∗i
$← Zp. We define, for each s = b` . . . b|s|, the integer

ds = |{` ≤ i ≤ min(|s|, d∗) : bi 6= b∗i }|. To generate the public parameters, the challenger

– sets (h, u1, u2) as (gt, gd1 , gd2) for random d1, d2
$← Zp

– sets gε as gy
n

– selects, for 1 ≤ i 6= d∗ ≤ n ai $← Zp and computes gi ← gai

– sets gd∗ as ga

15



– selects, for 1 ≤ i ≤ n, ui,0, ui,1
$← Zp and computes

(gs, hs)← ((gy
n−ds

)
∏|s|
i=1 ui,bi , (gt·y

n−ds
)
∏|s|
i=1 ui,bi ), for each node s = b1 . . . b|s|

– computes, for every 0 ≤ i 6= d∗ ≤ n and every f ∈ Li,

(g̃i,f , h̃i,f )← ((g̃y
−df

)
∏n
j=i+1 uj,bj , g̃−aii,f )

– computes, for every f ∈ L|s∗|,

(g̃d∗,f , h̃d∗,f )← (g̃
∏n
j=d∗+1 uj,bj , (g̃a)

−
∏n
j=d∗+1 uj,bj )

Finally, R also generates a common reference string for the perfect witness indistinguishability
setting. Such a CRS is indistinguishable from the one generated in the Setup algorithm under the
SXDH assumption.

The point is that, for each s which is not a prefix or a descendant of s∗, we have ds > 0. Therefore,
the associated element gs (resp. hs) is equal to gy

j ·rs (resp. gt·y
j ·rs) for some j < n and some rs ∈ Zp

which is known to R. The reduction can then use s to answer a OSpend query since the challenge
contains the pairs (gx·y

i
, gx·t·y

i
) for i < n.

We denote by cupk the value spent by the user whose public key is upk during OSpend queries
and by mupk the number of coins that he withdrew. Let qw be a bound on the number of OWithdraw
queries, R randomly selects i∗ from [0,qw] and answers to the oracle queries as follows:

– OAdd() queries: R runs the Keygen algorithm and returns upk (or mpk).
– OWithdrawU (bsk, upk) queries: When the adversary asks the ith OWithdrawU query, the reduc-

tion acts normally if i 6= i∗ and as if the secret value of the coin is x otherwise (by sending
(gx)d2 and simulating the proof of knowledge, since x is not known by R). The chosen public key
corresponding to this last case will be denoted upk∗.

– OCorrupt(upk/mpk) queries: R acts normally if the query was not made on upk∗. Else, it aborts
the experiment.

– OAddCorrupt(upk/mpk): R stores the public key which is now considered as registered.
– OSpend(upk, 2`) queries: R is able to deal with any of these queries if upk 6= upk∗. Else, the

reduction is able to answer as long as cupk∗ ≤ mupk∗ · 2n− 2n−d
∗ − 2` (and aborts otherwise) since

this condition means that there is at least one unspent node s (of depth n − `) which is not a
prefix or a descendant of s∗. Therefore, ds > 0 and so, as explained above, computing gxs and
hxs is possible. The reduction can then return a valid pair ts ← (gr1 , gxs · g

r1
n−`) and a valid pair

vs ← (gr2 , (upk∗)R · hxs · g
r2
n−`) where R← H(info) and simulates the non-interactive proof (which

is possible since we use a simulated CRS).

During the challenge phase, A outputs {upk0, upk1} along with a value 2`. Of course, it is assumed
that none of these users has spent more than mupkb · 2

n − 2`. If upk∗ /∈ {upk0, upk1} or ` 6= n − d∗
(i.e. s∗ is not associated with the right value 2`) then R aborts. Else, R selects two random scalars

r, r′
$← Zp and returns, along with simulated proofs,

((gz1)
−

∏|s∗|
i=1 ui,b∗i · gr, ga·r) and ((gz2)

−
∏|s∗|
i=1 ui,b∗i · gr′ , (upk∗)R · ga·r′)

– in the case that (z1, z2) = (x · yn/a, x · t · yn/a) then

• the first pair is (gr1 , gxs∗ · g
r1
|s∗|) with r1 = r − z1 ·

∏|s∗|
i=1 ui,b∗i :

gxs∗ · g
r1
|s∗| = g

(x·yn)
∏|s∗|
i=1 ui,b∗i · ga·(r−z1·

∏|s∗|
i=1 ui,b∗i

)

= g
(x·yn)

∏|s∗|
i=1 ui,b∗i · ga·r · g(−x·y

n)
∏|s∗|
i=1 ui,b∗i = ga·r

16



• the second pair is (gr2 , (upk∗)R · hxs∗ · g
r2
|s∗|) with r2 = r′ − z2 · t

∏|s∗|
i=1 ui,b∗i :

hxs∗ · g
r2
|s∗| = hxs∗ · g

−z2·t
∏|s∗|
i=1 ui,b∗i

|s∗| · gr′|s∗|

= (gxs∗ · g
−z2·

∏|s∗|
i=1 ui,b∗i

|s∗| )t · ga·r′ = ga·r
′

Therefore, the pairs returned by R are valid.
– in the random case, these pairs are respectively (gα · gr, ga·r) and (gβ · gr′ , (upk∗)R · ga·r′), and

perfectly hide upk∗.

The bit returned by A can then be used against the EMXDH assumption.
The reduction will not abort if it correctly guessed the value spent during the challenge phase (i.e.

` = n − d∗) and if the coin withdrawn during the i∗th query belongs to upk0 or upk1. The advantage
of R in breaking the assumption is then greater than 2ε/((n+ 1) · qw).

B Security of the EMXDH Assumption

First, let us consider the weak-EMXDH assumption defined in Section 6. Informally, this assumption
relies on the fact that, since gz ∈ G1, we can combine it with every element of G2 (but not G1 since
we use an asymmetric bilinear map) provided by the challenge. Therefore, the assumption holds if
e(gz, g̃a) and e(gz, g̃1/y

j
), for 0 ≤ j ≤ n, are undistinguishable from random elements of GT , given all

the inputs from the challenge.
If z = x · yn/a then e(gz, g̃a) = Gx·y

n
and e(gz, g̃y

−j
) = Gx·y

n−j/a, for G = e(g, g̃). While all the
other combinations lead to G, Ga

2
, Gx, {Gyi}i=ni=−n, {Gayi}i=ni=−n, {Gxyi}i=n−1i=−n , {Gaxyi}i=n−1i=0 . No linear

combination of the latter can help to distinguish the former.
The elements provided in the challenge allow (see Appendix A.3) to generate the public parameters

gs for each node s ∈ Sn as well as the pairs (g̃i,f , h̃i,f ) for every 0 ≤ i ≤ n and f ∈ Fn but also to
compute the element gxs involved in the pair ts sent during the Spend protocol. This is enough for the
fair divisible E-cash system sketched in Section 6. Unfortunately, the anonymous version described in
Section 5 also requires to provide, for each s ∈ Sn, the elements hs = gts for some t ∈ Zp. Such elements
are used during a spending to compute the element hxs = (gxs )t involved in the pair vs necessary to
identify double-spenders without the help of an opener.

The problem is that the reduction R of Appendix A.3 cannot know the value t. Therefore, it is
necessary to provide for most elements w of G1 of the challenge, the associated ones wt, hence the
EMXDH assumption.

C Security Games

We recall, for consistency, the security games defined in [8]. Each one of them makes use of the oracles
described in Appendix A.

C.1 Traceability

The traceability experiment ExptraA (1k, V ) is defined on Figure 4. A divisible E-cash system is traceable
if, for any probabilistic polynomial adversary A, the advantage AdvtraA (1k, V ) = Pr[ExptraA (1k, V ) = 1]
is negligible.

C.2 Exculpability

The exculpability experiment ExpexcuA (1k, V ) is defined on Figure 5. A divisible e-cash system is exculpa-
ble if, for any probabilistic polynomial adversaryA, the advantage AdvexcuA (1k, V ) = Pr[ExpexcuA (1k, V ) =
1] is negligible.

17



ExptraA (1k, V )

1. p.p.← Setup(1k, V )
2. (bsk, bpk)← BKeygen()

3. [(v1, Z1, Π1), . . . , (vu, Zu, Πu)]
$← AOAdd,OCorrupt,OAddCorrupt,OWithdrawB,OSpend(bpk)

4. If
∑u
i=1 vi > m · V and ∀i 6= j, Identify((vi, Zi, Πi), (vj , Zj , Πj)) =⊥,

then return 1
5. Return 0

Fig. 4. Traceability Security Game

ExpexcuA (1k, V )

1. p.p.← Setup(1k, V )
2. bpk← A()
3. [(v1, Z1, Π1), (v2, Z2, Π2)]← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If Identify((v1, Z1, Π1), (v2, Z2, Π2), bpk) = upk and upk not corrupted,

then return 1
5. Return 0

Fig. 5. Exculpability Security Game

C.3 Anonymity

The anonymity experiment Expanon−bA (1k, V ), for b ∈ {0, 1}, is described on Figure 6. The notation cupk
and mupk is defined in Appendix A.3. A divisible e-cash system is anonymous if, for any probabilistic
polynomial adversary A, the advantage AdvanonA (1k, V ) = Pr[Expanon−1A (1k, V )]−Pr[Expanon−0A (1k, V )]
is negligible.

Expanon−bA (1k, V )

1. p.p.← Setup(1k, V )
2. bpk← A()
3. (v, upk0, upk1,mpk)← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend()
4. If upk0 or upk1 is not registered, then return 0
5. If cupki > mupki · V − v for i ∈ {0, 1}, then return 0
6. (v, Z,Π)← Spend(C(uskb, C,mpk, v),A())
7. b∗ ← AOAdd,OCorrupt,OAddCorrupt,OWithdrawU ,OSpend∗()
8. If upk0 or upk1 has been corrupted, then return 0
9. Return (b = b∗)

Fig. 6. Anonymity Security Game

18


