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Abstract. Bitcoin is designed to protect user anonymity (or pseudonymity)
in a financial transaction, and has been increasingly adopted by ma-
jor e-commerce websites such as Dell, Payal and Expedia. While the
anonymity of Bitcoin transactions has been extensively studied, little
attention has been paid to the security of post-transaction correspon-
dence. In a commercial application, the merchant and the user often
need to engage in follow-up correspondence after a Bitcoin transaction
is completed, e.g., to acknowledge the receipt of payment, to confirm the
billing address, to arrange the product delivery, to discuss refund and so
on. Currently, such follow-up correspondence is typically done in plain-
text via email with no guarantee on confidentiality. Obviously, leakage of
sensitive data from the correspondence (e.g., billing address) can trivially
compromise the anonymity of Bitcoin users. In this paper, we initiate the
first study on how to realise end-to-end secure communication between
Bitcoin users in a post-transaction scenario without requiring any trusted
third party or additional authentication credentials. We first point out
that none of the existing PKI-based or password-based AKE schemes
are suitable for the purpose. Instead, our idea is to leverage the Bitcoin’s
append-only ledger as an additional layer of authentication between pre-
viously confirmed transactions. This naturally leads to a new category
of AKE protocols that bootstrap trust entirely from the block chain. We
call this new category “Bitcoin-based AKE” and present two concrete
protocols: one is non-interactive with no forward secrecy, while the other
is interactive with additional guarantee of forward secrecy. Finally, we
present proof-of-concept prototypes for both protocols with experimental
results to demonstrate their practical feasibility.
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1 Introduction

Bitcoin [22] is an online currency whose value is not endorsed by any central
reserve, but is based on the perception of its users [15]. In recent years it has
surged in value, reaching a peak of $1147 per bitcoin in December 2013. The
currency is supported by a decentralised network of users whose collective com-
putational power provides a guarantee of integrity for an append-only ledger.
Any attempt to change the ledger’s history (a history-revision attack [5]) would



require an adversary with at least, in theory 51% of the networks computational
resources to be successful1. Several central banks have evaluated the value of
digital currencies and their potential impact on society [15, 9, 2].

Bitcoin is increasingly being accepted by many e-commerce websites as a
form of payment. For example, Dell, one of the largest computer retailers in
the world, now allows customers to use Bitcoin to pay for online purchases on
the Dell website [10]. Recently, Paypal [6] and Expedia [24] have also endorsed
support for using Bitcoin. Similarly, many community-driven organisations allow
anonymous donations using Bitcoin. Examples include the TOR project [26],
Mozilla Foundation[21] and the Calyx Institute [18],

While Bitcoin is designed to support anonymity (or pseudonymity) in a trans-
action, little attention has been paid to the anonymity in the post-payment sce-
nario. As with any on-line payment system, the payer and the payee may need
to engage in follow-up correspondence after the payment has been made, e.g., to
acknowledge the receipt, to confirm billing information, to amend discrepancies
in the order if there are any and to agree on the product delivery or pick-up.
Such correspondence can involve privacy-sensitive information, which, if leaked
to a third party, may trivially reveal the identity of the user involved in the ear-
lier transaction (e.g., information about product delivery may contain the home
address).

Currently, the primary mechanism to support follow-up correspondence after
a Bitcoin transaction is through email. The Dell website requires shoppers to
provide their email address when making a Bitcoin payment to facilitate post-
payment correspondence. The Calyx Institute, a non-profit research organization
dedicated to providing “privacy by design for everyone”, also recommends using
e-mails for follow-up correspondence after a donation is made in Bitcoin. On its
website, the instruction is given as the following [18]:

“Note that if you make a donation by Bitcoin, we have no way to connect
the donation with your email address. If you would like us to confirm
receipt of the donation (and send a thank you email!), you’ll need to
send an email with the details of the transaction. Otherwise, you have
our thanks for your support in advance.”

However, emails are merely a communication medium and have no built-in
guarantees of security. First of all, there is no guarantee that the sender of the
email must be the same person who made the Bitcoin payment. The details of
the transaction cannot serve as a means of authentication, since they are publicly
available on the Bitcoin network. Furthermore, today’s emails are usually not
encrypted. The content of an email can be easily read by third parties (e.g., ISPs)
during the transit over the Internet. The leakage of privacy-sensitive information
in email can seriously threaten the anonymity of the user who has made an
“anonymous” payment in Bitcoin previously.

So far the importance of protecting post-payment communication has been
largely neglected in both the Bitcoin and the security research communities.

1 An adversary may not require 51% of computational power in reality [5, 4, 11].



To the best of our knowledge, no solution is available to address this practical
problem in the real world. This is a gap in the field, which we aim to bridge in
our work.

One trivial solution is to apply existing Authenticated Key Exchange (AKE)
protocols to establish a secure end-to-end (E2E) communication channel be-
tween Bitcoin users. Two general approaches for realising secure E2E commu-
nication in cryptography include using 1) PKI-based AKE (e.g., HMQV), and
2) Password-based AKE (e.g., EKE and SPEKE). The former approach would
require Bitcoin users to be part of a global PKI system, with each user holding
a public key certificate. This is not realistic in current Bitcoin applications. The
second approach requires Bitcoin users to have a pre-shared secret password.
However, securely distributing pairwise shared passwords over the internet is
not an easy task. Furthermore, passwords are a weak form of authentication and
they may be easily guessed or stolen (e.g. by shoulder-surfing). A solution that
can provide a stronger form of authentication without involving any passwords
will be desirable.

Following the decentralised and anonymity-driven nature of the Bitcoin net-
work [17], we propose new AKE protocols to support secure post-payment com-
munication between Bitcoin users, without requiring any PKI or pre-shared pass-
words. Our solutions leverage the transaction-specific secrets in the confirmed
Bitcoin payments published on the public blockchain to bootstrap trust in estab-
lishing an end-to-end secure communication channel. Given each party’s transac-
tion history and our AKE protocols, both parties are guaranteed to be speaking
to the other party who was involved in the transactions, without revealing their
real identities.

Contributions. Our contributions in this paper are summarised below.

– We propose two authenticated key exchange protocols – one interactive and
the other non-interactive – using transaction-specific secrets and without the
support of a trusted third party to establish end-to-end secure communica-
tion. These are new types of AKE protocols, since they bootstrap trust from
Bitcoins public ledger instead of a PKI or shared passwords.

– We provide proof-of-concept implementations for both protocols in the Bit-
coin Core client with performance measurements. Our experiments suggest
that these protocols are feasible for practical use in real-world Bitcoin ap-
plications.

Organization. The rest of the paper is organised as follows. Section 2 ex-
plains the background of Bitcoin and the ECDSA signature that is used for
authenticating Bitcoin transactions. Section 3 proposes two protocols to allow
post-payment secure communication between users based on their transaction
history. One protocol is non-interactive with no forward secrecy, while the other
is interactive with the additional guarantee of forward secrecy. Security proofs for
both protocols are provided in Section 4. Section 5 describes the proof-of-concept
implementations for both protocols and reports the performance measurements.
Finally, Section 6 concludes the paper.
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Fig. 1. Transactions stored on the Blockchain based on [19]

2 Background

In this section, we will provide brief background information about the Bitcoin
protocol, the transaction signature and the underlying Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). This information will be needed for understanding
the two protocols presented in this paper.

2.1 Bitcoin

Bitcoin is a digital currency that allows a network of nodes to access a public
ledger and to agree upon append-only changes periodically. We will outline the
three main mechanisms in the Bitcoin protocol which include Bitcoin addresses,
transactions and the Blockchain. Together, they allow users to identify each
other pseudonymously, transfer bitcoins and record the transaction in the public
ledger.

Each user is responsible for generating their Bitcoin address, which is simply
the hash of an ECDSA public key. The corresponding private key is required to
spend bitcoins. This approach for user identification is considered appropriate
as the probability that two users generate the same public key is negligible due
to the high number of possible ECDSA public keys.

A common belief in the community is that Bitcoin offers pseudonymity that
can help disguise their real-world identity due to the random nature of ECDSA
public keys. This belief is bolstered as users are recommended to create a new
Bitcoin address per transaction to increase the difficulty of tracking their transac-
tions. However, it should be noted that Bitcoin was not designed with anonymity
in mind [23] and studies have shown with limited success that it is possible to
link Bitcoin addresses to real-world identities [25, 4, 23].

Transactions are created by users to send bitcoins. All transactions are sent
to the network and its correctness is verified by other peers before it is accepted
into the public ledger. Each transaction has a list of ‘inputs’ and ‘outputs’. The
output states the new owner’s bitcoin address and the quantity to be transferred.



Algorithm 1 ECDSA Signature Generation algorithm [12]

Input: Domain parameters D = (q, P, n,Curve), private key d, message m.
Output: Signature (r, s).

1: Select k ∈R [1, n− 1].
2: Compute kP = (x1, y1) where x1 ∈R [0, q − 1]
3: Compute r = x1 mod n. If r = 0, then go to Step 1.
4: Compute e = H(m).
5: Compute s = k−1(e+ dr) mod n. If s = 0, then go to Step 1.
6: Return (r, s).

The input will contain a signature to authorise the payment and a reference to a
previous transaction whereby the user received the bitcoins. Figure 1 highlights
how transactions are linked, which allows peers to perform the verification, by
comparing the received transaction with their local copy of the ledger.

A special ‘miner’ will collect the most recent set of transactions from the
network to form a ‘block’. This block is appended to the longest chain of blocks
(Blockchain) approximately every ten minutes by solving a computationally diffi-
cult problem (proof of work) in return for a subsidy of bitcoins. This append-only
ledger has become a relatively secure time stamp server [8], since reversing trans-
actions that are committed on the Blockchain is considered infeasible. Figure 1
demonstrates how transactions are stored aperiodically on the Blockchain.

2.2 Transaction Signature

Figure 1 presented earlier demonstrates that the signature is stored in the input
of a transaction. This signature must be from the Bitcoin address mentioned in
the previous transaction’s output. Briefly, it is important to highlight that the
user will create the transaction, specify the inputs and outputs, hash this trans-
action and then sign it using their private key. This prevents an adversary from
modifying the contents of a transaction or claiming ownership of the bitcoins
before it is accepted into the Blockchain.

Bitcoin incorporates the OpenSSL suite to execute the ECDSA algorithm.
The NIST-P256 curve is used and all domain parameters over the finite field in-
cluding group order n, generator P and modulus q can be found in [7]. An outline
of the signature generation algorithm is presented in Algorithm 1 to highlight
the usage of k as this will be required for the authenticated key exchange pro-
tocols. The verification algorithm follows what is defined in [14]. The notations
and symbols used in our paper are summarised in Table 1.

3 Key exchange protocols

Key exchange protocols allow two or more participants to derive a shared cryp-
tographic key, often used for authenticated encryption. In this section we will
present two authenticated key exchange protocols: Diffie-Hellman-over-Bitcoin



ZKP{w} Zero knowledge proof of knowledge of w
(V, z) Schnorr zero knowledge proof values
KDF (.) Key derivation function

Uncompress(x, sign) Uncompresses public key using x co-ordinate and sign ∈ {+,−}
(x, y) Represents a point on the elliptic curve
P Generator for the elliptic curve

(r, s) Signature pair that is stored in a transaction
A, B Alice and Bob’s bitcoin addresses: H(dP )
dA, dB Alice and Bob’s private key for their Bitcoin address
kA, kB Alice and Bob’s transaction-specific private key

k̂A, k̂B Alice and Bob’s estimated transaction-specific private key
QA, QB Alice and Bob’s transaction-specific public key

Q̂A, Q̂B Alice and Bob’s estimated transaction-specific public key
wA, wB Alice and Bob’s ephemeral private keys used for YAK
κAB Shared key for Alice and Bob

Table 1. Summary of notations and symbols

and YAK-over-Bitcoin. These protocols will take advantage of a random nonce
k from an ECDSA signature. Our aim is to achieve transaction-level authenti-
cation by taking advantage of a secret that only exists due to the creation of a
transaction that is stored on the Blockchain.

Both of these protocols will use k as a transaction-specific private key and
Q = kP as a transaction-specific public key. Diffie-Hellman-over-Bitcoin will be
a non-interactive protocol without forward secrecy and YAK-over-Bitcoin will
be an interactive protocol with forward secrecy. All domain parameters D for
both protocols are the same as the ECDSA algorithm.

3.1 Setting the stage

We will have two actors, Alice and Bob. A single transaction TA is used by
Alice to send her payment (anonymously or not) to Bob. For our protocols, we
will assume that Bob has created a second transaction Tb using his ECDSA
private key, so the Blockchain contains both Alice and Bob’s ECDSA signature.
This is a realistic assumption as Bob naturally needs to spend the money or
re-organise his bitcoins to protect against theft. In one possible implementation,
upon receiving Alice’s payment, Bob can send back to Alice a tiny portion of
the received amount as acknowledgement, so his ECDSA signature is published
on the blockchain (the signature serves to prove that Bob knows the ECDSA
private key). This is just one way to ensure that the Blockchain contains both
actors’ signatures, and there may be many other methods to achieve the same.

The owner of a transaction will be required to derive the transaction-specific
private key (random nonce) k from their signature before taking part in the
key exchange protocols. For both protocols, we assume the transactions TA, TB
between Alice and Bob have been sent to the network and accepted to the



Blockchain with a depth of at least six blocks, which is considered the standard
depth to rule-out the possibility of a double-spend attack.

In both protocols, each user will need to extract their partner’s signature (r, s)
and attempt to derive their partner’s transaction-specific public key Q = (x, y).
Algorithm 1 demonstrates that the r value from the signature is equal to the x
co-ordinate modulo n (note that there is a subtle difference in the data range,
since r ∈ Zn and x ∈ Zq, but this has an almost negligible effect on the working
of the protocols as we will explain in detail in Section 5.2). However, the y co-
ordinate of Q is not stored in the transaction, and it can be either of the two
values (above/below the x axis).

We define the uncompression function as Uncompress(x, sign) by using the x
co-ordinate from their partner’s signature and the y co-ordinate’s sign ∈ {+,−}.
Using point uncompression and assuming one of the two possible signs for the
y co-ordinate, Alice or Bob will be able to derive a value Q̂ which we call the
estimated transaction-specific public key for their partner. This Q̂ could be either
Q = (x, y) or its additive inverse −Q = (x,−y). This Q̂ will correspond to the

estimated transaction-specific private key k̂, which could be either k or −k.

3.2 Authentication

Our definition of authentication will refer to data origin authentication and
we will use the Blockchain as a trusted platform for storing digital signatures.
Knowledge of the private key d for a bitcoin address or the random nonce k in a
signature will prove the identities of pseudonymous parties. We will define two
concepts for authentication using Bitcoin:

1. Bitcoin address authentication. Knowledge of the discrete log d for a
Bitcoin address.

2. Transaction authentication. Knowledge of the discrete log k from a single
digital signature in a transaction.

Bitcoin address authentication is well-known in the community and has been
used for other protocols. However, transaction authentication is a special case
that our protocols will exploit. Although k and d are equivalent in proving own-
ership of a Bitcoin address or transaction, k is randomly generated for every
ECDSA signature and is unique for each new transaction.

We will show that Alice and Bob can authenticate each other based on the
knowledge of the k. This relies on participants trusting the integrity of the
Blockchain as the cornerstone for authentication. For an adversary to mount
a man-in-the-middle attack in this scene, he would need to perform a history-
revision attack to modify the ECDSA signatures stored in the Blockchain.

3.3 Diffie-Hellman-over-Bitcoin Protocol

Based on the concept of transaction authentication, the first protocol that we
present is ‘Diffie-Hellman-over-Bitcoin’. The protocol is non-interactive; the shared



Blockchain contains (rA, sA) and (rB, sB) from TA and TB

Alice (A, dA) Bob (B, dB)
1. kA = (H(TA) + dArA)s−1

A kB = (H(TB) + dBrB)s−1
B

2. Q̂B = Uncompress(rB,+) Q̂A = Uncompress(rA,+)

3. kAQ̂B = (xAB,±yAB) kBQ̂A = (xAB,±yAB)
κ = KDF(xAB) κ = KDF(xAB)

Fig. 2. The Diffie-Hellman-over-Bitcoin Protocol

secret is generated using the signatures from two transactions and no additional
information from the participants is required. However, forward secrecy is not
provided, as we will illustrate in the security analysis.

Figure 2 presents an outline of the protocol. Initially, each user will derive the
random nonce k from their own signatures and fetch their partner’s transaction
from the Blockchain. Each user will gain an estimation of their partner’s public
key Q̂ before using their own transaction-specific private key k to derive the
shared secret (xAB,±yAB). Regardless of whether Q̂A = ±QA (or Q̂B = ±QB),

the x co-ordinate of kBQ̂A will be the same as that of kAQ̂B. Following the
Elliptic Curve Diffie Hellman (ECDH) [20] approach, the xAB co-ordinate will
be used to derive the key KDF (xAB) = κ.

3.4 YAK-over-Bitcoin Protocol

The second protocol we present is ‘YAK-over-Bitcoin’. This is based on adapt-
ing a PKI-based YAK key exchange protocol [13] to the Bitcoin application by
removing the dependence on a PKI and instead relying on the integrity of the
Blockchain. This protocol allows the participants to have full forward secrecy,
as we will later prove in the security analysis.

An outline of our protocol is presented in Figure 3. Initially, each user will
follow the same steps as seen in the previous ‘Diffie-Hellman-over-Bitcoin’ proto-
col to derive their secret k and their partner’s estimated public key Q̂. However,
a subtle difference requires each user to compare their real public key Q with the
estimation of their own key Q̂ to determine if they are equal. If these public keys
are different, then the user will use the additive inverse of k as their estimated
transaction-specific private key and we will denote this choice between the two
keys as k̂. This subtle change will allow both parties to derive the same shared
secret (xAB, yAB) which would be expected in an interactive protocol without
exchanging their real y co-ordinates.

Each user generates an ephemeral private key w and computes the corre-
sponding public key W = wP . As required in the original YAK paper [13],
each user must also construct a zero knowledge proof to prove possession of
the ephemeral private key w. These zero knowledge proofs can be sent over an
insecure communication channel to their partners. Here, we will use the same
Schnorr signature as in [13] to realise the ZKP. Details of the Schnorr ZKP are
summarised in Algorithm 2 and 3. The definition of the Schnorr ZKP includes a



Blockchain contains (rA, sA) and (rB, sB) from TA and TB

Alice (A, dA) Bob (B, dB)
1. kA = (H(TA) + dArA)s−1

A kB = (H(TB) + dBrB)s−1
B

2. QA = (rA, yA) = kAP QB = (rB, yB) = kBP

3. Q̂A = Uncompress(rA,+) Q̂B = Uncompress(rB,+)

If QA = Q̂A then k̂A = kA If QB = Q̂B then k̂B = kB
else k̂A = −kA else k̂B = −kB

4. Q̂B = Uncompress(rB,+) Q̂A = Uncompress(rA,+)
5. wA ∈R [1, n− 1], WA,ZKP{wA}−−−−−−−−−−−→

wB ∈R [1, n− 1],
WA = wAP WB = wBP

WB,ZKP{wB}←−−−−−−−−−−−6. Verify ZKP{wB} Verify ZKP{wA}
7. (xAB, yAB) = (xAB, yAB) =

(k̂A + wA)(Q̂B +WB) (k̂B + wB)(Q̂A +WA)
κ = KDF(xAB) κ = KDF(xAB)

Fig. 3. YAK-over-Bitcoin Protocol

Algorithm 2 Schnorr Zero Knowledge Proof Generation Algorithm

Input: Domain parameters D = (q, P, n,Curve), signer identity ID, secret value w
and public value W .
Output: (V, z)

1: Select v ∈R [1, n− 1], Compute V = vP
2: Compute h = H(D,W, V, ID)
3: Compute z = v − wh mod n
4: Return (V, z)

unique signer identity ID, which prevents an attacker replaying the ZKP back
to the signer herself [13]. In our case, we can simply use the unique r value from
the user’s ECDSA signature (r, s) in the associated Bitcoin transaction T as the
user’s identity.

Once the ZKPs have been verified, each user will derive (xAB, yAB) using their

secret w, k̂, public value W and their partners’ estimated transaction-specific
public key Q̂. It should be easy to verify that although the shared secret has four
different combinations (±k̂A +wA)(±k̂B +wB)P , the secret key derived between
Alice and Bob will always be identical (due to each participant predicting the

estimated public key Q̂ that their partner will choose).

4 Security Analysis

Our protocols are based on reusing the signature-specific random value k in
ECDSA as the transaction-specific secret on which the authenticated key ex-
change protocol is based. Hence, the security of both the ECDSA signature and
the key exchange protocols needs to be analysed to make sure the reusing of k
is sound in terms of security.



Algorithm 3 Schnorr Zero Knowledge Proof Verification Algorithm

Input: Domain parameters D = (q, P, n,Curve), signer identity ID, public value W ,
Schnorr zero knowledge proof values (V, z)
Output: Valid or invalid

1: Perform public key validation for W [14]
2: Compute partners h = H(D,W, V, ID)

3: Return V
?
= zP + hW mod n

For the AKE protocols, following the security analysis of YAK [13], we con-
sider three security requirements, informally defined in the following:

– Private key security: The adversary is unable to gain any extra2 in-
formation about the private key of an honest party by eavesdropping her
communication with other parties, changing messages sent to her, or even
participating in an AKE protocol with her.

– Full forward secrecy: The adversary is unable to determine the shared
secret of an eavesdropped AKE session in the past between a pair of honest
parties, even if their private keys are leaked subsequently.

– Session key security: The adversary is unable to determine the shared
secret between two honest parties by eavesdropping their communication or
changing their messages.

Note that in our security arguments we consider the security of shared secrets
(xAB in Fig’s 2 and 3), as opposed to that of the subsequently calculated shared
session keys (κ in the same figures). We henceforth denote the shared secret by
K, i.e., κ = KDF(K). We require the shared secret to be hard to determine
for the adversary in the full forward secrecy and session key security require-
ments. A good key derivation function (KDF) derives from such a shared secret
a session key which is indistinguishable from random. Our security proofs can be
easily adapted to prove indistinguishability based on the decisional rather than
computational Diffie-Hellman assumption.

For ECDSA signature, we require that it remains unforgeable against chosen-
message attacks despite the randomness k being reused in subsequent AKE
protocols. Although ECDSA has withstood major cryptanalysis, the security
of ECDSA has only been proven under non-standard assumptions or assuming
modifications (see [27] for a survey of these results). In our analysis, we consider
extra information available to an attacker as a result of k being reused in AKE
protocols, and show that it does not degrade the security of ECDSA.

We assume ECDSA to be a (non-interactive honest-verifier) zero-knowledge
proof of knowledge of the private key d. This is a reasonable assumption in the
random oracle model which follows the work of Malone-Lee and Smart [16]3.

2 By “extra” information, we mean information other than what is derivable from the
honest party’s already available public key.

3 Note that the results apply to a slightly modified version of ECDSA in which
e = H(r|m) where | denotes concatenation. Although the Bitcoin Core implementa-



We also note that given an ECDSA message-signature pair, m, (r, s), knowl-
edge of the private key d is equivalent to knowledge of the randomness k since
given either the other can be calculated from sk = H(m) + dr mod n.

4.1 Security of Diffie-Hellman-over-Bitcoin

This protocol is an Elliptic Curve Diffie-Hellman key exchange and the public
values are bound to two transactions in the Blockchain. Private key security con-
siders a malicious active adversary “Mallory”, and session key security considers
an eavesdropper adversary “Eve”. The protocol does not provide full forward
secrecy. We will provide a sketch of the proof of security for each property in
the following. In each proof, we follow the same approach as in [13] to assume
an extreme adversary, who has all the powers except those that would allow the
attacker to trivially break any key exchange protocol.

Theorem 1 (Private Key Security). Diffie-Hellman-over-Bitcoin provides
private key security under the assumption that ECDSA signature is a zero knowl-
edge proof of knowledge of the ECDSA secret key.

Proof (sketch). The goal of an adversary Mallory is to be able to gain some extra
information on Alice’s transaction-specific private key kA through the following
attack. Mallory is given the public parameters of the system and access to the
Blockchain which includes Alice’s transaction TA, then she provides a transaction
TM which is included in the Blockchain, then she carries out a Diffie-Hellman-
over-Bitcoin protocol with Alice (which is non-interactive), and eventually is
able to calculate the shared secret K. The attack is depicted in Fig. 4(i). Al-
ice’s ECDSA signature in TA is assumed to be zero knowledge and hence does
not reveal any information about her private key. Furthermore, since Mallory’s
transaction TM includes an ECDSA signature by her, and ECDSA signature is a
proof of knowledge of Mallory’s ECDSA secret key dM, Mallory must know dM,
and hence kM. Hence, Mallory does not gain any extra knowledge from calcu-
lating K, since knowledge of kM and Alice’s public key enables her to simulate
K on her own. ut

Theorem 2 (Session Key Security). Diffie-Hellman-over-Bitcoin provides
session key security based on the computational Diffie-Hellman assumption under
the assumption that ECDSA signature is a zero knowledge proof of knowledge of
the ECDSA secret key.

Proof (sketch). Assume there is a successful adversary Eve that is able to cal-
culate the shared secret K for a key exchange between two honest parties Alice

tion is based on the original ECDSA standard, the above modification is included
in more recent standards of ECDSA such as ISO/IEC 14888 [1]. Furthermore, as
another option for signing, the Bitcoin community is considering including Schnorr
signature [3], which is proven to be a zero-knowledge proof of knowledge of the
private key.
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Fig. 4. Security of Diffie-Hellman-over-Bitcoin. Light grey denotes what the adversary
(Mallory in (i), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory)
chooses.

and Bob, without knowing either Alice or Bob’s transaction-specific secret keys,
kA or kB. The attack is depicted in Fig. 4(ii). Note that since the protocol is
non-interactive, the adversary is reduced to a passive adversary. A successful
attack would contradict the computational Diffie-Hellman (CDH) assumption
since given an instance of the CDH problem (P, αP, βP ), one is able to leverage
Eve and solve the CDH problem by setting up Alice and Bob’s transaction-
specific secrets as kA = α and kB = β, which results in K = αβP . A successful
Eve implies that CDH can be solved efficiently. ut

4.2 Security of YAK-over-Bitcoin

This protocol is an Elliptic Curve YAK key exchange and the public values are
bound to two transactions in the Blockchain. Private key security and session
key security consider a malicious active adversary “Mallory”, and full forward
secrecy considers an eavesdropper adversary “Eve”. Similar as before, we assume
an extreme adversary who has all the powers except those that would trivially
allow the attacker to break any key exchange protocol. Under this assumption,
we provide a sketch of the proof of security for each property in the following.

Theorem 3 (Private Key Security). YAK-over-Bitcoin provides private key
security under the assumption that ECDSA signature is a zero knowledge proof
of knowledge of the ECDSA secret key.

Proof (sketch). The goal of an adversary Mallory is to be able to gain some extra
information on Alice’s transaction-specific private key kA through the following
attack. Mallory is given the public parameters of the system and access to the
Blockchain which includes Alice’s transaction TA, then she provides a transaction
TM which is included in the Blockchain, then she carries out a YAK-over-Bitcoin
protocol with Alice, in which Alice sends the message (wAP,ZKP{wA}) and
Mallory sends the message (wMP,ZKP{wM}). Alice’s ephemeral secret wA is
also assumed to be leaked to Mallory. The attack is depicted in Fig. 5(i). Alice’s
ECDSA signature in TA is assumed to be zero knowledge and hence does not
reveal any information about her private key. Furthermore, since the ECDSA
signature in Mallory’s transaction and her message in the protocol are proofs
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Fig. 5. Security of YAK-over-Bitcoin. Light grey denotes what the adversary (Mallory
in (i) and (iii), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory)
chooses.

of knowledge of dM (equivalently kM) and wM, respectively, Mallory must know
both kM and wM. Note that she receives (wAP,ZKP{wA}) and wA and hence
will be able to calculate K = (kM +wM)(kAP +wAP ). Hence, Mallory does not
gain any extra knowledge from the values she receives, since wA is independent
of kA and knowledge of wA, kM, and wM enables Mallory to simulate all the
values she receives. ut

Theorem 4 (Full Forward Secrecy). YAK-over-Bitcoin provides full forward
secrecy based on the computational Diffie-Hellman assumption.

Proof (sketch). Assume there is a successful adversary Eve that is able to calcu-
late the shared secret K for a previous key exchange between two honest parties
Alice and Bob through the following attack. Both Alice and Bob’s transaction-
specific secret keys kA and kB are assumed to be leaked to Eve. Eve is also
assumed to have access to all the protocol messages exchanged between Alice
and Bob, as well as the Blockchain of course. The attack is depicted in Fig. 5(ii).
Given an instance of the CDH problem (P, αP, βP ) one is able to leverage Eve
and solve the problem as follows. The protocol is set up with the ephemeral secret
values wA = α and wB = β and all other parameters as per the protocol descrip-
tion. When Eve calculates K, the value S = K − kAkBP − kA(βP ) − kB(αP )
is calculated and returned as the solution to the CDH problem. Note that since
K = (kA + wA)(kB + wB)P , we have S = αβP . A successful Eve implies that
CDH can be solved efficiently. ut

Theorem 5 (Session Key Security). YAK-over-Bitcoin provides session key
security based on the computational Diffie-Hellman assumption under the as-
sumption that ECDSA signature is a zero knowledge proof of knowledge of the
ECDSA secret key.



Step Description Time
Diffie-Hellman-over-Bitcoin

1-2 Compute kA and Q̂B 0.08 ms
3 Compute shared secret KAB and key κAB 0.51 ms

Total: 0.59 ms

YAK-over-Bitcoin

1-4 Compute kA, QA, Q̂A and Q̂B 0.53 ms
5 Compute wA,WA and ZKP{wA} 0.90 ms
6 Verify Bob’s ZKP{wB} 0.69 ms
7 Compute shared secret KAB and key κAB 0.43 ms

Total: 2.55 ms
Table 2. Alice performing YAK-over-Bitcoin

Proof (sketch). Assume there is a successful adversary Mallory that is able to
calculate the shared secret K for a key exchange between two honest parties
Alice and Bob through the following attack by impersonating Bob to Alice. Alice
believes she is interacting with Bob, whereas in reality she is interacting with an
impersonator Mallory who replaces Bob’s message in the protocol with her own
(wMP,ZKP{wM}). Alice’s transaction-specific secret key kA is assumed to be
leaked to Mallory as well. However, Mallory does not know Bob’s transaction-
specific secret key kB. The attack is depicted in Fig. 5(iii). Given an instance
of the CDH problem (P, αP, βP ) one is able to leverage Mallory and solve the
problem as follows. The protocol is set up with Alice’s ephemeral secret wA =
α and Bob’s transaction-specific secret kB = β and all other parameters as
per the protocol description. When Mallory calculates K, the value S = K −
kAwBP − wA(βP ) − wB(αP ) is calculated and returned as the solution to the
CDH problem. Note that since K = (kA + wA)(kB + wB)P , we have S = αβP .
A successful Mallory implies that CDH can be solved efficiently. ut

4.3 Security of ECDSA Signatures

Diffie-Hellman-over-Bitcoin is a non-interactive protocol and the protocol par-
ticipants do not send any messages to each other that would potentially have an
impact on the security of ECDSA signatures.

In ‘YAK-over-Bitcoin’, the messages that the protocol participants send each
other include information about their ephemeral keys wA and wB only, which are
chosen independently of all the secret values related to the ECDSA signatures
in TA and TB. Hence, similarly, the messages do not have any degrading impact
on the security of ECDSA signatures.

5 Implementation

Our implementation is a modification of the Bitcoin Core client and is considered
a proof of concept. We have included three new remote procedure commands



(RPC) that will allow the client to perform a non-interactive Diffie-Hellman
key exchange, generate a zero knowledge proof to be shared with their partner
and verify a partner’s zero knowledge proof before revealing the shared secret.
Our modified implementation was executed using the -txindex parameter which
allows us to query the Blockchain and retrieve the raw transaction data.

Two transactions were created using a non-modified implementation on the
10th December, 2013 to allow us to test our key exchange on the real network.
All tests were carried out a MacBook Pro mid-2012 running OS X 10.9.1 with
2.3GHz Intel Core i7 and 4 cores and 16 GB DDR3 RAM. Each protocol is
executed 100 times from Alice’s perspective and the average times are reported.

5.1 Time analysis

Preliminary steps for both protocols involve fetching the transactions from the
Blockchain 0.04 ms and retrieving the signatures (r, s) stored in the transaction
0.08 ms. Overall, these steps on average require 0.12 ms.

This ‘Diffie-Hellman-over-Bitcoin’ protocol is non-interactive as participants
are not required to exchange information before deriving the shared secret. Table
2 demonstrates an average time of 0.08 ms to derive Alice’s transaction-specific
private key kA and Bob’s estimated public key Q̂B and 0.051 ms to compute the
shared key κAB. Overall, on average the protocol executes in 0.59 ms which is
reasonable for real-life use.

The ‘YAK-over-Bitcoin’ protocol is interactive as it requires each party to
send an ephemeral public key together with a non-interactive Schnorr ZKP to
prove the knowledge of the ephemeral private key. Table 2 shows that comput-
ing and verifying zero knowledge proofs is the most time-consuming operation.
However, a total execution time of 2.55 ms is still reasonable for practical appli-
cations.

5.2 Note about domain parameters

Our investigation highlighted that q > n as seen in [7] which could obscure the
relationship between k and r as the x co-ordinate can wrap around n. However,
the probability that this may occur can be calculated as (q − n)/q ≈ 4× 10−39

and is unlikely to occur in practice. However, in the rare chance that this does
happen then it is easily resolved by r′ = r + n. This does not require any
modification to the underlying signature code as it is simply an addition of the
publicly available r with the modulus n. Once resolved, both parties can continue
with the protocol. For reference, q and n are defined below:

q=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F

n=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

6 Conclusion

In this paper, we have demonstrated transaction authentication by using the
digital signatures stored in Bitcoin transactions to bootstrap key exchange. We



proposed two protocols to allow for interactive and non-interactive key exchange,
the latter offering an additional property of forward-secrecy. We encourage the
community to try our proof-of-concept implementation and to take advantage
of this new form of authentication to enable end-to-end secure communication
between Bitcoin users.
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