
TinyLEGO: An Interactive Garbling Scheme
for Maliciously Secure Two-party Computation

Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti ???

Department of Computer Science, Aarhus University
{jot2re|tpj|jbn|roberto}@cs.au.dk

Abstract. This paper reports on a number of conceptual and technical contributions to the currently
very lively field of two-party computation (2PC) based on garbled circuits. Our main contributions are
as follows:
1. We propose a notion of an interactive garbling scheme, where the garbled circuit is generated as

an interactive protocol between the garbler and the evaluator. The garbled circuit is correct and
privacy preserving even if one of the two parties was acting maliciously during garbling. The security
notion is game based.

2. We show that an interactive garbling scheme combined with a Universally Composable (UC) secure
oblivious transfer protocol can be used in a black-box manner to implement two-party computation
(2PC) UC securely against a static and malicious adversary. The protocol abstracts many recent
protocols for implementing 2PC from garbled circuits and will allow future designers of interactive
garbling schemes to prove security with the simple game based definitions, as opposed to directly
proving UC security for each new scheme.

3. We propose a new instantiation of interactive garbling by designing a new protocol in the LEGO
family of protocols for efficient garbling against a malicious adversary. The new protocol is based
on several new technical contributions and many optimizations, including a highly efficient UC
commitment scheme. A theoretical evaluation of the efficiency shows that the instantiation is one
to two orders of magnitude faster than the previously most efficient LEGO protocol and that it in
general compares favorably to all existing garbling-based 2PC protocols for malicious adversaries.

Keywords: Secure Computation, XOR-Homomorphic Commitments, Garbled Circuits, Interactive
Garbling Scheme, Oblivious Transfer, Universal Composability, Standard Assumptions, Large Circuits.

1 Introduction

Secure two-party computation (2PC) is the area of cryptography concerned with two mutually distrusting
parties who wish to securely compute an arbitrary function with private output based on their respective
private inputs. A bit more formally Alice has the input x, Bob the input y, and they wish to compute the
function z ← f(x, y) without Bob learning anything about y and without Alice learning anything about x.

This area was introduced in 1982 by Andrew Yao [Yao82, Yao86], specifically for the semi-honest case,
where both parties are assumed to follow the prescribed protocol and only try to compromise security by
extracting information from their own views of the protocol execution. Yao showed how to construct a
protocol preventing this using a technique referred to as the garbled circuit approach. This approach involves
having one party (the constructor), say Alice, encrypt, or “garble”, a Boolean circuit computing the desired
functionality. This is done by choosing two random keys for each wire in the circuit, one representing a value
of 0 and another representing a value of 1. Each gate in the garbled circuit is then constructed such that Bob
? The authors acknowledge support from the Danish National Research Foundation and The National Science
Foundation of China (under the grant 61361136003) for the Sino-Danish Center for the Theory of Interactive
Computation and from the Center for Research in Foundations of Electronic Markets (CFEM), supported by the
Danish Strategic Research Council.

?? Partially supported by Danish Council for Independent Research via DFF Starting Grant 10-081612. Partially
supported by the European Research Commission Starting Grant 279447.

(the evaluator), given exactly one key for each input wire, can compute exactly one key for the output wire,
namely the key corresponding to the bit that the gate is supposed to output (for example, the logical AND of
the two input bits). Alice sends the garbled circuit to Bob and makes sure that for each input wire, Bob only
learns one of the wire’s keys. For Alice’s own input, she simply sends these keys to Bob. Using an oblivious
transfer (OT) protocol, Bob also learns one key for each input wire corresponding to his own input, without
Alice learning Bob’s input. Now, given one key for each input wire, Bob can then evaluate the whole garbled
circuit, gate by gate, while at the same time, he cannot learn which bits flow on the wires. When he reaches
the output keys he simply sends these back to Alice, who uses some auxiliary information to learn which bits
the keys encode. See [LP09] for a thorough description of Yao’s approach.

A major reason why Yao’s approach is only secure against a semi-honest adversary is that Bob cannot be
sure that the garbled circuit he receives from Alice has been garbled correctly. One way to cope with this, and
achieve malicious security, where a corrupt party might deviate from the prescribed protocol in an arbitrary
manner, is with a cut-and-choose approach: Instead of sending one circuit, Alice sends several independently
garbled versions of the circuit to Bob. Bob then randomly selects some of these, called the check circuits,
which are then opened, allowing Bob to verify that they do indeed correspond to the correct function f . If
this is the case, he knows that the remaining circuits, called evaluation circuits, contain a majority of correct
circuits, except with negligible probability in the amount of circuits constructed.

However, doing cut-and-choose on several garbled circuits introduces some other issues that have to be
dealt with in order to obtain malicious security. One of these issues is the selective failure attack [MF06, KS06]:
Since Alice will supply Bob with the keys in correspondence with his input bits through an OT, Alice can
simply input garbage for one of the keys, e.g, the 0-key for the first bit of his input. If Bob aborts the protocol,
because he cannot evaluate a garbled circuit when one of the keys is garbage, Alice will know that the first
bit of his input is 0. On the other hand, if he does not abort the protocol then his first bit must be 1.

Solutions to the selective failure attack and several other attacks specific for cut-and-choose of garbled
circuits, along with several paths for optimizations has led to a plethora of work on such protocols including,
but not limited to, [LP07, PSSW09, LP11, SS11, HEKM11, KSS12, Bra13, FN13, HKE13, Lin13, MR13,
SS13, HMSG13, RT13, FJN14, AMPR14].

Still, garbled circuits can be used without the cut-and-choose paradigm in order to achieve full malicious
security. For example by using it as a sub-protocol in the approach of “MPC-in-the-head” [IKOS07, IPS08,
LOP11] where the parties run a semi-honestly secure two-party protocol, but within this they emulate at
least three parties that run a virtual second protocol, secure against a malicious minority. This results in a
final protocol maliciously secure against a dishonest majority.

If one is willing to accept a weaker kind of “malicious” security, then it is possible to achieve significant
improvements by using the “dual execution” approach. With this approach each party both constructs and
evaluates a single garbled circuit [MF06, HKE12, MR13].

LEGO Considering a garbled circuit as a modular construction, consisting of many connected garbled gates,
has led to a new approach to cut-and-choose called LEGO. In this approach, cut-and-choose is not done
on several circuits, but rather on individual and independent garbled gates. The idea is that if none of the
garbled gates that are checked are incorrect, then, with overwhelming probability, at most a few of the
remaining garbled gates are maliciously constructed. The remaining gates are then shuffled and soldered
into fault tolerant buckets computing a specific Boolean functionality, such as AND. The fault tolerance
comes as the buckets are constructed to output the majority of the output of its individual gates. Thus, since
only a few malicious gates remain after the cut-and-choose step, the probability that a majority of these are
combined in the same bucket is overwhelmingly small, even for buckets consisting of only a few garbled gates.
These buckets can then be soldered together to form an entire garbled circuit which will compute the correct
output with overwhelming probability. This “gate-level” approach to cut-and-choose makes it possible to
achieve an asymptotic increase in efficiency of the logarithm of the size of the circuit to compute, compared
to the protocols based on cut-and-choose of whole garbled circuits.

The LEGO approach was introduced by Nielsen and Orlandi in [NO09]. In that paper the soldering of
garbled gates was based on homomorphic commitments, making it possible to obliviously “transform” the
key on one wire to the key with similar semantics (whether it represents the bit 0 or 1) on another wire.

2

Specifically the additively homomorphic Pedersen commitments were used. Unfortunately, these commitments
require heavy computational operations in the form of exponentiations of elements in a group. Furthermore,
as the key commitments worked on group elements this also required the keys of the garbled gates to be group
elements under certain constraints. Unfortunately, this ruined the possibility to use several optimizations of
garbled gates which requires the keys to be random bitstrings.

In [FJN+13] the authors introduced an XOR-homomorphic commitment scheme based on OT and error
correcting codes. Using this scheme they constructed a new LEGO protocol, called MiniLEGO, which
eliminated the need of group exponentiations for each commitment. The usage of XOR-homomorphic
commitments (XHC) on bit-strings also eliminated all the constraints previously needed on the gate keys,
and thus their protocol works with most gate garbling optimizations. Unfortunately, the error correcting code
used to construct the XHC introduced a rather large concrete increase in the communication complexity
of each garbled gate. So while MiniLEGO asymptotically performs better than non-LEGO protocols, for
practical parameters and circuit sizes the protocol is not competitive.

Finally, it should be noted that recent results [LR14, HKK+14] combine the idea of cut-and-choose of
garbled circuits and the LEGO approach to achieve protocols asymptotically more efficient in the amortized
(batched) setting than any protocol based on cut-and-choose of garbled circuits. Ignoring the details, their
idea is to construct many garbled circuits computing the same functionality, do cut-and-choose to check some
fraction of these, and then put the remaining circuits into slots (buckets using LEGO lingo). When the parties
wish to do a secure computation it then suffices to use a single slot of circuits. We stress that these protocols
only apply to the batched setting, where one is interested in computing the same function many times. In
this work we look at the single function evaluation setting, which is more general than the batched setting.

1.1 Contributions

We introduce a new maliciously and static secure 2PC protocol based on the LEGO paradigm, which is more
efficient than the MiniLEGO protocol of [FJN+13]. Our contribution includes:

Framework for Interactive Garbling We start by introducing a generic framework for interactive garbling
schemes in Section 3. This work is much inspired by the work of [BHR12]. However, here we give definitions
in an interactive setting. Next, we show that our notion of an interactive garbling scheme suffices for
UC-secure 2PC in the FOT-hybrid model.

Improvement of the additive commitment scheme of [CDD+14] In Section 4.3 we introduce a mod-
ified version of the “basic” non-homomorphic commitment scheme of [CDD+14]. First of all, our scheme
directly improves on the communication complexity of each commitment by the length of the message,
and furthermore add support for XOR-homomorphic operations on the commitments. Secondly, we
propose an amortized opening mechanism that significantly reduces communication complexity and has
computational complexity independent of the number of openings sent. Finally, we require the minimum
distance of the underlying error correctioncode used by the scheme to be s+ 4 for security 2−s as opposed
to 2s+ 1 in [CDD+14]. The two former optimizations along with XOR-homomorphism are achieved using
a linear combination check on all the messages opened to instead of opening to all messages individually.
We believe these optimizations have independent interest in any setting where many commitments are
required (additively homomorphic or not), e.g. in [AHMR14].

Advancement over previous protocols We then show how to implement an interactive garbling scheme
using the before-mentioned modified commitment scheme. Using a mixture of the techniques used in
[NO09] and [FJN+13] to create buckets of garbled gates, we reduce the communication complexity
(dependent on the circuit size) of one to two orders of magnitude compared to [FJN+13]. One of our
optimizations include only requiring a single “correct” gate in each bucket (as opposed to a majority),
which is made possible using what we call wire authenticators.1 We also remove the need of a random

1 For the readers familiar with the LEGO protocol in [NO09], these are very similar to the key check gadgets. However,
our wire authenticators are a bit simpler and we only require about half the amount of them, compared to the key
check gadgets.

3

oracle, and instead rely on the weaker assumption of a circular-correlation robust hash function. Finally, we
compare favorably to current state-of-the-art protocols for realistic circuit sizes. For example, for a circuit
with at least 953,021 AND gates and 40-bit statistical security we reduce communication complexity with
a factor of 0.69. Our protocol is described in Section 5 and the performance comparisons are presented in
Section 6.

2 Preliminaries and Notation

We assume Alice is the party constructing the garbled gates and call her the constructor. Likewise, we assume
Bob is the party evaluating the garbled gates and call him the evaluator. Furthermore, we say that the
functionality they wish to compute is z ← f(x, y), where Alice gives input x, Bob gives input y and only one
party, Alice, receives the output z. We denote the bit-length of x as |x| = nA, the bit-length of y as |y| = nB
and let n = nA + nB. We will denote the bit-length of the output z as |z| = m. We denote the Boolean circuit
computing the functionality f(·, ·) by C and assume without loss of generality (w.l.o.g.) that it is composed
of NOT, XOR and AND gates. The XOR gates are allowed to have unlimited fan-in, while the AND gates
are restricted to fan-in 2, and NOT gates have fan-in 1. All gates are allowed to have unlimited fan-out.
Furthermore, we assume that the first nA input wires are for Alice’s input and the following nB input wires
are for Bob’s input.

We define the semantic value of a wire-key of a garbled gate to be the bit it represents. We will use Kb
j to

denote the j’th wire key representing bit b. Sometimes, when the context allows it, we will let Lblg , Rbrg , and
Obog denote the left, right, and output key respectively for garbled gate g representing the bits bl, br and bo
respectively. When the bit represented by a key is unknown we simply omit the superscript, e.g. Kj or Lg.

In this work circuits are handled in a similar fashion as to [FJN+13], but we adopt the notation of [BHR12]
with some minor syntactic modifications which makes it possible to handle NOT and XOR gates implicitly.
Thus, a circuit is a 5-tuple C = (n,m, q, lp, rp) where n ≥ 2 is the number of inputs, m ≥ 1 is the number of
outputs and q is the number of AND gates. Thus w = n+ q is the total number of wires in the circuit. We
let Wires = {1, . . . , w}, Inputs = {1, . . . , n}, Gates = {n+ 1, . . . , w} and Outputs = {w −m+ 1, . . . , w}. The
maps lp, rp : Gates→ {{Wires \ Outputs} ∪ {1}}∗ define the topology of the circuit, mapping from gates to
their respective left and right input wire. We also require that for all g ∈ Gates and ∀l ∈ lp(g)∀r ∈ rp(g) it
holds that l ≤ r < g. We say that the set lp(g) (resp. rp(g)) is the left (right) parents of gate g and we let the
left (right) input bit of gate g be

⊕
j∈lp(g)K

b
j . In this way all XOR gates of C are implicitly defined by lp, rp.

The special symbol 1 denotes an “implicit” key with semantic values 1. It is used in order to support NOT
gates, by the simple observation that a NOT gate is logically equivalent to an XOR where one of the inputs
is the constant 1.

We use k to denote the computational security parameter and s to represent the statistical security
parameter. Technically, this means that for any fixed s and any polynomial time bounded adversary, the
advantage of the adversary is 2−s + negl(k) for a negligible function negl. I.e., the advantage of any adversary
goes to 2−s faster than any inverse polynomial in the computational security parameter. If s = Ω(k) then the
advantage is negligible.

We will use as shorthand [n] = {1, 2, . . . , n} and e ∈R S to mean; sample an element e uniformly at
random from the set S. We write y ← P (x) to mean; perform the (potentially randomized) procedure P on
input x and store the output in variable y. We sometimes (when the semantic meaning is clear) use subscript
to denote an index of a vector, i.e. xi denotes the i’th bits of a vector x. An overview of the various variables
and parameters along with their meaning is given in Appendix I.

3 A Generic Framework for 2PC from Interactive Garbling

We introduce the notion of an interactive garbling scheme and show that it allows to implement UC secure
2PC in the FOT-hybrid model. Our notion extends the notion of a garbling scheme from [BHR12] to allow
the garbling algorithm to be a two-party protocol. We assume that the reader is familiar with the syntax,

4

notational conventions and security notions from [BHR12]. In terms of [BHR12] the below definitions are for
the side information function Φcirc(f) = f , i.e., the evaluator is allowed to learn f , and we only formalize
obliviousness, not privacy, as we in our protocol will return the garbled output to the circuit constructor. It
is easy to generalize the notions to general side-information functions and to capture privacy.

Syntax An interactive garbling scheme consists of a seven-tuple Gπ = (Gbπ,En,De,Ev, ev,Op,Ve). The
first component, called the garbling protocol, is a two party protocol. The remaining components are
deterministic algorithms. All components are poly-time. The evaluation function ev takes two inputs, a
function description f and an input x for f . A string f , the original function, by definition describes a
function ev(f, ·) : {0, 1}n → {0, 1}m, which is the function we want to garble. We will often not distinguish
between the description of the function and the function, i.e., we write f(x) to mean ev(f, x). We assume
that the input length f.n and the output length f.m can be computed in linear time from f . The garbling
protocol Gbπ is executed two parties, the constructor C and the evaluator E. To be concrete, we assume it is a
protocol in the UC framework. We assume that the parties send no messages directly to each other, instead all
communication is through ideal functionalities. This is without loss of generality, as we can always introduce
an ideal functionality for communication. The input to both parties is

(
1k, f

)
, where k ∈ N is the security

parameter and f is a function description. The output to C is (F, e, d, o), where F is the garbled function, e is
the input encoding function, d is the output decoding function, and o is the opening function. The output to E
is a garbled function F ∈ {0, 1}∗ and a verification function v. The input encoding algorithm takes as the
input encoding function e and an input x ∈ {0, 1}n and outputs an encoded input X ← En(e, x). The garbled
function F maps each encoded input X to an encoded output Z ← Ev(F,X). The output decoding algorithm
maps a garbled output Z to the final output z ← De(d, Z).

The algorithms Op and Ve are extra compared to [BHR12]. They are only needed if the scheme has input
opening, as we need in this work. The input opening algorithm Op takes as input o, a bitstring x and a subset
I ⊆ [n]. It returns the opening information O. The input verification algorithm Ve takes as input v, garbled
input X, opening information O and a set ((i, xi))i∈I for some set I ⊆ [n] where all xi being bits. It outputs
true (>) or false (⊥). Intuitively, it uses v to judge whether X has been used in an encoding consistent with
opening information O where bit number i is xi for i ∈ I.

Below we informally describe the defining security properties of our notion of an interactive garbling. For
a formal treatment of these security properties we direct the reader to Appendix C, in particular Figure 16
and Figure 17.

Correctness We define correctness (property name: corr) as in [BHR12], except that now the material is
generated interactively. We also add the requirement that the opening and verification algorithms must be
correct.

Obliviousness We define obliviousness (property name: obl.ind.act) as in [BHR12], i.e., by seeing a garbling
and an encoding of one of two inputs x0 and x1, the evaluator cannot guess which input was used. As an
addition we let the adversary B play the role of E in the garbling protocol. We allow B to deviate from the
garbling protocol. This gives a notion of malicious security. One can define a relaxed notion by requiring that
B only gets to see the randomness of E, but we do not need this notion in this work. We also consider only
one function, as Φcirc(f0) = Φcirc(f1) implies that f0 = f1. We extend the notion to require obliviousness to
hold also in the presence of the opening information. This can only be the case, of course, if the two challenge
inputs agree on the opened positions.

Authenticity We define authenticity as in [BHR12], to mean that the evaluator given a garbling and an
encoded input can compute the unique output encoding that will be accepted by the constructor, except that
we again let the adversary participate maliciously in the garbling protocol. In [BHR12] it was sufficient to
require that only the unique correct garbled output can be returned. However, when the scheme is interactive
and the adversary participates in the garbling protocol, we also need to require that the generated circuit
is correct, as it does not make sense to reason about the correct garbled output, if the output itself is not
correct. This means authenticity is extended to include also robustness of the garbling protocol against a
corrupted evaluator.

5

Knowledge of F We also need that even a cheating evaluator knows F (property name: knof). The reason
why we need this is that knowing F means that the evaluator can compute and hence knows the correct
Z ← Ev(F,X). This in turn means that if the scheme has authenticity, then the evaluator knows that all
Z ′ 6= Z will be rejected by the constructor and Z ′ = Z will be accepted. Hence, whether or not the constructor
rejects a given Z ′ cannot be used to leak any information on the input of the constructor.

Robustness against the Constructor We also define a notion of correctness against the constructor (property
name: rob.con). We ask that even if C is malicious in the garbling protocol, the produced material computes
correctly. To define this we need that the constructor knows an explicit input encoding function and an
explicit output decoding function.

Uniqueness of Output Encoding We also need to require that all outputs have a unique encoding, even if the
constructor is cheating during Gbπ. We call this uniqueness of output encoding (property name: unqoe). The
reason for this requirement is that if there were several alternative encodings, then the particular encoding of
the output might conceivably be used to signal information extra to the output that is encoded.

Uniqueness of Input Encoding Similarly, we require that there are unique input encodings (property name:
unqie) even when the constructor is cheating. We only require uniqueness for encodings which make the
opening check and the garbled evaluation succeed.

Token Commitment We finally need a notion of token commitment (property name: tok.com). It essentially
just says that the opening and verification algorithms are correct even if the constructor is cheating, i.e., if a
token for an opened position is claimed to be a token for the bit b, then this is indeed the case.

Projective Schemes We say that e is projective if e is of the form
(
X0

1 , X
1
1 , , . . . , X

0
n, X

1
n

)
and o is of the

form
(
O0

1, O
1
1, . . . , O

0
n, O

1
n

)
. We call Xb

j the b-token for input wire j and Obj the opening information for
the b-token for input wire j. Each token is from {0, 1}κ, where κ is called the token length. For a scheme
to be called projective we further require that En, Op, Ve and En−1 are the projective encoding algorithm,
the projective opening algorithm, the projective verification algorithm, and the projective de-encoder, as
defined now: If e is such that X0

i = X1
i or Xb

i 6∈ {0, 1}κ for any i or b, then En(e, x) = ⊥. Otherwise
on input x ∈ {0, 1}n and e as above (Xx1

1 , . . . , Xxn
n) ← En(e, x) and {(i, Oxii)}i∈I ← Op(o, x, I). As for

verification, we require that the verification algorithm verifies the openings individually, i.e., there exist a
poly-time algorithm Ve taking as input v and a single Xi, a single Oi, an index i and a bit xi and outputs
true or false such that Ve

(
v, (X1, . . . , Xn) , {(i, Oi)}i∈I , {(i, xi)}i∈I

)
=
∧
i∈I Ve (v,Xi, Oi, i, xi). We describe

the projective de-encoder En−1. If it is not possible to parse e on the form
(
X0

1 , X
1
1 , . . . , X

0
n, X

1
n

)
, where

Xb
i ∈ {0, 1}κ and X0

i 6= X1
i for all i and b, then output En−1(e,X) = ⊥. If it is not possible to parse X on

the form (X1, . . . , Xn), where Xi ∈ {0, 1}κ and Xi ∈
{
X0
i , X

1
i

}
for all i, then also output ⊥. Otherwise, let x

be the unique x ∈ {0, 1}n such that X ← En(e, x) and let x← En−1(e,X). If a scheme is of the above form
we say that it has the property proj.

3.1 Interactive Garbling with Constructor getting the Output

We now describe our generic protocol πIGCO, see Figure 1. It abstracts the protocols in [NO09] and [FJN+13]
where it is the constructor which gets the output, and also captures our new interactive garbling scheme. This
means that the evaluator never sees decoding information, and hence only obliviousness is needed, as opposed
to privacy, to get privacy against a corrupted evaluator. The privacy against a corrupt constructor follows
from robustness and uniqueness of output encoding, which guarantees that the encoded output returned by
the evaluator does not leak anything but the output.

Our protocol uses a notion of OT which we call delayed OT. It is a one-out-of-two OT of κ′-bit strings
where κ′ = κ+ o, where o is the size of an opening and it runs in two phases, as follows: First the receiver
inputs a choice bit c. In response to this the sender receives the string chosen. If later the sender inputs

6

Setup: We denote the two parties of the protocol by A and B. The parties agree on k and f . The parties also
agree on nA and nB such that f.n = nA + nB. We assume that the parties have access to nB copies of the
ideal functionality for delayed OT for κ-bit strings. We denote them by F1

DOT, . . . ,F
nB
DOT. It is B that inputs

the selection bits.
Input B, I: Denote the input of B by y ∈ {0, 1}nB . For i = 1, . . . , nB, B inputs yi to F iDOT and A waits for output

chosen from F iDOT.
Garbling: Run Gbπ with A playing C and B playing E. Each party inputs

(
1k, f

)
. The output to A is (F, e, d, o)

and the output to B is (F, v).
Input A: Denote the input of A by x ∈ {0, 1}nA . A parses e as

(
X0

1 , X
1
1 , . . . , X

0
nA , X

1
nA , Y

0
1 , Y

1
1 , . . . , Y

0
nB , Y

1
nB

)
and parse o as

(
·, . . . , ·, O0

1, O
1
1, . . . , O

0
nB , O

1
nB

)
. Then A sends

(
Xx1

1 , . . . , X
xnA
nA

)
to B.

Input B, II: For i = 1, . . . , nB, A inputs
((
Y 0
i , O

0
i

)
,
(
Y 1
i , O

1
i

))
to F iDOT and B waits for output

(Y yii , Oyii) from F iDOT. Then B lets X =
(
Xx1

1 , . . . , X
xnA
nA , Y y1

1 , . . . , Y
ynB
nB

)
and O =

(
Oy1

1 , . . . , O
ynB
nB

)
. If

Ve
(
v,X,O, {(i, yi)}nA+nB

i=nA+1

)
= ⊥, then B outputs abort and terminates.

Evaluation: B computes Z ← Ev(F,X). If Z = ⊥, then B outputs abort and terminates.
Output: B sends Z to A. If De(d, Z) = ⊥, then A outputs abort. Otherwise, A outputs z ← De(d, Z).

Fig. 1. Generic Protocol πIGCO for Interactive Garbling with Constructor Output.

(m0,m1) ∈ {0, 1}κ × {0, 1}κ, then the receiver receives mc. Delayed OT can be based on normal OT by first
transferring uniformly random pads and then later use these to one-time-pad the messages to be transferred.

The ideal functionality FfSFE which our protocol realizes is given in Figure 21 in Appendix F. It is the
standard functionality for 2PC except that it only gives output to A. However, if one wish that B should
receive the output then this can be done using the standard technique of [LP07]. The ideal functionality has
also been designed as to not prevent A from mounting a selective failure attack, which is needed to achieve a
full malicious secure protocol – A can make a guess at some input bits of B and if she guesses correct, then
she will be told, and the attack goes unnoticed. If she guesses incorrect, B is informed of the attack. This
reflects that garbling allows such attacks if not dealt with explicitly. However, such selective attacks can be
mitigated easily and efficiently using off-the-shelf constructions, such as the ones in [LP07, SS13]. This is
done by a small extension of the function to compute. Which technique is best depends on context, so we
consider it cleaner to not make a choice and instead analyze the protocol allowing selective errors.

In Theorem 1 we show that πIGCO UC securely realizes FfSFE against static and malicious corruption of any
number of parties. The notion of an extended interactive garbling scheme is formally defined in Appendix C.

Theorem 1. If Gπ is an extended interactive garbling scheme and has the properties proj, corr, obl.ind.act,
aut.act, knof, rob.con, unqoe, unqie, and tok.com, then πIGCO UC securely realizes FfSFE against any static
and malicious corruption of any number of parties.

The case of no corruptions follows easily using the properties proj, corr and obl.ind.act, using a subset of
the proof arguments below. If both parties are corrupted, there is nothing to show.

If A is corrupted, the simulator uses uniqueness of input encoding to extract the input of A from the
tokens sent and inputs it to the ideal functionality. In the protocol the token commitment property is used by
B to ensure that a cheating A inputs the right tokens to the OTs used by B to pick his input. However, for
each input wire of B where A inputs tokens (X0, X1) to the OT, B only gets to see Xb where b is his input
bit for that wire. Therefore he can only check whether Xb is correct. Hence, in the simulation, the simulator
should also abort iff Xb is incorrect, but b is not known to the simulator. Therefore it proceeds as follows. It
extracts X0 and X1 from the OT (simulated by the simulator). If they are both incorrect, then clearly Xb is
incorrect, and it aborts. If they are both correct, then it does not abort. If there is exactly one correct, Xc

say, then the simulator makes a guess to the ideal functionality that this input bit of B is b = c. This will
abort exactly when b 6= c, so if the ideal functionality aborts, the simulation is perfect. Assume then that all
the needed guesses are correct. In that case, the ideal functionality returns the output z. From robustness
against the constructor and uniqueness of output encoding, the simulator of corrupted A can then from z
simulate the output encoding Z that the real world B would send to A and send this Z in the simulation too.

7

If B is corrupted, then the simulator extracts his input from the choice bits in the OT and gives it to
the ideal functionality. Then it runs the protocol with a dummy input for A which is undetectable by B by
obliviousness. Authenticity and knowledge of F guarantees that B, when he returns an output encoding to
the constructor, will know in advance if it is accepted or rejected. This prevents the abort probability from
depending on A’s input. We prove the theorem in formally in Appendix C.

4 Building Blocks

Now that we’ve seen that an interactive garbling scheme (as defined in Section 3) is sufficient for UC secure
2PC we turn our attention to instantiating such a scheme. In this section we will introduce the building
blocks we will use to accomplish this. We start by briefly describing how gate garbling is done in our scheme.
Afterwards we introduce the concept of a wire authenticator which will be used together with the garbled
gates to build our buckets. Finally, we describe our optimized XOR-homomorphic commitment scheme which
is based on [CDD+14].

4.1 Garbling

Both MiniLEGO and our protocol make use of an optimized garbling scheme. To be concrete we use a
modified version of the garbling scheme of [ZRE14], whereas MiniLEGO used a modified version of the
scheme of [PSSW09] (although MiniLEGO would also work fine with the scheme of [ZRE14]). We call our
modified version of [ZRE14] HGarb = (HGb,HEn,HDe,HEv,Hev). The modifications are merely syntactical
and are necessary as the original version samples its own keys (it is not given as an input to the function)
and takes an entire circuit description as input. In our setting a deterministic scheme is needed that garbles
and evaluates individual gates, take keys as input and supports soldering of gates.2

In short the support for soldering means that we need to add some auxiliary information to each garbled
gate. This auxiliary information is simply the values with which each of its wire keys have been shifted and is
therefore just stored as auxiliary values in a garbled gate. As an example, if one learns the key Kid and has
previously learned the shifting value Sid = Kid ⊕Kid′ , then clearly one can compute Kid′ = Sid ⊕Kid.

The scheme of [ZRE14] implements the free-XOR optimization [KS08] and permutation bits [Rog91] and
uses either a circular-correlation-robust hash function [CKKZ12] or a Davies-Meyer type construction in the
ideal random permutation model [BHKR13] for security. We describe the full details of our modified version
HGarb in Figure 4 in Appendix A and direct the reader to Figure 2 of [ZRE14] for a presentation of the
original scheme.

Gate Garbling Recall that using the free-XOR optimization, a global offset ∆ is selected such that Kbj
j =

K0
j ⊕(bj ·∆) for all j. Our gate garbling scheme consists of the three methods HGb

(
L0, R0, ∆, id

)
→
(
Gid, O

0),
HEv (Gid, L,R)→ O, and SGa (Gid, L,R,O)→ G̃id where the last method is used to support the notion of
“shifting” keys. Within a garbled gate we associate an initially 0k-string with each wire. This string can then
be updated through calls to SGa in order to shift the value of the 0-key on each wire of the gate. This is
needed in the soldering phase in order to make it possible to shift the independently generated wire keys.

The HGb method is used to construct garbled AND gates, denoted (Gid, O0). It does so using a 0-key for
the left and right wires (L0, R0), the global difference ∆ along with a unique gate id. Besides the gate’s id
and the ciphertexts, the method also adds three 0k-strings to the garbled gate which are placeholders for the
shifting information used if/when a gate is to be shifted.

The HEv method is used to evaluate such an AND gate Gid by taking a left- and right-key, L, R and
outputting the output-key O. It does so by “shifting” the keys in case the wires of the gate have been soldered
to other wires. Specifically by computing the XOR of the keys with the auxiliary information stored in the
gate, and thus “XOR-out” the keys of the wires it has been soldered to.
2 For the uninitiated reader see Appendix G for a quick recap of MiniLEGO, the free-XOR optimization and the
concept of solderings.

8

4.2 Wire Authenticators

To increase performance we suggest a refinement in the way buckets of garbled gates are created. The idea is
to solder together roughly half the number of gates that MiniLEGO required, while also soldering onto the
buckets a number of authenticated wires. The performance gain comes from authenticated wires being less
costly to produce and solder onto the buckets than gates are.

A wire authenticator is a gadget that takes as input a value and outputs accept if this value is a specific
key (either a 0- or a 1-key) associated with the authenticator, otherwise it outputs reject. This means that
once a key is floating on the wire an authenticator associated with this wire will either accept or reject this
key. We instantiate our wire authenticators by adding the hash digests of both the 0- and 1-key for each
wire, in random order. The crux is then that these are constructed in the beginning of the protocol, before
any cut-and-choose steps or bucketing occurs, and thus makes it possible for Bob to discover (with high
probability) if a given gate outputs a non-expected key.

For convenience we introduce three macro methods for both authentication, shifting and verifying wire keys
in Figure 5 in Appendix A. In short this is the methods Auth

(
K0
id, ∆, id

)
→ Hid, Ver (Hid,Kid, id)→ >/⊥

and SAuth (Hid, S)→ H̃id. The first method constructs a piece of information Hid, which can be used by the
second method to verify that a candidate Kid is either K0

id or K0
id⊕∆. More specifically this reflects that the

first method constructs an authenticator on the two possible keys on a given wire. The second method then
uses the authenticators to verify that a candidate key is in fact one of the keys authenticated to, but does not
leak whether it is the 0- or 1-key. The third method is used as short-hand for soldering authenticated wires
onto regular ones. This works exactly the same as the SGa method does for gates.

4.3 ECC Commitments

The last of our building blocks is our method for constructing commitments to all keys. As previously
mentioned these commitments need to support XOR-homomorphic operations for the soldering of wires to
work. Our construction takes its inspiration from the “basic” scheme of [CDD+14], but with a number of
tweaks and optimizations. Also, the basic construction of [CDD+14] does not support XOR-homomorphic
commitments in itself if the committer is malicious. In order to fix this we employ a linear combination check
(LCC from now on) after Alice has committed to all wire keys. This has the effect that whatever cheating
strategy Alice might follow, after the check she is forced to open consistent values, except with probability
2−s.

We use the term ECC commitments because at the heart of the construction lies a [Γ, k, d] binary linear
error correcting code C (ECC from now on). The basic scheme of [CDD+14] works by the committer first
encoding her message using the ECC and then produces an additive sharing of each entry of this codeword.
When committing, she sends the shares for each entry XOR-padded with the output of a PRG evaluated on a
random secret seed. The protocol is set up such that the receiver only holds one of each pair of seeds for each
entry (using an FOT functionality). Once it is time to open the commitment, the committer simply sends both
shares of each entry to the receiver who checks that they match the shares he learned in the commitment
phase. The usage of seeds expanded by a PRG makes it possible to suffice with only Γ one-out-of-two OTs of
uniformly random elements in {0, 1}k, in order to construct poly(k) commitments.

Intuitively, the scheme is binding because the committer does not know which seeds the receiver holds,
thus she is unaware of which shares he holds after committing to the messages. Since the code has minimum
distance d she has to guess which seeds he holds, for at least d entries, in order to introduce an inconsistency
without getting caught. Therefore she will get caught with probability (1 − 2−d), if she tries to open to
a different message than committed to. The hiding property of the scheme follows from the fact that the
receiver only knows one share of each entry of the codeword, until the commitment is opened. In [CDD+14],
for statistical security s, they require a code with minimum distance 2s+ 1, because the simulator needs to be
able to decode any commitment at commitment time. We improve on this restriction using the aforementioned
LCC. Here we achieve security s using a code with only minimum distance s+ 4 which significantly improves
the communication complexity as the required codeword length of all commitments is reduced. The need for
the extra 4 in the distance is explained in detail in Appendix E.

9

Setup of ECC Commitments

⊕

→r0
1 r̄0

1

r1
1 r̄1

1

r0
2 r̄0

2

r1
2 r̄1

2

r0
Γ r̄0

Γ

r1
Γ r̄1

Γ

→

PRG

→ →

→ →
→ →

→ →
→ →

⊕

r̄0
1 ⊕ r̄1

1

r̄0
2 ⊕ r̄1

2

r̄0
Γ ⊕ r̄1

Γ
⊕

k γ
γ

s1 s2 s3 sγ

Fig. 2. Illustration of the setup phase of the “basic construction” of [CDD+14] for committing to γ messages.

Intuitively, our LCC works by challenging the committer on many random linear combinations of the
commitments, so if she has introduced any errors she will get challenged on at least one of these errors with
high probability. To furthermore improve on performance we also use the LCC for amortizing the openings of
many commitments at the same time. The motivation for this is that the openings are much larger than
the underlying messages (for standard parameters 4-7x larger), so to increase the efficiency of our scheme
we let the committer send the required messages directly and afterwards have the receiver challenge her to
open random linear combinations of these instead. The amount of linear combinations required only depends
on s, which has great impact on communication complexity if a large amount of commitments are required.
The intuition for the security is the same as for the above and greatly reduces the number of openings the
committer has to send to the receiver in our setting. The details of the check is described in full in Figure 15
in Appendix B.

A final optimization over [CDD+14] is the observation that most of the values we wish to commit to needs
to be (pseudo-)randomly chosen. By using the code in systematic form we can simply let these messages be
defined to be the XOR of the output of the PRG on the seeds, thus saving us k bits of communication for
each of these commitments. In particular all input keys match this criteria. However, as the garbling scheme
we use has the property that the output keys of a gate are constructed from the input keys, the committer
must send corrections to the commitments of the output keys once these has been determined. Summing up;
for all output keys the committer sends masked sharings of the k first codeword entries, while for all keys
she sends masked sharings of the Γ − k parity check-bits. For the full details of these optimizations and the
entire construction we direct the reader to Appendix B. In Figure 11 therein the procedures for correcting
output keys and parity check-bits are described as Key Correct and Codeword Correct, respectively.

5 Interactive Garbling

In this section we present our implementation of an interactive garbling scheme. We start from the non-
interactive garbling scheme HGarb, described in Section 4.1 and lift this up to the interactive setting. We
recall that the goal of such a protocol is for the participants C and E to mutually agree on a garbled
circuit. In the end of the protocol it must be the case that C outputs (F, e, d, o) while E outputs (F, v). We
denote our realization of an interactive garbling scheme IGarbπ = (IGbπ, IEn, IDe, IEv, Iev, IOp, IVe). IGbπ is
the garbling protocol and it is described in the FOT-,FCOM-hybrid model.3 The remaining six algorithms
(IEn, IDe, IEv, Iev, IOp, IVe) are based on the underlying algorithms of HGarb and the procedures of our ECC
commitments.

3 FCOM should not be mistaken with the previously described ECC commitments. See Figure 22 and Figure 23 in
Appendix F for descriptions of these functionalities.

10

5.1 Protocol Description

In a nutshell, our protocol consists of doing cut-and-choose of independently garbled gates, which are then
soldered together into fault tolerant buckets, which are again soldered together into a fault tolerant circuit.
Robustness is guaranteed by ensuring a combined majority of correct gates and correct wire authenticators
in each bucket, under the constraint that there must be at least one correct gate in each bucket. As
wire authenticators are lighter than gates, in terms of communication, we get a significant reduction in
communication over MiniLEGO where buckets only consisted of gates.

High Level Description To be a bit more specific, but still informal, we describe the interactive garbling
protocol IGarbπ in the following. For the full details we direct the reader to Appendix A.

Setup Alice and Bob use the ECC commitments described in Section 4.3 to setup commitments to sufficiently
many 0-keys along with a global offset ∆ and wire authenticators. Next, Bob commits to his challenges
for the following cut-and-choose phase, and a specification of how the gates and authenticators are to be
soldered into buckets.

Gate Construction Alice uses the keys on the wires to garble gates with the HGb method and sends these
to Bob. Next Alice sends “corrections” to her commitments (the Key Correct and Codeword Correct
steps of the ECC commitments) as she now knows the output keys. The parties then complete a LCC to
ensure that the commitments are indeed of valid codewords.

Cut-and-Choose Bob opens the commitments of his challenges for both the gates and authenticators; the
gates (authenticators) selected for checking are called the check gates (authenticators) and the remaining
are called the evaluation gates (authenticators). Furthermore, the challenges also include a choice of input
bits which the gates (authenticators) should be evaluated on (checking all possible input combinations
would reveal ∆ to Bob and thus break the privacy of the protocol). Based on Bob’s choice, Alice uses the
LCC to open to random linear combinations of the wires used by the check gates (authenticators). Bob
then verifies that they are valid openings and that the opened values correspond to the learned keys.

Soldering Bob opens to his chosen bucketing functions and thus which evaluation gates and authenticators
should be soldered together into buckets and how these buckets should be soldered together into a
complete circuit. More specifically, one gate in a bucket is selected as the head gate, then the soldering
consists of the following three types:
Bucket Soldering For each bucket Alice solders the left-, right- and output-wire of the head gate onto

the left-, right-, and output-wire of each other gate in a bucket.
Topological Soldering For each bucket the left and right parents of the bucket’s output keys are

soldered onto the left, respectively right input wire of the head of the bucket. Remember that when a
gate’s input wire have more than one parent, the input is defined to be an XOR gate applied to the
output of all the parents. Furthermore, Alice solders the required authenticators onto the output wire
of the head gate.

Input Authentication For each input wires of the circuit a bucket consisting purely of authenticators
is associated. In this bucket a head authentication wire is selected which Alice solders the additional
wire authenticators of the bucket onto.

For details on the above bucketing, see Section A.2. We stress that Alice sends the required solderings
directly and then opens to random subsets of these using the aforementioned linear combination check
instead of opening each soldering individually.

Output All the data is put together to form a tuple in correspondence with the definition of an interactive
garbling scheme.

The algorithms for encoding and decoding wire keys follow directly from HGarb and the procedures for
selecting and verifying openings follow from the ECC commitments. Finally the evaluation is carried out by
evaluating the buckets in topological order. If the gates of a bucket do not agree on a distinct output key,
then the authenticators of the bucket are also evaluated on each of the potential output keys. The key which
is output and accepted by the most gates and authenticators of the bucket is defined as the output key. By

11

Structure of a fault tolerent garbled circuit

⊕

1 2 3 4 5

6 7 8

9

10

∧ ∧ ∧

∧

∧

∧ ∧ ∧

H
H

H

Fig. 3. Illustration of the wirings of a fault tolerent garbled circuit. The right hand side of the image shows a garbled
circuit consisting of 5 garbled AND buckets where one bucket has its left input being the XOR of the output of two
earlier buckets. The left hand side shows an AND bucket with 3 garbled gates and 2 authenticators. Furthermore a
possible enumeration of the wires is shown. Notice that a small black-filled circle is used to illustrate solderings of
wires.

the security analysis in Appendix D we have that the above will always output the single correct key for each
bucket, except with probability 2−s.

6 Performance Comparison

The computational complexity of TinyLEGO (and other LEGO-based protocols [NO09, FJN+13]) is O(q ·
s/ log q). This is asymptotically better than other recent two-party protocols [Bra13, Lin13, HKE13, AMPR14,
FJN14] which achieve at best O(q · s). On the other hand TinyLEGO has more overhead per gate due to
bucketing, wire authenticators and solderings. The natural questions are therefore (1) how do we perform
compared to other LEGO-based protocols and (2) which concrete circuit sizes are required for our protocol
to outperform other 2PC protocols not based on LEGO.

Ideally we would compare protocols based on prototype implementations, but instead we give a concrete
efficiency count. This allows others to do the same and do reasonable comparison to our protocol. Experience
from implementations of protocols based on Yao’s garbling [KSS12, FN13, FJN14] show that with realistic
circuits the communication overhead often becomes a major bottleneck. Especially the communication from
the constructor (Alice) to the evaluator (Bob). So in our analysis we focus solely on this and ignore the
overhead that does not depend on the circuit size. Comparing this way only makes sense for large circuits
where the fraction of input and output wires compared to the total number of wires is small. This is the case
for many real world circuits.

With the recent half-gate technique [ZRE14] each garbled gate is represented using as little as 2k bits
while still being compatible with the free-XOR technique [KS08]. Prior to [Lin13, HKE13, Bra13] the most
efficient non-LEGO protocols required sending 3.1s copies of the garbled circuits [SS11], resulting in a total
communication overhead of 6.2qks bits. Recent protocols [Lin13, HKE13, Bra13, AMPR14, FJN14] only
require Alice to down to s garbled circuits to Bob, yielding instead a total of down to 2qks bits.

In some cases such as [AMPR14, FJN14] the random seed checking optimization [GMS08] can be used to
make the communication overhead of check circuits independent of the circuit size, at the price of additional
computation. This means a communication overhead of c · 2qks for some fraction c < 1. Standard values
(avoiding excessive local computation) is c = 1/2 [LP11, Lin13, FJN14] or c = 3/5 [SS11]. However the
random seed checking optimization is only known to work in the random oracle model. Hence, the smallest

12

communication overhead of non-LEGO protocols is 2qks in the standard model and qks (or even less) in the
random oracle model.4

Contrary to the other protocols, the communication overhead of a single AND gate in TinyLEGO (and
other LEGO protocols) decreases as the circuit size grows. The concrete counting of communication overhead
for TinyLEGO and MiniLEGO can be found in Appendix H.

Table 1 shows the amount of data that Alice must send to Bob for various circuit sizes and security levels. In
the table qks refers to the minimal communication overhead achieved by non-LEGO protocols in the random
oracle model so far, e.g., with a protocol such as [FJN14] using random seed checking. 2qks reflects current
best non-LEGO protocols in the standard model, e.g., [Lin13]. Table 1 also shows communication overhead
for MiniLEGO and TinyLEGO. For each value of k, s, and circuit size q, the parameters of MiniLEGO (β′)
and TinyLEGO (β, α, pg, pa) have been chosen5 so as to minimize the overall communication overhead while
still guaranteeing security except with probability 2−s.

s Protocol Circuit size q
103 104 105 5 · 105 106 5 · 106 107 108 109

40 2qks [Lin13] 0.020 0.095 0.95 4.77 9.5 48 95 954 9,537
40 qks [FJN14] 0.005 0.048 0.48 2.38 4.8 24 48 477 4,768
40 MiniLEGO 1.089 8.467 60.47 302.37 604.8 1,814 3,628 36,275 362,754
40 TinyLEGO 0.015 0.106 0.83 3.49 6.5 31 60 547 4,976

60 2qks [Lin13] 0.014 0.143 1.43 7.15 14.3 72 143 1,431 14,305
60 qks[FJN14] 0.007 0.072 0.72 3.58 7.2 36 72 715 7,153
60 MiniLEGO 2.686 19.700 161.18 626.77 1,253.5 4,477 8,953 89,532 895,321
60 TinyLEGO 0.037 0.175 1.31 5.81 10.8 48 93 776 7,164

80 2qks [Lin13] 0.019 0.191 1.91 9.53 19.1 95 191 1,907 19,073
80 qks [FJN14] 0.010 0.095 0.95 4.77 9.5 48 95 954 9,537
80 MiniLEGO 4.507 30.837 260.93 1,067.402,134.8 8,302 16,603 166,035 1.2·106

80 TinyLEGO 0.251 0.411 2.01 8.19 15.8 69 132 1,129 10,531

Table 1. Amount of gibits (i.e., 230 bits) that Alice must send to Bob for k = 128.

As expected we clearly outperform MiniLEGO, with a factor of one to two orders of magnitude. This is
due to our more efficient ECC commitments yielding smaller constants and because we do not need a majority
of garbled gates in each bucket. The circuit size where TinyLEGO outperforms the non-LEGO protocols
depends on whether or not random seed checking is used. If not, this happens at some point between circuits
of size 104 and 105 for s = 40 and s = 60. For s = 80 it happens for circuit sizes between 105 and 106. With
random seed checking a circuit size of more than a billion gates is needed before TinyLEGO is on par with
non-LEGO protocols.

Once again we stress that this is only a rough indicator of performance. Many factors are not taken into
account here, including cases where local computation is the bottleneck and circuits where a considerable
fraction of the wires are input and output wires. In the latter case, however, we expect TinyLEGO to compare
well with existing protocols.

To give a more precise idea of when TinyLEGO performs better than recent protocols in the standard
model such as [Lin13] (without random seed checking) Table 2 shows, for k = 128 and different values of s
and some selected parameters α, β, pa, pg, the minimal circuit size q where our protocol outperforms [Lin13]
4 Because all gates in TinyLEGO are garbled using the same global difference ∆, we cannot immediately use the
[GMS08] optimization.

5 This paper does not give a method for finding the provably optimal parameters. Instead, we searched for good
parameters using a script. See Appendix H for details.

13

with respect to communication overhead. As before, the parameters α, β, pa, pg are simply the best that we
were able to find. Again we see that bigger circuits yield better relative performance of TinyLEGO.

s α β pa pg q [Lin13] TinyLEGO

40 3 4 0.10 0.10 953,021 9.09 6.23 (0.69)
40 3 4 0.20 0.15 452,622 4.32 3.16 (0.73)
40 3 4 0.65 0.15 320,320 3.05 2.88 (0.94)
40 4 5 0.25 0.20 21,293 0.20 0.20 (1.00)

60 4 5 0.02 0.05 8,501,426 121.61 79.34 (0.65)
60 4 5 0.05 0.05 5,289,299 75.66 49.75 (0.66)
60 4 5 0.20 0.25 593,941 8.50 6.83 (0.80)
60 5 6 0.25 0.10 157,297 2.25 1.99 (0.88)
60 7 6 0.10 0.20 49,730 0.71 0.71 (1.00)

80 5 6 0.10 0.05 6,603,497 125.95 88.47 (0.70)
80 7 6 0.02 0.10 2,120,537 40.45 31.67 (0.78)
80 6 7 0.10 0.15 324,250 6.18 5.52 (0.89)
80 8 7 0.05 0.20 123,127 2.35 2.33 (0.99)

Table 2. Communication overhead (GB) of TinyLEGO compared to other recent 2PC protocols, e.g. [Lin13], in
the standard model for various parameters. The numbers in parentheses are the relative communication overhead of
TinyLEGO.

We see that TinyLEGO is indeed competitive for realistic circuit sizes. For instance, for 40-bit statistical
security our bandwidth becomes slightly better than [Lin13] at only 21,293 gates (0.2 GB) and at 953,021
gates our bandwidth (6.23 GB) is only 69% of [Lin13]. For 80-bit security, we outperform [Lin13] slightly at
123,127 gates (2.35 GB) and achieve 70% bandwidth at 6,6 million gates (126 GB).

Overall, our efficiency count suggests that TinyLEGO is definitely an improvement in the family of LEGO
protocols [NO09, FJN+13]. In addition it is among the most efficient 2PC protocols depending on circuit size
and which optimizations can be applied.

14

References

[AHMR14] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently evaluate ram
programs with malicious security. Cryptology ePrint Archive, Report 2014/759, 2014.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation
based on cut-and-choose. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology -
EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes
in Computer Science, pages 387–404. Springer, 2014.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient garbling from a
fixed-key blockcipher. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
May 19-22, 2013, pages 478–492. IEEE Computer Society, 2013.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012, pages 784–796. ACM, 2012.

[Bra13] Luís T. A. N. Brandão. Secure two-party computation with reusable bit-commitments, via a cut-and-choose
with forge-and-lose technique - (extended abstract). In Kazue Sako and Palash Sarkar, editors, Advances
in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and Application of
Cryptology and Information Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II, volume
8270 of Lecture Notes in Computer Science, pages 441–463. Springer, 2013.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006,
26th Annual International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages 521–536. Springer, 2006.

[CDD+14] Ignacio Cascudo, Ivan Damgård, Bernardo David, Irene Giacomelli, Jesper Buus Nielsen, and Roberto
Trifiletti. Additively homomorphic UC commitments with optimal amortized overhead. IACR Cryptology
ePrint Archive, 2014:829, 2014.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the security of the
"free-xor" technique. In Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume 7194 of Lecture
Notes in Computer Science, pages 39–53. Springer, 2012.

[FJN+13] Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nordholt, and
Claudio Orlandi. MiniLEGO: Efficient secure two-party computation from general assumptions. In
Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens,
Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science, pages 537–556.
Springer, 2013.

[FJN14] Tore Kasper Frederiksen, Thomas P. Jakobsen, and Jesper Buus Nielsen. Faster maliciously secure
two-party computation using the GPU. In Michel Abdalla and Roberto De Prisco, editors, Security and
Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014.
Proceedings, volume 8642 of Lecture Notes in Computer Science, pages 358–379. Springer, 2014.

[FN13] Tore Kasper Frederiksen and Jesper Buus Nielsen. Fast and maliciously secure two-party computation
using the GPU. In Michael J. Jacobson Jr., Michael E. Locasto, Payman Mohassel, and Reihaneh
Safavi-Naini, editors, Applied Cryptography and Network Security - 11th International Conference, ACNS
2013, Banff, AB, Canada, June 25-28, 2013. Proceedings, volume 7954 of Lecture Notes in Computer
Science, pages 339–356. Springer, 2013.

[GMS08] Vipul Goyal, Payman Mohassel, and Adam Smith. Efficient two party and multi party computation
against covert adversaries. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, 27th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science, pages 289–306.
Springer, 2008.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In 20th USENIX Security Symposium, San Francisco, CA, USA, August 8-12, 2011,
Proceedings. USENIX Association, 2011.

[HKE12] Yan Huang, Jonathan Katz, and David Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols
with dual execution. In IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San
Francisco, California, USA, pages 272–284. IEEE Computer Society, 2012.

15

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using symmetric
cut-and-choose. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
volume 8043 of Lecture Notes in Computer Science, pages 18–35. Springer, 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemoff. Amortizing
garbled circuits. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part II, volume 8617 of Lecture Notes in Computer Science, pages 458–475. Springer, 2014.

[HMSG13] Nathaniel Husted, Steven Myers, Abhi Shelat, and Paul Grubbs. GPU and CPU parallelization of
honest-but-curious secure two-party computation. In Charles N. Payne Jr., editor, Annual Computer
Security Applications Conference, ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013, pages
169–178. ACM, 2013.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
statistical association, 58(301):13–30, 1963.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium
on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 21–30. ACM, 2007.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently.
In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in
Computer Science, pages 572–591. Springer, 2008.

[KS06] Mehmet S. Kiraz and Berry Schoenmakers. A protocol issue for the malicious case of Yao’s garbled circuit
construction. In Proceedings of 27th Symposium on Information Theory in the Benelux, pages 283–290,
2006.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture Notes in
Computer Science, pages 486–498. Springer, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure computation with malicious
adversaries. In Tadayoshi Kohno, editor, Proceedings of the 21th USENIX Security Symposium, Bellevue,
WA, USA, August 8-10, 2012, pages 285–300. USENIX Association, 2012.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 1–17. Springer, 2013.

[LOP11] Yehuda Lindell, Eli Oxman, and Benny Pinkas. The IPS compiler: Optimizations, variants and concrete
efficiency. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in
Computer Science, pages 259–276. Springer, 2011.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In Moni Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,
May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 52–78. Springer,
2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computation. J.
Cryptology, 22(2):161–188, 2009.

[LP11] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In Yuval Ishai, editor, Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in Computer Science,
pages 329–346. Springer, 2011.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the online/offline and
batch settings. In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II,
volume 8617 of Lecture Notes in Computer Science, pages 476–494. Springer, 2014.

16

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-party computation. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography - PKC
2006, 9th International Conference on Theory and Practice of Public-Key Cryptography, New York, NY,
USA, April 24-26, 2006, Proceedings, volume 3958 of Lecture Notes in Computer Science, pages 458–473.
Springer, 2006.

[MR13] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More efficient and secure
two-party computation. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 36–53. Springer, 2013.

[MZ06] Robert H. Morelos-Zaragoza. The Art of Error Correcting Coding. John Wiley & Sons, 2nd edition, 2006.
[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation. In Omer Reingold,

editor, Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA,
USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages 368–386.
Springer, 2009.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party computation
is practical. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan, December
6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages 250–267. Springer,
2009.

[Rog91] Phillip Rogaway. The round complexity of secure protocols. PhD thesis, Massachusetts Institute of
Technology, 1991.

[RT13] Samuel Ranellucci and Alain Tapp. Secure two-party computation via leaky generalized oblivious transfer.
IACR Cryptology ePrint Archive, 2013:99, 2013.

[SS06] Rudolf Schürer and Wolfgang Ch. Schmid. Mint: A database for optimal net parameters. In Monte Carlo
and Quasi-Monte Carlo Methods 2004, pages 457–469. Springer, 2006.

[SS10] Rudolf Schürer and Wolfgang Ch. Schmid. Mint - architecture and applications of the (t, m, s)-net and
OOA database. Mathematics and Computers in Simulation, 80(6):1124–1132, 2010.

[SS11] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with malicious adversaries. In Kenneth G.
Paterson, editor, Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings,
volume 6632 of Lecture Notes in Computer Science, pages 386–405. Springer, 2011.

[SS13] Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM Conference on Computer and
Communications Security, pages 523–534. ACM, 2013.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual Symposium
on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages 160–164. IEEE
Computer Society, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 162–167.
IEEE Computer Society, 1986.

[ZRE14] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data transfer in
garbled circuits using half gates. IACR Cryptology ePrint Archive, 2014:756, 2014.

17

A Protocol Details

In this section we present in detail our interactive garbling scheme IGarbπ = (IGbπ, IEn, IDe, IEv, Iev, IOp, IVe).
The dominant work of the scheme is performed in the garbling protocol IGbπ which is presented in its entirety
in Figure 6, Figure 7, Figure 8, and Figure 9. In Figure 10 the remaining six algorithms are presented. In
Section A.1 the parameters used in the scheme are presented and in Section A.2 the details of our bucketing
mechanism is described in full. As the production and evaluation of gates and wire authenticators are an
integral part of our protocol we include the full details of these in Figure 4 and Figure 5, respectively.

HGarb

Let H(·, ·) denote a circular correlation robust hash function for natural keys giving k bits of output.a Call the
least significant bit of every key the permutation bit and define a function lsb : {0, 1}k → {0, 1} which extracts
exactly this bit. We write pL ← lsb(L0), pR ← lsb(R0) and pO ← lsb(O0) and assume that lsb(∆) = 1.

HGb
(
L0, R0,∆, id

)
→
(
Gid, O

0):
For any key in the following we have that Kb = K0 ⊕ (b ·∆). Also L0, R0,∆ ∈ {0, 1}k and we let G and E be
two distinct literals and id be a unique and numeric identifier of fixed length.b Then do as follows:
1. Compute:

TG = H
(
L0, id‖G

)
⊕H

(
L1, id‖G

)
⊕ (pR ·∆)

G = H
(
L0, id‖G

)
⊕ (pL · TG)

TE = H
(
R0, id‖E

)
⊕H

(
R1, id‖E

)
⊕ L0

E = H
(
R0, id‖E

)
⊕
(
pR ·

(
TE ⊕ L0))

2. Then define O0 = G ⊕ E .
3. Output a garbled gate

(
Gid, O

0)← ((id, TG, TE , 0k, 0k, 0k) , O0).
HEv (Gid, L,R)→ O:

1. First parse
(
id, TG, TE , S

L
id, S

R
id, S

O
id

)
← Gid.

2. Next compute p′L ← lsb
(
L ⊕ SLid

)
and p′R ← lsb

(
R ⊕ SRid

)
, let i = 2p′L + p′R.

3. Compute

G = H
(
L ⊕ SLid, id‖G

)
⊕
(
p′L · TG

)
E = H

(
R ⊕ SRid, id‖E

)
⊕
(
p′R ·

(
TE ⊕ L ⊕ SLid

))
4. Let O = G ⊕ E and output O = SOid ⊕O.

SGa (Gid, L,R,O)→ G̃id:
Parse

(
id, TG, TE , S

L
id, S

R
id, S

O
id

)
← Gid and output G̃id =

(
id, TG, TE , S

L
id ⊕ L, SRid ⊕R,SOid ⊕O

)
.

a See Appendix D for a definition of this notion.
b These literals are included to ensure that TG and TE are always constructed using unique identifiers. This is
merely one way of ensuring this.

Fig. 4. Individual garbling and evaluation of AND gates.

A.1 Parameters and replication

In the following Alice will play the role of C and Bob will play the role of E. We will let `g = 1
1−pg−δg be the

replication factor of gates, where pg is the expected fraction of gates we sacrifice in the cut-and-choose step
and δg is the fraction of extra gates we garble to ensure the actual number of remaining gates is not lower
than expected. In addition we also need to consider the bucket size needed for the protocol which we denote

18

Authenticated Wires

Let H(·, ·) denote a circular correlation robust hash function for natural keys giving k bits of output. Let A be a
distinct literal.a

Auth
(
K0
id,∆, id

)
→ Hid:

1. Compute
H0
id ← H

(
K0
id, id‖A

)
, H1

id ← H
(
K0
id ⊕∆, id‖A

)
.

2. View H0
id and H1

id as binary strings and output Hid =
(
H0
id, H

1
id, 0k

)
if H0

id ≤ H1
id, otherwise output

Hid =
(
H1
id, H

0
id, 0k

)
.

SAuth (Hid, S)→ H̃id:
1. Parse

(
Ha
id, H

b
id, Sid

)
← Hid and output H̃id ←

(
Ha
id, H

b
id, S ⊕ Sid

)
.

Ver (Hid,Kid, id)→ >/⊥:
1. Parse

(
Ha
id, H

b
id, Sid

)
← Hid. IfH(Kid⊕Sid, id‖A) = Ha

id orH(Kid⊕Sid, id‖A) = Hb
id output >, otherwise

output ⊥.
a Here simply used to pad the input size of the hash function.

Fig. 5. Methods for achieving authenticated wires.

by β. For a circuit C = (n,m, q, lp, rp) let w = n+ q and therefore Alice needs to garble Q = qβ`g gates in
total.

Each of these Q gates require three wires each. This is because we garble all AND gates individually,
meaning they all have a left, right and output wire. In addition to these gate wires, we also need to produce
the required wire authenticators. We will need 2(β + 1) wire authenticators pr. input gate of the circuit and
we denote by α the number of wire authenticators we need for each bucket. We ensure the quality of these
authenticators by performing a cut-and-choose test in a similar manner as we do for the gates. Therefore we
let `a = 1

1−pa−δa be the replication factor of the wire authenticators, where pa is the expected fraction we
check and δa is the fraction of extra wires we produce to ensure the number of non-checked wire authenticators
is not lower than expected. Thus we need to produce A = (qα+n(2β+ 1))`a wire authenticators. In summary
we need to produce commitments to W = 3Q+A wires.

For convenience we let GWires = [W] be the indices of these wires and furthermore we let GateWires = [3Q]
and AWires = {3Q+ 1, . . . , 3Q+A}. As gates are indexed by their output wire we also let GGates ⊂ GateWires
denote the indices of garbled gates, meaning that |GGates| = Q. In the protocol, Bob will sample a subset
CheckGates ⊂R GGates where each of the gates in GGates is included with probability pg. These gates will
be the ones sacrificed during the cut-and-choose step. To illustrate why the extra fraction δg is needed lets
assume that we did not include it and let Q′ = qβ 1

1−pg . Then we let G be the amount of gates not chosen
for checking and we see that E[G] = Q′(1− pg) = qβ 1

1−pg (1− pg) = qβ which is exactly what is needed to
create q buckets each of size β. However, it is clear that if we check even a single gate more than expected
(which is quite likely) then we do not have enough gates to build q buckets each consisting of β gates. This is
the reason for us including the extra “slack” fraction δg, which means we produce a little extra, but which
ensures us that at least qβ gates are left after the cut-and-choose step except with negligible probability. We
handle this slack explicitly in Lemma 1. Therefore after the cut-and choose phase there will be enough gates
left for creating buckets of size β for each gate of the circuit C.

In an analogous manner Bob will also sample CheckWires ⊂R AWires where each wire is included in
CheckWires with probability pa. For the exact same reason as above we produce a little extra, decided by δa,
to ensure we have at least qα+ n(2β + 1) wire authenticators left after the cut-and-choose step.

Finally in order to ensure privacy for Alice we produce some additional wires which are “consumed” by the
Linear Combination Check of the ECC commitments. By Theorem 2 in Appendix E each check needs to
consist of at least 7.3(s+ 3) random linear combinations to guarantee security 2−s. Because of the nature of
the first codeword check we need to sacrifice a commitment for each of the opened linear combinations in
order to guarantee privacy for Alice. In the following two checks this is not necessary because Bob at this

19

point already knows the individual keys. Therefore, we end up needing to produce γ = W + 1 + 7.3(s+ 3)
wires in total, where the 1 is due to also producing a commitment to the global difference ∆.

As already mentioned, since we check gates (wires) independently at random we need to guarantee that
after the cut-and-choose phase enough gates and wires remain to successfully build the fault tolerant garbled
circuit. We therefore introduced the variables δg and δa which represents the additional fraction of gates
(wires) we need to produce for this situation not to occur except with exponentially small probability in the
security parameter. The calculations of the value of δg and δa are captured in the following lemma.

Lemma 1 (Tail Bounds). Let Rg = |GGates \ CheckGates| and Ra = |AWires \ CheckWires| denote the
random variables representing the number of remaining gates and wire authenticators after the cut-and-choose
step of Figure 6. Then

Pr[Rg ≤ qβ] ≤ e−2δ2
gQ and

Pr[Ra ≤ (qα+ n(2β + 1))] ≤ e−2δ2
aA

where Q = qβ · 1
1−pg−δg and A = (qα+ n(2β + 1)) · 1

1−pa−δa .

Proof. We look at the two statements individually. Since a gate is selected for checking with probability pg in
the protocol, we keep a gate for evaluation with probability 1− pg. We now observe that Rg is in fact a sum
of identically distributed independent Bernoulli trials with success probability 1− pg. We can thus apply the
Hoeffding bound [Hoe63] yielding

Pr[Rg ≤ qβ] = Pr[Rg ≤ ((1− pg)− δg) ·Q]
≤ e−2δ2

gQ

By the exact same reason we see that

Pr[Ra ≤ (qα+ n(2β + 1))] = Pr[Ra ≤ ((1− pa)− δa) ·A]
≤ e−2δ2

aA

which proves the statement.

A.2 Bucketing

In the protocol, individual garbled gates are combined together into buckets. We here introduce some
convenient notation that allows us to describe this precisely. For each gate in the circuit C one garbled gate
is defined to be the head gate corresponding to this gate. A bucket is then constructed by soldering the wires
of the β − 1 other gates in the bucket onto the wires of the head gate.

To be more precise, once Bob has decided on the set CheckGates he will sample a random subset
EvalGates ⊆R GGates \ CheckGates of size exactly qβ. He then lets B be the family of all injective β-to-1
functions from EvalGates to Gates = {n+ 1, . . . , w}. Now for a function BucketOf ∈ B we let Bucketh =
{g ∈ EvalGates | BucketOf(g) = h}. For all h ∈ Gates we define the head gate of Bucketh to be the gate with
lowest lexicographical index. For convenience we let HeadGates be the set of these head gate indices. Finally
we assume that given BucketOf, it is easy to identify the domain of the function, meaning that EvalGates is
assumed to be directly identified from the description of BucketOf.

Analogously we also need to specify how the wire authenticators are to be combined with the buckets. Again
Bob will sample a random subset AuthWires ⊆R AWires\CheckWires of size exactly n(2β+1)+qα. We then let
V be the family of all injective functions from AuthWires to [w] where for the image subset Inputs = [n] ⊂ [w]
the functions are (2β + 1)-to-1 and for the remaining image elements {n+ 1, . . . , w} the functions are α-to-1.
As in the above for a function AuthOf ∈ V we let Authi = {a ∈ AuthWires | AuthOf(a) = i}. For all i ∈ [n] we
define the head authenticator of Authi to be the wire authenticator with lowest lexicographical index. For
convenience we let HeadAuths be the set of these head authenticator indices. Also in this case we assume that
the domain AuthWires is efficiently determined from AuthOf.

20

In the protocol, once Alice has learned the bucketing functions AuthOf and BucketOf, both parties
reenumerate the gate and wire authenticators indices in the following way:

1. Reenumerate the indices of HeadGates with indices from Gates such that the lowest index of HeadGates
gets replaced with the lowest index of Gates, second lowest with second lowest, and so on.

2. Reenumerate the indices of HeadAuths with indices from Inputs such that the lowest index of HeadAuths
gets replaced with the lowest index of Inputs, second lowest with second lowest, and so on.

We now see that the functions lp and rp of C are well-defined to work on all indices of HeadGates while
preserving the semantics of the circuit. Also a function AuthOf ∈ V now specifies which authentication wires
are soldered into “buckets” of size 2β + 1 and which wires are to be soldered onto the head gates’ output
wires.

For convenience we finally define a function WiresOf that maps an index of a garbled gate to three wires,
which will represent the left-, right-, and output-wire respectively associated with that gate. We let WiresOf
be deterministic and known to all parties and assume that when gate indices are reenumerated WiresOf is
updated accordingly by all parties.

Protocol IGbπ in the FOT,FCOM-hybrid model

Common Input: C = (n,m, q, lp, rp) , pg, pa, β, α = β − 1.
Setup:

1. Let Q = qβ 1
1−pg−δg , A = (qα+ n(2β + 1)) 1

1−pa−δa and W = 3Q+A.a Alice and Bob initialize FOT and
FCOM and execute the Setup step of Figure 11 using a linear ECC with minimum distance d = s+ 4 to
commit to γ = W + 1 + 7.3(s+ 3) wires. Let

{
sj
}
j∈[γ]

be the output of Alice and
({
wj
}
j∈[γ]

, b
)
be

the output of Bob. For all j ∈ [γ], Alice parses
(
s0
j , s

1
j

)
← sj and denote by kbj the first k bits of sbj . Let

K0
j = k0

j ⊕ k1
j and as a special case defines lsb

(
k0
W+1

)
:= 0 and lsb

(
k1
W+1

)
:= 1 regardless of the output

of Setup and let ∆ = k0
W+1 ⊕ k1

W+1.
2. As described in Section A.2, Bob samples CheckGates ⊂R GGates and CheckWires ⊂R AWires where

each gate (wire authenticator) is included with probability pg (pa). If |GGates \ CheckGates| < qβ or
|AWires \ CheckWires| < qα+ n(2β + 1), Bob outputs ⊥ and terminates.

3. Next, Bob samples BucketOf ∈R B and AuthOf ∈R V and for each g ∈ CheckGates and j ∈ CheckWires,
he samples three bits ag, bg, cj ∈R {0, 1}. He then sends (commit, sid, 1, {(ag, bg, g)} , {(cj , j)}) and
(commit, sid, 2, (BucketOf,AuthOf)) to FCOM which in turn sends (commit, sid, 1) and (commit, sid, 2) to
both parties.

Gate Construction:
1. For all g ∈ GGates, let (lg, rg, og) ← WiresOf(g) and denote (L0

g, R
0
g) ← (K0

lg
,K0

rg
). Alice computes{

Gg, O
0
g

}
← HGb

(
L0
g, R

0
g,∆, g

)
. Also for all j ∈ AWires, Alice computes Hj ← Auth(K0

j ,∆, j) and then
sends

{
Gg
}
,
{
Hj
}
to Bob. If

∣∣{Gg}∣∣ 6= Q or if
∣∣{Hj}∣∣ 6= A, Bob outputs ⊥ and terminates.

2. Alice and Bob then execute the Key Correct step of Figure 12 where Alice has in-
put

({
sg
}
g∈GGates

,
{
O0
g

}
g∈GGates

,GGates
)

and Bob has input
({
wg
}
g∈GGates

, b,GGates
)
.b Let({

sg
}
g∈GGates

)
=
({
k0
g,k

0
g ⊕O0

g

}
g∈GGates

)
be the updated shares of Alice and

{
wg
}
g∈GGates

be the
updated watch-bits of Bob, returned by the Key Correct call.

a See Section A.1 for details on these parameters.
b Recall that gates are indexed by their output wire.

Fig. 6. Interactive garbling protocol IGbπ– part 1.

21

Protocol IGbπ in the FOT,FCOM-hybrid model

For clarity we will write
(
L0
g, R

0
g, O

0
g

)
to mean

(
K0
lg
,K0

rg
,K0

og

)
.

Commitment Correction:
1. Alice and Bob execute the Codeword Correct step of Figure 12 where Alice has input

({
sj
}
j∈[γ]

, [γ]
)

and Bob has input
({
wj
}
j∈[γ]

, b, [γ]
)
. Let

{
(kj , cj)

}
j∈[γ]

be the updated shares of Alice and
{
wj
}
j∈[γ]

be the updated watch-bits of Bob using the Codeword Correct procedure.
2. Alice and Bob now execute the Linear Combination Check of Figure 15 with common input(
{{(j, 0)}}j∈[W+1] , true

)
, i.e. each set only contains a single pair. Also, Alice has private input({

(kj , cj)
}
j∈[W+1]

,kW+1, cW+1

)
and Bob has private input

({
wj
}
j∈[W+1]

, ∅, b,wW+1

)
. If the check

outputs ⊥, Bob outputs ⊥ and terminates.
Cut-and-Choose:

1. Bob sends (open, sid, 1) to FCOM which in turn sends (open, sid, 1, {(ag, bg, g)} , {(cj , j)}) to Alice. For all
g, if g 6∈ GGates or ag, bg 6∈ {0, 1}, Alice outputs ⊥ and terminates. Similarly for all j, if j 6∈ AuthWires or
cj 6∈ {0, 1}, Alice outputs ⊥ and terminates.

2. Let S = OA = WB = RB = ∅. For all g ∈ CheckGates and j ∈ CheckWires, Alice and Bob do the following:
– Alice sends

(
L
ag
g , R

bg
g , g

)
and

(
K
cj
j , j

)
to Bob. Let Lg, Rg,Kj be the keys Bob receives. If

Ver
(
Kj , Hj

)
→ ⊥, Bob outputs ⊥ and terminates. Else he computes Og ← HEv

(
Gg, Lg, Rg

)
.

Then both parties update the set S := S ∪
{{(

lg, ag
)}
,
{(
rg, bg

)}
,
{(
og, ag ∧ bg

)}
, {(j, cj)}

}
.

Also Alice updates OA := OA ∪
{(
klg , clg

)
,
(
krg , crg

)
,
(
kog , cog

)
,
(
kj , cj

)}
and Bob updates

WB := WB ∪
{
wlg ,wrg ,wog ,wj

}
and RB := RB ∪

{
Lg, Rg, Og,Kj

}
.

3. Alice and Bob now execute the Linear Combination Check of Figure 15 with common input (S, false).
Also, Alice has private input (OA,kW+1, cW+1) and Bob has private input (WB, RB, b,wW+1). If the
check outputs ⊥, Bob outputs ⊥ and terminates.

Fig. 7. Interactive garbling protocol IGbπ– part 2.

22

Protocol IGbπ in the FOT,FCOM-hybrid model

In the following, for all g ∈ EvalGates we let h← BucketOf (g) and
(
lg, rg, og

)
←WiresOf(g). For clarity we will

also write
(
L0
g, R

0
g, O

0
g

)
to mean

(
K0
lg
,K0

rg
,K0

og

)
.

Bucketing setup:
1. Bob sends (open, sid, 2) to FCOM which in turn sends (open, sid, 2, (BucketOf,AuthOf)) to Alice. If

BucketOf 6∈ B or AuthOf 6∈ V, Alice outputs ⊥ and terminates.
2. Both parties then perform the reenumeration steps described in Section A.2. Also Alice and Bob reset

the sets S := OA := WB := RB := ∅.
Bucket Soldering: For all h ∈ HeadGates, all g ∈ Bucketh where g 6= h and all a ∈ AuthOf(h):

1. Alice sends to Bob:

S̃Lg = L0
g ⊕ L0

h, S̃Rg = R0
g ⊕R0

h, S̃Og = O0
g ⊕O0

h S̃a = K0
a ⊕O0

h .

2. Bob updates G̃g ← SGa
(
Gg, S̃Lg , S̃

R
g , S̃

O
g

)
and H̃a ← SAuth(Ha, S̃ah).

3. Both parties update the set S := S ∪
{{(

lg, 0
)
, (lh, 0)

}
,{(

rg, 0
)
, (rh, 0)

}
,
{(
og, 0

)
, (oh, 0)

}
, {(a, 0) , (oh, 0)}

}
. Also Alice updates OA := OA ∪{(

klg , clg
)
,
(
klh , clh

)
,
(
krg , crg

)
,
(
krh , crh

)
,
(
kog , cog

)
,
(
koh , coh

)
, (ka, ca)

}
and Bob updates

WB := WB ∪
{
wlg ,wlh ,wrg ,wrh ,wog ,woh ,wa

}
and RB := RB ∪

{
S̃Lg , S̃

R
g , S̃

O
g , S̃a

}
.

Topological Soldering For all h ∈ HeadGates:
1. Let L =

⊕
u∈lp(h) O

0
u, R =

⊕
v∈rp(h) O

0
v. In case either lp(h) ∈ [n] or rp(h) ∈ [n] the wire K0

v , respectively
K0
u is used instead.

2. Alice sends to Bob:
S̃Lh = L0

h ⊕ L, S̃Rh = R0
h ⊕R .

3. For all g ∈ Bucketh, Bob updates G̃g ← SGa
(
G̃g, S̃Lh , S̃

R
h , 0k

)
.

4. Alice and Bob define two sets of pairs, Ah = {(ou, 0)}u∈lp(h) ∪ {(lh, 0)} and Bh = {(ov, 0)}v∈rp(h) ∪
{(rh, 0)} and update the set S := S ∪ {Ah, Bh}. Also, Alice updates OA := OA ∪ {(kou , cou)}

u∈lp(h) ∪
{(kov , cov)}

v∈rp(h)∪
{(
klh , clh

)
,
(
krh , crh

)}
and Bob updates WB := WB∪{wou}u∈lp(h)∪{wov}v∈rp(h)∪{

wlh ,wrh
}
and RB := RB ∪

{
S̃Lh , S̃

R
h

}
.

Fig. 8. Interactive garbling protocol IGbπ– part 3.

23

Protocol IGbπ in the FOT,FCOM-hybrid model

In the following, we let
(
lg, rg, og

)
← WiresOf(g). For clarity we will also write

(
L0
g, R

0
g, O

0
g

)
to mean(

K0
lg
,K0

rg
,K0

og

)
.

Input Authentication For all i ∈ {HeadAuths ∩ [n]} and all a ∈ Authi where a 6= i:
1. Alice sends to Bob:

S̃a = K0
a ⊕K0

i .

2. Bob updates H̃a ← SAuth
(
Ha, S̃a

)
.

3. Both parties update the set S := S ∪{{(a, 0) , (i, 0)}}. Also, Alice updates OA := OA ∪{(ka, ca) , (ki, ci)}
and Bob updates WB := WB ∪ {wa,wi} and RB := RB ∪

{
S̃a

}
.

4. Alice and Bob now execute the Linear Combination Check of Figure 15 with common input (S, false).
Also, Alice has private input (OA,kW+1, cW+1) and Bob has private input (WB, RB, b,wW+1). If the
check outputs ⊥, Bob outputs ⊥ and terminates.

Output:
1. Alice defines e =

(
K0

1 ,K
1
1 , . . . ,K

0
n,K

1
n

)
, o =

(
OK0

1
,OK1

1
, . . . ,OK0

n
,OK1

n

)
and d =(

O0
w−m+1, O

1
w−m+1, . . . , O

0
w, O

1
w

)
.

2. Bob lets v = ((w1, . . . ,wn) ,wW+1, b), i.e. Bob’s watch bits for the n head authenticators in {HeadAuths∩
[n]} along with the choice bits b Bob used in the Setup step of the ECC commitments.

3. Finally Alice and Bob define

F =
(
n,m, q, (lp, rp,BucketOf,AuthOf) ,

{
G̃g

}
g∈EvalGates

,
{
H̃j

}
j∈AuthWires

)
to be the produced garbled circuit. Alice and Bob define their output to be (F, e, d, o) and (F, v),
respectively.

Fig. 9. Interactive garbling protocol IGbπ– part 4.

24

Algorithms for the interactive garbling scheme IGarbπ

In the following let GateScore(Og) be a function that returns the number of gates in a bucket that outputs Og on
the two input keys. Likewise let AuthScore(Kj) be a function that returns the number of authenticators of the
current bucket that outputs > on input Kj .

IEv (F,X)→ Z/⊥ :

1.
(
n,m, q, (lp, rp,BucketOf,AuthOf) ,

{
G̃g

}
g∈EvalGates

,
{
H̃a

}
a∈AuthWires

)
← F .

2. (X1, . . . , Xn)← X and w = n+ q.
3. For all i ∈ [n], if for any i we have that AuthScore(Xi) < β + 1 output ⊥.a
4. For h = n+ 1 to w, let Lh =

⊕
l∈lp(h) Xl and Rh =

⊕
r∈rp(h) Xr and do:

(a) For all g ∈ Bucketh, compute Og ← HEv(G̃g, Lh, Rh) and let Cand =
{
Og
}
.

(b) If |Cand| = 1, let Xh = Oh.
(c) Else let MAJ =

{
Og ∈ Cand | GateScore(Og) + AuthScore(Og) > b(β + α)/2c

}
. If |MAJ| 6= 1 output

⊥. Else set Xh to be the singleton output key in MAJ.
5. Output Z = (Xw−m+1, Xw−m+2, . . . , Xw).

IEn(e, x)→ X/⊥ :
1. Parse

(
X0

1 , X
1
1 , . . . , X

0
n, X

1
n

)
← e.

2. For any i ∈ [n] and any b ∈ {0, 1}, if X0
i = X1

i or Xb
i 6∈ {0, 1}k output ⊥.

3. Otherwise output X = (Xx1
1 , . . . , Xxn

n).
IDe(d, Z)→ z/⊥ :

1. Parse
(
Z0
w−m+1, Z

1
w−m+1, . . . , Z

0
w, Z

1
w

)
← d and (Zw−m+1, . . . , Zw)← Z.

2. For i = 1 to m:
(a) If Zw−m+i = Z0

w−m+i let zi = 0.
(b) If Zw−m+i = Z1

w−m+i let zi = 1.
(c) Else output ⊥.

3. Output z ← (z1, . . . , zm).
IOp(o, x, I)→ O/⊥ :

1. Parse
(
OK0

1
,OK1

1
, . . . ,OK0

n
,OK1

n

)
← o.

2. If I 6⊆ [n] or x 6∈ {0, 1}n output ⊥.
3. Otherwise output O =

{(
i,OKxi

i

)}
i∈I

.

IVe(v,Xi, Oi, i, xi)→ >/⊥ :
1. Parse ((w1, . . . ,wn),w∆, b)← v.
2. If i 6∈ [n] output ⊥.
3. Parse Kxi

i ← Xi and OKxi
i
← Oi.

4. If ComVer
(
OKxi

i
, b,wi,w∆

)
= Kxi

i output >. Else output ⊥.

a Here each key Xi is evaluated on the 2β + 1 wire authenticators that have been created for each input gate of
C.

Fig. 10. Algorithms for the interactive garbling scheme IGarbπ.

25

B ECC commitments Details

In this section we present the details of our ECC commitments. The full setup specification is described in
Figure 11 and Figure 12 while methods for opening and checking a commitment (or an XOR of commitments)
is described in Figure 13. Informally the setup and committing part of the scheme can be described as follows,
assuming Alice is the committer and Bob the receiver. We let C = [Γ, k, d] be a binary, systematic, linear
ECC. The construction of the ECC commitments consists of three phases; first a generic Setup step where
Alice and Bob only need to know the amount of wires γ they wish to commit to. After the Setup step, for
any j ∈ [γ] and i ∈ [Γ], Alice has the shares s0

j , s
1
j ∈ {0, 1}Γ and Bob knows the entry wij = sbij [i], where bi is

his choice-bits for the FOT. We call wj =
(
w1
j , . . . , w

Γ
j

)
the watch-bits of Bob and their role is to enable Bob

to verify openings sent from Alice.

Protocol for setup and corrections
of ECC commitments in the FOT-hybrid model

Alice and Bob have common input γ ∈ N, the number of values Alice wants to commit to. We also assume that
they agree on the variables Γ , k, s and a binary, systematic and linear ECC C = [Γ, k, d].

Setup:
1. Alice samples Γ pairs of uniformly random seeds of k bits each. Call these pairs

(
r0
i , r

1
i

)
for i ∈ [Γ], such

that rbi ∈R {0, 1}k for b ∈ {0, 1}.
2. Bob now selects Γ random bits, call these bi ∈ {0, 1} for i ∈ [Γ].
3. Alice and Bob perform Γ calls to FOT where Alice inputs

(
sid, i, sender, r0

i , r
1
i

)
and Bob inputs

(sid, i, receiver, bi) and receives rbii for i ∈ [Γ].
4. Alice and Bob now use a PRG to extend each of the seeds they know into strings r̄0

i and r̄1
i of length

γ. That is, r̄0
i , r̄

1
i ∈ {0, 1}γ for i ∈ [Γ]. Thus Alice knows all of these strings and Bob knows only half,

exactly the strings r̄bii for i ∈ [Γ].
5. Now define the matrices S0, S1 ∈ {0, 1}Γ×γ such that the i’th row of Sb is r̄bi for i ∈ [Γ] and b ∈ {0, 1}.

Define a column vector of these matrices as s0
j , respectively s1

j for j ∈ [γ].
6. For j ∈ [γ], Alice lets sj =

(
s0
j , s

1
j

)
. In a similar manner Bob lets wj =

(
w1
j , . . . , w

Γ
j

)
and b = (b1, . . . , bΓ)

where wij = sbij [i].

7. Define the output of Alice to be
{
sj
}
j∈[γ]

and the output of Bob to be
({
wj
}
j∈[γ]

, b
)
.

Fig. 11. Protocol for setup and corrections of ECC commitments – part 1.

Secondly, a Key Correct step is carried out, in which Alice can choose to commit to some specific keys
(the rest of the keys will remain pseudorandom). The reason for this step is that we wish to support the
use of garbling schemes where the output key is derived by a function of the input keys. Since all keys are
determined given the seeds for expansion, Alice cannot fully influence the keys output by the Setup step.
Therefore the Key Correct step serves as a correction step for the gates’ output keys in our protocol.

Finally, a Codeword Correct step is performed in which Alice is able to correct the last Γ − k bits of
all the expanded keys. This is to enable Alice to commit to messages with structure, in particular codewords
of the code C. The reason for having this as a separated step is the same as above, namely that the keys
output by the Setup string cannot be fully controlled. The conclusion is that after the three steps have been
carried out Alice holds shares that add up to a codeword of C, and for some messages she has full control over
what is encoded.

The linear combination check is described in Figure 15. After the three steps above have been completed,
Bob is able to challenge Alice on a particular subset of the commitments. As previously mentioned, the
high-level idea is, for the subset in question, that Alice constructs an opening to a random linear combination
of the commitments and Bob verifies the validity using his watch-bits.

26

Protocol for setup and corrections
of ECC commitments in the FOT-hybrid model

Alice and Bob have common input γ ∈ N, the number of values Alice wants to commit to. We also assume that
they agree on the variables Γ , k, s and a binary, systematic and linear ECC C = [Γ, k, d].

Key Correct:
On input

({
sg
}
g∈G

, {ug}g∈G , G
)
for some G ⊆ [γ] from Alice and input

({
wg
}
g∈G

, b, G
)
from Bob do

the following:
1. For g ∈ G, parse (s0

g, s
1
g)← sg. Let k0

g and k1
g denote the first k entries of s0

g and s1
g, respectively.

2. Alice computes the set

Ḡ =
{
ūg = k0

g ⊕ k1
g ⊕ ug

}
g∈G

,

and sends this to Bob. In addition, for all g ∈ G, Alice updates her share k1
g := k0

g ⊕ ug. If |Ḡ| 6= |G|,
Bob outputs ⊥ and terminates.

3. For all g ∈ G, parse
(
w1
g, . . . , w

Γ
g

)
← wg and (b1, . . . , bΓ)← b. For all i ∈ [k] where bi = 1, Bob updates

his watch-bit wig := wig ⊕ ūg[i].
4. Define the output of Alice to be

({
sg
}
g∈G

)
=
({
k0
g,k

0
g ⊕ ug

}
g∈G

)
and the output of Bob to be the

updated watch-bits
{
wg
}
g∈G

.
Codeword Correct:

On input
({
sj
}
j∈[γ]

, [γ]
)
from Alice and input

({
wj
}
j∈[γ]

, b, [γ]
)
from Bob do the following:

1. For all j ∈ [γ], parse (s0
j , s

1
j)← sj . Let k0

j and k1
j denote the first k entries of s0

j and s1
j , respectively.

2. For all j ∈ [γ], let tj ← C
(
k0
j ⊕ k1

j

)
, i.e. the codewords of the XOR of each of pair of shares. As the code

is systematic we have that the first k entries of tj are equal to k0
j ⊕ k1

j . As the code has size Γ we denote
by vj the last Γ − k bits of tj .

3. Alice lets C0, respectively C1 denote the {0, 1}(Γ−k)×γ matrix formed by viewing the last Γ − k entires
of s0

j , respective s0
j ⊕ tj as its j’th column vector for j ∈ [γ]. In other words the matrices C0 and C1 are

shares of the check-bits of each of the γ codewords. We denote these columns c0
j and c1

j respectively.
4. For all j ∈ γ Alice lets c̄j be the last Γ − k bits of s0

j ⊕ s1
j ⊕ tj . She then sends the set

{
c̄j
}
j∈[γ]

to Bob.
5. For all j ∈ [γ] and l ∈ [Γ − k] where bk+l = 1, Bob updates wk+l

j := wk+l
j ⊕ c̄j [l], thus defining his

watch-bits of C0 and C1.
6. Define the output of Alice to be

{((
k0
j ,k

1
j

)
,
(
c0
j , c

1
j

))}
j∈[γ]

=
{(
kj , cj

)}
j∈[γ]

and the output of Bob to
be the updated watch-bits

{
wj
}
j∈[γ]

.

Fig. 12. Protocol for setup and corrections of ECC commitments – part 2.

In detail, the common input to the linear combination check is a set of sets E = {Uj}j∈[t] where
Uj = {(ul, vl)}l∈[ej] and where each tuple of the inner sets represent a wire. The value ul is the index of the
wire and vl denotes if this is supposed to be a commitment to a 0- or 1-key. The counter ej represents how
many wires this commitment is an XOR of, meaning in the first two invocations of the linear combination
check in our garbling protocol ej = 1 for all j. However when checking the solderings this is not the case,
since each of these consist of the XOR of at least two wires. The reason for this slightly heavy notation is to
make the check versatile enough for our different use cases.

Jumping ahead to how the check is performed by our protocol, in the first invocation of our check
procedure, t = W + 1, the total amount of “real” wires produced. As mentioned above all sets will be
singletons {(u1, v1)}, meaning ej = 1 for all j. In this case all the values vl will be set to 0, as the goal here is
to check each wire commitment (including the commitment to the ∆ wire) individually. We also include a
flag bool ∈ {false, true} which if set means that the opened linear combinations must be masked by a random
value. This is because at this point in the protocol Bob is not allowed to learn linear combinations of wires

27

Methods for producing and verifying openings of ECC commitments

ComOpen
({
kj , cj , zj

}
j∈J

,k∆, c∆

)
→ OJ :

1. For j ∈ J , parse
(
k0
j ,k

1
j

)
← kj ,

(
c0
j , c

1
j

)
← cj . Also

(
k0
∆,k

1
∆

)
← k∆ and

(
c0
∆, c

1
∆

)
← c∆.

2. To produce an opening to
⊕

j∈J K
zj
j , compute

d0 =
⊕
j∈J

(
k0
j ⊕
(
zj · k0

∆

))
, d1 =

⊕
j∈J

(
k1
j ⊕
(
zj · k1

∆

))
e0 =

⊕
j∈J

(
c0
j ⊕
(
zj · c0

∆

))
, e1 =

⊕
j∈J

(
c1
j ⊕
(
zj · c1

∆

))
3. Then let OJ ←

(
d0,d1, e0, e1, {zj}j∈J

)
and output OJ .

ComVer
(
OJ , b, {wj}j∈J ,w∆

)
→ KJ/⊥:

1. Parse
(
d0,d1, e0, e1, {zj}j∈J

)
← OJ .

2. Parse (b1, . . . , bΓ)← b.
3. For all j ∈ J , parse

(
w1
j , . . . , w

Γ
j

)
← wj . Also

(
w1
∆, . . . , w

Γ
∆

)
← w∆.

4. For i ∈ [k] and l ∈ [Γ − k], verify that

dbi [i] =
⊕
j∈J

(
wij ⊕

(
zj · wi∆

))
, ebk+l [l] =

⊕
j∈J

(
wk+l
j ⊕

(
zj · wk+l

∆

))
5. Compute f ← C

(
d0 ⊕ d1) and verify if the last Γ − k bits of f are equal to e0 ⊕ e1. If all of the

verifications are true let KJ = d0 ⊕ d1 and output KJ . Else output ⊥.

Fig. 13. Methods for producing and verifying openings of ECC commitments.

Illustration of an ECC Commitment

⊕
=

s0j s1j

k

Γ − k

k0
j k1

j

c0j c1j

K0
j

tj

υυυj

Fig. 14. Illustration of an ECC Commitment, after all key and codeword corrections have been done. The grey squares
represent Bob’s watchbits.

28

Protocol for Linear Combination Check

Alice and Bob have common input (E, bool) where E = {Uj}j∈[t] =
{
{(ul, vl)}l∈[ej]

}
j∈[t]

where t is the number

of wires (or XOR of wires) to check, ej , ul ∈ [W +1], vl ∈ {0, 1} and bool ∈ {false, true}. Thus E is a set consisting
of t sets, Uj , and each Uj is a set consisting of ej pairs in which one element is a wire index and the other a bit.
In addition Alice has private input (A,k∆, c∆) and Bob has private input

(
B,
{
Kj

}
j∈[t]

, b,w∆

)
. First parse{(

kul , cul
)}

j∈[t]:(ul,vl)∈Uj
← A and

{
wul
}
j∈[t]:(ul,vl)∈Uj

← B. If bool = true, then let r = 7.3(s + 3) and
A := A ∪ {(kW+1+i, cW+1+i)}i∈[r] and B := B ∪ {wW+1+i}i∈[r].

a

1. Bob samples a uniformly random binary matrix, V , of dimension r × t and sends this to Alice.
For all i ∈ [r], let Di = {(ul, vl)}j∈[t]∧V

i,j
=1:(ul,vl)∈Uj

and if bool = true let Di := Di∪{(W + 1 + i, 0)}. Then
– Alice computes:

Oi ← ComOpen
({(

kul , cul , vl
)}

(ul,vl)∈Di
,k∆, c∆

)
and sends this to Bob.

– Bob then computes:

Ki ← ComVer
(
Oi, b,

{
wul
}

(ul,vl)∈Di
,w∆

)
K′i =

⊕
j∈[t]:Vi,j=1

Kj

– If bool = true Bob checks that Ki 6= ⊥. If bool = false he also checks that Ki = K′i. If any of the checks
fail, Bob outputs ⊥.

2. If none of the r checks failed, Bob outputs >.
a These extra r wires are used to blind the opened to linear combinations with a random one-time value. However
this is only necessary for the first LCC check performed, so we parameterize this operation with bool.

Fig. 15. Protocol for Linear Combination Check.

29

that are to be used later in the protocol. In the following two invocations he already knows the individual
keys, so there is no issue in revealing the linear combination in these cases.

The next invocation of the check is in the cut-and-choose step, where the tuples again will be singletons,
but the values v1 will correspond to the input challenge bits chosen by Bob. The final invocation is for the
soldering step of our protocol and here the sets are not singletons, but will contain a tuple for each wire
that’s included in the specific soldering. Again, because solderings are constructed as the XOR of the 0-keys
all values vl are set to 0 here.

30

C Interactive Garbling Scheme is sufficient for UC-secure 2PC

In this section we state the formal security properties of an interactive garbling scheme in Figure 16 and
Figure 17. Next we show that the generic protocol πIGCO described in Figure 1 UC-implements the functionality
FSFE of Figure 21 in the FOT-hybrid model. This is captured by Lemma 2 and Lemma 3 below.

Defining Security. In defining security we will require the existence of some auxiliary algorithms. For clarity
we will consider them part of an extended scheme. An extended interactive garbling scheme has the form
Gπ = (Gbπ,En,De,Ev, ev,Op,Ve,ExC,ExE,De−1,En−1). Here ExC is a deterministic poly-time algorithm called
the constructor extractor. After a run of Gbπ between C and E, where C might deviate from the protocol, it is
applied to the view of C, i.e., inputs (1k, f) of C plus the messages sent to the ideal functionalities of Gbπ
by C and the messages sent to C by the ideal functionalities. It outputs (ê, d̂). The intuition is that ê is a
well-formed encoding function and that d̂ is a well-formed decoding function. We call ê the implicit input
encoding function and we call d̂ the implicit output decoding function. The reason is that we will sometimes
need that even a cheating constructor knows well-defined encoding and decoding functions. The evaluator
extractor ExE works the same way but is applied to the view of a possibly cheating E and it outputs an
implicit garbled function F̂ . As we discuss later, we sometimes need that even a cheating evaluator knows a
well-defined garbled function. The deterministic poly-time algorithm En−1 is called the de-encoder. It takes
as input the encoding function e and an encoded input X. It outputs an input x, which is supposed to be
the x encoded by X. It is used to guarantee that even a malicious constructor has a well-defined input. The
deterministic poly-time algorithm De−1 is called the de-decoder. It takes as input the decoding function d
and an output z. It outputs an encoded input Z. For now, simply think of it as the inverse of the decoding
algorithm.

We will now define security notions of an extended scheme. Each security notion is defined via a game,
GameAGπ , between an extended scheme Gπ and an adversary A. If the game outputs > it means that
A won. If the game outputs ⊥ it means that A lost. If the name of the game defining property prop
contains the sub-string Ind, then we say that the game is indistinguishability based, and we define the
advantage as follows Advprop

Gπ (A, k) = 2 Pr[GameAGπ(1k) = >] − 1. Otherwise, we define the advantage as
Advprop

Gπ (A, k) = Pr[GameAGπ (1k) = >]. In both cases we say that Gπ has the property prop if it holds for all
PPT adversaries A that Advprop

Gπ (A, k) is negligible in k.

31

Game OblIndActBGπ
(
1k
)
. Property obl.ind.act.

1. Run B(1k) to produce (f, x0, x1, I).
2. If {x0, x1} 6⊆ {0, 1}f.n or I 6⊆ [f.n] or x0,i 6=

x1,i for i ∈ I, then output ⊥.
3. Sample uniformly random b ∈R {0, 1}.
4. Run Gbπ between C

(
1k, f

)
and B. If C outputs

⊥, output ⊥. Otherwise, denote the output of
C by (F, e, d, o).

5. Compute X ← En(e, xb).
6. Compute O ← Op(o, xb, I).
7. Give (X,O) as input to B and run B to get an

output b′.
8. If b′ = b, then output >, otherwise output ⊥.

Game AutActBGπ
(
1k
)
. Property aut.act.

1. Run B(1k) to produce (f, x, I).
2. If x 6∈ {0, 1}f.n or I 6⊆ [f.n], then output ⊥.
3. Run Gbπ between C

(
1k, f

)
and B. If C outputs

⊥, output ⊥. Otherwise, denote the output of
C by (F, e, d, o).

4. Compute X ← En(e, x).
5. Compute O ← Op(o, x, I).
6. Compute Z ← Ev(F,X).
7. If De(d, Z) 6= f(x), then output >.
8. Give (X,O) as input to B and run B to get an

output Z′.
9. If De(d, Z′) 6= ⊥ and Z′ 6= Z, then output >,

otherwise output ⊥.

Game CorrAGπ
(
1k
)
. Property corr.

1. Run A(1k) to produce (f, x, I).
2. If x 6∈ {0, 1}f.n or I 6⊆ [f.n], then output ⊥.
3. Run Gbπ between C

(
1k, f

)
and E

(
1k, f

)
. If

any party outputs ⊥, then output >. Otherwise,
denote the output of C by (F, e, d, o) and the
output of E by (F ′, v). If F ′ 6= F , then output
>.

4. Compute X ← En(e, x).
5. Compute O ← Op(o, x, I).
6. If Ve

(
v,O,X, {(i, xi)}i∈I

)
= ⊥, output >.

7. Compute Z ← Ev(F,X).
8. If De(d, Z) 6= f(x), then output >, otherwise

output ⊥.

Game TokComAGπ
(
1k
)
. Property tok.com.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E

(
1k, f

)
. If E outputs

⊥, output ⊥. Otherwise E outputs some (F, v).
3. Run ExC on A to produce ê and d̂.
4. Run A to produce X, O, I and {(i, x′i)}i∈I . If

I 6⊆ [f.n], then output ⊥.
5. Compute x← En−1(ê, X). If x = ⊥, then out-

put ⊥.
6. If Ve (v,X,O, {(i, x′i)})i∈I) = > and there ex-

ists i ∈ I such that xi 6= x′i, then output >,
otherwise output ⊥.

Fig. 16. Security games for interactive garbling scheme – part 1

32

Game KnoFBGπ
(
1k
)
. Property knof.

1. Run B(1k) to produce f .
2. Run Gbπ between C

(
1k, f

)
and B. If C outputs

⊥, output ⊥. Otherwise, denote the output of
C by (F, e, d, o).

3. Run ExE on B to compute F̂ .
4. If F̂ 6= F , then output >, otherwise output ⊥.

Game RobConAGπ
(
1k
)
. Property rob.con.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E

(
1k, f

)
. If E outputs

⊥, output ⊥. Otherwise E outputs some (F, v).
3. Run ExC on A to produce ê and d̂.
4. Run A to produce x. If x 6∈ {0, 1}f.n, then

output ⊥.
5. If f(x) 6= De(d̂,Ev(F,En(ê, x))), then output >,

otherwise output ⊥.

Game UnqIEAGπ
(
1k
)
. Property unqie.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E

(
1k, f

)
. If E outputs

⊥, output ⊥. Otherwise E outputs some (F, v).
3. Run ExC on A to produce ê and d̂.
4. Run A to produce X, O, I and {(i, x′i)}i∈I . If

I 6⊆ [f.n], then output ⊥.
5. If En(ê,En−1(ê, X)) 6= X and

Ve (v,X,O, {(i, x′i)})i∈I) = > and
Ev(F,X) 6= ⊥, then output >, otherwise
output ⊥.

Game UnqOEAGπ
(
1k
)
. Property unqoe.

1. Run A(1k) to produce f .
2. Run Gbπ between A and E

(
1k, f

)
. If E outputs

⊥, output ⊥. Otherwise E outputs some (F, v).
3. Run ExC on A to produce ê and d̂.
4. Run A to produce X.
5. Compute Z ← Ev(F,X). If Z = ⊥, then output
⊥.

6. If De−1(d̂,De(d̂, Z)) 6= Z, then output >, oth-
erwise output ⊥.

Fig. 17. Security games for interactive garbling scheme – part 2

33

Lemma 2. If Gπ is a projective extended interactive garbling scheme and has the properties, obl.ind.act,
aut.act and knof, then πIGCO UC securely realizes FfSFE against a static and malicious corruption of B.

Proof. If B is corrupted and A is honest, then the simulator T proceeds as follows. Use B to denote the
adversary controlling B. We can assume without loss of generality that this is the UC environment.

1. The simulator T runs a copy of the protocol and lets it interact with B as in the real world. In particular,
it simulates the ideal functionalities to B by running them honestly.

2. Since T does not know the input of A it instead uses the dummy input x′ = 0nA for A.
3. In Input B, I, T inspects the OT’s to learn the choice bits y1, . . . , ynB of B and defines y = y1 · · · ynB .
4. Now T runs according to the protocol, until it receives some Z ′ from B.
5. Apply the algorithm ExE to compute from the communication of B a garbled function F ′. If Z ′ 6= Ev(F ′, X),

then T inputs abort to FfSFE on behalf of B.
6. Then T inputs y to FfSFE on behalf of B. As a result FSFE outputs z ← f(x, y) on behalf of A.

We show that the simulation is indistinguishable from the real-world to B via a hybrid argument.
Consider the first hybrid where we replace Step 2 by this:

21. We let T cheat and inspect FfSFE to learn x. Then it finishes as in the simulation except that it uses the
real input x of A instead of the dummy input x′.

It is straightforward to show that if B can guess with probability p whether it is in the simulation or
the hybrid, then we can use B to win OblIndActBGπ(1k) with advantage p. We output (f, x0, x1, I), where
x0 = xy and x1 = x′y (where x′ = 0nA) and I = {nA + 1, . . . , nA + nB}. Then we let B participate in Gbπ in
OblIndActBGπ (1k). If C aborts the run of Gbπ we let A terminate with output abort as it would in the protocol
and then terminate the simulation and make a random guess in the reduction. Otherwise we are given (X,O)
and we parse X as

(
X1, . . . , XnA , Y

y1
1 , . . . , Y

ynB
nB

)
and we parse O as

(
Oy1

1 , . . . , O
ynB
nB

)
. Then we let T send

(X1, . . . , XnA) to B in Input A and in Input B, II we input (Y yii , Oyii , Y
yi
i , Oyii) to F iDOT. Then finish the

execution by running as in the simulation and then output whatever bit B outputs.
Consider then the second hybrid where we replace Step 5 by this:

51. Let (F, e, d, o) denote the output to C in the run of Gbπ. If Z ′ 6= Ev(F,X), then T inputs abort to FfSFE
on behalf of B.

By the security property, knof, the first and second hybrids are indistinguishable to B. The reduction is
trivial. Consider then the third hybrid where we replace Step 5 and Step 6 by this:

52. Let (F, e, d, o) denote the output to C in the run of Gbπ. If De(d, Z ′) = ⊥, then T inputs abort to FfSFE
on behalf of B.

61. Input y to FfSFE on behalf of B. As a result FSFE computes z ← f(x, y). Then cheat and replace z by
z ← De(d, Z ′), i.e., let FSFE output z ← De(d, Z ′) on behalf of A.

At this point the values (F, e, d, o) and Z ′ are generated exactly as in game AutAct. It therefore follows
from the property aut.act that the probability that De(d, Z ′) = ⊥ is negligibly close to the probability that
Z ′ 6= Ev(F,X), and hence the change to Step 5 is indistinguishable to B. When Z ′ = Ev(F,X) it also follows
from the property aut.act that the probability that De(d, Z ′) 6= f(x, y) is negligible and hence the change to
Step 6 is indistinguishable.

Note then that the values (F, e, d, o) and Z ′ now are computed in the same way in the third hybrid and
in the generic protocol. Furthermore, the output of FSFE is patched to be De(d, Z ′) and in the protocol A
also outputs De(d, Z ′). Hence the third hybrid is perfectly indistinguishable from the protocol in the view of
B. This concludes the proof.

Lemma 3. If Gπ is a projective extended interactive garbling scheme and has the properties, rob.con, unqoe,
unqie and tok.com, then πIGCO UC securely realizes FfSFE against a static and malicious corruption of A.

34

Proof. If A is corrupted and B is honest, then the simulator S proceeds as follows. Use A to denote the
adversary controlling A. We can assume without loss of generality that this is the UC environment.

1. In Garbling, S simulates the ideal functionalities of πIGCO to A by running them honestly, and it
participates honestly in πIGCO on behalf of B unless another behaviour is specified below.

2. If B aborts in the garbling, then abort A (i.e., input abort to the ideal functionality on behalf of A).
Otherwise, let (F, v) denote the output to B.

3. Then S applies ExC to the communication of A in Gbπ to extract ê and d̂. It parses ê as
(
X̂0

1 , X̂
1
1 , . . . , X̂

0
nA
,

X̂1
nA
, Ŷ 0

1 , Ŷ
1
1 , . . . , Ŷ

0
nB
, Ŷ 1
nB

)
.

4. Let (X1, . . . , XnA) be the value sent by A in Input A. We call an index i bad if Xi 6∈
{
X̂0
i , X̂

1
i

}
or

X̂0
i = X̂1

i . If there is a bad index, then let x = 0nA . Otherwise, let each xi be the unique bit such that
Xi = X̂xi

i , and then let x = x1 · · ·xnA . Notice that (X1, . . . , XnA) =
(
X̂x1

1 , . . . , X̂
xnA
nA

)
if there are no bad

indices.
5. In Input B, II, S inspects the OT’s to learn the messages

((
Y 0
i , O

0
i

)
,
(
Y 1
i , O

1
i

))
input to F iDOT by A.

We call (i, b) a faulty position if Y bi 6= Ŷ bi or Ve
(
Y bi , O

b
i , i, b

)
= ⊥. We call an index i double faulty if (i, 0)

and (i, 1) are both faulty. We call an index i correct if neither (i, 0) nor (i, 1) is faulty. We call an index i
single faulty if it is not double faulty nor correct. If there is a double faulty index i, then abort A (i.e.,
input abort to FfSFE on behalf of the corrupted A) and terminate the simulated protocol. Otherwise, let I
be the set of indices that are single faulty, and for each i ∈ I let βi be the unique bit for which (i, βi) is
not faulty. If |I| > 0, then input {(i, βi)}i∈I to FfSFE. If the output is abort, then terminate the simulated
protocol. Otherwise, define a dummy input y′ for B by letting y′i = βi for i ∈ I and y′i = 0 for i 6∈ I. Then

let X =
(
X1, . . . , XnA , Y

y′
1

1 , . . . , Y
y′
nB

nB

)
and O =

(
O
y′

1
1 , . . . , O

y′
nB
nB

)
. If Ve (v,X,O, {(i, y′i)}

nB
i=1) = ⊥, then

abort A (i.e., input abort to FfSFE on behalf of the corrupted A) and terminate the simulated protocol.
6. Compute Z ← Ev(F,X). If Z = ⊥, then abort A. Otherwise, input x to FfSFE on behalf of the corrupted

A and receive back z ← f(x, y). Then compute Z ′ ← De−1(d̂, z) and send Z ′ to A as if coming from B.

We show that the simulation and the protocol are indistinguishable to A using a hybrid argument. Define
a first hybrid where we replace Step 5 by this:

51. In Input B, II, S inspects the OT’s to learn the messages
((
Y 0
i , O

0
i

)
,
(
Y 1
i , O

1
i

))
input to F iDOT by A. It

then inspects FfSFE to get the real value y of the input of B, as given by the environment. Define y′ by letting

y′ = y. Then run as in the simulation, but with input y′ for B, i.e., let X =
(
X1, . . . , XnA , Y

y′
1

1 , . . . , Y
y′
nB

nB

)
and O =

(
O
y′

1
1 , . . . , O

y′
nB
nB

)
, and if Ve (v,X,O, {(i, y′i)}

nB
i=1) = ⊥, then abort A and terminate the simulated

protocol. If any (i, y′i) is faulty, then send “you are in a hybrid” to the adversary if this was not already
done.

The simulation and the hybrid are indistinguishable to the adversary. To see this, first observe the fact
that if some (i, y′i) is faulty in the hybrid, it will abort except with negligible probability. To see this,
notice that if (i, y′i) is faulty, then Y

y′
i

i 6= Ŷ
y′
i

i or Ve
(
Y
y′
i

i , O
y′
i
i , i, y

′
i

)
= ⊥. If Ve

(
Y
y′
i

i , O
y′
i
i , i, y

′
i

)
= ⊥, then

Ve (v,X,O, {(i, y′i)}
nB
i=1) = ⊥ by definition and the hybrid aborts. Therefore, assume that (i, y′i) is faulty and

that Ve
(
Y
y′
i

i , O
y′
i
i , i, y

′
i

)
= >. Then a simple reduction to the property tok.com shows that Y y

′
i

i ∈
{
Ŷ 0
i , Ŷ

1
i

}
(or En−1(ê, X) = ⊥) and that Y y

′
i

i 6= Ŷ
1−y′

i
i , or Ve

(
Ŷ

1−y′
i

i , O
y′
i
i , i, y

′
i

)
= > could be used to win in Step 6

of TokComAGπ . Hence Y
y′
i

i = Ŷ
y′
i

i , contradicting that (i, y′i) is faulty. Then observe that there are only four
changes between the simulation and the hybrid. First of all, in the simulation we explicitly abort if there is a
double faulty index. This we no longer do in the hybrid. This makes no difference, however, by the above
fact. Second, in the simulation we abort if βi 6= yi. It follows from the above fact that we do the same in the

35

hybrid, as (i, 1− βi) is a faulty position. Third, in the hybrid we use a different y′. This is indistinguishable,
as the view of the adversary does not depend on y′ at all when the protocol aborts, as argued above, and
when the protocol does not abort, then the reply in both distributions is Z ← De−1(d̂, z) which is identically
distributed in the simulation and the hybrid. Finally we send the string “you are in a hybrid” to the adversary
at the end if any (i, y′i) is faulty, but by the above fact we have already aborted at this point if any (i, y′i) is
faulty, so this change is indistinguishable.

Then make the following change to Step 5:

52. Run as Step 51, but with this addition at the end: if the protocol did not abort and En−1(ê, X) 6= xy′

and Ev(F,X) 6= ⊥, then send “you are in a hybrid” to the adversary if this was not already done.

Notice that at the point where the addition is made it holds that if the protocol did not abort, then
Ve(v,X,O, {(i, y′i)}

nB
i=1) = > (or we would have aborted in Step 51). Furthermore, we only send the string if

Ev(F,X) 6= ⊥. Below we argue that when we send the string then it also holds that En(ê,En−1(ê, X)) 6= X.
I.e., if we send that string, then En(ê,En−1(ê, X)) 6= X and Ve(v,X,O, {(i, y′i)}

nB
i=1) = > and Ev(F,X) 6= ⊥.

So, a simple reduction lets us win the game for property unqie with the probability with which “you are
in a hybrid” is sent to the adversary in 52 Hence it is sent with negligible probability and the hybrids are
indistinguishable. We prove that En(ê,En−1(ê, X)) 6= X by a case analysis. Assume first that there is a bad
index. If there is a bad index, then En(ê, xy′) 6= X by definition of En being the projective encoding algorithm.
So, since En(ê,⊥) = ⊥ 6= X and by construction En−1(ê, X) ∈ {⊥, xy′}, it follows that En(ê,En−1(ê, X)) 6= X
if there is a bad index. Assume then that there is no bad index. If we send the string in Step 52, then there
are no faulty positions (i, y′i) either, as we would have sent the string already in Step 51 When there are
no bad index and no faulty positions (i, y′i), then (X1, . . . , XnA) =

(
X̂x1

1 , . . . , X̂
xnA
nA

)
and all Y y

′
i

i = Ŷ
y′
i

i , so

X =
(
X̂x1

1 , . . . , X̂
xnA
nA , Ŷ

y′
1

1 , . . . , Ŷ
y′
nB

nB

)
= En(ê, xy′). This contradicts that En−1(ê, X) 6= xy′.

Then define the next hybrid where we replace Step 4 with this:

41. Let (X1, . . . , XnA) be the value sent by A in Input A. We call an index i bad if Xi 6∈
{
X̂0
i , X̂

1
i

}
or X̂0

i = X̂1
i . If there is a bad index and Ev(F,X) = ⊥, then abort A. If there is a bad index and

Ev(F,X) 6= ⊥, then let x = 0nA . Otherwise, let each xi be the unique bit such that Xi = X̂xi
i , and then

let x = x1 · · ·xnA . If (X1, . . . , XnA) 6=
(
X̂x1

1 , . . . , X̂
xnA
nA

)
, then send “you are in a hybrid” to the adversary,

if this was not already done.

As for the change If there is a bad index and Ev(F,X) = ⊥, then abort A, notice that we would abort
in Step 6 anyway when Ev(F,X) = ⊥, so this changes nothing in the view of the adversary. For the
change If (X1, . . . , XnA) 6=

(
X̂x1

1 , . . . , X̂
xnA
nA

)
, then send “you are in a hybrid” if not already done notice that

(X1, . . . , XnA) =
(
X̂x1

1 , . . . , X̂
xnA
nA

)
if there is no bad index, so if we send the string, there is a bad index.

Furthermore, if there is a bad index and Ev(F,X) = ⊥, then we aborted. So, if we send the string, then
there is a bad index and Ev(F,X) 6= ⊥. When there is a bad index, then En−1(ê, X) = ⊥ 6= xy′ and so since
Ev(F,X) 6= ⊥, we would have sent the string in Step 52 anyway, so this changes nothing.

Then define the next hybrid where we replace Step 6 with this:

61. Compute Z ← Ev(F,X). If Z = ⊥, then abort. Otherwise, input x to FfSFE on behalf of the corrupted A
and receive back z ← f(x, y). If De(d̂, Z) 6= z, then send “you are in a hybrid” to A, if not already done.
Then compute Z ′ ← De−1(d̂, z) and send Z ′ to A.

If we send the string “you are in a hybrid”, then it was not sent by the previous changes and hence X = En(ê, xy).
At the point where we send the string we know that Ev(F,X) 6= ⊥ and z ← f(x, y). So, when we send the
string we know that Ev(F,En(ê, xy)) 6= ⊥ and yet De(d̂,Ev(F,En(ê, xy))) 6= f(x, y). A simple reduction to
rob.con therefore shows that the hybrids are indistinguishable.

Then define a new hybrid where we replace Step 6 with this:

36

62. Compute Z ← Ev(F,X). If Z = ⊥, then abort. Otherwise, input x to FfSFE on behalf of the corrupted A
and receive back z ← f(x, y). If De(d̂, Z) 6= z, then send “you are in a hybrid” to A, if not already done.
Then send Z to A.

We argue that the new hybrid is no easier to distinguish from the simulation than the previous hybrid. Note
first that the change makes a difference only if Z 6= Z ′ = De−1(d̂, z). Note then that if De(d̂, Z) 6= z, then in
both the new hybrid and the previous hybrid we send “you are in a hybrid” to A, which allows A to perfectly
distinguish from the simulation, where no such strings are sent, so sending Z ′ 6= Z will not make it easier to
distinguish from the simulation. Hence, the difference makes the new hybrid easier to distinguish from the
simulation only if it is both the case that Z 6= De−1(d̂, z) and De(d̂, Z) = z. Putting these two together we
get that Z 6= De−1(d̂,De(d̂, Z)). The claim therefore follows from a trivial reduction to unqoe.

Now consider a hybrid, where we do not send the strings “you are in a hybrid” at any of the places where
we do so in the previous hybrid. Since the previous hybrid is indistinguishable from the simulation where
we do not send such strings, we conclude that it is sent with negligible probability. Hence not sending it is
indistinguishable. Putting the current changes together and dropping all code only needed for sending the
strings “you are in a hybrid” we see that the new hybrid looks as follows:

1. In Garbling, S simulates the ideal functionalities of πIGCO to A by running them honestly, and it
participates honestly in πIGCO on behalf of B unless another behaviour is specified below.

2. If B aborts in the garbling, then abort A (i.e., input abort to the ideal functionality on behalf of A).
Otherwise, let (F, v) denote the output to B.

3. Then S applies ExC to the communication of A in Gbπ to extract ê and d̂. It parses ê as
(
X̂0

1 , X̂
1
1 , . . . , X̂

0
nA
,

X̂1
nA
, Ŷ 0

1 , Ŷ
1
1 , . . . , Ŷ

0
nB
, Ŷ 1
nB

)
.

42. Let (X1, . . . , XnA) be the value sent by A in Input A. We call a index i bad if Xi 6∈
{
X̂0
i , X̂

1
i

}
or X̂0

i = X̂1
i .

If there is a bad index and Ev(F,X) = ⊥, then abort A. If there is a bad index and Ev(F,X) 6= ⊥, then
let x = 0nA . Otherwise, let each xi be the unique bit such that Xi = X̂xi

i , and then let x = x1 · · ·xnA .
53. In Input B, II, S inspects the OT’s to learn the messages

((
Y 0
i , O

0
i

)
,
(
Y 1
i , O

1
i

))
input to F iDOT by A. It

then inspects FfSFE to get the real value y of the input of B, as given by the environment. Define y′ by letting

y′ = y. Then run as in the simulation, but with input y′ for B, i.e., let X =
(
X1, . . . , XnA , Y

y′
1

1 , . . . , Y
y′
nB

nB

)
and O =

(
O
y′

1
1 , . . . , O

y′
nB
nB

)
, and if Ve (v,X,O, {(i, y′i)}

nB
i=1) = ⊥, then abort A and terminate the simulated

protocol.
63. Compute Z ← Ev(F,X). If Z = ⊥, then abort. Otherwise, input x to FfSFE on behalf of the corrupted A

and receive back z ← f(x, y). Then send Z to A.

In Step 63 we can drop the code Otherwise, input x to FfSFE on behalf of the corrupted A and receive back
z ← f(x, y) as it has no effect at this point. We can also drop the code If there is a bad index and Ev(F,X) = ⊥,
then abort A in Step 42 as we would abort in Step 6 anyway when Ev(F,X) = ⊥. After that all the code of
Step 42 used to define x can be dropped, as x is not used later on anymore. After that we can drop Step 3 as
ê and d̂ are no longer used. In Step 53 we have that y′ = y, so we can replace y′ by y in all places. With
these changes we arrive at this hybrid.

1. In Garbling, S simulates the ideal functionalities of πIGCO to A by running them honestly, and it
participates honestly in πIGCO on behalf of B unless another behaviour is specified below.

2. If B aborts in the garbling, then abort A (i.e., input abort to the ideal functionality on behalf of A).
Otherwise, let (F, v) denote the output to B.

31.
43. Let (X1, . . . , XnA) be the value sent by A in Input A.
54. In Input B, II, S inspects the OT’s to learn the messages

((
Y 0
i , O

0
i

)
,
(
Y 1
i , O

1
i

))
input to F iDOT by A.

We then inspect FfSFE to get the real value y of the input of B, as given by the environment. Then let

37

X =
(
X1, . . . , XnA , Y

y1
1 , . . . , Y

ynB
nB

)
and O =

(
Oy1

1 , . . . , O
ynB
nB

)
, and if Ve(v,X,O, {(i, yi)}nB

i=1) = ⊥, then
abort A and terminate the simulated protocol.

64. Compute Z ← Ev(F,X). If Z = ⊥, then abort. Otherwise send Z to A.

It can be seen that by now all the values received by A are distributed exactly as in the protocol. This
concludes the proof.

38

D Proof of IGarbπ being an Interactive Garbling Scheme

In order to securely plug in our interactive garbling scheme IGarbπ into the generic protocol of Section 3, we
need to show that it satisfies the properties of Figure 16 and Figure 17 which define an interactive garbling
scheme. We prove this formally in Lemma 4, Lemma 5, Lemma 6, Lemma 8, Lemma 7, Lemma 11, Lemma 9,
Lemma 12, and Lemma 10.

For ease of presentation we show our protocol secure for a restricted set of parameters, namely the case
where α = β − 1. We stress that our protocol can be shown secure for other combinations of α and β, but for
sake of concreteness we have single out this case as we found it to perform well in terms of overall performance,
relative to the security it provided.6

Before we continue recall the indistinguishability definition of obliviousness of a garbling scheme from
[BHR12] which we include in Figure 18 and the definition of a secure PRG as shown in Figure 19. Also
for completeness we include the definition of a circular correlation robust hash function for natural keys in
Definition 1 as defined by [ZRE14], which in turn is based on the work of [CKKZ12]. This is simply Definition
1 and 3 of [ZRE14] written as one.

1. Run B(1k) to produce (f, x0, x1).
2. If {x0, x1} 6⊆ {0, 1}f.n, then return ⊥.
3. Sample uniformly random b ∈ {0, 1}.
4. Let (F, e, d)← Gb(1k, f) and compute X ← En(e, xb).
5. Let b′ ← B(F,X).
6. If b′ = b, then output >, otherwise output ⊥.

Fig. 18. The game OblIndBG(1k) from [BHR12] with the modification that f = f0 = f1. This can be enforced in their
setting by simply using the side-information function Φ = Φcirc.

1. Run P(1k) to produce c. If c is not polynomial in k output ⊥.
2. Sample a uniformly random bit b.
3. If b = 0 then sample a uniformly random seed s ∈ {0, 1}k and use PRG to expand this seed to a string of c

bits and return this to P. If instead b = 1 sample a uniformly random string of c bits and return this to P.
4. In the end let P outputs a guess b′. If b′ = b output >, otherwise output ⊥.

Fig. 19. Game PRGPPRG(1k). Property prg.

Definition 1 (Circular correlation robustness). Given a hash function H with k-bit output, define two
oracles Circ∆(x, i, b) = H(x⊕∆, i)⊕ b ·∆ and Rand(x, i, b) which always outputs a uniformly random k-bit
string. Say that a sequence of oracle queries of the form (x, i, b) is legal if the same value of (x, i) is never
queried for different values of b. Then H is circular correlation robust if for all PPT adversaries A, making
legal queries, ∣∣∣∣Pr

∆
[ACirc∆(1k) = 1]− Pr

Rand
[ARand(1k) = 1]

∣∣∣∣ is negligible.

Furthermore, we have that the function H is circular correlation robust for natural keys, if A’s queries (x, i, b)
is restricted in the following way;

1. For the q’th query, we have that i = q.
2. b ∈ {0, 1}.
3. That x is naturally derived, meaning it is obtained from one of the following:
6 However for some parameters this choice is not optimal, see Appendix H for details.

39

– x ∈R {0, 1}k.
– x = x1 ⊕ x2, where x1 and x2 are naturally derived.
– x← H(x1, i), where x1 is naturally derived and i ∈ Z.
– x← O(x1, i, b), where x1 is naturally derived. Here O is either Rand or Circ∆.

Finally define a gate garbling procedure HGb′(L0, R0, ∆, id)→
{
Gid, O

0} to be the same as procedure
HGb from Figure 4, except that step 3 is as follows:

3. Output a garbled gate
{
Gid, O

0}← {
(id, TG, TE), O0}.

Thus the only difference between HGb and HGb′ is that the gates output by HGb′ does not include “shifting
information”.

Lemma 4 (Obliviousness). If HGarb = (HGb,HEn,HDe,HEv,Hev) is a obl.ind-secure garbling scheme and
H is a circular correlation robust hash function for natural keys then the scheme IGarbπ is obl.ind.act-secure
in the FOT- FCOM-hybrid model assuming that PRG is prg-secure.

Proof. It has been proven in [ZRE14] that a free-XOR (non-interactive) garbling scheme using HGb′(·) to
garble individual AND gates is obl.ind secure against malicious adversaries, assuming that H is a correlation
robust hash function for natural keys.7 We remark that for sake of exposition that our interactive garbling
scheme IGarbπ does not satisfy the condition that for the q’th query, we have that i = q. However this is
w.l.o.g. as a simple reenumeration of indices would ensure this.

Let OblIndbHGarb(1k) denote the game OblIndHGarb(1k) when the bit sampled by the game is b, similarly
let OblIndActcIGarbπ (1k) denote the game OblIndActIGarbπ (1k) when the bit sampled by the game is c. Since
we assume that HGarb is obl.ind-secure then it must hold that for any PPT S playing the games, we have
OblIndS,0HGarb(1k) ≈c OblIndS,1HGarb(1k). In a similar manner we notice that it is enough for us to prove that
OblIndActB,0IGarbπ (1k) ≈c OblIndActB,1IGarbπ (1k) for any PPT B, assuming the PRG used is prg-secure.

We start by defining the game HB,b(1k) to be the same game as OblIndActB,bIGarbπ (1k) except that it does
not execute C(1k, f), but instead C′(1k, f). The only difference between C and C′ is that in C′, during the
Setup phase of the ECC commitments, the bits {bi}i∈[Γ] given by B as input to FOT are extracted by C′.
Furthermore, based on these bits, the values r̄i1−bi ∈ {0, 1}

γ are chosen uniformly at random instead of as the
output of a PRG.

Because of the prior observation we see that it is enough to prove

OblIndActB,0IGarbπ (1k) ≈c HB,0(1k) ≈c HB,1(1k) ≈c OblIndActB,1IGarbπ (1k) .

We prove each of these relations one at a time.

OblIndActB,0IGarbπ (1k) ≈c HB,0(1k). Consider the following reduction RB(1k) participating in the PRGRB

PRG(1k)
game, which we will use to show that OblIndActB,0IGarbπ (1k) ≈c HB,0(1k). We use RB,b to denote RB when the
bit sampled by PRGb

PRG is b. Now RB,b runs the game OblIndActB,bIGarbπ(1k) as the game is defined, except
that it extracts the input bits to FOT given by B during the execution of the Setup phase of the ECC
commitments in IGbπ. Denote these {bi}i∈[Γ], it then uses PRGb

PRG to generate the bitstrings
{
r̄i1−bi

}
i∈[Γ]

which it will use in the rest of the game. In particular this means when playing PRGRB,0
PRG (1k), then the PRG

is used to derive r̄i1−bi , if instead playing PRGRB,1
PRG (1k) then a uniformly random string is used in place of

r̄i1−bi . From this notice that RB,0(1k) ≈p OblIndActB,0IGarbπ(1k) and that RB,1(1k) ≈p HB,0(1k), since the OT
functionality is ideal and the strings ri1−bi are never used anywhere else.

Now see that because efficient transformations maintain indistinguishability we get that RB,0(1k) ≈c
RB,1(1k) since RB,b(1k) runs in PPT and because we assume PRG0

PRG(1k) ≈c PRG1
PRG(1k). Thus the relation

follows from:
OblIndActB,0IGarbπ (1k) ≈p RB,0(1k) ≈c RB,1(1k) ≈p HB,0(1k) .

7 Actually the authors show security for obl. sim, but [BHR12] shows that obl. sim implies obl.ind in this setting.

40

OblIndActB,1IGarbπ(1k) ≈c HB,1(1k). We see this follows directly from the proof of OblIndActB,0IGarbπ(1k) ≈c
HB,0(1k).

HB,0(1k) ≈c HB,1(1k). Consider the following reduction SB,b(1k) participating in the OblIndS
B,b

HGarb(1k) game.
SB,b works as follows:

For ease of notation we let (f, x0, x1, I) denote the input B gives to SB,b and let
(
f̂ , x̂0, x̂1

)
denote

the input SB,b will give to OblIndbHGarb. First let SB,b learn (f, x0, x1, I) from B at the beginning of the
game. If {x0, x1} 6⊆ {0, 1}f.n or I 6⊆ [f.n] or x0,i 6= x1,i for i ∈ I, then output ⊥. Now SB,b runs the game
OblIndActB,bIGarbπ (1k) playing the role of an honest C , except it extracts the messages of all the commitments
B makes to FCOM in Setup and all the input bits he gives to FOT in Setup of the ECC commitments, call
these

{
b̄i
}
i∈[Γ]. Thus SB,b will know exactly what the cut-and-choose challenges will be and which bits B will

want to use to verify the garbled gates and wire authenticators selected for checking. For g ∈ CheckGates and
j ∈ CheckWires this is the set

{
{(ag, bg, g)} , {(cj , j)} ,BucketOf,AuthOf

}
. Then SB,b defines f̂ as a function

with only a single layer, consisting entirely of AND gates. In particular f̂ will contain |GGates| AND gates.
Next SB,b evaluates which bit will be on each of the wires in the circuit representing f , when evaluated on
x0, respectively x1. For each wire in f that is an input wire to an AND gate or a circuit input wire we find
the indices of the garbled gates in the bucket representing this AND gate that has this wire as one of its
inputs. There will be β such gates for each of these wires. These gate are uniquely defined by BucketOf,
which is known to the simulator at this point. The simulator then sets the 2|EvalGates| bits of x̂0, respectively
x̂1, in accordance with the values expected on each wire. Then for each g ∈ CheckGates the simulator sets
x̂0[2g] = x̂1[2g] = ag and x̂0[2g+ 1] = x̂1[2g+ 1] = bg. Notice that |x̂0| = |x̂1| = 2|GGates| since each gate has
2 bits input. For the rest of the entries in x̂0 and x̂1 it always chooses the 0-bit (these are the “slack” entries
and will just be discarded).

Next SB,b sends (f̂ , x̂0, x̂1) to OblIndbHGarb and receives back (F̂ , X̂b). SB,b then runs HEv(F̂ , X̂b) and thus
learns a key for each wire (which will be exactly the key for each wire in correspondence to what B expects
when it is put together to a fault tolerant garbled circuit with respect to the BucketOf function). Name the
set of all these keys

{
K̂j

}
j∈GateWires

. Now SB,b runs the rest of IGbπ with B as an honest C would except for
the following steps:
1. In Gate Construction step 1 instead of actually garbling the gates SB,b “extracts” the garbled gates

from F̂ . Parse each of these gates as {Gg}g∈GGates = {(g, T gG, T
g
E)}g∈GGates. For g ∈ GGates it then defines

the gates
{
G′g
}

=
{(
g, T gG, T

g
E , 0k, 0k, 0k

)}
. For j ∈ [γ] the simulator parses sj → (s0

j , s
1
j) and denotes by

k
bj
j the first k bits of sbjj . Furthermore for j ∈ AWires \AuthWires, SB,b sets the key K̂j = k0

j ⊕k1
j and for

j ∈ AuthWires it uses the value K̂j it learned from OblIndbHGarb or the value it computed by running Ev.
It then computes for j ∈ AWires, H0

j ← H
(
K̂j , j

)
and samples H1

j ∈R {0, 1}k. As in the Auth procedure
if H0

j ≤ H1
j it sets Hj ←

(
H0
j , H

1
j , 0k

)
, otherwise it sets Hj ←

(
H1
j , H

0
j , 0k

)
.

Now, for i ∈ CheckGates ∪ EvalGates let (li, ri, oi)←WiresOf(i) and update the variables as follows:

k
1−b̄li
li

:= k0
li ⊕ k

1
li ⊕ K̂li

k
1−b̄ri
ri := k0

ri ⊕ k
1
ri ⊕ K̂ri .

The simulator furthermore updates k1−b̄W+1
W+1 := k

1−b̄W+1
W+1 ⊕ k0

W+1 ⊕ k1
W+1 (recall that KW+1 is used as

the global difference ∆, and this procedure makes this the all zero string). It also updates the first k
bits of each s1−b̄li

li
and s1−b̄ri

ri (along with s1−b̄W+1
W+1) so they are consistent with k1−b̄li

li
and k1−b̄ri

ri (and
k

1−b̄W+1
W+1). Finally, SB,b then sends

{
G′g
}
j∈GGates , {Hj}j∈AWires to B .

2. In Bucket Soldering for all h ∈ HeadGates, all g ∈ Bucketh where g 6= h and all a ∈ AuthOf(h) the
simulator sends to B :

S̃Lg = Lg ⊕ Lh, S̃Rg = Rg ⊕Rh, S̃Og = Og ⊕Oh S̃ah = K̂a ⊕Oh .

41

Where the keys Lg, Rg, Og, Lh, Rh, Oh and K̂a are the keys SB,b got from OblIndbHGarb and learned from
calling HEv on F̂ . It follows the rest of the step as an honest C would.

3. In Topological Soldering for all h ∈ HeadGates it sets L =
⊕

u∈lp(h)Ou, R =
⊕

v∈rp(h)Ov, where the
keys Ou and Ov are the keys SB,b learned from calling HEv on F̂ . In case either lp(h) ∈ [n] or rp(h) ∈ [n]
the wire K̂0

v , respectively K̂0
u is used instead. The simulator then sends to B :

S̃Lh = Lh ⊕ L, S̃Rh = Rh ⊕R .

Where the keys Lh, Rh, Oh are the keys SB,b got from OblIndbHGarb and learned from calling HEv on F̂ . It
follows the rest of the step as an honest C would.

4. In Input Authentication for all i ∈ {HeadAuths ∩ [n]} and all a ∈ Authi where a 6= i the simulator
sends to B :

S̃a = K̂a ⊕ K̂i .

Where the keys K̂a and K̂i are the keys SB,b got from OblIndbHGarb and learned from calling HEv on F̂ . It
follows the rest of the step as an honest C would.

5. In Output step 1, SB,b sets e, o and d to be uniformly random sampled bit strings of sufficient length.

SB,b then sets X to be the subset of X̂b it got from OblIndbHGarb in correspondence with the wires that are
supposed to be the input wires of f . It furthermore sets O to be the updated shares of the input wires in I,
that is corresponding to B’s part of the x0, respectively x1.8 Finally, SB,b gives (X,O) to B.

Now notice that SB,b(1k) ≈c HB,b(1k) for any b ∈ {0, 1}. To see this we argue that everything sent by SB,b
to B is computationally indistinguishable from what is sent in HB,b(1k):

1. In Gate Construction step 1 notice that SB,b(1k) picks the garbled gates using the OblIndbHGarb game,
where the garbled computation tables are constructed exactly in the same way as in HB,b(1k), except
that we augment these with three 0k-strings. It also simulates the authenticator pairs, Hj . In each of
these pairs one of the entries is the output of a circular correlation robust hash function on a uniformly
random key, and the other is simply a uniformly random value. Since in HB,b(1k), all Hj are produced
using the Auth method, which in turn invokes H on K0

j and K0
j ⊕∆ we see that all invocations can be

modeled as queries to the Circ∆ oracle (with b = 0) as defined in Definition 1. In the simulation, only one
of the authenticators is produced this way, while the other is a uniformly sampled string. However by the
correlation robustness property of the hash function H the two distributions are indistinguishable to B .
It is also eminent to see that all queries would satisfy the “natural” property, except for the condition
that for the q’th query, we have that i = q, but we have already addressed this earlier in the proof.
Since B will only learn the key which is the output of the oracle, the other part of the authenticator
pair will be distributed similarly in this simulation and in the HB,b game.9 Furthermore, notice that for
j ∈ AuthWires, B will eventually learn either K0

j or K0
j ⊕∆, through the evaluation of the garbled circuit,

and that exactly one of the values hashed in the authenticator will be this key since its value comes from
OblIndbHGarb. For j ∈ AWires\AuthWires only K0

j will be accepted, but this can be made to look like K1
j

since B will only learns the key through the opening of an ECC commitment, and the index which should
be ∆ is the 0-string.
The corrections SB,b makes to sj will only be visible to B through the Linear Combination Check
executions, but here each opening of shares based on shares which are not uniformly random distributed
will be XORed with a share of a key that is uniformly random distributed (in particular a key with index
greater than W + 1).

2. In Soldering step 3,4 and 5 the shifting values will be distributed similarly in SB,b and HB,b as in both
cases they will be the XOR of keys constructed similarly. The difference is that in SB,b some of the

8 Notice that the bits supposed to be on these wires will be the same for both x0 and x1 in correspondence with
OblIndAct.

9 Any information on the “other key” on a wire will yield a direct advantage in guessing ∆, and thus correspond to
an advantage in winning the game, no matter if we are in the simulation or not.

42

keys might be 1-keys. However OblIndbHGarb ensures that an XOR combinations of distinct wire keys
are indistinguishable whether or not the keys are 0,1 or a combination, because of the security of the
free-XOR approach. Furthermore, we notice that K0

j ⊕K0
j+1 = K0

j ⊕∆⊕K0
j+1 ⊕∆ = K1

j ⊕K1
j+1, so

we see that the solderings will be the same in the real protocol and the simulation since the keys to be
soldered together will always represent the same bit.

3. In Output notice that none of these values are given to B.

Finally (X,O) is constructed in the same way in both SB,b(1k) and HB,b(1k). Thus we conclude that the view
of the values sent to B in these hybrids are computationally indistinguishable. This concludes the proof that
SB,b(1k) ≈c HB,b(1k).

Now see that because efficient transformations maintain indistinguishability we get that SB,0(1k) ≈c
SB,1(1k) since SB,b(1k) runs in PPT and because we assume that OblInd0

HGarb(1k) ≈c OblInd1
HGarb(1k). Thus

the statement follows from the following observation:

HB,0(1k) ≈c SB,0(1k) ≈c SB,1(1k) ≈c HB,1(1k) .

Finally see that we are done since we have showed

OblIndActB,0IGarbπ (1k) ≈c HB,0(1k) ≈c HB,1(1k) ≈c OblIndActB,1IGarbπ (1k) .

Before proving our scheme has the aut.act property, recall the definition of Authenticity in a non-interactive
garbling scheme in Figure 20.

1. Run B(1k) to produce (f, x).
2. If x 6⊆ {0, 1}f.n, then return ⊥.
3. Let (F, e, d)← Gb(1k, f) and compute X ← En(e, x).
4. Let Z ← B(F,X).
5. If De(d, Z) 6= ⊥ and Z 6= Ev(F,X) output >, otherwise output ⊥.

Fig. 20. The game AutBG(1k) from [BHR12].

Lemma 5 (Authenticity). If HGarb = (HGb,HEn,HDe,HEv,Hev) is an aut-secure garbling scheme and H
is a circular correlation robust hash function for natural keys then the scheme IGarbπ = (IGbπ, IEn, IDe, IEv, Iev,
IOp, IVe) is aut.act-secure in the FOT- FCOM-hybrid model assuming that PRG is prg-secure.

Proof. Considering the game AutActBIGarbπ (1k) for the aut.act property we first argue that B cannot win the
game by being malicious in IGbπ such that IDe(d, Z) 6= f(x), thus concluding he can only win the game
by finding Z ′ such that IDe(d, Z ′) 6= ⊥ with Z ′ 6= Z. We will then prove that if he can find such a Z ′
with non-negligible probability in 1k then we can use him to win the AutHGarb(1k) game with non-negligible
probability, under the assumption that PRG is prg-secure. In particular we will construct a simulator SB

that plays the AutS
B

HGarb(1k) game in Figure 20, to construct the garbled gates used in IGbπ, then argue that
whether or not a B playing the AutActBIGarbπ (1k) game is communicating with the simulator or the real game,
what it learns will be computationally indistinguishable under the assumption that PRG is prg-secure. The
simulator then uses the output of B to win the AutS

B

HGarb(1k) game if B wins the AutActBIGarbπ (1k) game.
To first show that IDe(d, Z) 6= f(x) is not possible, notice that the only way B could cause this to happen

is to act maliciously during the execution of IGbπ. However, see that B only gets to give the following input
to this protocol:

1. The Γ random bits in Setup of the ECC commitments.

43

2. The commitments, and subsequently openings, to the cut-and-choose challenges
(
{(ag, bg, g)}g∈CheckGates ,

{(cj , j)}j∈CheckWires

)
and (BucketOf,AuthOf) in Setup.

3. The random matrix V used during the calls to Linear Combination Check in the ECC commitments.

Notice all the elements are randomly sampled and made only to protect Bob against a malicious Alice. In
particular in the first case, the choices are never learned by Alice because of the security of FOT and thus
cannot have any influence. In the second case we first notice that if the protocol finishes then by the correctness
of FCOM, it must mean that B committed (and later opened) to valid messages. In both the second and third
case the values are simply selections for random checks and Alice terminates the protocols if the choices are
not sane. Also notice that all the possible random choices, as long as they are well-formed, will not influence
the correctness of the protocol. Thus it is clearly not possible for B to influence the execution in such a way
that the garbling is incorrect. In particular this means that for the output (F, e, d, o) to C it will always be
the case that IDe(d, IEv(F, IEn′(e, x))) = f(x).

Now define the hybrid game GB,b(1k) which is the same game as AutActB,bIGarbπ(1k) except that it does
not execute C(1k, f), but instead C′(1k, f). The only difference between C and C′ is that in C′, during the
Setup phase of the ECC commitments, the bits {bi}i∈[Γ] given by B as input to FOT are extracted by C′.
Furthermore, based on these bits, the values r̄i1−bi ∈ {0, 1}

γ are chosen uniformly at random instead of
through the PRG.

Now recall the proof of obl.ind.act security in Lemma 4 where exactly the same algorithm C′ is introduced
and used to show that there is computational indistinguishability between using C′ instead of C under
the assumption that PRG is prg-secure. Using this observation we see that it is enough to show that we
can construct a simulator SB,b which makes use of an adversary B attacking GB,b(1k) with non-negligible
advantage to win the AutS

B,b
HGarb(1k) game with non-negligible advantage.

Again recalling the proof of obl.ind.act security in Lemma 4, remember the simulator SB,b(1k), where b is
the bit used internally in the game OblIndS

B,b
HGarb(1k). We create SB,b in exactly the same way except that it is

playing the game AutS
B,b

HGarb(1k) instead of OblIndS
B,b

HGarb(1k) and therefore, instead of getting both the value x0
and x1 from B, it gets a single value x. Notice that when x0 and x1 are used in SB,b they are used in the
same manner, so GB,b(1k) will simply do the same, but only for the single value x. From this it is easy to
see, following the indistinguishability proof of SB,b and HB,b, that whatever B sees will be computationally
indistinguishable whether or not he is playing with the actual hybrid game GB,b(1k) or AutActB,bIGarbπ (1k). Now
when B sends Z ′ to SB,b, the simulator finds the first key entry in Z ′ that differs with Z. It then XORs these
two keys together to learn ∆′. It then XORs this with the first key entry in the X it got from AutbHGarb to
learn a new string X ′. It then inputs this to AutbHGarb. It is now easy to see that if B can win the hybrid
game GB,b(1k) with non-negligible probability then SB,b also wins the AutS

B,b
HGarb(1k) game with non-negligible

probability since the simulation and the hybrid game are indistinguishable and that the keys are constructed
using AutbHGarb. As HGarb is assumed aut-secure this proves the claim.

Lemma 6 (knof). The scheme IGarbπ has the knof property.

Proof. In order to prove that our scheme satisfies the knof property we need to specify the ExE extractor.
We first assume that B is in a state where it first received an input 1k, then output some function f and
finally ran an instance of IGbπ playing the role of E against an honest C. Also assume that the output of C is
(F, e, d, o) 6= ⊥ (else there is nothing to show). We now make the following observations:

1. As C did not output ⊥ during the execution of IGbπ, by the correctness of FCOM, it must mean that B com-
mitted (and later opened to) valid cut-and-choose challenges

(
{(ag, bg, g)}g∈CheckGates , {(cj , j)}j∈CheckWires

)
and bucket mapping functions (BucketOf,AuthOf) and thus these are part of his view.

2. The next thing to note is that C also sent
{
Gg
}
g∈GGates to B and that EvalGates ⊂ GGates \ CheckGates

is of size qβ (else C would have output ⊥). Recall that EvalGates is directly identified from BucketOf.

44

3. Similarly we see that C also sent {Hj}j∈AWires to B and that AuthWires ⊂ AWires \ CheckWires is of size
qα+ n(2β + 1) (else C would have output ⊥). Recall that AuthWires is directly identified from AuthOf.

4. It is also clear that C sent all solderings specified by BucketOf and AuthOf to B, as it is honest.

Finally notice that given BucketOf the reenumeration described in Section A.2 is completely deterministic. It
now follows by the above observations that all information for computing F̂ is in the view of B, when C does
not output ⊥. In particular,

{
Gg
}
g∈EvalGates, {Hj}j∈AWires, the solderings, BucketOf and AuthOf completely

define
{
G̃g

}
g∈EvalGates

and
{
H̃j

}
j∈AuthWires

.

ExE therefore simply extracts the above information from B’s view and lets its output be F̂ =
(
n,m, q,

(lp, rp,BucketOf,AuthOf) ,
{
G̃g

}
g∈EvalGates

,
{
H̃j

}
j∈AuthWires

)
. By the above it is now clear to see that indeed

F = F̂ if C does not output ⊥ in the execution of IGbπ. We thus conclude that the scheme IGarbπ has the
knof property.

Lemma 7 (corr). The scheme IGarbπ has the corr property.

Proof. Consider the game CorrAIGarbπ (1k) where an adversary A inputs (f, x, I) to CorrIGarbπ . We assume that
x ∈ {0, 1}f.n and I ⊆ [f.n] as else there is nothing to prove. CorrIGarbπ now interprets f as a binary circuit C
on the form specified in Section 2, under the constraint that the last |I| bits of the input wires correspond
to the indices of I. In other words the indices of I are treated as the inputs of E. It then runs C(1k, f) and
E(1k, f) as specified by IGbπ.

Then by the linearity of the ECC code C, correctness of HGarb, FOT, and FCOM, the projective algorithms
IEn, IOp, IVe do not output ⊥ and neither does IEv. The requirement that IDe(d, Z) = f(x) follows clearly by
the fact that BucketOf ∈ B and AuthOf ∈ V (which holds since both parties ran IGbπ honestly) and we thus
conclude that IGarbπ has the corr property.

Lemma 8 (Projectiveness). The scheme IGarbπ is projective.

Proof. It is clear that the produced e and o of the protocol IGbπ are of the required form. The verification
algorithm IVe defined in Figure 10 clearly also verifies openings individually so it also satisfies the requirement.
Finally, the projective algorithms IEn and IOp clearly coincide with the requirements as well. We thus conclude
that the scheme IGarbπ has the proj property.

The proofs of the remaining properties, unqie, rob.con, unqoe and tok.com requires an extractor ExC,
which we will now define. Furthermore, the proof of unqie and rob.con requires the two helper lemmas,
Lemma 13 and Lemma 14. We will prove the helper lemmas in the very end of this appendix.

ExC(A). Let A be an adversary playing the role of C in an execution of IGbπ. Assume that it is in a state
where it first received an input 1k, then output some function f and finally ran an instance of IGbπ playing
against an honest E. Also assume that the output of E is (F, v) 6= ⊥. As E does not output ⊥, it must be
the case that A correctly answers the linear combination checks of the protocol. By viewing the challenge
matrix V as consisting of rows of random puzzles as defined in Appendix E we can construct ExC using the
extractor S defined in Theorem 2. For clarity the solution to such a puzzle is the opening to the XOR of the
commitments defined by the puzzle. Since there are 7.3(s+ 3) rows in each V used in IGbπ the condition for
Theorem 2 is satisfied. Also since the ECC C has distance d = s+ 4 we have that Advdou

Π,D(k, r) ≤ 2−42−s as
required by the theorem.

By invoking the theorem we therefore get that if Alice (playing the role of R in the theorem) can successfully
solve these random puzzles, we can run the poly-time S as defined in Theorem 2 on her view to extract all
the basis solutions (σ̂1, . . . , σ̂t) except with probability 2−s. We now notice that each of these basis solutions
σ̂i are in fact a valid opening to wire i.

Since in the first linear combination check the random puzzles involve all produced wires we there-
fore end up extracting (ê1, . . . , êγ) which are the openings to all individual keys K̂0

i for i = 1, . . . , γ.

45

As the extractor ExC knows BucketOf and WiresOf, it reenumerates the wires according to the proce-
dure described in Section A.2. Finally it defines ê =

((
K̂1, K̂1 ⊕ K̂W+1

)
, . . . ,

(
K̂n, K̂n ⊕ K̂W+1

))
and

d̂ =
((
Ôw−m+1, Ôw−m+1 ⊕ ÔW+1

)
, . . . ,

(
Ôw, Ôw ⊕ ÔW+1

))
and outputs these.

Lemma 9 (unqie). IGarbπ has the property unqie.

Proof. First let ê be the extracted produced by ExC(A) after a has participated in an execution of IGbπ. Next
let X, O, I and {(i, x′i)} be the output of A . We start by assuming that IEn(ê, IEn−1(ê, X)) 6= X as else
there is nothing to prove. First notice that IEn(ê, IEn−1(ê, X)) 6= X can only occur if there exists an i ∈ [n]
such that K̂0

i 6= Xi 6= K̂0
i ⊕∆. We then split the proof into two cases, depending if i ∈ I or not. For the case

where i ∈ I we see that by Lemma 13 IVe (v,X,O, {(i, x′i)}) = ⊥ except with prob. 2−s, because this would
either imply that A guesses at least d = Ω(s) of C’s watch bits or the extraction of ê failed in the first place.

For the second case, i.e. i 6∈ I, we claim that IEv(F,X) = ⊥ if IEn(ê, IEn−1(ê, X)) 6= X except with prob.
2−s. To see this assume for contradiction this is not the case. Then recall that in the Input Authentication
step of IGbπ, A solders 2β+1 wire authenticators onto K̂0

i except with probability 2−s, again due to Lemma 13.
Next see that in order for IEv(F,X) 6= ⊥, then in step 3 of IEv Xi needs to be accepted by at least β + 1
of these wire authenticators. As we have that K̂0

i 6= Xi 6= K̂0
i ⊕∆ this can only happen if at least β + 1 of

the wire authenticators are corrupt. However the probability of this occurring is bounded in the analysis of
Lemma 14 which is bounded by 2−s for appropriate values of β.

Lemma 10 (rob.con). If IGarbπ has the corr property, then it also has the rob.con property except with
probability at most

q ·

(∏1
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
+

∑β
l=2

l∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·
α+2−l∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

))
+ 2−s

Proof. By definition of ê = (K0
1 ,K

1
1 , . . . ,K

0
n,K

1
n) and d̂ = (Ô0

w−m+1, Ô
1
w−m+1, . . . , Ô

0
w, Ô

1
w) we see from

inspection of RobConAIGarbπ (1k) in Figure 17 that it is sufficient to prove that

IEv(F, (K̂x1
1 , . . . , K̂xn

n)) = (Ôz1
w−m+1, . . . , Ô

zm
w) .

where z ← f(x) except with negl. probability in k.
We let (F, v) be the output of E after running IGbπ with A . We then run ExC(A) to extract the

encoding and decoding information ê, d̂. Also we let x be the output of A and we assume that x ∈ {0, 1}f.n,
since else there is nothing to show. By definition of ExC we have that ê = (K̂0

1 , K̂
1
1 , . . . , K̂

0
n, K̂

1
n) and

d̂ = (Ô0
w−m+1, Ô

1
w−m+1, . . . , Ô

0
w, Ô

1
w) except with probability 2−s.

By Lemma 14 we also have that the correct key is always output by a bucket (assuming it is given correct
input keys) except with probability at most

q ·

(∏1
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
+

∑β
l=2

l∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·
α+2−l∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

))

By Lemma 13 we also have that the solderings used to build F are correct, except with probability 2−s. The
above combined with the scheme having the corr property proves the claim.

46

Lemma 11 (unqoe). If IGarbπ has the unqie and rob.con properties, then the scheme has the unqoe property
as well.

Proof. Let ê and d̂ be the output of the extractor ExC(A). Next, assume X is output by A in step 4 and
that IEv(F,X)→ Z 6= ⊥. Since we are now in the same situation as in the game UnqIEAIGarbπ(1k) a simple
reduction with I = ∅ shows that IEn

(
ê, IEn−1 (ê, X)

)
= X, except with negl. probability in k since the scheme

has the unqie property.
What remains to be shown is that IDe−1

(
d̂, IDe

(
d̂, Z

))
= Z, except with negl. probability in k. Because

IEn
(
ê, IEn−1 (ê, X)

)
= X we can view x ← IEn−1(ê, X) as the output of A. This means that we are in

the same situation as in the game RobConAIGarbπ(1k) and thus it can be shown by a simple reduction
that f(x) = IDe

(
d̂, IEv (F, IEn (ê, x))

)
= IDe

(
d̂, IEv (F,X)

)
= IDe

(
d̂, Z

)
since the scheme has the rob.con

property. In particular we have that IDe
(
d̂, Z

)
6= ⊥. Then it follows from the description of IDe in Figure 10

that IDe−1
(
d̂, IDe

(
d̂, Z

))
= Z. We thus conclude that if IGarbπ has the unqie and rob.con properties it also

has the unqoe property.

Lemma 12. IGarbπ has property tok.com.

Proof. Based on the output of the extractor ExC(A) to extract ê, we argue that it is not possible for A to
construct seemingly correct (in accordance with an execution of IGbπ and ê) values X, O, I and {(i, x′i)}
such that IEn−1(ê, X)→ x with x′i 6= xi 6= ⊥ for some i ∈ I.

Let ê and d̂ be the output of ExC(A). We then wish to show that it is not possible for A to produce X, O, I
and {(i, x′i)}i∈I with I ⊆ [f.n] such that x← IEn−1(ê, x) with x 6= ⊥, yet such that IVe(v,X,O, {(i, x′i)}) = >
while there exists i ∈ I such that xi 6= x′i. By the correctness of IEn this means that she can find X consistent
with the values in ê and also find an O such that IVe accepts a change of the semantic value of at least one
key. Now since ExC(A) extracted ê through the ECC commitments we have from Lemma 13 that A cannot
construct any opening to a value different from what was actually committed to except with probability 2−s.
This means that the only way she can succeed is to either open a commitment to a 0-key when the opening
was supposed to be for a 1-key or vice versa. The opening to a 1-key will contain two indices, one for the
0-key and one for ∆, and the opening to a 0-key only one index. Furthermore, since we assume lsb(∆) = 1
the message in these two commitments will be distinct. Thus this will also only be possible with probability
2−d. Since we assume that d = s+ 4 we get that this is negligible which concludes the proof.

We now prove the helper lemmas used in Lemma 10.

Lemma 13 (Binding of commitments). In an execution of the interactive protocol IGbπ, using a binary
and symmetric ECC [Γ, k, d] where d = s+ 4, after the first linear combination check, A can only open any
one commitment to a single message except with probability 2−s.

Moreover, when opening to the XOR of any subset of these messages, A can only open to the XOR of the
fixed underlying messages except with probability 2−s.

Proof. As already argued in in the description of ExC(A), we have that Advdou
Π,D(k, r) ≤ 2−42−s as the code

has minimum distance d = s + 4 and C asks A 7.3(s + 3) puzzles in each linear combination check. Both
statements then follow from Theorem 2, as this gives us that we can extract a unique commitment to all
individual wires except with probability 2−s in each linear combination check execution.

47

Lemma 14 (Probability of corrupt bucket). For any F output by IGbπ, we have that the IEv algorithm
of Figure 10 always outputs the correct key for any bucket except with probability at most

q ·

(∏1
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
+

∑β
l=2

l∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·
α+2−l∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

))

Proof. Before discussing IGbπ, consider an experiment where a potentially malicious A playing the role of C
is given two buttons at the start of the protocol for one arbitrary bucket, a corrupt gate button and corrupt
authenticator button. The outcome of pressing each button will be either success, failure or neither, where
success will mean a gate (wire) of the bucket will be arbitrarily defined by A as long as it has the correct
form, failure will mean that a gate (wire) is selected for checking and does not pass the check and neither
will mean that a gate (wire) is bad and is either not selected for checking and falls into another bucket than
the one we look at, or it is selected for checking but passes the check. Furthermore we allow A to learn the
outcome of pressing a button, before deciding on pressing either button once more. Also if the outcome is
success Bob will not learn that the button was pressed. If at any time the result of either buttons is failure
the experiment ends and Bob learns that A pressed the button.

Assuming, without loss of generality, that A starts by constructing all the bad gate (wires) then it should
be clear that the above experiment is sufficient to model A’s ability to corrupt gates or wires in an execution
of IGbπ. In fact it gives her strictly more power as she can adaptively change her strategy based on the
outcome of the current result of pressing the button. This means she has no additional risk of getting caught,
once she deems her corruption strategy succeeded. This is in contrast to an execution of IGbπ where A must
decide a priori which gates and wires to corrupt and after this she is committed to her choice (as she sends
these objects to Bob). The event of failure will model the probability that A gets caught in either of the
cut-and-choose checks performed by Bob in IGbπ. It is sufficient to only look at the experiment for a single
bucket, because in IGbπ all buckets have the same probability of becoming corrupted and therefore we can
use a simple union bound to bound the probability of any bucket becoming corrupted (we will specify what a
corrupt bucket means later in the proof).

Before continuing we need to calculate the probability of the events success and failure when pressing the
buttons such that they correctly model an execution of IGbπ. We first consider the gate button. Recall that
a gate is chosen for checking in the cut-and-choose step of IGbπ with probability pg. If a gate is corrupted
and selected for checking we see that it will get caught with at least probability 1

4 , since it is checked on one
random input out of four possible. Thus the probability of catching a corrupt gate is at least pg · 1

4 . For the
same reason a gate is not chosen for check with probability (1− pg) and the probability a gate ends up in the
bucket in question is therefore at most (1− pg) · iqβ where i is the number of non-corrupt gate slots left in the
bucket.10 The decrease caused by i needs to be taken into account because each time a corrupt gate ends up
in the bucket it takes up a slot, so there is less probability for corrupting the following gates as there are less
free slots in the bucket.

As we only consider whether pressing the button results in success or failure we normalize these two
outcomes as complementary events. We see that pg · 1

4 = pg · qβ4qβ and (1− pg) · iqβ = (1− pg) · 4i
4qβ . Multiplying

both expressions by 4qβ and dividing the success probability with the sum of the success and failure probability
we see that the relative probability of success becomes

(1− pg)4i
pgqβ + (1− pg)4i

(1)

where i is the number of non-corrupt gate slots in the bucket.
10 This is an upper bound since there is a slight probability a corrupt gate (wire) will not be part of EvalGates

(AuthWires). Also we do not consider consider non-corrupt gates (wires) taking up any slots.

48

In an analogously way we determine the relative success probability for the authenticator button. The
only difference is that here a corrupt authenticator is caught with probability at least 1

2 , because there are
only two possible values as opposed to four the gates. By the same procedure as above we have that the
relative probability of success becomes

(1− pa)2j
paqα+ (1− pa)2j (2)

where j is the number of non-corrupt authenticator slots for the bucket.
First recall that we are in a setting where α = β − 1. Let E1 be the event that all β gates of the bucket

become corrupt, E2 the event that β − 1 gates and one authenticators become corrupt, E3 the event that
β − 2 gates and two authenticators become corrupt and so on until Eβ which denotes the event that one gate
and β − 1 authenticators become corrupt. We now claim that when evaluating F using IEv, all buckets will
always output the correct key if none of the above events occur.

The reason for the bucket always outputting the correct key is that if the above cases are ruled out, there
is always a correct majority when considering both authenticators and gates. Notice that we require that at
least one gate be correct, since else we cannot guarantee that the correct key is part of the candidate output
keys. Thus Pr[corrupt bucket] = Pr[E1 ∨ E2 ∨ · · · ∨ Eβ] ≤

∑β
b=1 Pr[Eb] by the union bound.

We now turn to the calculation of this probability. From (1) and (2), the observation that the probabilities
of bad gates and authenticators ending up in the same bucket are independent and by a union bound, we
can conclude that there are no corrupt buckets after A has participated in the above mentioned experiment
except with probability at most

q ·
β∑
b=1

Pr[Eb] = q ·

(1∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
+

2∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·

α∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

)
+

3∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·
α−1∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

)
+

β∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·

1∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

))

= q ·

(1∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
+

β∑
l=2

l∏
i=β

(
(1− pg)4i

pgqβ + (1− pg)4i

)
·
α+2−l∏
j=α

(
(1− pa)2j

paqα+ (1− pa)2j

))

As we already argued that in the experiment A is given more power than in an execution of IGbπ the statement
follows.

49

E Hard-core Puzzles and Solutions

In this section we prove a theorem which is best seen as a variant of the hard-core bit theorem. The hard core
of the hard-core bit theorem say that if you consider a secret value x ∈ {0, 1}` and you are given an algorithm
R which for uniformly random challenges π ∈ {0, 1}` can return you the inner product σ = 〈x, π〉 with a
probability which is noticeably better than random guessing, then you can compute x using a polynomial
number of queries to R. We are going to generalize this to linear functions returning longer outputs than the
single bit returned by the inner product. We phrase this in terms of linear puzzles. This is not a dramatic
generalization, as it can be seen as several applications of the one-bit hard-core bit theorem using the same
challenge π for several instances, which is known to work. However, after generalizing to longer replies,
we complicate things by allowing that each challenge has many correct answers. I.e., for each challenge
π ∈ {0, 1}`, we will allow that there exists several values σ such that σ is a correct reply to π. In the hard-core
bit theorem setting there is only one correct answer to π, namely the inner product. Clearly, if any σ is a
correct answer, then we cannot extract x from an algorithm R returning correct answers, as R can easily be
constructed without knowing x. It turns out, however, that if we make the assumption that it is hard to
find two distinct correct replies to some chosen π, then we can still prove a hard-core bit like result. The
reduction is considerably complicated by the fact that the reduction cannot test whether a reply is correct.
To make the reduction work, we therefore set it up such that either a hard-core bit theorem like reduction
works or among the replies returned by R there is a large fraction of distinct correct answers to the same
challenge. Then we can make a guess at where the collision is sitting and make a reduction to the hardness of
computing different correct replies to the same challenge. The formal details follow now.

A puzzle system Π = (Gen,Ver) consists of two algorithms. A randomised algorithm Gen called the puzzle
generator. It takes as input the security parameter k. It outputs (pk, vk), where pk is the puzzle key and vk is
the verification key. And a deterministic algorithm Ver. It takes as input vk, a puzzle identifier π ∈ {0, 1}`
and a potential solution σ ∈ {0, 1}∗. Here ` is an integer fixed by the system, specifying the length of the
puzzles. It outputs ⊥ or >. If Ver(pk, π, σ) = >, then we say that σ is a solution π. We say that (Gen,Ver) is
⊕-homomorphic if Ver(vk, π1, σ1) = > and Ver(vk, π2, σ2) = > implies that Ver(vk, π1 ⊕ π2, σ1 ⊕ σ2) = >. We
only consider ⊕-homomorphic puzzle systems below.

For i = 1, . . . , `, let ei = 0i−110`−i such that e1, . . . , e` is the canonical basis for {0, 1}`. We call e1, . . . , e`
the basis puzzles. Note that given a solution to all basis puzzles in an ⊕-homomorphic puzzle system, one can
efficiently compute the solution to any other puzzle in the system. This gives rise to a notion of solver, which
is an algorithm that can compute solutions to all basis puzzles, as defined now. We use Sol(vk) to denote
the set of all vectors (σ1, . . . , σ`) for which ∧`i=1Ver(vk, ei, σi) = >. A solver is a randomized algorithm S. It
takes as input pk and it outputs (σ1, . . . , σ`). We use Advsol

Π,S(k) to denote the probability that S solves Π,
i.e., the probability that S(pk) ∈ Sol(vk) when (pk, vk)← Gen(1k).

We use Dou(vk) to denote the set of (i, σ, σ′) for which Ver(vk, πi, σ) = > and Ver(vk, πi, σ′) = > and
σ′ 6= σ. A double solver is a randomized algorithm D. It takes as input pk and it outputs (i, σ, σ′). We use
Advdou

Π,D(k) to denote the probability that D solves a puzzle in two different ways, i.e., the probability that
D(pk) ∈ Dou(vk) when (pk, vk)← Gen(1k).

We finally introduce the notion of a random solver, which is an algorithm which solves a number of
random puzzles. Let r be an integer, the number of given random puzzles. We use Sol(vk, π1, . . . , πr) to
denote the set of all vectors (σ1, . . . , σr) for which ∧ri=1Ver(vk, πi, σi) = >. A random solver is a randomized
algorithm R. It takes as input pk and π1, . . . , πr. It outputs (σ1, . . . , σr). We use Advran

Π,R(k, r) to denote the
probability that R solves r random puzzles, i.e., the probability that R(pk, π1, . . . , πr) ∈ Sol(vk, π1, . . . , πr)
when (pk, vk)← Gen(1k) and each πi is sampled uniformly at random from {0, 1}`.

We now show that if there exists a poly-time random solver, then there also exists a poly-time solver,
unless it is easy to find double solutions.

Lemma 15. For all 0 < α < 1
2 and for all 0 < β < 1

4 and all poly-time R and integers r there exists
poly-time S and poly-time D such that

Advsol
Π,S(k) ≥ Advran

Π,R(k, r)− ε−1Advdou
Π,D(k)− 2−s−3 ,

50

where s+ 3 = (− log2((1
2 + α)(1

2−β)))r and ε = min
(
β, 4α−1

1
2 +α

)
− 2−2s.

Proof. The proof will have the following form. From any random solver R we construct S which can take R
in a state where it just successfully answered r random challenges and extract from R using a polynomial
number of runs of R a correct solution to all basis puzzles. There will be a small probability 2−s−1 that R
answers r random puzzles correctly and that S cannot extract, which explains the 2−s−1 occurring on the
RHS of the bound.11 The reduction can also fail if R can compute distinct correct solutions to the same
puzzle, but then S can do the same, with probability ε, which explains the middle term occurring on the
RHS of the bound.

So, assume we sample (pk, vk)← Gen(k) and uniformly random (π1, . . . , πr) and (σ1, . . . , σr)← R(π1, . . . ,
πr). It is sufficient to prove that under the assumption that (σ1, . . . , σr) ∈ Sol(vk, π1, . . . , πr) we can compute
all solutions, except with probability ε−1Advdou

Π,D(k)− 2−s−1.
We first argue that it happens with probability at most 2−s−1 that a random run with puzzles (π1, . . . , πr)

is accepting and does not have the property that there exists a (1
2 + α)-fraction of positions i such that if one

reruns R on input (π1, . . . , πi, π
′
i+1, . . . , π

′
r) (for uniformly random π′j for j = i+ 1, . . . , r), then R returns an

elements from Sol(vk, (π1, . . . , πi, π
′
i+1, . . . , π

′
r)) with probability at least 3

4 + β.
To be more precise, given any π = (pk, π1, . . . , πr) for verification key vk, we call position i bad if

Pr[R(pk, π1, . . . , πi, π
′
i+1, . . . , π

′
r) ∈ Sol(vk, π1, . . . , πi, π

′
i+1, . . . , π

′
r)] ≤ 3

4 +β when each π′i is sampled uniformly
at random from {0, 1}`. We say (pk, π1, . . . , πr) ∈ BadI(vk) if it both holds that there are at least I bad
positions in (pk, π1, . . . , πr) and yet (pk, π1, . . . , πr) ∈ Sol(vk, π1, . . . , πr) . The claim is that

Pr[(pk, π1, . . . , πr) ∈ Badr(1
2−α)(vk)] ≤ 2−s ,

when (pk, vk)← Gen(1k) and each πi is sampled uniformly at random from {0, 1}`.
We first analyse the probability that (pk, π1, . . . , πr) ∈ BadI+1(vk) conditioned on (pk, π1, . . . , πr) ∈

BadI(vk). Notice that for any I and (pk, π1, . . . , πr) ∈ BadI(vk) it follows that there is an I’th bad position.
Consider any I and any (pk, π1, . . . , πj) ∈ BadI(vk), where j ≤ r is the I’th bad position. To have that
(pk, π1, . . . , πj , π

′
j+1, . . . , π

′
r) ∈ BadI+1(vk) we must get a bad position for some j′ > j. This means that r > j.

Since position j is bad it follows that for fixed (pk, π1, . . . , πj) and a uniformly random π′j+1 it holds that
(pk, π1, . . . , πj , π

′
j+1) ∈ BadI(vk) with probability at most 1

2 + α, as BadI(vk) ⊂ Sol(vk, π1, . . . , πj , π
′
j+1) and

(pk, π1, . . . , πj , π
′
j+1) ∈ Sol(vk, π1, . . . , πj , π

′
j+1) with probability at most 1

2 + α, by definition of position j
being bad. Since (pk, π1, . . . , πj , π

′
j−1) ∈ BadI+1(vk) implies that (pk, π1, . . . , πj , π

′
j+1) ∈ BadI(vk) it follows

for all j′ > j that the probability that (pk, π1, . . . , πj , π
′
j+1, . . . , πj′) ∈ BadI+1(vk) is less than 1

2 +α. Therefore

Pr[(pk, π1, . . . , πr) ∈ BadI+1(vk)|(pk, π1, . . . , πr) ∈ BadI(vk)] ≤ 1
2 + α .

Since y ∈ BadI+1(vk) implies that y ∈ BadI(vk) it follows by induction that

Pr[(pk, π1, . . . , πr) ∈ Badr(1
2−β)(vk)|(pk, π1, . . . , πr) ∈ Bad0(vk)] ≤ (1

2 + α)r(1
2−β) .

Since Pr[y ∈ Bad0(vk)] = 1, it follows that

Pr[(pk, π1, . . . , πr) ∈ Badr(1
2−β)(vk)] =

Pr[(pk, π1, . . . , πr) ∈ Badr(1
2−β)(vk)|(pk, π1, . . . , πr) ∈ Bad0(vk)] .

We can therefore continue the analysis under the assumption that the puzzles in (pk, π1, . . . , πr) 6∈ Badr(1
2−β)(vk)

and prove that in that case we can compute all solutions, except with probability ε−1Advdou
Π,D(k).

Consider the following algorithm B(pk,π1,...,πr),i(π̂). It takes as input (pk, π1, . . . , πr) and i ∈ {1, . . . , r}
along with a challenge π̂ to which it will try to compute a solution. It samples uniformly random (π′i+1, . . . , π

′
r),

samples
(σ1, . . . , σr)← R(pk, π1, . . . , πi, π

′
i+1, . . . , π

′
r)

11

51

(σ̄1, . . . , σ̄r)← R(pk, π1, . . . , πi, π
′
i+1 ⊕ π̂, . . . , π′r) ,

and outputs σi+1 ⊕ σ̄i+1. Consider now any (pk, π1, . . . , πr) and assume that the i is such that position i in
(pk, π1, . . . , πr) is not bad. Then it holds that

Pr[Ve(vk, π̂, B(pk,π1,...,πr),i(π̂) = >] ≥ 1
2 + 2β . (3)

To see this, note when i is not bad, then σi+1 is a solution to π′i+1 with probability at least 3
4 + β and σ̄i+1 is

a solution to π′i+1 ⊕ π̂ with probability at least 3
4 + β. Hence, by a union bound, the probability that both

are correct is at least 1− (1
4 − β)− (1

4 − β). Then apply that the puzzle is ⊕-homomorphic.
We would like to amplify the above algorithm such that when i is a good position, then it computes a

correct solution except with negligible probability. To this end, notice that in the bound in (3) the probability
is over the random values sampled by the algorithm. We can therefore run the algorithm a number of times
until we have a majority of correct solutions except with negligible probability. However, we cannot just
take majority at this point, as the correct solutions might not be identical. We therefore adopt a slightly
more complicated strategy. Consider the following algorithm F(pk,π1,...,πr)(π̂). Pick γ such that if you flip γ
independent coins which all come out head with probability at least 1

2 + 2β then there will be a fraction
of 1

2 + β heads except with probability 2−2s/(r`). Then for i = 1, . . . , r, sample σi ← B(pk,π1,...,πr),i(π̂) until
having γ samples. If there is a value occurring more than (1

2 − β)γ times among these γ samples, then let
σi be that that value, otherwise let σi = ⊥. Then, if there is a value σ occurring (1

2 − α)r times in the list
σ1, . . . , σr, then output that value. Otherwise ⊥.

We first argue that for all runs of F , if it does not output ⊥, then the output is correct except with
probability 2−2s/`. We have chosen γ such that when i is good, then there are at least (1

2 + β)γ correct
samples except with probability 2−2s/r`. Since we produce such pools of γ samples r times, a union bound
allows us to ignore the event that for a run on some good i there are not (1

2 + β)γ correct samples. It then
holds for all good i that any value occurring more than (1

2 − β)γ times is correct. Therefore, when i is good,
then σi is correct when σi 6= ⊥. Furthermore, if a value σ occurs more than (1

2 − α)r times in the list, then it
was output by at least one run of F on a good position i, as there are (1

2 + α)r good positions.
The algorithm S then works as follows: For j = 1, . . . , `, compute the solution σj ← F (ej , pk, π1, . . . , πr).

By a union bound, it holds for all σj that if σj 6= ⊥, then σj is correct, except with probability 2−2s. It is
therefore sufficient to prove that the probability that σj 6= ⊥ is at most min

(
β, 4α−1

1
2 +α

)
.

We break the analysis up into two cases.

1. Among the r values σi at least 2(1
2 − α)r of them outputs ⊥.

2. Among the r values σi less than 2(1
2 − α)r of them outputs ⊥.

We first analyse Case 1. Since we are analysing under the assumption that there are at most (1
2 −α)r bad

positions, we know that among the positions i for which σi = ⊥, at least half of them are good. So, if we
sample a random i for which σi = ⊥, then i is good with probability at least i. Assume then that i is good.
We are analysing under the assumption that among the γ runs of B(pk,π1,...,πr),i(π̂) at most (1

2 − β)γ are bad.
That means that if we pick a random of these outputs, call it σi,1 then it is good with probability at least
1
2 + β. Assume that it is good. Since σi = ⊥ no sample occurs more than (1

2 − β)γ times, so in particular σi,1
occurs at most (1

2 − β)γ times. That means that if we sample a uniform other output among the samples
that are different from σi,1, then we get another good sample with probability at least (1

2 +β)γ−(1
2−β)γ

γ−(1
2−β)γ = 2β

1
2 +β .

This gives two distinct opening with probability at least 1
2 (1

2 + β) 2β
1
2 +β = β.

We then analyse Case 2. In this case, at least 2αr of the values σi are different from ⊥. Of these values at
most (1

2 − α)r are bad. So, there are at least 2αr − (1
2 − α)r = (3α − 1

2)r good position different from ⊥.
Sample a random position and assume that σi is correct. This happens with probability at least (3α− 1

2).
Now sample a random σj for which σj 6= ⊥ and σj 6= σi. As σi occurs at most (1

2 − α)r times the second
value will be correct too with probability at least (3α− 1

2)−(1
2−α)r

r−(1
2−α)r = 4α−1

1
2 +α

52

We now define a game played between a random solver R which has to answer r random puzzles and
a solver which has to solve all basis puzzles. The random solver wins if it can answer the r puzzles and S
cannot solve all basis puzzles. The solver is given the state of R after an accepting run.

Sample (pk, vk)← Gen(1k) and then sample πi ∈ {0, 1}` uniformly at random for i = 1, . . . , r. Then sample
(σ1, . . . , σr) ← R(pk, π1, . . . , πr) and let ρ denote the randomness used by R. Then sample (σ̂1, . . . , σ̂`) ←
S(pk, π1, . . . , πr, ρ). Define Advsol,ran

Π,R,S (k, r) to be the probability that (σ1, . . . , σr) ∈ Sol(vk, π1, . . . , πr) and
(σ̂1, . . . , σ̂`) 6∈ Sol(vk), i.e. the probability that (σ1, . . . , σr) is a solution to the r random puzzles and
(σ̂1, . . . , σ̂`) is not a solution to all basis puzzles.

Theorem 2. Assume that Advdou
Π,D(k, r) ≤ 2−42−s for all poly-time D. Assume that s ≥ 3. Let r = 7.3(s+3).

Then for all poly-time R there exists poly-time S such that

Advsol,ran
Π,R,S (k, r) ≤ 2−s .

Proof. Note that the S constructed in the above lemma has the required form. Then let β = 1
8 and set α = 17

62 .
Then r = (− log2((47

62) 3
8))−1(s+ 3) < 7.3s+ 22 and ε = 2−3 − 2−2s and therefore ε−1Advdou

Π,D(k)− 2−s−3 ≤
(2−3 − 2−2s)−12−42−s + 2−s−3 ≤ 2−s, where the last inequality is true for all s ≥ 3

53

F Ideal Functionalities

In this section we define the ideal functionalities we need in our protocol.

Functionality FfSFE

Setup: We denote the two parties of the protocol by A and B. The parties agree on k and f . The parties also
agree on nA and nB such that f.n = nA + nB.

Input A: The ideal functionality takes exactly one input x ∈ {0, 1}nA from A.
Input B: The ideal functionality takes exactly one input y ∈ {0, 1}nB from B.
Abort: If any corrupted party inputs abort, then output abort to the other party and terminate.
Corrupt A: On input (corrupt) from A, let her be corrupt. She can then specify a set {(i, βi)}i∈I , where

I ⊆ {1, . . . , nB} and βi ∈ {0, 1}. If βi = yi for i ∈ I, then output correct! to A. Otherwise, output abort to
both parties and terminate.

Evaluation: If both parties gave input, then on input evaluate from the adversary, compute z ← f(x, y) and
output z to A.

Fig. 21. Ideal Functionality FfSFE.

Functionality FOT

Initialization
Both P1 and P2 input (init).

Transfer
– Upon receiving (sid, ssid, receiver, b) where b ∈ {0, 1} from P1, if no tuple (sid, ssid, receiver, ·) is stored,

then store the tuple (sid, ssid, receiver, b) and output (sid, ssid, bit received) to P2. Otherwise replace the
stored tuple with (sid, ssid, receiver,⊥).

– Upon receiving (sid, ssid, sender,m0,m1) where m0,m1 ∈ {0, 1}k from P2, if a tuple (sid, ssid, receiver, b) is
stored where none of the elements is the symbol ⊥, then output (sid, ssid,mb), otherwise output nothing.
Finally, update the tuple such that what is now stored is (sid, ssid, receiver,⊥).

Corruption
A corrupted player can input abort at any time, in which case ⊥ is output to the honest player and the
functionality no longer responds to input.

Fig. 22. Ideal Functionality FOT.

54

Functionality FCOM

Initialization
Both P1 and P2 input (init).

Input
– Upon receiving the command (commit, sid, ssid,m) from either P1 or P2, if (commit, sid, ssid, ·) has not

been received before, then the functionality stores (sid, ssid,m, name) where name = P1 if P1 is the party
sending the command and name = P2 otherwise. The functionality then outputs (commit, sid, ssid) to
both parties.

Output
Upon receiving (open, sid, ssid) from P1 if a commitment (sid, ssid, ·,P1) is stored then the functionality outputs
(open, sid, ssid,m) to P2. Similarly upon receiving (open, sid, ssid) from P2 if a commitment (sid, ssid, ·, ·,P2) is
stored then the functionality outputs (open, sid, ssid,m) to P1.

Fig. 23. The Ideal Functionality FCOM.

55

G MiniLEGO Recap

The MiniLEGO protocol described in [FJN+13] assumes access to a XOR-Homomorphic Commitment (XHC)
functionality. The authors describe a possible realization based on OT and an Error Correcting Code (ECC).

Free-XOR Both MiniLEGO and our protocol have the constraint that the XOR of both the 0- and 1-key on
any wire of any garbled gate in the circuit yields the same value, ∆, which we call the global difference. This
constraint comes from the free-XOR optimization and makes it possible to avoid garbling XOR gates, since
such a gate can be computed locally by simply letting the output 0-key be defined as the XOR of the two
input 0-keys. That is, for any j being a wire index we have that K1

j = K0
j ⊕∆ and in turn that for any gate g:

Lag ⊕Rbg =
(
L0
g ⊕R0

g

)
⊕ (a⊕ b)∆ = Oa⊕bg .

We notice that this also makes it possible to do free XOR gates by simply adding an extra wire to the circuit
with a static 1-key. When we wish to compute the negation of any wire, we simply XOR it with the static
wire containing the 1-key.

Soldering The free-XOR optimization furthermore makes it easy to solder wires of gates together which is
needed in a LEGO protocol. More specifically what we mean when we say that we solder two wires together
is that we release an auxiliary value, called the soldering, that can transform the key representing bit b on
one wire into the key representing bit b on another. More concretely, assume we wish to solder the output
wire of gate g to the left input wire of gate g + 1. To do so we release the value SLg+1 = O0

g ⊕ L0
g+1. When

gate g outputs the key representing the bit b then it is easy to learn the left b-key for gate g + 1. Specifically
it can be computed as follows:

Lbg+1 = Obg ⊕ SLg+1 =
(
O0
g ⊕ (b ·∆)

)
⊕O0

g ⊕ L0
g+1 = L0

g+1 ⊕ (b ·∆) .

This obviously generalizes when one wishes to solder together several different wire, e.g. if we wish to solder
the output wire of gate g to the left input wire of gate g+ 1, g+ 2 and g+ 3, it is enough to release the values:

SLg+1 = O0
g ⊕ L0

g+1, SLg+2 = O0
g ⊕ L0

g+2, SLg+3 = O0
g ⊕ L0

g+3 .

It is also easy to “inject” XOR gates into the soldering: Say we wish to compute the XOR of the output
of gate g and g + 1 and solder the result to the left wire of gate g + 2 we simply release the value
SLg+2 =

(
O0
g ⊕O0

g+1
)
⊕L0

g+2. In general we simply let the soldering be the XOR of the 0-keys of the wires we
wish to XOR together and the 0-key of the wire we wish to solder onto.

Informal MiniLEGO Description The MiniLEGO protocol can informally (when abstracting away some
details) be described by the following steps:

Setup The XHC functionality is initialized and Bob makes commitments to a randomly chosen cut-and-
choose challenge, along with a random function for combining the gates into buckets and these buckets
into the circuit they wish to compute. The cut-and-choose challenge consists of a partitioning of all the
garbled gates into two equally sized sets, one as a set of check gates and the other as a set of evaluation
gates. The check gates are used to verify that Alice has constructed a large amount of the gates honestly,
and the evaluation gates are combined into buckets to form the fault tolerant circuit. Furthermore, the
challenge contains two random bits for each of the check gates which need to be evaluated on as part of
the opening.12 Bob then uses a special OT method of the XHC functionality to commit to the bits of to
the circuit and Alice makes an XHC to the global difference, ∆.

12 Notice that checking a gate on more than one input combination would leak the global difference, which completely
compromises the security.

56

Garbling Alice picks a global difference ∆ and constructs the garbled AND gates using ∆, by picking random
0-keys for the left and right input wires of each gate. She further constructs XHC to the 0-keys (for both
the left, right and output wire) for each of the garbled gates. She then sends each of the garbled gates to
Bob.

Cut-and-choose Bob sends the opening to the commitment of his cut-and-choose challenge. In response
Alice opens the commitments to one of the left-, right- and output-keys of each of the garbled gate Bob
chose to check. In particular, whether she opens to the 0-key or the 0-key XOR ∆, i.e. the 1-key, depends
on Bob’s choice of bits for each specific garbled gate. Thus if Bob’s choice of random bits for a particular
gate g is a and b, Alice will open L0

g ⊕ a ·∆, R0
g ⊕ b ·∆ and O0

g ⊕ (a ∧ b) ·∆. Using each pair of input
keys, Bob evaluates each check gate and verifies that the output key resulting form the evaluation is the
same as Alice opened to.

Soldering Based on Bob’s choice of how the gates should be combined into buckets, Alice uses the XHC to
open the XOR of appropriate 0-keys. This will enable Bob to solder the keys of the individual garbled
gates together to form buckets, and then solder the buckets together to form a fault tolerant garbled
circuit. In particular he solders the wires of each of the gates in a bucket to the lexicographically first
gate in the bucket. In this way a bucket only contains one wire for the left, right and output of the gate it
is supposed to compute. The buckets are then soldered together, using the wires of their lexicographically
first gates, to construct a fault tolerant circuit.

Input Alice uses a special command of the XHC scheme to open either the 0- or 1-key of her input wires to
the circuit, in correspondence with her plain input bits. For each of Bob’s input bits he will receive the
keys in correspondence with his input bits, which he committed to through the special OT functionality
in the XHC scheme.

Evaluate Using the input keys Bob evaluates the entire garbled circuit, taking the majority of outputs
within a given bucket to be the output of that bucket. In the end he sends the keys of the output wires
of the circuit to Alice, who then outputs the bits they correspond to, or aborts if any of the keys are
incorrect.

To avoid confusion we stress that the construction for realizing the XHC in MiniLEGO is not the same as the
optimized commitment scheme presented in this work, although our construction also relies on an ECC and
OT. We now give some more details on how the above soldering process is performed in MiniLEGO and our
protocol.

57

H Detailed Efficiency Count

We count concretely the amount of bits that Alice sends to Bob during the protocol. We ignore any terms
that do not depend on the circuit size.

H.1 Counting TinyLEGO Communication

For each original gate Alice must send β/(1− pg − δg) garbled gates. Using the recent optimized garbled row
reduction [ZRE14] each gate consists of 2k bits. In addition, for each gate Alice also sends k bits for correcting
the output wire and she must do three codeword corrections to turn the left, right, and output keys into codes.
For each original gate, Alice also needs to prepare α/(1− pa − δa) wire authenticators, each authenticator
involving sending 2k-bit hash values and one codeword correction. The communication required for codeword
correction depends on the code used, which in turn depends on the security parameter. We recall that due to
the linear combination checks we need a code with minimum distance d ≥ s+4 for security 2−s, see Theorem 2
in Appendix E for details. For k = 128 and s = 40, 60, 80 one can use the shortened BCH codes [317, 128, 45],
[398, 128, 65], [437, 128, 85], respectively. These codes were found using the BCH encoder/decoder program
available at the website of [MZ06]. Other codes found in the MinT database [SS06, SS10] yield even less
communication, e.g. [279, 128, 44], [358, 128, 64]. In our count, we use the most communication efficient codes
we could find. In the cut-and-choose phase, using linear combinations, expected βpg gates are checked and for
each Alice sends 2k bits. Similarly, in the cut-and-choose of authenticators, Alice checks αpa authenticators,
sending k bits for each. Finally, soldering requires Alice to send 3(β − 1)k + αk + 2k bits to Bob for each
original gate.

We let X(k, s) denote the amount of extra bits that the code requires for k and s and from the above we
get β(3k + 3X(k, s))/(1− pg − δg) + α(2k +X(k, s))/(1− pa − δa) + βpg2k + αpak + 3(β − 1)k + αk + 2k as
the total amount of bits sent pr. original gate. Using the best codes we could find we have X(128, 40) = 151,
X(128, 60) = 230, and X(128, 80) = 309.

H.2 TinyLEGO concrete parameters

This section shows suggested parameters for various values of statistical security s and circuit size q while
keeping k = 128 fixed. These values are not necessarily optimal, but simply found by running a script searching
over a subset of reasonable parameters. The table shows the best parameters found, i.e., the parameters that
result in the least communication overhead (the least amount of data that Alice must send to Bob, ignoring
overhead that does not depend on circuit size).

For each s and q, qmin is the minimal circuit size that achieves statistical security s with α, β, pa, and pg.
The last two columns show bits send per gate and total amount of gibits (i.e., 230 bits) send from Alice to
Bob. We remark that some of these parameters do not follow the form of α = β − 1 which is what is assumed
in Appendix D. However by tweaking the rule for evaluation one can make these parameters work as well.

H.3 Counting MiniLEGO Communication

We here give a description of how we calculated the communication in the MiniLEGO protocol. We omit
all data sent that does not directly depend on the circuit size q. In the following we let C′ = [n′, k, d] be
the ECC code proposed in [FJN+13] and ψ be the length of the randomness used for each encoding. First
let Γ = 2β′q and Γ ′ = 3Γ + 1 as described in the protocol where β′ is the required bucket size for the
majority buckets. Following Figure 7, 9 and 11 of [FJN+13] we see that in the setup phase Alice sends to
Bob 2Γ ′n′ + Γ ′(k + ψ) + Γ ′k + Γ ′(k + ψ) bits. The first term is the setup of the commitments, the second,
also in setup, is the expected number of Bob’s challenges that needs to be opened to, the third is the actual
commitments sent and the last term is the openings to the XORs defined by the pairing π. In the garbling
step Alice sends 2Γk + 3Γk bits where the first term is the two cipher texts representing the gate (we assume
for a fair comparison that they use [ZRE14] for garbling as well) and the second is the commitments to the

58

s q qmin α β pa pg bits/gate total gibits

40 1,000 866 8 7 3/20 1/4 16,463 0.015
40 10,000 9,166 5 6 1/10 3/20 11,425 0.11
40 100,000 92,678 4 5 1/20 1/10 8,859 0.83
40 200,000 165,232 4 5 1/20 1/20 8,540 1.6
40 400,000 375,640 3 4 3/20 1/5 7,696 2.9
40 600,000 514,297 3 4 3/20 3/20 7,395 4.1
40 800,000 733,960 3 4 1/5 1/10 7,231 5.4
40 1,000,000 953,022 3 4 1/10 1/10 7,021 6.5
40 2,000,000 1,827,303 3 4 3/20 1/20 6,869 12.8
40 4,000,000 2,580,996 3 4 1/20 1/20 6,678 24.9
40 6,000,000 4,059,866 3 4 1/50 1/20 6,626 37.0
40 8,000,000 6,809,984 3 4 1/20 1/50 6,537 48.7
40 10,000,000 9,128,099 3 4 1/50 1/50 6,486 60.4
40 100,000,000 90,711,906 3 3 1/10 3/20 5,874 547.1

60 1,000 983 8 7 2/5 7/10 39,878 0.037
60 10,000 8,690 8 7 1/10 1/4 18,775 0.18
60 100,000 99,138 5 6 1/4 3/20 14,101 1.31
60 200,000 180,603 5 6 3/20 1/10 13,133 2.4
60 400,000 378,840 5 6 3/20 1/20 12,663 4.7
60 600,000 514,154 5 6 1/20 1/20 12,292 6.9
60 800,000 754,273 4 5 1/5 1/5 11,830 8.8
60 1,000,000 954,771 4 5 1/4 3/20 11,555 10.8
60 2,000,000 1,782,449 4 5 3/20 1/10 10,777 20.1
60 4,000,000 3,861,677 4 5 3/20 1/20 10,394 38.7
60 6,000,000 5,289,299 4 5 1/20 1/20 10,100 56.4
60 8,000,000 5,289,299 4 5 1/20 1/20 10,100 75.3
60 10,000,000 8,501,436 4 5 1/50 1/20 10,021 93.3
60 100,000,000 96,824,114 3 4 1/10 1/10 8,328 775.6

80 1,000 1,000 8 7 3/4 19/20 269,372 0.25
80 10,000 9,013 8 7 7/20 7/10 44,106 0.41
80 100,000 81,135 8 7 1/10 1/4 21,527 2.0
80 200,000 171,508 8 7 1/20 3/20 19,537 3.6
80 400,000 394,799 6 7 3/20 1/10 17,857 6.7
80 600,000 457,184 6 7 1/10 1/10 17,592 9.8
80 800,000 644,339 6 7 1/20 1/10 17,348 12.9
80 1,000,000 881,197 6 7 1/10 1/20 16,952 15.8
80 2,000,000 1,926,399 5 6 3/20 3/20 15,742 29.3
80 4,000,000 3,356,174 5 6 1/10 1/10 14,928 55.6
80 6,000,000 4,754,583 5 6 1/20 1/10 14,728 82.3
80 8,000,000 6,603,497 5 6 1/10 1/20 14,386 107.2
80 10,000,000 8,227,316 5 6 1/20 1/20 14,188 132.1
80 100,000,000 94,939,000 4 5 1/20 1/10 12,123 1,129.0

Table 3. For k = 128 and a given statistical security s and circuit size q, the figure shows the best found parameters
α, β, pa, and pg with respect to communication overhead. The last two columns show the resulting amount of bits
per gate and the total amount of gibits (i.e., 230 bits) sent from Alice to Bob, ignoring communication that does not
depend on circuit size.

59

three wires of each gate. In the Cut-and-Choose step Alice sends to Bob the openings to the three requested
keys which amounts to 3Γ2 (k + ψ) bits. Finally for the soldering step Alice sends to Bob 3(β′ − 1)q(k + ψ)
bits for the horizontal solderings and 2q(k + ψ) bits for the vertical solderings.

As the randomness used in the code C′ is used to obtain privacy, it is needed that k ≤ ψ, so we can
assume k = ψ. With this in mind we see that the expression is

2Γ ′n′ + Γ ′(k + ψ) + Γ ′k + Γ ′(k + ψ) + 2Γk + 3Γk

+ 3Γ2 (k + ψ) + 3(β′ − 1)q(k + ψ) + 2q(k + ψ)

= 2Γ ′n′ + 5Γ ′k + 8Γk + 6(β′ − 1)qk + 4qk
= (6Γ + 2)n′ + (15Γ + 5)k + 8Γk + 6(β′ − 1)qk + 4qk
= (6Γ + 2)n′ + 23Γk + 6(β′ − 1)qk + 4qk + 5k
= (12β′q + 2)n′ + 46β′qk + 6(β′ − 1)qk + 4qk + 5k

It is very hard to give a precise calculation of the parameters of the code in [CC06], as everything is
phrased asymptotically: there is a security parameter and the length of the key is given as O(k), the number
of positions one can correct in a code word should be O(k), the number of inspected positions in the watch
list is O(k) and the security is given as 2−O(k) and so on. Finding the best setting of these parameters for a
specific code seems to be a hard optimization problem. However, it seems that setting all parameters to be
the same k which is also the key length will not give an estimate which is far away from optimal, so this is
what we will do.

A quick estimate of the codes in [CC06] proposed by the authors of [FJN+13] shows that the best setting
would be to use a code over the field GF (16) for which to get distance 2k and room for a key of length k, the
length of the code would be around 10k field elements. To get a binary code the best choice seems to be to
encode a single bit in each position. Concatenation seems to give worse parameter. This gives a binary code
of length 40k. The authors propose to inspect k positions at random using a watch list mechanism. Note that
they might as well inspect entire field elements, as this makes no difference for the privacy of the code. This
catches an attempt to open to not the closest code word except with probability (9/10)k, as the distance to
that code word is at least k field elements and we can inspect k out of 10k field elements as part of the watch
list mechanism. If we solve (9/10)k = 2−s we see that k > 6.5s for a total bit length of a code word of more
than 6.5 · 40s = 260s.

With this in mind we derive the approximated codes [10400, 128, 81], [15600, 128, 121] and [20800, 128, 161]
which we use for our comparison. In our count we use the security analysis of TinyLEGO to derive the
minimum value of β′ which is needed for MiniLEGO. The reasoning for this is that the majority principle is
the same for both protocols, but that TinyLEGO takes both wire authenticators and gates into consideration.
This analysis however only makes sense if MiniLEGO was modified so that each gate was chosen for check
with probability 1

2 . Therefore we assume that this is the case and ignore the issues of calculating slack in the
MiniLEGO case, this is clearly of no disadvantage for MiniLEGO in the comparison.

60

I Overview of Variables and Parameters

A list of variable names and their meaning is given in Table 4.

Symbol Meaning
s Statistical security parameter.
k Computational security parameter.
C The plain description of the Boolean circuit to compute.
f The function computed by C.
x A bit string representing the constructor’s (Alice’s) input to the circuit.
y A bit string representing the evaluator’s (Bob’s) input to the circuit.
z The circuit output destined for the constructor.
q Amount of AND gates in C.
nC Amount of input bits to the circuit from the constructor, defined as nC = |x|.
nE Amount of input bits to the circuit from the evaluator, defined as nE = |y|.
n Total amount of input bits to the circuit, defined as n = nC + nE.
m Total amount of output bits from the circuit, defined as m = |z|.
w Amount of wires in C, defined as w = n+ q.
C The linear error correction code used in the protocol.
Γ The codeword length of C.
d The minimum distance of the codewords of C, defined as d = s+ 4.

G,E,A Unique literals used to ensure uniqueness of hashed indices.
pg Fraction of garbled gates that should be checked.
δg Fraction of garbled gates we need to get sufficient “slack”.
pa Fraction of authentication wires that should be checked.
δa Fraction of authentication wires we need to get sufficient “slack”.
β The amount of gates in each bucket.
α The amount of authenticators for each bucket.
`g The gate replication factor, defined as `g = 1

1−pg−δg .
`a The authentication wire replication factor, defined as `a = 1

1−pa−δa .
Q The total amount of garbled gates we need to construct, defined to be Q = qβ`g.
A The total amount of authenticators we need to construct, defined to be A = (qα+ n(2β + 1))`a.
W The amount of wires considered in a protocol execution, defined to be W = 3Q+A.
γ The total amount of commitments required, defined as γ = W + 1 + 7.3(s+ 3).
∆ The global difference on all wires, defined as the key KW+1.

BucketOf A β-to-1 map from garbled gates to buckets.
AuthOf A α-to-1 map from authenticators to buckets.
WiresOf A public map from gate indices to left,right and output wire indices.

Table 4. Overview of variables along with their meaning.

61

	TinyLEGO: An Interactive Garbling Scheme for Maliciously Secure Two-party Computation

