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Abstract

A new algorithms for computing discrete logarithms on elliptic curves defined over
finite fields is suggested. It is based on a new method to find zeroes of summation
polynomials. In binary elliptic curves one is to solve a cubic system of Boolean equa-
tions. Under a first fall degree assumption the regularity degree of the system is at
most 4. Extensive experimental data which supports the assumption is provided. An

heuristic analysis suggests a new asymptotical complexity bound 2c
√
n lnn, c ≈ 1.69 for

computing discrete logarithms on an elliptic curve over a field of size 2n. For several
binary elliptic curves recommended by FIPS the new method performs better than
Pollard’s.

1 Introduction

Let E be an elliptic curve defined over a finite field Fq with q elements. The discrete
logarithm problem is given P,Q ∈ E(Fq) compute an integer number z such that Q = zP
in the group E(Fq). That problem was introduced in [15, 13]. A number of information
security standards are now based on the hardness of the problem, see [7] for instance. Two
cases are of most importance: q = p is a large prime number and q = 2n, where n is
prime. For super-singular and anomalous elliptic curves the discrete logarithm problem is
easy, that was independently discovered by several authors, see [20, 22, 8] and [23, 21, 26].
The more general are Pollard’s methods [16]. They are applicable to compute discrete
logarithms in any finite group. In elliptic curve case the time complexity is proportional to
q1/2 field operations and the memory requirement is negligible. The method was improved
in [19, 9, 27] though the asymptotical complexity bound remained. In [18] a method for
efficient parallelization of Pollard type algorithms was provided.
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Summation polynomials for elliptic curves were introduced in [24]. It was there sug-
gested to construct an index calculus type algorithm for the elliptic curve discrete logarithm
problem by decomposing points via computing zeroes of these polynomials. In [10, 3, 12, 6]
Gröbner basis type algorithms were applied for computing zeroes of summations polyno-
mials or their generalisations over extension finite fields. For curves over some such fields
the problems was proved to be sub-exponential, [3]. However no improvement for elliptic
curves over prime fields or binary fields of prime extension degree was achieved in those
papers.

Based on observations in [6], it was shown in [17] that under a first fall degree as-
sumption for Boolean equation systems coming from summation polynomials, the time
complexity for elliptic curves over F2n is sub-exponential and proportional to 2cn

2/3 lnn,
where c = 2ω/3, and 2.376 ≤ ω ≤ 3 is the linear algebra constant. It was there found
that for n > 2000 the method is better than Pollard’s. The assumption was supported by
experiments with computer algebra package MAGMA in [17, 25].

In this work we suggest computing zeroes of summation polynomials by solving a much
simpler system of Boolean equations. The system incorporates more variables than previ-
ously but has algebraic degree only 3. The first fall degree is proved to be 4. Then a first
fall degree assumption says the regularity degree dF4 of the Gröbner basis algorithm F4 is
at most 4 as well. The assumption was endorsed by numerous experiments with MAGMA.
The new method overcomes strikingly what was achieved in the experiments of [17, 25].

The time and memory complexity of computing summation polynomial zeroes under
the assumption is polynomial in n. The overall time complexity of computing discrete
logarithms on elliptic curves over F2n becomes proportional to

2c
√
n lnn,

where c = 2
(2 ln 2)1/2

≈ 1.69. Our analysis suggests a number of FIPS binary elliptic curves

in [7] are theoretically broken as the new method starts to perform better than Pollard’s
for n > 310. The estimate is obviously extendable to elliptic curves over Fpn for fixed p > 2
and growing n, by using first fall degree bounds from [11]. The time complexity is then

pc
√
n lnn, where c = 2

(2 ln p)1/2
.

2 Summation polynomials and index calculus on elliptic curves

Let E be an elliptic curve over a field K in Weierstrass form

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (1)

For an integer m ≥ 2 the m-th summation polynomial is the polynomial Sm in m variables
defined by the following property. Let x1, x2, . . . , xm be any elements from K̄, the algebraic
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closure of K, then Sm(x1, x2, . . . , xm) = 0 if and only if there exist y1, y2, . . . , ym ∈ K̄ such
that the points (xi, yi) are on E and

(x1, y1) + (x2, y2) + . . .+ (xn, yn) =∞

in the group E(K̄), see [24]. It is enough to find S3(x1, x2, x3) then for m ≥ 4 in any case

Sm(x1, . . . , xm) = ResX(Sm−r(x1, . . . , xm−r−1, X), Sr+2(xm−r, . . . , xm, X) (2)

where 1 ≤ r ≤ m − 3. The polynomial Sm is symmetric for m ≥ 3 and has degree
2m−2 in each its variable. S3 was explicitly constructed in [24] for characteristic ≥ 5 and
characteristic 2, the latter in case of a so called Koblitz curve. In characteristic ≥ 5 we can
assume a1 = a3 = a2 = 0 and denote A = a4, B = a6. So

S3(x1, x2, x3) = (x1−x2)2x23− 2[(x1 +x2)(x1x2 +A) + 2B]x3 + (x1x2−A)2− 4B(x1 +x2).

We are mostly concern with characteristic 2 case and the curves recommended by [7]. So
we can assume a1 = 1, a3 = 0, a4 = 0 and denote B = a6. Then

S3(x1, x2, x3) = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 +B,

see [24, 3].
It was suggested in [24] to construct an index calculus type algorithm for the discrete

logarithm problem in E(Fq) via finding zeroes of summation polynomials. For random
integer u, v compute an affine point R = uP + vQ = (RX , RY ). Then solve the equation

Sm+1(x1, . . . , xm, RX) = 0. (3)

for xi ∈ V , where V is a subset of Fq. Each solution provides with a linear rela-
tion(decomposition) which incorporates R and at most m point from a relatively small
set of points in E(Fq), whose X-coordinate belongs to V and possibly an order 2 point in
E(Fq). Then linear algebra step finds the unknown logarithm. Two cases were considered
in [24]. First, q is a prime number, then V is a set of residues modulo q bounded by q1/n+δ

for a small δ. Second, q = 2n, and f(X) be an irreducible polynomial of degree n over F2,
and F2n = F2[X]/(f(X)). Then V is a set of all degree < n/m + δ polynomials modulo
f(X). However no algorithm to find the zeros in V of summation polynomials was sug-
gested in [24]. In the next Section 3 we suggest producing the decomposition by solving a
different equation system. The new system is essentially equivalent to (3). In case q = pn,
where n is large, after reducing the equations over Fq to coordinate equations over Fp(Weil
descent) the solution method is a Gröbner basis algorithm. In Section 4 for p = 2 we show
under a first fall degree assumption that the complexity of a Gröbner basis algorithm on
such instances is polynomial. The assumption was proved correct in numerous experiments
with computer algebra package MAGMA. A similar assumption looks correct for odd p too
but the computations are tedious already for p = 5.
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3 New algorithm

Let P be a point of order r in the group E(Fq), where E is an elliptic curve defined over Fq.
Then Q = zP belongs to the subgroup generated by P . The discrete logarithm problem is
given Q and P , find zmod r. In this section an algorithm for computing z is described.

1. Define parameter m and a subset V of Fq of size around q1/m.

2. For random integer u, v compute R = uP + vQ. If R = ∞, then compute z from
the equation bz + a ≡ 0 mod r. Otherwise, R has affine coordinates (RX , RY ). If
RX = x1 ∈ V , then we have a relation (6) for t = 1. Otherwise

3. for t = 2, . . . ,m try to compute x1, . . . , xt ∈ V and u1, . . . , ut−2 ∈ Fq until the first
system of the following t− 1 equations is satisfied

S3(u1, x1, x2) = 0,
S3(ui, ui+1, xi+2) = 0, 1 ≤ i ≤ t− 3
S3(ut−2, xt, RX) = 0.

(4)

For t = 2 the system consists of only one equation S3(x1, x2, RX) = 0. If non of the
systems is satisfied repeat the step with a new R. The solutions to (4) are solutions
to

St+1(x1, x2, . . . , xt, RX) = 0. (5)

The reverse statement is true as well if the systems (4) with lower t are not satisfiable,
see Lemma 2. In practical terms it is enough to solve only one system (4) for t = m.
The experiments in characteristic 2 presented below demonstrate that for t < m
the solving running time with a Gröbner basis algorithm drops dramatically and the
probability of solving is relatively lower. So it may be more efficient to solve a lot
of the systems with t < m for different R instead of one system for t = m with one
R. One can probably win in efficiency and lose in probability. Though the trade off
may be positive, we won’t pursue this approach in the present work as this does not
affect the asymptotical running time estimates.

Compute y1, . . . , yt ∈ Fq2 such that

(x1, y1) + (x2, y2) + . . .+ (xt, yt) + uP + vQ =∞. (6)

If there are yi ∈ Fq2 \Fq, then the sum of all points (xi, yi) in (6), where yi ∈ Fq2 \Fq,
is a point in E(Fq) of order exactly 2, see Lemma 2. So that is a useful relation
anyway. At most |V | relations (6) are necessary on the average.

4. Solve the linear equations (6) and get zmod r.
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4 Analysis

We will show in Lemma 2 that the system (4) is essentially equivalent to (5). Despite the
number of variables in (4) is significantly larger, each equation on its own is much simpler.
In particular, the algebraic degree of equations (4) in each of the variables is only 2 in
contrast to 2t−1 for (5).

4.1 Lemmas

Lemma 1 Let the elliptic curve E be defined over a field Fq. Let x1, . . . , xt ∈ V be a
solution to (5). Then there exist y1, . . . , yt ∈ Fq2 such that

(x1, y1) + (x2, y2) + . . .+ (xt, yt) +R =∞. (7)

Lemma 2 Let RX /∈ V . Assume the equations

Si+1(x1, . . . , xi, RX) = 0, x1, . . . , xi ∈ V

are not satisfiable for 2 ≤ i < t and x1, . . . , xt ∈ V is a solution to St+1(x1, . . . , xt, RX) = 0.
Then

1. in (7) assume y1, . . . , ys ∈ Fq2 \ Fq and ys+1, . . . , yt ∈ Fq. Then

H = (x1, y1) + . . .+ (xs, ys)

is a point in E(Fq) of order exactly 2. So s = 0 or s ≥ 2.

2. There exist u1, . . . , ut−2 ∈ Fq such that

S3(u1, x1, x2) = 0,
S3(ui, ui+1, xi+2) = 0, 1 ≤ i ≤ t− 3
S3(ut−2, xt, RX) = 0.

(8)

Proof Let’s prove the first statement of the lemma. Assume s > 0 and let

G = (xs+1, ys+1) + . . .+ (xt, yt) ∈ E(Fq).

Then H = −R −G ∈ E(Fq) as well. Let φ be a non-trivial automorphism of Fq2 over Fq,
then

φ(H) +H =∞, φ(H) = H,

and so 2H = ∞. If H = ∞, then G + R = ∞ and so St−s+1(xs+1, . . . , xt, RX) = 0. That
contradicts the assumption. Therefore H is a point in E(Fq) of order exactly 2 and s ≥ 2.
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Let’s prove the second statement. Assume y1, . . . , ys ∈ Fq2 \ Fq and ys+1, . . . , yt ∈ Fq,
where s = 0 or s ≥ 2. There are points P1, . . . , Pt−2 such that

(x1, y1) +(x2, y2) +P1 = ∞,
Pi +(xi+2, yi+2) +Pi+1 = ∞, 1 ≤ i ≤ t− 3
Pt−2 +(xt, yt) +R = ∞.

(9)

By the lemma assumption and the previous statement P1, . . . , Pt−2 6=∞. So Pi = (ui, vi),
where ui ∈ Fq. Therefore (9) implies (8). The lemma is proved.

A variation of the first statement of Lemma 2 has already appeared in [24].

4.2 General discussion on complexity

The complexity of solving a linear system of equations (6) is taken O(|V |ω′
), where ω′ = 2

as the system is very sparse for any finite field Fq, see [28].
It is not quite clear how the system (4 may be resolved in case q is a large prime

number. However, for q = pn, where n is large, a Gröbner basis algorithm is applicable.
The approach was already used in [10, 3] for solving (3) after it was reduced to a system of
n multivariate polynomial equations in about n variables over Fp by so called Weil descent,
where V may be taken any vector space of dimension k = dn/me over Fp. The problem of
generating such a system and keeping it in computer memory before solving is difficult by
itself for m ≥ 4 and the difficulties increase rapidly for larger m. In [17] it was shown that
the complexity of solving (3) is sub-exponential in n under a first fall degree assumption,
see Section 4.4 below. That assumption was supporter by a number of experiments in
[17, 25], where the parameter m was taken at most 3.

In this paper we suggest using a Gröbner basis algorithm to solve (4) rather than (3).
The system (4) for t = m is equivalent to a system of (m − 1)n multivariate equations in
(m−2)n+km ≈ (m−1)n variables in Fp. Under a first fall degree assumption, see Section
4.4 and Assumption 1, we show its complexity is O[(n(m − 1))4ω], where 2.376 ≤ ω ≤ 3,
that is polynomial in n. The assumption was proved correct in numerous experiments with
MAGMA, see Section 4.5.1. We were able to solve (4) for t = m and therefore (3) for m
as 5, 6 and some n on a common computer. For n,m as in [17, 25], the solution is up to 50
times faster and takes up to 10 times less memory in comparison with [17, 25]. Similar to
[17], one can take the advantage of a block structure of the Boolean system resulted from
(4), though that does not affect the asymptotical estimates. By extrapolating running
time estimates we find that four binary curves recommended by FIPS PUB 186-4 [7] for
n = 409, 571 become theoretically broken as the new method is faster than Pollard’s for
n > 310, see Section 4.5.2. If the block structure of the system is not exploited and we
extrapolate the complexity of the default Gröbner basis algorithm F4, then only two FIPS
curves for n = 571 are broken.

In practical terms an additional effort is required in order to accelerate the decomposi-
tion stage by solving (4) and to break the rest of the binary curves in [7]. As the collecting
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stage still significantly dominates the method running time, see Table 3, one can use almost
unbounded parallelisation to get more efficiency. In asymptotical analysis the complexity
of generating summation polynomials and computing their zeros to get point decomposi-
tion may be neglected as it is polynomial. That significantly improves the asymptotical
complexity bound in [17], see Section 4.5.2.

4.3 Success probability

We estimate the probability that

St+1(x1, . . . , xt, RX) = 0, x1, . . . , xt ∈ V,

where 2 ≤ t ≤ m, is satisfiable. We adopt the following model. For random z the mapping
x1, . . . , xt → St+1(x1, . . . , xt, z) is a symmetric random mapping from V t to Fq. Let K be

the number of classes of tuples (x1, . . . , xt) under permuting the entries. Then K ≈ |V |
t

t! .
The probability of a solution is the probability P (q,m, t, |V |) that the mapping hits 0 ∈ Fq
at least once. So

P (q,m, t, |V |) = 1− (1− 1/q)K

≈ 1− (1− 1/q)
|V |t
t! ≈ 1− e−

|V |t
q t! (10)

If |V |
t

q t! = o(1), then P (q,m, t, |V |) ≈ |V |t
q t! as in [3, 17]. It is obvious the probability of

solving at least one of the first t − 1 systems (4) is at least P (q,m, t, |V |). On the other
hand, the latter is larger than the probability of solving (4). Therefore, we can assume
that the probability of solving (4) is approximately P (q,m, t, |V |).

In case q = pn we denote the probability P (q,m, t, |V |) by P (n,m, t, k), where |V | = pk

and p should be clear from the context.

4.4 Solving polynomial equations and first fall degree assumption

Let

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,

. . . (11)

fm(x1, . . . , xn) = 0,

be a system of polynomial equations over a field K. The system (11) may be solved by first
finding a Gröbner basis g1, g2, . . . , gs for the ideal generated by polynomials f1, f2, . . . , fm.
If the ground field K = Fq is a finite field of q elements and we want the solutions with
entries in Fq, then the basis is computed for the ideal generated by

f1, f2, . . . , fm, x
q
1 − x1, . . . , x

q
n − xn.
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The solutions to gi(x1, . . . , xn) = 0, (1 ≤ i ≤ s) are solutions to (11) and they are relatively
easy to find due to the properties of the Gröbner basis. Several algorithms were designed
to construct a Gröbner basis. Let deg g denote the total degree of the polynomial g =
g(x1, . . . , xn). The first algorithm [2] was based on reducing pairwise combinations(S-
polynomials) of the polynomials from the current basis and augmenting the current basis
with their remainders. Equivalently [14], one can triangulate a Macaulay matrix Md whose
rows are coefficients of the polynomials mifj , where mi are monomials and deg(mi) +
deg(fi) ≤ d for a parameter d. That produces a Gröbner basis for some large enough
d = d0. The matrix incorporates at most

(
n+d−1

d

)
< nd columns. So the complexity is

O(nωd0) of the ground field operations, where 2.376 ≤ ω ≤ 3 is the linear algebra constant.
Also one may solve a system of linear equations which comes from mifj = 0,deg(mi) +

deg(fi) ≤ d after linearisation to get the solutions to (11) without computing a Gröbner
basis. The method is called extended linearisation(XL). The matrix of the system is es-
sentially Md. For large enough d = d1 the rank of the matrix is close to the number of
variables after linearisation [29]. The complexity is O(nω

′d1) of the ground field operations,
where 2 ≤ ω′ ≤ 3 is a linear algebra constant, which depends on the sparsity of the matrix.
It may be that ω′ = 2 for a very sparse matrix in case of solving by extended linearisation.

Numerous experiments with solving the equations (4) by computer algebra package
MAGMA were done in this work. MAGMA implements an efficient Gröbner basis algorithm
F4[4]. The algorithm successively constructs Macaulay type matrices of increasing sizes,
compute row echelon forms of them, produce some new polynomials and use them in the
next step of the construction as well. At some point no new polynomials are generated.
Then the current set of polynomials is a Gröbner basis. The complexity is characterised
by dF4, the maximal total degree of the polynomials occurring before a Gröbner basis is
computed. The overall complexity is the sum of the complexities of some steps, where the
largest step complexity is bounded by

O(nω dF4). (12)

We assume the complexity of the computation is determined by the complexity of the
largest step. In the experiments in Section 4.5.1 the ratio between the overall running
time and the largest step running time was bounded by ≈ 3 for the number of variables
n ≈ 50. So in the asymptotical analysis below we accept (12) as the complexity of F4. An-
other Gröbner basis algorithm F5[5] with the maximal total degree dF5 has the complexity
O(nωdF5), see [1]. It was implicitly assumed in [17, 25] that dF5 = dF4.

We will use the following definition found in [17]. The first fall degree for (11) is the
smallest total degree dff such that there exist polynomials gi = gi(x1, . . . , xn), (1 ≤ i ≤ m)
with

maxi(deg gi + deg fi) = dff , deg
∑
i

gifi < dff

and
∑

i gifi 6= 0. A first fall degree assumption says dF4 ≤ dff and that is a basis for
asymptotical complexity estimates in [17]. Although not generally correct, the assumption
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appears correct for the polynomial systems coming from (3) and was supported by extensive
experiments for relatively small parameters in [17, 25]. This is very likely correct for (4)
as well, see sections below.

4.5 Characteristic 2

Let E be determined by
Y 2 +XY = X3 +AX2 +B,

A,B ∈ F2n . Therefore,

S3(x1, x2, x3) = (x1x2 + x1x3 + x2x3)
2 + x1x2x3 +B, (13)

see Section 2. Let f(x) be an irreducible polynomial of degree n over F2 and α its root
in F2n . Then 1, α, . . . , αn−1 is a basis of F2n over F2. Elements of F2n are represented as
polynomials in α of degree at most n− 1. Let V be a set of all polynomials in α of degree
< k = dn/me. Obviously, that is a vector space over F2 of dimension k. Following [3],
one can define V as any subspace of F2n of dimension k. However it seems that using the
subspace of low degree polynomials significantly reduces the time and space complexity in
comparison with a randomly generated subspace and is therefore preferable. We attribute
the phenomena to the fact that the set of polynomials to compute a Gröbner basis is
simpler in the former case.

According to [10, 3] the equation (3), where xi ∈ V , is reducible, by taking coordi-
nates(so called Weil descent), to a system of n Boolean equations in mk variables. A
Gröbner basis algorithm is applicable to find its solutions. The maximal total degree of
the Boolean equations is at most m(m−1). Also it was observed in [17] and proved in [11]
that the first fall degree of the Boolean equations coming from

Sm+1(x1, . . . , xm, RX) = 0

is at most m2 + 1.
We consider the case m = 2 in more detail now. First we take the polynomial (13),

where all x1, x2, x3 are variables in V or F2n . Following an idea in [17] it is easy to prove
that the first fall degree is 4 in this case. Really, coordinate Boolean functions which
represent S3(x1, x2, x3) are of total degree 3. We denote that fact

degF2
S3(x1, x2, x3) = 3.

However
degF2

x1S3(x1, x2, x3) = 3

again because

x1S3(x1, x2, x3) = x1[(x1x2 + x1x3 + x2x3)
2 + x1x2x3 +B]

= x31x
2
2 + x31x

2
3 + x1x

2
2x

2
3 + x21x2x3 +Bx1
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despite degF2
x1 + degF2

S3(x1, x2, x3) = 4. This argument does not work for S3(x1, x2, z),
where z is a constant from F2n . We have

degF2
S3(x1, x2, z) = 2,

degF2
x1S3(x1, x2, z) = 3,

and degF2
x1 + degF2

S3(x1, x2, z) = 3. The first fall degree for such polynomials was
bounded by 5 in [11]. The experiments show it is always 4 again. Anyway at least t − 2
of the equations in (4) have the first fall degree 4. So we come up with the following
assumption.

Assumption 1 Let q = 2n and 2 ≤ m < n, k = d nme. Also let V be a subspace of
dimension k in F2n. Then dF4 ≤ 4 for a Boolean equation system equivalent to (4) for any
2 ≤ t ≤ m.

4.5.1 Experiments

In this section we check Assumption 1 by experiments with MAGMA. The package im-
plements the Gröbner basis type algorithm F4 due to Faugère [4]. We run the algorithm
to construct solutions for the system of Boolean equations resulted from (4). The system
consists of n(t − 1) coordinate equations in n(t − 2) + kt variables and n(t − 2) + kt field
equations are added. To simplify computations the X-coordinate RX of a random R was
substituted by a random element z from F2n . We take the parameters n, t ≤ m, k = dn/me
from a range of values and solve the system for 100 random z.

The results, where B = 1 in (13), are presented in Table 1. The results, where B is
a randomly generated element from F2n , are presented in Table 2 . In the columns of
the tables the following parameters are shown: n,m, t, k = d nme, the experimental success
probability, theoretical success probability P (n,m, t, k), maximal degree dF4 of the poly-
nomials generated by F4 before a Gröbner basis is computed, average time in seconds for
solving one system and overall amount of memory in MB used for solving 100 systems (4).
A computer with 2.6GHz Intel Core i7 processor and 16GB 1600MHZ DDR3 of memory
was used. The most important of all the parameters is dF4. We use the verbosity imple-
mented in MAGMA for Faugère’s F4. The computation by F4 is split into a number of
steps, where ”step degree” is the maximal total degree of the polynomials for which a row
echelon form is computed. The parameter is available for every step of the algorithm. If
the ideal generated by the polynomials is unit, then ”step degree” was always bounded by
4. If not, that is there is a solution, then ”step degree” was bounded by 4 for all the steps
before the basis is computed. They were followed by at most three more steps, where ”step
degree” was 5, 6, 7 with the message ”No pairs to reduce”. At this point the computation
stops. To fill the tables 2300 Boolean systems each of total degree 3 coming from (4), where
t = m, were solved. For all of them the maximal total degree attained by F4 to compute
a Gröbner basis was exactly 4. For t < m the maximal total degree was smaller or equal
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Table 1: Max. degree of polynomials by MAGMA and other parameters, B = 1.

n t = m k = dn/me exp. prob. P (n,m, t, k) dF4 av. sec. MB

12 6 2 0.00 0.0013 4 2.30 257.8

13 4 4 0.41 0.2834 4 81.64 739.8

13 5 3 0.05 0.0327 4 84.65 1597.8

14 4 4 0.10 0.1535 4 79.57 879.7

14 5 3 0.02 0.0165 4 23.47 960.2

15 4 4 0.11 0.0799 4 136.70 1457.3

15 5 3 0.05 0.0082 4 300.48 3286.9

16 4 4 0.09 0.0408 4 175.72 1657.7

17 3 6* 0.32 0.2834 4 27.08 378.1

17 3 6 0.30 0.2834 4 11.41 364.1

17* 3 6 0.36 0.2834 4 12.09 355.1

17* 3 6* 0.25 0.2834 4 34.32 693.2

to 4. We conclude that for all values of n,m and t ≤ m in the tables Assumption 1 was
correct for randomly chosen z ∈ F2n . So the assumption is very likely to be correct for any
values of n,m, t ≤ m.

The method significantly overcomes what was experimentally achieved in [17, 25]. For
instance, n = 21,m = 3, k = 7 the solution in [25] of (3) took 6910 seconds on the average
with 27235 MB maximum memory used. With the new method the solution of (4) for
t = m, and therefore (3) as well, takes 133.5 seconds on the average and 2437.8 MB
maximum memory on an inferior computer, see Table 2.

In the last 4 lines of Table 1 we also take into account the influence of the choice of
generating polynomial for F2n and the vector space V . The line with 17∗ means a random
irreducible polynomial f(X) of degree 17 for constructing F217 was used in the computa-
tions. Otherwise a default generating polynomial of MAGMA or a sparse polynomial were
used. The line with 6∗ means a random subspace of dimension 6 in F217 was used in the
computations. Otherwise a subspace of all degree < 6 polynomials modulo f(X) was used.
We realise the latter is preferable.

To conclude the section we should mention that the maximal degree(regularity degree)
generally exceeds 4 when k > d nme though the first fall degree is still 4.

4.5.2 Asymptotical Complexity

In this section an asymptotical complexity estimate for the discrete logarithm problem in
E(F2n) based on Assumption 1 is derived. The algorithm complexity is the sum of the
complexity of two stages. First collecting a system of ≤ 2k, k = dn/me linear relations (6)
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Table 2: Max. degree of polynomials by MAGMA and other parameters, random B.

n m t k = dn/me exp. prob. P (n,m, t, k) dF4 av. sec. MB

12 6 6 2 0.01 0.0013 4 2.52 289.9

13 4 4 4 0.31 0.2834 4 85.30 981.8

13 5 5 3 0.09 0.0327 4 98.81 1633.0

14 4 4 4 0.16 0.1535 4 93.48 1056.7

14 5 5 3 0.03 0.0165 4 41.15 1154.2

15 4 4 4 0.06 0.0799 4 102.85 1177.5

15 4 3 4 0.02 0.0206 4 0.4765 64.1

15 4 2 4 0.00 0.0038 4 0.0013 32.1

15 5 5 3 0.03 0.0082 4 174.47 2635.4

15 5 4 3 0.01 0.0051 4 12.95 424.9

15 5 3 3 0.00 0.0026 4 0.0339 32.1

15 5 2 3 0.00 0.0009 4 0.0006 32.1

16 4 4 4 0.04 0.0408 4 160.87 1145.2

16 4 3 4 0.01 0.0103 4 0.4984 64.1

16 4 2 4 0.00 0.0019 4 0.0014 32.1

17 3 3 6 0.21 0.2834 4 15.80 375.8

19 3 3 7 0.47 0.4865 4 137.32 1812.8

19 3 2 7 0.01 0.0155 4 0.0092 32.1

21 3 3 7 0.12 0.1535 4 133.54 2437.8

21 3 2 7 0.01 0.0038 4 0.0095 32.1
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and then solving them. The probability of producing one linear relation by solving at least
one system of multivariate Boolean equations (4) for 2 ≤ t ≤ m is at least P (n,m,m, k) ≈
2mk−n/m!, see Section 4.3. The complexity of solving by the Gröbner basis algorithm
F4 is [n(m − 1)]4ω. The estimate in [17] was based on using a block structured Gröbner
basis algorithm, where the block size was k, rather than the standard F4. That reduced
the asymptotical complexity of solving (3). We think the same approach is applicable
to solve the equations coming from (4) as well, with the block size n. That reduces the
complexity of finding the relation to n4ω. We remark that does not affect the asymptotical
complexity of the present method anyway as the both estimates are polynomial. Therefore
the complexity of the first stage is

2kn4ω

P (n,m,m, k)
≈ m!

2mk−n
2kn4ω (14)

operations, where 2.376 ≤ ω ≤ 3 is the linear algebra constant. For ω = 3 that is at most
m!2

n
mn12. The complexity of the second stage is

2kω
′
, (15)

where ω′ = 2 is the sparse linear algebra constant. One equates (14) and (15) to determine

the optimal value m ≈
√

(2 ln 2)n
lnn for large n. The overall complexity is

2kω
′ ≈ 2

nω′
m = 2c

√
n lnn,

where c = 2
(2 ln 2)1/2

.

We now compare the values of (14) and (15) for a range of n ≤ 571 in Table 3. The
first stage complexity dominates. For each n in the range one finds m, where the first stage
complexity m!2

n
mn12 is minimal. The table presents the values of

n, 2n/2, m, m! 2
n
m n12, 22n/m.

The new method starts performing better than Pollard’s for n > 310. Therefore four curves
defined over F2n for n = 409, 571 and recommended by FIPS PUB 186-4 [7] are theoretically
broken. If only the default Gröbner basis algorithm F4 is used with complexity [n(m−1)]4ω,
then two FIPS curves for n = 571 are broken.

The first stage of the algorithm is easy to accomplish with several processors working
in parallel. As the first stage complexity is dominating that significantly improves the
running time of the method in practical terms.
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