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Abstract. Multilinear map is a novel primitive which has many cryp-
tographic applications, and GGH map is a major candidate of K-linear
maps for K > 2. GGH map has two classes of applications, which are
respectively applications with public tools of encoding and with hidden
tools of encoding. In this paper we show that applications of GGH map
with public tools of encoding are not secure, and that one application of
GGH map with hidden tools of encoding is not secure. We present an ef-
ficient attack on GGH map, aiming at multipartite key exchange (MKE)
and the instance of witness encryption (WE) based on the hardness of
3-exact cover problem. First, we use special modular operations, which
we call modified encoding/decoding, to filter the decoded noise much s-
maller. Such filtering is enough to break MKE. Moreover, such filtering
negates K-GMDDH assumption, which is the security basis of an ABE
scheme. The procedure almost breaks away from those lattice attacks
and looks like an ordinary algebra. The key point is our special tools
for modular operations. Second, under the condition of public tools of
encoding, we break the instance of WE based on the hardness of 3-exact
cover problem. To do so, we not only use modified encoding/decoding,
but also introduce and solve “combined 3-exact cover problem”, which
is a problem never hard to be solved. The attack on the instance of WE
is under an assumption, which seems at least nonnegligible. Third, for
hidden tools of encoding, we present an attack on the instance of WE
based on the hardness of 3-exact cover problem. To do so, we construct
level-2 encodings of 0, used as tools of encoding. This attack is under sev-
eral stronger assumptions, which seem nonnegligible. Finally, we present
cryptanalysis of a simple revision of GGH map, aiming at MKE. We show
that MKE can be broken under the assumption that 2K is polynomially
large. To do so, we generalize our modified encoding/decoding.

Keywords: Multilinear maps, Multipartite key exchange (MKE), Wit-
ness encryption (WE), Lattice based cryptography.

1 Introduction

1.1 Background and Our Contributions

Multilinear map is a novel primitive. It is the solution of a long-standing open
problem [1], and has many novel cryptographic applications, such as multipartite
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key exchange (MKE) [2], witness encryption (WE) [3–9], obfuscation [7–10],
and so on. It also has several advantages in traditional cryptographic area, such
as IBE, ABE [11], Broadcasting encryption, and so on. The first candidate of
multilinear map is GGH map [2], and GGHLite map [12] is a special version of
GGH map, for the purpose of improving the efficiency. Up to now, GGH map is
a major candidate of K-linear maps for K > 2. It uses noised encoding to obtain
the trapdoor, and its security was seemingly based on the hardness of several
problems over lattices. GGH map has two classes of applications. The first class is
applications with public tools of encoding/decoding, for example, MKE [2], IBE,
ABE, Broadcasting encryption, and so on. The second class is applications with
hidden tools of encoding and public tools of decoding, for example, GGHRSW
obfuscation [7]. WE can be of the first and the second classes. For the first class,
WE tools of encoding are generated and published by the system, and can be
used by any user. For the second class, WE tools of encoding are generated
and hidden by unique encrypter, and can only be used by himself. Authors of
GGH map [2] provided a survey of relevant cryptanalysis techniques from the
literature, and also provided two new attacks on GGH map, as a reminding. We
emphasize that they presented weak-DL attack which is primary version of our
attack, and which did not find major danger.

In this paper we show that applications of GGH map with public tools of
encoding are not secure, and that one application of GGH map with hidden tools
of encoding is not secure. We present an efficient attack on GGH map, aiming at
MKE and the instance of WE based on the hardness of 3-exact cover problem.
As a preparing step, for the secret of each user, we obtain an equivalent secret,
which is the sum of original secret and a noise. The noise is an element of the
specific principal ideal, but its size is not small. To do so, we use weak-DL attack
[2]. Then our contributions are as follows.

First, We use special modular operations, which we call modified encod-
ing/decoding, to filter the decoded noise much smaller. Such filtering is enough
to break MKE. Moreover, such filtering negates K-GMDDH assumption (As-
sumption 5.1 of [11]), which is the security basis of the ABE scheme [11]. The
procedure almost breaks away from those lattice attacks and looks like an ordi-
nary algebra. The key point is our special tools for modular operations.

Second, under the condition of public tools of encoding, we break the instance
of WE based on the hardness of 3-exact cover problem. To do so, we not only
use modified encoding/decoding, but also introduce and solve “combined 3-exact
cover problem”, which is a problem never hard to be solved. The attack on the
instance of WE is under an assumption, which seems at least nonnegligible.

Third, for hidden tools of encoding, we present an attack on the instance
of WE based on the hardness of 3-exact cover problem. To do so, we construct
level-2 encodings of 0, used as tools of encoding. This attack is under several
stronger assumptions, which seem nonnegligible.

Finally, we check whether GGH structure can be simply revised to avoid
our attack. We present cryptanalysis of a simple revision of GGH map, aiming
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at MKE. We show that MKE can be broken under the assumption that 2K is
polynomially large. To do so, we generalize our modified encoding/decoding.

1.2 Principles and Meanings of Our Attack

Quite different from original DH maps and bilinear maps, all candidates of multi-
linear maps have a common security worry that decoding tools are public. This
makes the adversary decode messages freely. The adversary can choose those
decoded messages that are small enough, without protection of the modular op-
eration. Such security worry has been used to break CLT map [13–17], which is
another major candidate of multilinear maps, and which is simply over integers.
Multilinear maps over the integer polynomials (GGH map [2] and GGHLite map
[12]) haven’t been broken because (1) (NTRU declaration) the product of a short
polynomial and modular inverse of another short polynomial seems unable to
be decomposed; and (2) the product of several short polynomials seems unable
to be decomposed. However, the product of several short polynomials is a some-
what short polynomial. Although it cannot be decomposed, it can be used as a
modulus to filter the noise. On the other hand, breaking applications of GGH
map with public tools of encoding does not mean solving users’ secrets. It only
means solving “high-order bits of decoding of the product of encodings of users’
secrets”, a weaker requirement. All of the above form the first principle of our
attack. The second principle is that, if one uses GGH map for constructing the
instance of WE based on the hardness of 3-exact cover problem, special structure
of GGH map can simplify the 3-exact cover problem into a combined 3-exact
cover problem.

Authors of GGH map [2] presented three variants, which are “asymmetric
encoding”, “providing zero-test security” and “avoiding principal ideals”. We
find the first and the second variants never immune to our attack, as long as
they are used for MKE and the instance of WE based on the hardness of 3-
exact cover problem. The third variant is under study. A new consideration
is removing multiplication commutability, but the application will be greatly
limited. For example, the instance of WE based on the hardness of 3-exact cover
problem can only use multiplication commutable ideal lattices.

1.3 The Organization

In subsection 1.4 we review recent works related to multilinear map. In section
2 we review GGH map and two applications, MKE and the instance of WE on
3-exact cover. In section 3 we define special tools for our attack, which are special
polynomials used for our modular operations. Also in this section, for the secret
of each user, we generate an equivalent secret, which is not small. It is immediate
that we obtain an “equivalent secret” of the product of users’ secrets, which
just is the product of users’ equivalent secrets. In section 4 we present modified
encoding/decoding. We show how can “high-order bits of decoding of the product
of encodings of users’ secrets” be solved, so that MKE is broken. In section 5 we
show how to break the instance of WE on 3-exact cover problem with public tools
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of encoding. In this section we first introduce and solve “combined 3-exact cover
problem”, then solve “high-order bits of decoding of the product of encodings of
users’ secrets”. In section 6 we present an attack on the instance of WE based on
the hardness of 3-exact cover problem with hidden tools of encoding. We show
that this instance can be broken under several stronger assumptions. In section 7
we present cryptanalysis of a simple revision of GGH map, aiming at MKE. We
show that MKE can be broken under the assumption that 2K is polynomially
large.

1.4 Related Works

Arita and Handa [5] presented two applications of multilinear maps: group key
exchange and witness encryption. Their witness encryption scheme (called AH
scheme) has the security claim based on the hardness of Hamilton Cycle prob-
lem. The novelty is that they used an asymmetric multilinear map over integer
matrices. Bellare and Hoang [6] presented adaptive witness encryption, with
stronger security than soundness security, named adaptive soundness security.
Garg et al. [7] presented witness encryption by using indistinguishability obfus-
cation and Multilinear Jigsaw Puzzle, a simplified variant of multilinear maps.
Extractable witness encryption was presented [8–10]. Gentry et al. designed mul-
tilinear maps based on graph [18]. Coron et al. presented efficient attack on CLT
map for hidden tools of encoding [19]. Coron et al. designed CLT15 map [20].

2 GGH map and two applications

2.1 Notations and Definitions

We define the rational numbers by Q and the integers by Z. We specify that
n-dimensional vectors of Qn and Zn are row vectors. We consider the 2n’th
cyclotomic polynomial ring R = Z[X]/(Xn + 1), and identify an element u ∈ R
with the coefficient vector of the degree-(n−1) integer polynomial that represents
u. In this way, R is identified with the integer lattice Zn. We also consider the ring
Rq = R/qR = Zq[X]/(Xn+1) for a (large enough) integer q. Obviously, addition
in these rings is done component-wise in their coefficients, and multiplication is
polynomial multiplication modulo the ring polynomial Xn + 1. In some cases
we also consider the ring K = Q[X]/(Xn + 1), which is likewise associated with
the linear space Qn. We redefine the operation “mod q” as the follow: if q is an
odd, a(mod q) is within {−(q− 1)/2,−(q− 3)/2, · · · , (q− 1)/2}; if q is an even,
a(mod q) is within {−q/2,−(q − 2)/2, · · · , (q − 2)/2}. For x ∈ R, ⟨x⟩ = {x · u :
u ∈ R} is the principal ideal in R generated by x (alternatively, the sub-lattice
of Zn corresponding to this ideal). For x ∈ R, y ∈ R, y(mod x) is such vector:
y(mod x) = ax, each entry of a is within [-0.5, 0.5), and y − y(mod x) ∈ ⟨x⟩.



Cryptanalysis of GGH Map 5

2.2 Parameter Setting and Map

We secretly sample a short element g ∈ R. Let ⟨g⟩ be the principal ideal in R.
g itself is kept secret, and no “good” description of ⟨g⟩ is made public. Another
secret element z ∈ Rq is chosen at random, and hence is not short.

An element y is called encoding parameter, or called level-1 encoding of 1,
and is set as the follow. We secretly sample a short element a ∈ R, and let
y = (1 + ag)z−1(mod q). Elements {x(i), i = 1, 2} are called randomizers, or
called level-1 encodings of 0, and are set as the follow. We secretly sample a
short element b(i) ∈ R, and let x(i) = b(i)gz−1(mod q), i = 1, 2. Public element
pzt is called level-K zero-testing parameter, where K ≥ 3 is an integer. pzt is set
as the follow. We secretly sample a “somewhat small” element h ∈ R, and let
pzt = (hzkg−1)(mod q). Simply speaking, parameters y and {x(i), i = 1, 2} are
tools of encoding, while public parameter pzt is tool of decoding. {g, z, a, {b(i), i =
1, 2}, h} are kept from all users. For MKE, y and {x(i), i = 1, 2} are public. For
WE, they can be either public or hidden.

Suppose a user has a secret v ∈ R, which is a short element. He secretly sam-
ples short elements {u(i) ∈ R, i = 1, 2}. He computes noised encoding V = vy +
(u(1)x(1) + u(2)x(2))(mod q), where vy(mod q) and (u(1)x(1) + u(2)x(2))(mod q)
are respectively encoded secret and encoded noise. He publishes V . Then GGH
K-linear map includes K, y, {x(i), i = 1, 2}, pzt, and all noised encoding V for all
users.

We call g grade 1 element, and denote σ as the standard deviation for
sampling g. We call {a, {b(i), i = 1, 2}} and {v, {u(i), i = 1, 2}} grade 2 ele-
ments, and denote σ′ as the standard deviation for sampling {a, {b(i), i = 1, 2}}
and {v, {u(i), i = 1, 2}}. Both σ and σ′ are greatly smaller than

√
q, and G-

GH K-linear map [2] suggests σ′ = nσ. Finally, we call h grade 3 element,
and take σ′′ =

√
q as the standard deviation for sampling h. We say that g,

{a, {b(i), i = 1, 2}} and {v, {u(i), i = 1, 2}} are “very small”, and that h is “some-
what small”. h can not be taken “very small” for the security concern.

2.3 Application 1: MKE

Suppose that K + 1 users want to generate a common shared key by public
discussion. To do so, each user k generates his secret v(k), and publishes the
noised encoding V (k), k = 1, · · · ,K + 1. Then each user can use his secret and
other users’ noised encodings to compute KEY , the common shared key. KEY
is high-order bits of any decoded message. For example, user k0 first computes
v(k0)pzt

∏
k ̸=k0

V (k)(mod q), thenKEY is high-order bits of v(k0)pzt
∏

k ̸=k0
V (k)(mod q).

That is, he first computes

v(k0)pzt
∏
k̸=k0

V (k)(mod q) =

h(1 + ag)Kg−1
K+1∏
k=1

v(k)+
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hv(k0)
∑

S⊂{1,··· ,K+1}
−{k0},|S|≥1

(1 + ag)K−|S|g|S|−1
∏

k∈{1,··· ,K+1}−
{k0}−S

(v(k))
∏
t∈S

(u(t,1)b(1) + u(t,2)b(2))(mod q).

It is modular sum of two terms, decoded message and decoded noise. Decoded
message is

h(1 + ag)Kg−1
K+1∏
k=1

v(k)(mod q).

Decoded noise is

hv(k0)
∑

S⊂{1,··· ,K+1}
−{k0},|S|≥1

(1 + ag)K−|S|g|S|−1
∏

k∈{1,··· ,K+1}
−{k0}−S

(v(k))
∏
t∈S

(u(t,1)b(1) + u(t,2)b(2)).

Notice that decoded noise is the sum of 3K − 1 terms. For example, h(1 +

ag)K−1b(1)u(1,1)
∏K+1

k=2 (v(k)) is a term of the decoded noise. Each term is the
product of a “somewhat small” element and several “very small” elements.
Therefore decoded noise is “somewhat small”, and it can be removed if we on-
ly extract high-order bits of v(k0)pzt

∏
k ̸=k0

V (k)(mod q). In other words, KEY

actually is high-order bits of decoded message h(1+ag)Kg−1
∏K+1

k=1 v(k)(mod q).

2.4 Application 2: the Instance of WE on 3-Exact Cover

3-Exact Cover Problem [3, 21] If we are given a subset of {1, 2, · · · , 3K}
including 3 integers, we call it a piece. If we are given a collection of K pieces
without intersection, we call it a 3-exact cover of {1, 2, · · · , 3K}. The 3-exact
cover problem is that, for randomly given N(K) different pieces with a hidden
3-exact cover, find it. It is clear that 1 ≤ N(k) ≤ C3

3K . If N(K) = O(K), the
3-exact cover problem is not hard. In this case we can efficiently use subtrac-
tion, that is, exclude those pieces which are not included in any 3-exact cover.
Generally we take N(K) = O(K2) to make 3-exact cover problem hard enough.

Encryption The encrypter samples short elements v(1), v(2), · · · , v(3K) ∈ R. He
computes the encryption key as the follow. He first computes v(1)v(2) · · · v(3K)yK

pzt(mod q), then takes EKEY as its high-order bits. In fact, EKEY is high-
order bits of v(1)v(2) · · · v(3K)(1 + ag)Khg−1(mod q). He can uses EKEY and
an encryption algorithm to encrypt any plaintext. Then he hides EKEY into
pieces as follows. He randomly generates N(K) different pieces of {1, 2, · · · , 3K},
with a hidden 3-exact cover called EC. For each piece {i1, i2, i3} he computes
noised encoding of the product v(i1)v(i2)v(i3), that is, secretly samples short el-
ements {u({i1,i2,i3},i) ∈ R, i = 1, 2}, then computes and publishes V {i1,i2,i3} =
v(i1)v(i2)v(i3)y + (u({i1,i2,i3},1)x(1) + u({i1,i2,i3},2)x(2))(mod q).

Decryption The one who knows EC computes the decoding of
∏

{i1,i2,i3}∈EC
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V {i1,i2,i3}(mod q), that is, he computes pzt
∏

{i1,i2,i3}∈EC V {i1,i2,i3}(mod q). Then

EKEY is its high-order bits. In other words, pzt
∏

{i1,i2,i3}∈EC V {i1,i2,i3}(mod q)

is modular sum of two terms, the first term is decoded message v(1)v(2) · · · v(3K)(1+
ag)Khg−1 (mod q), while the second term is decoded noise which doesn’t affect
high-order bits of pzt

∏
{i1,i2,i3}∈EC V {i1,i2,i3}(mod q).

3 Weak-DL Attack: Generating Equivalent Secrets

Table 1 is a comparison between processing routines of GGH map and our work.
It is a note of our claim that we can achieve same purpose without knowing the
secret of any user.

Table 1. Processing routines

GGH map secrets → encodings → product → decoding → high-order bits

Our work equivalent secrets → product → modified encoding/decoding → high-order bits

As the start of our attack, we will find equivalent secrets. The method is
weak-DL attack [2].

3.1 Generating an Equivalent Secret for One User

We can obtain special decodings {Y,X(i), i = 1, 2}, where

Y = yK−1x(1)pzt(mod q) = h(1 + ag)K−1b(1),

X(i) = yK−2x(i)x(1)pzt(mod q) = h(1 + ag)K−2(b(i)g)b(1),

i = 1, 2.

Notice that right sides of these equations have no operation “mod q”. More
precisely, each of {Y,X(i), i = 1, 2} is a factor of a term of decoded noise. For

example, Y u(1,1)
∏K+1

k=2 (v(k)) is a term of the decoded noise. Therefore each of
{Y,X(i), i = 1, 2} is far smaller than a term of the decoded noise. However, they
are not small enough because of the factor h. We say they are “somewhat small”,
and take them as our tools.

Take the noised encoding V (corresponding to the secret v and unknown
{u(1), u(2)}), and compute special decoding

W = V yK−2x(1)pzt(mod q) = vY + (u(1)X(1) + u(2)X(2)).

Notice that right side of this equation has no operation “mod q”. Then compute

W (mod Y ) =
(
u(1)X(1)(mod Y ) + u(2)X(2)(mod Y )

)
(mod Y ).



8 Yupu Hu and Huiwen Jia

Step 1 By knowingW (mod Y ) and {X(1)(mod Y ), X(2)(mod Y )}, obtainW ′ ∈
⟨X(i), i = 1, 2⟩ such that W − W ′(mod Y ) = 0. This is quite an easy algebra,
and we present the detail in Appendix A. Notice that W − W ′ is not a short
vector. Denote W ′ = u′(1)X(1) + u′(2)X(2).

Step 2 Compute v(0) = (W −W ′)/Y (division over the real numbers, with the
quotient which is an integer vector). Then

v(0) = v + ((u(1)X(1) + u(2)X(2))−W ′)/Y

= v + ((u(1) − u′(1))X(1) + (u(2) − u′(2))X(2))/Y

= v + ((u(1) − u′(1))b(1) + (u(2) − u′(2))b(2))g/(1 + ag).

By considering another fact that g and 1+ag are coprime, we have v(0)−v ∈ ⟨g⟩.
We call v(0) an equivalent secret of v, and call residual vector v(0) − v the noise.
Notice that v(0) is not a short vector.

3.2 Generating an “Equivalent Secret” for the Product of Secrets

Suppose that each user k has his secret v(k), and we generate v(0,k), an equivalent
secret of v(k), where k = 1, · · · ,K + 1. For the product

∏K+1
k=1 v(k), we have an

“equivalent secret”
∏K+1

k=1 v(0,k), where the noise is
∏K+1

k=1 v(0,k) −
∏K+1

k=1 v(k) ∈
⟨g⟩. Notice that

∏K+1
k=1 v(0,k) is not a short vector.

4 Modified Encoding/Decoding

In this section we transform
∏K+1

k=1 v(0,k) by our modified encoding/decoding.
The procedure has three steps, which are multiplication by Y , mod X(1) op-
eration, and mod q multiplication by y(x(1))−1(or by Y (X(1))−1). Denote η =∏K+1

k=1 v(0,k). Then η =
∏K+1

k=1 v(k) + ξg, where ξ ∈ R.

Step 1 Compute η′ = Y η. By noticing that Y is a multiple of b(1), we have a
fact that η′ = Y

∏K+1
k=1 v(k) + ξ′b(1)g, where ξ′ ∈ R.

Step 2 Compute η′′ = η′(mod X(1)). There are 3 facts as follows.

(1) η′′ = Y
∏K+1

k=1 v(k) + ξ′′b(1)g, where ξ′′ ∈ R. Notice that η′′ is the sum of η′

and a multiple of X(1), and that X(1) is a multiple of b(1)g.

(2) η′′ has the size similar to that of
√
nX(1). In other words, η′′ is smaller than

one term of decoded noise. Notice standard deviations for sampling various
variables.

(3) Y
∏K+1

k=1 v(k) has the size similar to that of one term of decoded noise.

Above 3 facts result in a new fact that ξ′′b(1)g = η′′ − Y
∏K+1

k=1 v(k) has the
size similar to that of one term of decoded noise.

Step 3 Compute η′′′ = y(x(1))−1η′′(mod q). There are 3 facts as follows.

(1) η′′′ = (h(1 + ag)Kg−1)
∏K+1

k=1 v(k) + ξ′′(1 + ag)(mod q). Notice fact (1) of
Step 2, and notice the definitions of Y and X(1).
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(2) ξ′′(1+ag) has the size similar to that of one term of decoded noise. In other
words, ξ′′(1+ag) is smaller than decoded noise. This fact is clear by noticing
that ξ′′b(1)g has the size similar to that of one term of decoded noise, and
by noticing that 1 + ag and b(1)g have similar size.

(3) (h(1 + ag)Kg−1)
∏K+1

k=1 v(k)(mod q) is decoded message, therefore its high-
order bits are what we want to obtain.

Above 3 facts result in a new fact that η′′′ is modular sum of decoded message
and a new decoded noise which is smaller than original decoded noise. Therefore
high-order bits of η′′′ are what we want to obtain. MKE has been broken. More
important is that K-GMDDH assumption (Assumption 5.1 of [11]) is negated.

5 Breaking the Instance of WE Based on the Hardness of
3-Exact Cover Problem with Public Tools of Encoding

Our modified encoding/decoding can not directly break the instance of WE
based on the hardness of 3-exact cover problem, because the 3-exact cover is
hidden. In this section we show that special structure of GGH map can simplify
the 3-exact cover problem into a combined 3-exact cover problem, then show
how to use a combined exact cover to break the instance under the condition
that low-level encodings of zero are made publicly available.

5.1 Combined 3-Exact Cover Problem: Definition and Solution

Suppose we are given N(K) = O(K2) different pieces of {1, 2, · · · , 3K}. A subset
{i1, i2, i3} of {1, 2, · · · , 3K} is called a combined piece, if

(1) {i1, i2, i3} is not a piece;

(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces.

(Then {j1, j2, j3} and {k1, k2, k3} don’t intersect, and {j1, j2, j3}∪{k1, k2, k3} ⊃
{l1, l2, l3}).
A subset {i1, i2, i3} of {1, 2, · · · , 3K} is called a second-order combined piece, if

(1) {i1, i2, i3} is neither a piece nor a combined piece;

(2) {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} − {l1, l2, l3};
(3) {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are pieces or combined pieces.

K pieces or combined pieces or second-order combined pieces without in-
tersection are called a combined 3-exact cover of {1, 2, · · · , 3K}. The combined
3-exact cover problem is that, for randomly given N(K) = O(K2) different
pieces, find a combined 3-exact cover. More specifically, we take N(K) = K2

without loss of generality. We will show that the combined 3-exact cover problem
is never hard.

Obtaining Combined Pieces Suppose that K2 pieces are sufficiently random
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distributed, and in them there is a hidden 3-exact cover. We take P (E) as the
probability of the event E, and P

(
E
∣∣E′) as the conditional probability of E

under the condition E′. Arbitrarily take a subset {i1, i2, i3} which is not a piece.
In Appendix B we show that P ({i1, i2, i3} is not a combined piece) ≈ e−2. Now
we construct all combined pieces from K2 pieces, then we have a result: there
are about (1− e−2)C3

3K different subsets of {1, 2, · · · , 3K}, each including 3 el-
ements, which are pieces or combined pieces.

Obtaining Second-Order Combined Pieces There are about e−2C3
3K d-

ifferent subsets of {1, 2, · · · , 3K}, each including 3 elements, which are neither
pieces nor combined pieces. Arbitrarily take one subset {i1, i2, i3} from them.
By similar deduction procedure to Appendix B, we can show that P ({i1, i2, i3}
is not a second-order combined piece) is negatively exponential in K. Now we
construct all second-order combined pieces from (1 − e−2)C3

3K pieces or com-
bined pieces, then we are almost sure to have a result: all C3

3K different subsets
of {1, 2, · · · , 3K}, each including 3 elements, are pieces or combined pieces or
second-order combined pieces. Therefore the combined 3-exact cover problem is
solved.

5.2 Positive/Negative Factors

Definition 1. Take a fixed combined 3-exact cover. Take an element {i1, i2, i3}
of this combined 3-exact cover.

(1) If {i1, i2, i3} is a piece, we count it as a positive factor.

(2) If {i1, i2, i3} is a combined piece, {i1, i2, i3} = {j1, j2, j3} ∪ {k1, k2, k3} −
{l1, l2, l3}, we count pieces {j1, j2, j3} and {k1, k2, k3} as positive factors,
and count the piece {l1, l2, l3} as a negative factor.

(3) Suppose {i1, i2, i3} is a second-order combined piece,{i1, i2, i3} = {j1, j2, j3}∪
{k1, k2, k3} − {l1, l2, l3}, where {j1, j2, j3}, {k1, k2, k3} and {l1, l2, l3} are
pieces or combined pieces.

(3.1) If {j1, j2, j3} is a piece, we count it as a positive factor; if {j1, j2, j3}
is a combined piece, we count 2 positive factors corresponding to it as
positive factors, and the negative factor corresponding to it as a negative
factor.

(3.2) Similarly, if {k1, k2, k3} is a piece, we count it as a positive factor; if
{k1, k2, k3} is a combined piece, we count 2 positive factors corresponding
to it as positive factors, and the negative factor corresponding to it as a
negative factor.

(3.3) Oppositely, if {l1, l2, l3} is a piece, we count it as a negative factor; if
{l1, l2, l3} is a combined piece, we count 2 positive factors corresponding
to it as negative factors, and the negative factor corresponding to it as a
positive factor.

Positive and negative factors are pieces. All positive factors form a collec-
tion, and all negative factors form another collection (notice that we use the
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terminology “collection” rather than “set”, because it is possible that one piece
is counted several times). Take CPF as the collection of positive factors, NPF
as the number of positive factors. Take CNF as the collection of negative fac-
tors, NNF as the number of negative factors. Notice that some pieces may
be counted repeatedly. It is easy to see that NPF −NNF = K. On the other
hand, from C3

3K different subsets of {1, 2, · · · , 3K}, there are K2 different pieces,
about (1−e−2)C3

3K −K2 different combined pieces, and about e−2C3
3K different

second-order combined pieces. Each piece is a positive factor, each combined
piece is attached by 2 positive factors and a negative factor, each second-order
combined piece is attached by at most 5 positive factors and 4 negative factors.
Therefore, for a randomly chosen combined 3-exact cover, it is almost sure that
NPF ≤ 3K, resulting in NNF ≤ 2K.

5.3 Our Construction

Randomly take a combined 3-exact cover. Obtain CPF , the collection of posi-
tive factors, and CNF , the collection of negative factors. For a positive factor
pf = {i1, i2, i3}, we denote v(pf) = v(i1)v(i2)v(i3) as the secret of pf , and v′(pf)

as the equivalent secret of v(pf) obtained in subsection 3.1. Similarly we de-
note v(nf) and v′(nf) for a negative factor nf . Denote PPF =

∏
pf∈CPF v′(pf)

as the product of equivalent secrets of all positive factors. Denote PNF =∏
nf∈CNF v′(nf) as the product of equivalent secrets of all negative factors. De-

note PTS =
∏3K

k=1 v
(k) as the product of true secrets. The first clear equation is∏

pf∈CPF v(pf) = PTS ×
∏

nf∈CNF v(nf). Then we have

Proposition 1

(1) PPF −
∏

pf∈CPF v(pf) ∈ ⟨g⟩.
(2) PNF −

∏
nf∈CNF v(nf) ∈ ⟨g⟩.

(3) PPF − PNF × PTS ∈ ⟨g⟩.
Proof. By considering subsection 3.1, we know that

(1) PPF =
∏

pf∈CPF v(pf) + βPF , where βPF ∈ ⟨g⟩.
(2) PNF =

∏
nf∈CNF v(nf) + βNF , where βNF ∈ ⟨g⟩.

On the other hand, (3) is true from∏
pf∈CPF

v(pf) = PTS ×
∏

nf∈CNF

v(nf).

Proposition 1 is proved. �
Maybe it is hoped to solve PTS. However, we can not filter off βPF and

βNF , because no “good” description of ⟨g⟩ is made public. Fortunately we don’t
need to solve PTS for breaking the instance. We only need to find an equivalent
secret of PTS, without caring the size of the equivalent secret. Then we can filter
decoded noise much smaller by our modified encoding/decoding. Proposition 2
describes the shape of the equivalent secret of PTS, under an assumption.

Proposition 2
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(1) If PTS′ is an equivalent secret of PTS, then PPF − PNF × PTS′ ∈ ⟨g⟩.
(2) Assume that PNF and g are coprime. If PPF − PNF × PTS′ ∈ ⟨g⟩, then

PTS′ is an equivalent secret of PTS.

Proof. (1) is clear by considering (3) of Proposition 1. If PPF −PNF ×PTS′ ∈
⟨g⟩, then PNF × (PTS′ − PTS) ∈ ⟨g⟩. According to our assumption, we have
(PTS′ − PTS) ∈ ⟨g⟩, (2) is proved. �

Now we want to find an equivalent secret of PTS. Under our assumption,
we only need to find a vector PTS′ ∈ R such that PPF − PNF × PTS′ ∈
⟨g⟩, without caring the size of PTS′. To do so we only need to obtain “bad”
description of ⟨g⟩. That is, we only need to obtain a public basis of the lattice ⟨g⟩,
for example, Hermite normal form. This is not a difficult task, and in Appendix
C we will present our method for doing so. After obtaining a public basis G, the
condition PPF−PNF×PTS′ ∈ ⟨g⟩ is transformed into an equivalent condition

PPF ×G−1 − PTS′ × PNF ×G−1 ∈ R,

where G−1 is the inverse matrix of G, and

PNF =


PNF0 PNF1 · · · PNFn−1

−PNFn−1 PNF0 · · · PNFn−2

...
...

. . .
...

−PNF1 −PNF2 · · · PNF0

 .

Take each entry of PPF × G−1 and PNF × G−1 as the form of reduced frac-
tion, and take lcm as the least common multiple of all denominators, then the
condition is transformed into another equivalent condition

(lcm× PPF ×G−1)(mod lcm)

= PTS′ × (lcm× PNF ×G−1)(mod lcm).

This is a linear equation modular lcm, and it is easy to obtain a solution PTS′.
After that we take our modified encoding/decoding, just same as in section 4.
Denote η = PTS′. Compte η′ = Y η. Compute η′′ = η′(mod X(1)). Compute
η′′′ = y(x(1))−1η′′(mod q). Then high-order bits of η′′′ are what we want to
obtain. The instance has been broken.

A question left is whether the assumption “PNF and g are coprime” is
a nonnegligible case. It means that g and each factor of PNF are coprime.
The answer is seemingly yes. A test which we haven’t made is that we take two
different combined 3-exact covers, so that we obtain two different values of PNF .
If they finally get same high-order bits of η′′′, we can believe the assumption true
for two values of PNF .
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6 Attacking the Instance of WE Based on the Hardness
of 3-Exact Cover Problem with Hidden Tools of
Encoding

6.1 Preparing Work (1): Finding Level-2 Encodings of 0

Take two pieces {i1, i2, i3} and {j1, j2, j3} which do not intersect. From other
pieces randomly choose two pieces {k1, k2, k3} and {l1, l2, l3}, then the probabil-
ity that {k1, k2, k3}∪{l1, l2, l3} is about 1

C6
3K

, which is polynomially small. From

all of N(K) = O(K2) pieces, we construct all sets each including 4 pieces, and we
estimate average number of such sets of 4 pieces {{i1, i2, i3}, {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3}}
that {i1, i2, i3} and {j1, j2, j3} do not intersect, and {k1, k2, k3} ∪ {l1, l2, l3} =

{i1, i2, i3}∪{j1, j2, j3}. This number is of the order of magnitude CO(K2)4

C6
3K

, mean-

ing that we have “many” such sets. Take one of such sets {{i1, i2, i3}, {j1, j2, j3}, {k1, k2, k3}, {l1, l2, l3}}
and corresponding encodings {V {i1,i2,i3}, V {j1,j2,j3}, V {k1,k2,k3}, V {l1,l2,l3}}, then(

V {i1,i2,i3}V {j1,j2,j3} − V {k1,k2,k3}V {l1,l2,l3}
)
(mod q) = ugz−2(mod q),

where u is very small. We call it a level-2 encoding of 0. According to the state-
ment above, we have “many” level-2 encodings of 0. Here we fix and remember
one such encoding of 0, and call it V ∗.

6.2 Preparing Work (2): Supplement and Division

Take a combined 3-exact cover. Obtain CPF and CNF , collections of positive
and negative factors. Suppose NPF < 2K− 2 (Therefore NNF = NPF −K <
K−2. It is easy to see that this case is nonnegligible). Take a piece {i1, i2, i3}, and
supplement it 2K − NPF times into CPF , so that we have new NPF = 2K.
Similarly, supplement such piece {i1, i2, i3} K − NNF = 2K − NPF times
into CNF , so that we have new NNF = K. We fix and remember the piece
{i1, i2, i3}.

Then we divide CPF into two parts, CPF (1) and CPF (2), where

(1) ∥CPF (1)∥ = ∥CPF (2)∥ = K. That is, CPF (1) and CPF (2) have equal
size.

(2) CPF (2) includes {i1, i2, i3} at least twice.

(3) CPF (1) includes two pieces {j1, j2, j3} and {k1, k2, k3} which do not inter-
sect, and, for any piece {l1, l2, l3} from CPF (2), {j1, j2, j3, k1, k2, k3} and
{l1, l2, l3} do not intersect. We fix and remember these two pieces {j1, j2, j3}
and {k1, k2, k3}.

The purpose of such supplement and division is the convenience for level-
K decoding. It is possible that we cannot obtain such division satisfying above
three conditions, but we can obtain it with nonnegligible probability.
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6.3 Preparing Work (3): Constructing the Equation

We have fixed and remembered four elements: V ∗ (a level-2 encoding of 0),
{i1, i2, i3} (a piece included by CPF (2) at least twice), {j1, j2, j3} and {k1, k2, k3}
(from CPF (1), do not intersect each other, and do not intersect with any piece
of CPF (2)). Now we define four elements as follows.

Dec(P (1)) = pztV
∗

∏
pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}

V (pf)(mod q),

Dec(P (2)) = pztV
∗

∏
pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}

V (pf)(mod q),

Dec(N) = pztV
∗

∏
nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}

V (nf)(mod q),

Dec(Original) = h
V ∗

g
z2

∏
k∈1,··· ,3K−{j1,j2,j3,k1,k2,k3}

v(k)(mod q).

We can rewrite Dec(P (1)), Dec(P (2)), Dec(N), as follows.

Dec(P (1)) = h
V ∗

g
z2

∏
pf∈CPF (1)−{{j1,j2,j3},{k1,k2,k3}}

(v(pf)+u(pf,1)x(1)+u(pf,2)x(2)),

Dec(P (2)) = h
V ∗

g
z2

∏
pf∈CPF (2)−{{i1,i2,i3},{i1,i2,i3}}

(v(pf)+u(pf,1)x(1)+u(pf,2)x(2)),

Dec(N) = h
V ∗

g
z2

∏
nf∈CNF−{{i1,i2,i3},{i1,i2,i3}}

(v(nf) + u(nf,1)x(1) + u(nf,2)x(2)).

Four facts about {Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original)} are as fol-
lows.

(1) They are all somewhat small.

(2) Dec(P (1)), Dec(P (2)), Dec(N) can be obtained, while Dec(Original) is
what we want to obtain.

(3) We have the equation

Dec(P (1))×Dec(P (2))−Dec(N)×Dec(Original) ∈ ⟨(hV
∗

g
z2)2g⟩.

This equation is clear by considering encoding procedure and definitions of
{Dec(P (1)), Dec(P (2)), Dec(N), Dec(Original)}.

(4) Conversely, suppose there is D′ ∈ ⟨(hV ∗

g z2)2g⟩ such that

Dec(P (1))×Dec(P (2))−D′

Dec(N)
∈ R.
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Then Dec(P (1))×Dec(P (2))−D′

Dec(N) is the sum of Dec(Original) and an element

of ⟨(hV ∗

g z2)2g⟩. Here we use a small assumption that Dec(N)

(hV ∗
g z2)

and (hV ∗

g z2)

are coprime, which is nonnegligible. In other words, if we can obtain such
D′, we can obtain “an equivalent secret” of Dec(Original), although such
“equivalent secret” is not small.

6.4 Solving the Equation: Finding “An Equivalent Secret”

We want to obtain “an equivalent secret” of Dec(Original), without caring the

size. To do so we only need to findD′ ∈ ⟨(hV ∗

g z2)2g⟩ such that Dec(P (1))×Dec(P (2))−D′

Dec(N) ∈
R. In other words, we only need to find D′ ∈ ⟨(hV ∗

g z2)2g⟩ such that

Dec(P (1))×Dec(P (2)) ≡ D′(mod Dec(N)).

Such D′ certainly exists. So that, if we can generate any element of ⟨(hV ∗

g z2)2g⟩,
finding D′ is quite an easy algebra, as in Appendix A. More specifically, if we can
obtain a basis of the lattice ⟨(hV ∗

g z2)2g⟩ (Of course a “bad” basis), we can easily

obtain such a D′. A weaker requirement is that, if we can obtain a generalized
basis (a group of vectors by which any element of ⟨(hV ∗

g z2)2g⟩ can be integer-

linearly expressed, although the expression may not be unique), we can easily
obtain such a D′. Arbitrarily takeK−4 pieces {piece(1), piece(2), · · · , piece(K−
4)}, without caring whether they are repeated. Then

pzt(V
∗)2

K−4∏
k=1

V (piece(k))(mod q) =

(h
V ∗

g
z2)2g

K−4∏
k=1

(v(piece(k)) + u(piece(k),1)x(1) + u(piece(k),2)x(2)) ∈ ⟨(hV
∗

g
z2)2g⟩.

So many elements of ⟨(hV ∗

g z2)2g⟩ imply that finding a D′ may be easy, therefore

“an equivalent secret” of Dec(Original) may be easy to be obtained.

6.5 Filtering the Decoded Noise Much Smaller

Suppose we have obtained “an equivalent secret” of Dec(Original), and we call
it V ∗∗. V ∗∗ is the sum of Dec(Original) and an element of ⟨(hV ∗

g z2)2g⟩, and
V ∗∗ is not small. Arbitrarily take an element of ⟨(hV ∗

g z2)2g⟩ which is somewhat

small, and call it V ∗∗∗. Compute V ∗∗∗∗ = V ∗∗(mod V ∗∗). Two facts about V ∗∗∗∗

are as follows.

(1) V ∗∗∗∗ = Dec(Original) + V ∗∗∗∗∗, where V ∗∗∗∗∗ ∈ ⟨(hV ∗

g z2)2g⟩.
(2) Both V ∗∗∗∗ and Dec(Original) are somewhat small, so that V ∗∗∗∗∗ is some-

what small.
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Then compute

V ∗∗∗∗∗∗ = V ∗∗∗∗V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1(mod q) =[(
Dec(Original)×V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
+
(
V ∗∗∗∗∗×V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)]
(mod q).

Two facts about V ∗∗∗∗∗∗ are as follows.

(1) (
Dec (Original)× V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
(mod q)

= hg−1V (j1,j2,j3)V (k1,k2,k3)z2
∏

k∈{1,··· ,3K}−{j1,j2,j3,k1,k2,k3}

v(k)

= hg−1((v(j1,j2,j3) + u((j1,j2,j3),1)x(1) + u((j1,j2,j3),2)x(2)))

( (v(k1,k2,k3) + u((k1,k2,k3),1)x(1) + u((k1,k2,k3),2)x(2)))
∏

k∈1,··· ,3K−{j1,j2,j3,k1,k2,k3}

v(k)

Therefore its high-order bits are the secret key.

(2)
(
V ∗∗∗∗∗ × V (j1,j2,j3)V (k1,k2,k3)(V ∗)−1

)
(mod q) is somewhat small, so that

high-order bits of V ∗∗∗∗∗∗ are the secret key.

7 Cryptanalysis of a Simple Revision of GGH Map

7.1 A Simple Revision of GGH Map and Corresponding MKE

All parameters of GGH map are reserved, except that we change encoding pa-
rameter y into encoding parameters {y(i), i = 1, 2}, and accordingly we change

Level-K zero-testing parameter pzt into Level-K zero-testing parameters {p(i)zt , i =
1, 2}. Our encoding parameters are {y(i), i = 1, 2}, where y(i) = (y(0,i)+a(i)g)z−1(mod q),
{y(0,i), a(i), i = 1, 2} are very small, and are kept secret. We can see that {y(i), i =
1, 2} are encodings of secret elements {y(0,i), i = 1, 2}, rather than encodings of

1. Accordingly our level-K zero-testing parameters are{p(i)zt , i = 1, 2}, where

p
(i)
zt = hy(0,i)zKg−1(mod q).
Suppose a user has a secret (v(1), v(2)) ∈ R2, where v(1) and v(2) are short

elements. He secretly samples short elements {u(i) ∈ R, i = 1, 2}. He computes
noised encoding V = (v(1)y(1) + v(2)y(2)) + (u(1)x(1) + u(2)x(2))(mod q). He
publishes V . Then the revision of GGH map includesK, {y(i), i = 1, 2}, {x(i), i =

1, 2}, {p(i)zt , i = 1, 2}, and all noised encoding V for all users. To guarantee our
attack work, we assume that 2K is polynomially large.

Suppose that K + 1 users want to generate KEY , a common shared key by
public discussion. To do so, each user k generates his secret (v(k,1), v(k,2)), and
publishes the noised encoding V (k), k = 1, · · · ,K+1. Then each user can use his
secret and other users’ noised encodings to compute KEY , the common shared
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key. For example, user k0 first computes (v(k0,1)p
(1)
zt +v(k0,2)p

(2)
zt )

∏
k ̸=k0

V (k)(mod q),
then takes KEY as its high-order bits. It is easy to see that

(v(k0,1)p
(1)
zt + v(k0,2)p

(2)
zt )

∏
k ̸=k0

V (k)(mod q) = (A+B(k0))(mod q),

such that

A = hg−1
∑

(j1,··· ,jK+1)∈{1,2}K+1

v(K+1,jK+1)y(0,jK+1)
K∏

k=1

v(k,jk)(y(0,jk) + a(jk)g)(mod q),

which has no relation with user k0; B
(k0) is the sum of several terms which are

somewhat small. If related parameters are small enough, KEY is high-order bits
of A(mod q).

7.2 Generating “Equivalent Secret”

For the secret (v(1), v(2)) ∈ R2, we construct “equivalent secret (v′(1), v′(2)) ∈
R2”, such that(
v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g)

)
−
(
v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+a(2)g)

)
is a multiple of g. An equivalent requirement is that (v(1)y(0,1) + v(2)y(0,2)) −
(v′(1)y(0,1) + v′(2)y(0,2)) is a multiple of g. That is enough, and we do not need
(v′(1), v′(2)) small. Take V , the noised encoding of (v(1), v(2)), we compute special
decoding

W = V (y(1))K−2x(1)p
(1)
zt (mod q) = hy(0,1)

[
v(1)(y(0,1) + a(1)g)K−1b(1)

+ v(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
.

Notice that

(1) Right side of this equation has no operation “mod q”, therefore W is some-
what small.

(2) Four vectors hy(0,1)(y(0,1)+a(1)g)K−1b(1), hy(0,1)(y(0,2)+a(2)g)(y(0,1)+a(1)g)K−2b(1),
hy(0,1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) and hy(0,1)(b(2)g)(y(0,1) + a(1)g)K−2b(1)

can be obtained.

Now start to find (v′(1), v′(2)). First, computeW (mod hy(0,1)(y(0,1)+a(1)g)K−1b(1)).
Second, compute {v′(2), u′(1), u′(2)} such that

W (mod h y(0,1)(y(0,1) + a(1)g)K−1b(1)) =

h y(0,1)
[
v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1) +

u ′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1) +
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u ′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
(mod hy(0,1)(y(0,1) + a(1)g)K−1b(1)).

Solving this modular equation is quite an easy algebra, as in Appendix A. So-
lutions are not unique, therefore {v′(2), u′(1), u′(2)} ≠ {v(2), u(1), u(2)}. Third,
compute v’(1) such that

W = hy(0,1)
[
v′(1)(y(0,1) + a(1)g)K−1b(1)

+ v′(2)(y(0,2) + a(2)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(1)(b(1)g)(y(0,1) + a(1)g)K−2b(1)

+ u′(2)(b(2)g)(y(0,1) + a(1)g)K−2b(1)
]
,

which is another easy algebra. Finally we obtain (v′(1), v′(2)), and can easily check
that (v(1)(y(0,1)+a(1)g)+v(2)(y(0,2)+a(2)g))−(v′(1)(y(0,1)+a(1)g)+v′(2)(y(0,2)+
a(2)g)) is a multiple of g, although v′(1) and v′(2) are not small.

7.3 Generalization of Modified Encoding/Decoding: Our Attack on
MKE

Suppose K + 1 users hide (v(k,1), v(k,2)) and publish V (k), k = 1, · · · ,K + 1,
and for each user k we have obtained equivalent secret (v′(k,1), v′(k,2)). For each
“K + 1-dimensional boolean vector” (j1, · · · , jK+1) ∈ {1, 2}K+1, we define two
products

v(j1,··· ,jK+1) =
K+1∏
k=1

v(k,jk),

v′(j1,··· ,jK+1) =
K+1∏
k=1

v′(k,jk).

v(j1,··· ,jK+1) is clearly smaller than “somewhat small”, because it is only a fac-
tor of a term of the decoded noise. v′(j1,··· ,jK+1) is not small. v(j1,··· ,jK+1) can not
be obtained, while v′(j1,··· ,jK+1) can. Suppose former K entries {j1, · · · , jK+1}
include N1 1s and N2 2s, N1 +N2 = K. We define the supporter s(j1,··· ,jK+1) as
the follow.

s(j1,··· ,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1−1(y(0,2) + a(2)g)N2b(1) for N1 ≥ N2,

s(j1,··· ,jK+1) = hy(0,jK+1)(y(0,1) + a(1)g)N1(y(0,2) + a(2)g)N2−1b(1) for N1 < N2.

s(j1,··· ,jK+1) can be obtained. IfN1 ≥ N2, s
(j1,··· ,jK+1) = p

jK+1

zt (y(1))N1−1(y(2))N2x(1)(mod q),

and if N1 < N2, s
(j1,··· ,jK+1) = p

jK+1

zt (y(1))N1(y(2))N2−1x(1)(mod q). s(j1,··· ,jK+1)

is clearly smaller than “somewhat small”, because it is only a factor of a term
of the decoded noise. Then we denote

V (N1≥N2) =

2∑
jK+1=1

∑
N1≥N2

v(j1,··· ,jK+1)s(j1,··· ,jK+1),
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V (N1<N2) =

2∑
jK+1=1

∑
N1<N2

v(j1,··· ,jK+1)s(j1,··· ,jK+1),

V ′(N1≥N2) =
2∑

jK+1=1

∑
N1≥N2

v′(j1,··· ,jK+1)s(j1,··· ,jK+1),

V ′(N1<N2) =
2∑

jK+1=1

∑
N1<N2

v′(j1,··· ,jK+1)s(j1,··· ,jK+1).

V (N1≥N2) and V (N1<N2) are somewhat small, while V ′(N1≥N2) and V ′(N1<N2)

are not small. V (N1≥N2) and V (N1<N2) can not be obtained, while V ′(N1≥N2) and
V ′(N1<N2) can be obtained under the assumption that 2K is polynomially large.
Another fact is that ξ′ is a multiple of b(1)g, where

ξ′ = (y(0,1)+a(1)g)(V ′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′(N1<N2)−V (N1<N2)).

There are two reasons: (1) By considering definitions of equivalent secrets,
we know that ξ′ is a multiple of g. (2) By considering definition of s(j1,··· ,jK+1),
we know that ξ′ is a multiple of b(1). Here we use a small assumption that b(1)

and g are coprime. Notice that ξ′ is not small, and that ξ′ can not be obtained.
Then we compute a tool for modular operations,

M = hy(0,1)(b(1))KgK−1 = p
(1)
zt (x

(1))K(mod q).

For the same reason, M is clearly smaller than “somewhat small”. Then we
compute the modular operations

V ′′(N1≥N2) = V ′(N1≥N2)(mod M),

V ′′(N1<N2) = V ′(N1<N2)(mod M).

Both V ′′(N1≥N2) and V ′′(N1<N2) are clearly smaller than “somewhat small”.
Therefore both V ′′(N1≥N2) − V (N1≥N2) and V ′′(N1<N2) − V (N1<N2) are some-
what small. Therefore both (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2)) and (y(0,2)+
a(2)g)(V ′′(N1<N2) − V (N1<N2)) are somewhat small. Therefore

ξ′′ = (y(0,1)+a(1)g)(V ′′(N1≥N2)−V (N1≥N2))+(y(0,2)+a(2)g)(V ′′(N1<N2)−V (N1<N2))

is somewhat small. On the other hand, ξ′′ is a multiple of b(1)g, because ξ′ is a
multiple of b(1)g. Therefore ξ′′/(b(1)g) is somewhat small. Finally

ξ′′

(b(1)g)
= ξ′′(b(1)g)−1(mod q)

=
[(

(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)
)
(b(1)g)−1 −A

]
(mod q),

which means that KEY is high-order bits of[(
(y(0,1) + a(1)g)V ′′(N1≥N2) + (y(0,2) + a(2)g)V ′′(N1<N2)

)
(b(1)g)−1

]
(mod q).
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Appendix

A

Suppose W (mod Y ) = W ′′′Y , X(1)(mod Y ) = X ′(1)Y,X(2)(mod Y ) = X ′(2)Y .
We want to obtain a solution u′(i) ∈ R, i = 1, 2, such that W ′′′Y = (u′(1)X ′(1)+
u′(2)X ′(2))Y (mod Y ). First, the equation has solution, because {u(i) ∈ R, i =
1, 2} is a solution. Second, the equation can be modified as an equivalent e-
quation W ′′′ = (u′(1)X ′(1) + u′(2)X ′(2))(mod 1). Third, take each entry of W ′′′,
X ′(1), X ′(2) as the form of reduced fraction, and take LCM as the least common
multiple of all denominators, then the equation can be modified as an equivalent
equation, which is a linear equation modular LCM :

(LCM)W ′′′ = (u′(1)((LCM)X ′(1)) + u′(2)((LCM)X ′(2)))(mod (LCM)).

B

Arbitrarily take a subset {i1, i2, i3} which is not a piece. We will compute
P ({i1, i2, i3} is not a combined piece). We define N{i1, i2} as the number of
those pieces which include {i1, i2}. Similarly we define N{i1, i3} and N{i2, i3}.
We have

Proposition 3

P ({i1, i2, i3} is not a combined piece) =

P (N{i1, i2} = 0, N{i1, i3} = 0, N{i2, i3} = 0) +

P (N{i1, i2} > 0, and {i1, i2, i3} is not a combined piece) +

P (N{i1, i2} = 0, N{i1, i3} > 0, and {i1, i2, i3} is not a combined piece) +

P (N{i1, i2} = 0, N{i1, i3} = 0, N{i2, i3} > 0, and {i1, i2, i3} is not a combined piece).�

N{i1, i2} has the binomial distribution b
(
K2, 3K − 2

C3
3K

)
. So that

Proposition 4 P (N{i1, i2} = 0) =
(
1− 3K − 2

C3
3K

)K2

≈ e−2/3. �

Now supposeN{i1, i2} = u > 0 and denote {{i1, i2, t1}, {i1, i2, t2}, · · · , {i1, i2, tu}}
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as u different pieces. From them we randomly take a piece {i1, i2, t}. Take
N{i3; i1, i2, t} as the number of those pieces which include i3 and do not include
i1, i2 and t (In other words, N{i3; i1, i2, t} is the number of those pieces which
include i3 and do not intersect with {i1, i2, t}). N{i3; i1, i2, t} has the binomial

distribution b
(
K2−u,

C2
3K−4

C3
3K

)
, and P (N{i3; i1, i2, t} = 0) =

(
1−C2

3K−4

C3
3K

)K2−u

.

Under the condition N{i1, i2} = u, the conditional probability that {i1, i2, i3} is
not a combined piece is

P
(
{i1, i2, i3} is not a combined piece

∣∣N{i1, i2} = u
)

= P
(
N{i3; i1, i2, t1} = 0, N{i3; i1, i2, t2} = 0, · · · , N{i3; i1, i2, tu} = 0

∣∣N{i1, i2} = u
)

< P
(
N{i3; i1, i2, t1} = 0

∣∣N{i1, i2} = u
)

= P
(
N{i3; i1, i2, t1} = 0

)
=

(
1−

C2
3K−4

C3
3K

)K2−u

.

Then we obtain

P
(
N{i1, i2} > 0, and {i1, i2, i3} is not a combined piece

)
=

K2∑
u=1

P
(
N{i1, i2} = u

)
· P

(
{i1, i2, i3} is not a combined piece

∣∣N{i1, i2} = u
)

<
K2∑
u=1

Cu
K2

(3K − 2

C3
3K

)u(
1− 3K − 2

C3
3K

)K2−u(
1−

C2
3K−4

C3
3K

)K2−u

=
(
1−

(
1− 3K − 2

C3
3K

)
·
C2

3K−4

C3
3K

)K2

−
(
1− 3K − 2

C3
3K

)K2(
1−

C2
3K−4

C3
3K

)K2

≈
(
1− 1

K

)K2

−
(
1− 1

K

)K2

= 0.

Therefore we have

Proposition 5

P
(
N{i1, i2} > 0, and {i1, i2, i3} is not a combined piece

)
≈ 0.

P
(
N{i1, i2} = 0, N{i1, i3} > 0, and {i1, i2, i3} is not a combined piece

)
≈ 0.

P
(
N{i1, i2} = 0, N{i1, i3} = 0, N{i2, i3} > 0, and {i1, i2, i3} is not a combined piece

)
≈ 0.�

By combining Proposition 3∼5, we have

Proposition 6 If {N{i1, i2} = 0}, {N{i1, i3} = 0}, {N{i2, i3} = 0} are inde-
pendent each other, then

P
(
{i1, i2, i3 is not a combined piece

)
≈ P

(
N{i1, i2} = 0, N{i1, i3} = 0, N{i2, i3} = 0

)
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≈
(
e−2/3

)3
= e−2.

�
In practical parameter setting, {N{i1, i2} = 0}, {N{i1, i3} = 0}, {N{i2, i3} =

0} are not independent each other. They are usually negatively correlated, that
is, larger value of N{i1, i2} tends to companion smaller value of N{i1, i3},
larger values of N{i1, i2} and N{i1, i3} tend to companion smaller value of
N{i2, i3}, and vice-versa. This negative correlation feature makes P

(
N{i1, i2} =

0, N{i1, i3} = 0, N{i2, i3} = 0
)
even smaller than e−2. This fact is not impor-

tant for our attack, and we can roughly take e−2 as the probability of the event
{{i1, i2, i3} is not a combined piece}.

C

We need to obtain Hermite normal form G =

 G0

G1 1

...
. . .

Gn−1 1

 , where each

row of G is an element of ⟨g⟩, G0 is absolute value of the determinant of the

matrix

 g0 g1 ··· gn−1

−gn−1 g0 ··· gn−2

...
...

. . .
...

−g1 −g2 ··· g0

 , and Gi(mod G0) = Gi for i = 1, · · · , n− 1.

For a principal ideal ⟨g′⟩, we call the determinant of


g′
0 g′

1 ··· g′
n−1

−g′
n−1 g′

0 ··· g′
n−2

...
...

. . .
...

−g′
1 −g′

2 ··· g′
0


corresponding determinant of ⟨g′⟩. We use the definition of parallel piped [22].
For a vector α ∈ R, we call the set PP (α) = {z ∈ R : z(mod α) = z} parallel
piped of α.

Two Facts We have {Y,X(i), i = 1, 2}, therefore we can obtain hermite normal
forms of the principal ideals {⟨Y ⟩, ⟨X(i)⟩, i = 1, 2}.

Suppose hermite normal form of the principal ideal ⟨g′⟩ is


G′

0

G′
1 1

...
. . .

G′
n−1 1

 , g ∈

R is a factor of g′, and absolute value of corresponding determinant of ⟨g⟩ is G0.

Then hermite normal form of the principal ideal ⟨g⟩ is


G0

G′
1(mod G0) 1

...
. . .

G′
n−1(mod G0) 1

.
Computing Hermite Normal Form of ⟨h(1+ag)K−2b(1)⟩ We take a triv-
ial assumption that 1 + ag and b(1)g are coprime.

Step 1 By using {Y, (−Yn−1, Y0, · · · , Yn−2), · · · , (−Y1, · · · ,−Yn−1, Y0)} as the
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basis, Gaussian sample Z, with sufficiently large deviation.

Step 2 Compute Z ′ = Z(mod X(1)). Then Z ′ is uniformly distributed over the
intersection area ⟨h(1+ag)K−2b(1)⟩∩PP (X(1)). Algebra and Gaussian sampling
theory have proved this result.

Step 3 Compute absolute value of corresponding determinant of ⟨Z ′⟩.
Step 4 Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5 Compute the greatest common divisor of these polynomially many ab-
solute values. Then the greatest common divisor should be absolute value of
corresponding determinant of ⟨h(1 + ag)K−2b(1)⟩. By considering a fact stated
in last subsection, we obtain hermite normal form of ⟨h(1 + ag)K−2b(1)⟩.

Computing Hermite Normal Form of ⟨h(1 + ag)K−2b(1)g⟩ We take a
trivial assumption that b(1) and b(2) are coprime. The procedure is similar to
last subsection.

Step 1 By using {X(2), (−X
(2)
n−1, X

(2)
0 , · · · , X(2)

n−2), · · · , (−X
(2)
1 , · · · ,−X

(2)
n−1, X

(2)
0 )}

as the basis, Gaussian sample Z, with sufficiently large deviation.

Step 2 Compute Z ′ = Z(mod X(1)). Then Z ′ is uniformly distributed over the
intersection area ⟨h(1 + ag)K−2b(1)g⟩ ∩ PP (X(1)).

Step 3 Compute absolute value of corresponding determinant of ⟨Z ′⟩.
Step 4 Repeat Step 1∼3 polynomially many times, so that we obtain polyno-
mially many absolute values of corresponding determinant.

Step 5 Compute the greatest common divisor of these polynomially many ab-
solute values. Then the greatest common divisor should be absolute value of
corresponding determinant of ⟨h(1+ ag)K−2b(1)g⟩, therefore, we obtain hermite
normal form of ⟨h(1 + ag)K−2b(1)g⟩.

Obtaining Hermite Normal Form of ⟨g⟩ Divide absolute value of corre-
sponding determinant of ⟨h(1+ag)K−2b(1)g⟩ by absolute value of corresponding
determinant of ⟨h(1+ag)K−2b(1)⟩. Then we obtain absolute value of correspond-
ing determinant of ⟨g⟩, therefore we obtain hermite normal form of ⟨g⟩.


