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Abstract

A handful of recent cryptographic proposals rely on the conjectured hardness of the following problem
in the ring of integers of a cyclotomic number field: given a basis of an ideal that is guaranteed to have a
“rather short” generator, find such a generator. In the past year, Bernstein and Campbell-Groves-Shepherd
have sketched potential attacks against this problem. Most notably, the latter authors claimed a quantum
polynomial-time algorithm (alternatively, replacing the quantum component with an algorithm of Biasse
and Fieker would yield a classical subexponential-time algorithm). A key claim of Campbell et al. is that
one step of their algorithm—namely, decoding the log-unit lattice of the ring to recover a short generator
from an arbitrary one—is efficient (whereas the standard approach takes exponential time). However,
very few convincing details were provided to substantiate this claim, and as a result it has met with some
skepticism.

In this work, we remedy the situation by giving a rigorous theoretical and practical confirmation
that the log-unit lattice is indeed efficiently decodable, in cyclotomics of prime-power index. The proof
consists of two main technical contributions: the first is a geometrical analysis, using tools from analytic
number theory, of the canonical generators of the group of cyclotomic units. The second shows that for a
wide class of typical distributions of the short generator, a standard lattice-decoding algorithm can recover
it, given any generator.

1 Introduction

In recent years, lattices have emerged as an attractive foundation for cryptography. The most efficient (and
potentially practical) lattice-based cryptosystems are related to ideal lattices, which correspond to ideals in
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certain families of rings, e.g., Z[X]/(X2k + 1). Representative works include [HPS98, Mic02, LMPR08,
Gen09, LPR10].

In recent years, several cryptographic constructions have relied directly on principal ideals that have
“relatively short” generators, which serve as secret keys.1 These include a variant of Gentry’s original
fully homomorphic encryption scheme [Gen09] due to Smart and Vercauteren [SV10], the closely related
Soliloquy encryption scheme [CGS14], and candidate cryptographic multilinear maps [GGH13, LSS14].
Breaking these systems is no harder than solving the following problem, which we call the Short Generator
of a Principal Ideal Problem (SG-PIP): given some Z-basis of an ideal that is guaranteed to have a “short”
generator g, find a sufficiently short one (not necessarily g itself).

In the past year, warnings about SG-PIP in certain rings have been issued by Bernstein [Ber14a] and
Campbell, Groves, and Shepherd [CGS14], who sketched potential attacks. The basic structure of the attacks,
which appears to be folklore in computational number theory, consists of two main parts:

• First, given a Z-basis of the principal ideal, find some arbitrary (not necessarily short) generator of
the ideal. For this task, which is known as the Principal Ideal Problem (PIP), the state of the art is
an algorithm of Biasse and Fieker [BF14, Bia14], whose runtime has only a subexponential 2n

2/3+ε

dependence on n, the degree of the ring (over Z). In addition, building on the recent work of Eisenträger
et al. [EHKS14], polynomial-time quantum algorithms for PIP have recently been described in two
independent works [CGS14, BS15], the latter of which provides a fully rigorous treatment. (In this
work, we will not be further concerned with algorithms for PIP.)

• Second, transform the generator found in the previous phase into a short generator, thereby recovering
the secret key, or its functional equivalent. The standard approach casts this task as a closest vector
problem (CVP) on the Dirichlet “log-unit” lattice. In general, the fastest known algorithm for CVP
(even allowing quantum) runs in exponential 2Ω(n) time [MV10], or in less time but with much weaker
guarantees on the solution quality (e.g., [LLL82, Bab85, Sch87]). Note that it is not obvious a priori
whether this approach yields a sufficiently short generator; much depends on the geometry of the
log-unit lattice and the quality of the CVP solution.

Recently, a more refined view of the second phase has emerged, centered around the kinds of rings
and short generators typically suggested for cryptographic applications. In [Ber14a], Bernstein suggests
an approach that may yield slightly subexponential runtimes in cyclotomic rings of highly smooth index
(e.g., m = 3 · 5 · 7 · 11). In addition, several researchers have noted that the CVP instances arising in the
second phase have some implicit structure. For example, [CGS14, Ber14b] observe that the existence of a
“rather short” generator (by choice of the secret key) implies that the target point is “somewhat close” to
the log-unit lattice; CVP with such a distance guarantee is more commonly known as bounded-distance
decoding (BDD). Previously, Garg, Gentry and Halevi [GGH13] gave an improved variant of the Gentry-
Szydlo algorithm [GS02] which shows that in cyclotomic rings having power-of-two index, BDD on the
log-unit lattice is efficiently solvable to within sub-polynomial n− log logn distance. However, this threshold
is much too small to handle the BDD instances arising in cryptosystems.

Notably, the work of Campbell, Groves and Shepherd [CGS14] contains a surprising claim: that in cyclo-
tomic rings having power-of-two index, the second phase described above is easy, simply by decoding the
log-unit lattice using a standard algorithm such as LLL [LLL82]. The stated reason is that the secret generator
corresponds to a vector that is short relative to the determinant of the log-unit lattice. Unfortunately, this obser-
vation is not sufficient to justify their claim: in addition, one needs to show how to efficiently compute a basis

1A principal ideal in a commutative ring R is of the form gR = {g · r : r ∈ R} for some g ∈ R, called a generator of the ideal.
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of good enough geometric “quality” for decoding to succeed. Nevertheless, experiments in cryptographically
relevant choices of dimension have shown that decoding is indeed practically efficient [She14, Sch15].

Contribution. In this work, we give a rigorous theoretical and practical confirmation of the above-described
claim from [CGS14], and generalize to all cyclotomics of prime-power index. By using a particular efficiently
computable basis, we prove that the second phase succeeds with high probability for typical distributions of
the secret short generator.

In more detail, we provide two main technical contributions. First, we use standard tools from analytical
number theory, such as bounds on Dirichlet L-series, to elucidate the geometry of a canonical set of generators
for the group of cyclotomic units. (The cyclotomic units correspond either to the log-unit lattice itself, or
to a sublattice whose index is conjectured to be quite small, which is sufficient for our purposes.) Then we
show that for a wide class of typical distributions of the secret generator—e.g., Gaussian-like distributions—a
standard, efficient lattice-decoding algorithm [Bab85] recovers the secret short generator, given any generator
of the ideal. Somewhat counterintuitively, the variance of the distribution is essentially irrelevant, because it
is implicitly normalized by working with logarithmic embeddings. Finally, to complement these results, we
also give concrete numerical data demonstrating that this part of the attack succeeds for all practical choices
of dimension.

Discussion. Combining our results with known algorithms for PIP (which are the bottleneck in the full
attack) [BF14, Bia14, CGS14, BS15], one obtains quantum polynomial-time, or classical 2n

2/3+ε
-time, key-

recovery algorithms for the cryptographic constructions of [SV10, GGH13, LSS14, CGS14].2 An important
open problem is to obtain even faster (classical) PIP algorithms, perhaps also using the guarantee that a short
generator exists.

The overall attack is quite specialized to the specific combination of principal ideals having “rather short”
generators, in cyclotomic number fields. In particular, it does not seem to apply to the approximate Shortest
Vector Problem (SVP) on arbitrary ideals. The conjectured hardness of approx-SVP is the foundation of the
ring-LWE problem [LPR10], which in turn is the heart of many ideal-lattice-based cryptosystems. The attack
fails on approx-SVP because most ideals in cyclotomic rings are not principal, and moreover, most principal
ideals do not have short generators (as compared with their shortest nonzero elements). An interesting and
important question is whether these barriers can be overcome to attack SVP on arbitrary ideals, or ring-LWE.
In a complementary direction, another interesting question is whether the attack on SG-PIP can be extended
to other families of non-cyclotomic rings, such as those suggested in [Ber14a]. For this it may suffice to find
(by analysis, computation, or both) a suitably good basis of the log-unit lattice, or of a sublattice of not too
large index.

Acknowledgments. We thank Dan Bernstein, Jean-François Biasse, Sorina Ionica, Dimitar Jetchev, and
Paul Kirchner for many insightful conversations on topics related to this work. We also especially thank Dan
Shepherd [She14] for explaining many additional details about the claims made in [CGS14], and for sharing
other helpful observations.

2Strictly speaking, these runtimes depend on number-theoretic conjectures regarding the class numbers h+(m); see Section 2.4
for details.
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2 Preliminaries

We denote column vectors by lower-case bold letters (e.g., x) and matrices by upper-case bold letters (e.g., X).
We often adopt the nonstandard, but very useful, convention of indexing rows and columns by particular
finite sets (not necessarily {1, . . . , n}), and identify a matrix with its indexed set of column vectors. The
canonical scalar product over Rn and over Cn is denoted 〈·, ·〉, and ‖·‖ denotes the Euclidean norm. For a
complex number z ∈ C, z denotes its complex conjugate, and |z| =

√
z · z denotes its magnitude.

2.1 Lattices and BDD

A lattice L is a discrete additive subgroup of Rn for some positive integer n. The minimum distance of L is
λ1(L) := minv∈L\{0}‖v‖, the length of a shortest nonzero lattice vector. Every lattice is generated as the
integer linear combinations of some (non-unique) R-linearly independent basis vectors B = {b1, . . . ,bk},
as L = L(B) := {

∑k
j=1 Z · bj}, where k ≤ n is called the rank of the lattice.

Letting span denote the R-linear span of a set, the dual basis B∨ = {b∨1 , . . . ,b∨k } ⊂ span(B) and dual
lattice L = L(B∨) are defined to satisfy 〈b∨j ,bj′〉 = δj,j′ for all j, j′, where the Kronecker delta δj,j′ = 1 if
j = j′, and is 0 otherwise. In other words, Bt ·B∨ = (B∨)t ·B is the identity matrix.

In this work we deal with a computational problem on lattices called bounded-distance decoding (BDD):
given a lattice basis B ⊂ Rn of L = L(B) and a target point t ∈ span(L) with the guarantee that
minv∈L‖v − t‖ ≤ r for some known r < λ1(L)/2, find the unique v ∈ L closest to t (i.e., such that
‖v − t‖ ≤ r). In fact, in our context B and r will be fixed in advance, and t is the only input that may vary.

A standard approach to solve BDD (and related problems) is the “round-off” algorithm of [Bab85], which
simply returns B · b(B∨)t · te, where the rounding function bce := bc+ 1

2c ∈ Z is applied to each coordinate
independently. (Notice that (B∨)t · t is the coefficient vector of t with respect to basis B.) We recall the
following standard fact about this algorithm, and include a brief proof for completeness.

Claim 2.1. Let L ⊂ Rn be a lattice with basis B, and let t = v + e ∈ Rn for some v ∈ L, e ∈ Rn. If
〈b∨j , e〉 ∈ [−1

2 ,
1
2) for all j, then on input t and basis B, the round-off algorithm outputs v.

Proof. Because v = Bz for some integer vector z, we have (B∨)t · t = z + (B∨)t · e, so by hypothesis on
the 〈bj , e〉, we have b(B∨)t · te = z. The claim follows.

2.2 Circulant Matrices

We recall some standard facts about circulant matrices for a finite abelian group (G, ·), and their relationship
with the characters of the group. See, e.g., see [Lan02] for further details and proofs.

Definition 2.2 (Circulant matrix). For a vector a = (ag)g∈G indexed by G, the G-circulant matrix associ-
ated with a is the G-by-G matrix whose (i, j)th entry is aij−1 .

Note that the transpose of any G-circulant matrix (associated with (ag)g∈G) is also a G-circulant matrix
(associated with (ag−1)g∈G).

Definition 2.3 (Character group). A character is a group morphism χ : G → {u ∈ C : |u| = 1}, i.e.,
χ(g · h) = χ(g) · χ(h) for all g, h ∈ G. The character group (Ĝ, ·) is the set of characters of G, with the
group operation being the usual multiplication of functions, i.e., (χ · ψ)(g) = χ(g) · ψ(g).
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A basic fact is that |Ĝ| = |G|. Notice that for a character χ ∈ Ĝ, we have χ(g) = χ(g)−1 = χ(g−1).
We identify χ with the vector (χ(g))g∈G. Then all characters χ have Euclidean norm ‖χ‖ =

√
|G|, because

〈χ, χ〉 =
∑
g∈G

χ(g) · χ(g) =
∑
g∈G

1 = |G|.

Moreover, distinct characters χ, ψ are orthogonal:

〈χ, ψ〉 =
∑
g∈G

χ(g) · ψ(g) =
∑
g∈G

(χ · ψ−1)(g) = 0.

Therefore, the complex G-by-Ĝ matrix

PG := |G|−1/2 ·
(
χ(g)

)
g∈G,χ∈Ĝ

is unitary, i.e., P−1
G = P∗G, the conjugate transpose of PG.

Lemma 2.4. A complex matrix A is G-circulant if and only the Ĝ-by-Ĝ matrix P−1
G ·A ·PG is diagonal;

equivalently, the columns of PG are the eigenvectors of A. If A is the G-circulant matrix associated
with a = (ag)g∈G, its eigenvalue corresponding to χ ∈ Ĝ is λχ = 〈a, χ〉 =

∑
g∈G ag · χ(g).

It follows that every row and column of A has squared Euclidean norm

‖a‖2 = ‖P∗G · a‖
2 = |G|−1 ·

∑
χ∈Ĝ

|λχ|2.

It also follows that A−1 (when defined) is G-circulant, with eigenvalue λ−1
χ for eigenvector χ.

Proof. Suppose that A is G-circulant, and let χ ∈ Ĝ be a character of G. Then

(A · χ)g =
∑
h∈G

agh−1 · χ(h) =
(∑
k∈G

ak · χ(k)
)
· χ(g),

where in the final equality we have substituted k = gh−1 and used χ(h) = χ(k) · χ(g). So A · χ = λχ · χ.
For the other direction, it suffices by linearity to show that Aχ = PG · Dχ · P−1

G is G-circulant for
every χ ∈ Ĝ, where Dχ is the diagonal Ĝ-by-Ĝ matrix with 1 in its (χ, χ)th entry and zeros elsewhere.
Indeed, by definition of PG and because P−1

G = P∗G, the (i, j)th entry of Aχ is simply |G|−1 · χ(i) · χ(j) =

|G|−1 · χ(ij−1), which depends only on ij−1 as required.

2.3 Dirichlet Characters and L-Series

A Dirichlet character χ is a character of Z∗k for some positive integer k. Note that if k|` then χ induces a
character of Z∗` via the natural morphism Z∗` → Z∗k, so we can equivalently view χ as being defined modulo
either k or `. The conductor fχ of χ is the smallest positive f such that χ is induced by a Dirichlet character
modulo f . The character is said to be even if χ(−1) = 1; note that the even Dirichlet characters correspond
with the characters of Z∗k/{±1}. We often implicitly extend χ to a completely multiplicative function from Z
to C, by letting χ(a) = 0 if gcd(a, k) > 1.
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Definition 2.5 (Dirichlet L-Series). For a Dirichlet character χ, the Dirichlet L-function L(·, χ) is defined
as the formal series

L(s, χ) =
∑
k≥1

χ(k)

ks
.

For any Dirichlet character χ, the series L(s, χ) is absolutely convergent for all s ∈ C with <(s) > 1. It is
also known that L(1, χ) converges and is nonzero for any nontrivial Dirichlet character (i.e., χ 6= 1). We
have the following asymptotic bounds on its value.

Theorem 2.6. There exists a real constant C > 0 such that, for any character χ of conductor f > 1,

1

`(f)
≤ |L(1, χ)| ≤ `(f) where `(f) = C ln f.

The above result can be traced back to Landau [Lan27], and improving the constant C is an active field
of research [Lou15]. Additionally, under the Generalized Riemann Hypothesis, the above bound can be
improved to `(f) = C ln ln f (see [YXK13]).

2.4 Cyclotomic Number Fields and the Log-Unit Lattice

Cyclotomic number fields. Let L be a field. An element ζ ∈ L is a root of unity if ζm = 1 for some
positive integer m. The order of a root of unity ζ ∈ L is the order of the finite multiplicative subgroup of L∗

generated by ζ. A primitive mth root of unity in L is a root of unity ζ ∈ L of order m. Note that if ζ ∈ L is
a primitive mth root of unity, then the polynomial Xm − 1 ∈ L[X] factors as

∏m−1
i=0 (X − ζi) over L[X].

Also note that the complete set of primitive mth roots in L consists of the powers ζj for j ∈ Z∗m.
An algebraic number field K is an extension field of the rationals Q such that its dimension [K : Q] as a

Q-vector space (i.e., its degree) is finite. If Ω ⊃ K is an extension field such that Ω is algebraically closed
over Q, then there are exactly [K : Q] field embeddings of K into Ω.3 An algebraic number field is Galois if
the order of its automorphism group equals its degree.4 A number field K is cyclotomic if K = Q(ζ) for
some root of unity ζ ∈ K. Its degree is ϕ(m), where ϕ(·) is the Euler totient function and m is the order of ζ ,
and its ring of integers R is monogenic, i.e., R = Z[ζ]. We let U denote the cyclic (multiplicative) subgroup
of mth roots of unity, which is generated by ζ.

A cyclotomic number field is Galois. If K = Q(ζ) is a cyclotomic number field with ζ ∈ K an mth
primitive root of unity then each automorphism is characterized by the assignment ζ 7→ ζj for some j ∈ Z∗m.
As a consequence, if L is an extension field of a cyclotomic field K, then K is situated uniquely in L. For
concreteness, we situate cyclotomic number fields in the complex numbers C. Let m be a positive integer
and define ω = ωm = exp(2πı/m) ∈ C. Then ω is a primitive mth root of unity and K = Q(ω) is the mth
cyclotomic number field. The embeddings of K into the complex numbers (i.e., the automorphisms of K)
are denoted σj for j ∈ Z∗m, where σj sends ω to ωj .

Logarithmic embedding. The embeddings σi of K, being complex, come in conjugate pairs, i.e., σj(x) =

σ−j(x). We will mainly be concerned with their magnitudes, so we identify the pairs by indexing over the

3These embeddings are merely ring morphisms ψ : K → Ω. Each such ψ is automatically injective because K is a field. Also
note that any such ψ fixes Q pointwise.

4An automorphism of a field L is a ring isomorphism ψ : L → L. The automorphisms of L form a group with functional
composition as the group operation.
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multiplicative quotient group G := Z∗m/{±1}. We then have the logarithmic embedding, defined as

Log : K → Rϕ(m)/2

a 7→
(
log|σi(a)|

)
i∈G .

The logarithmic embedding defines a group morphism, mapping the multiplicative group K∗ to an additive
subgroup of Rϕ(m)/2. The kernel of Log restricted toR∗ is {±1}·U . The Dirichlet Unit Theorem (see [Sam70,
Chapter 4.4, Theorem 1]) implies that Λ = Log(R∗), the image of the multiplicative unit group of R under
the logarithmic embedding, is a full-rank lattice in the linear subspace of Rϕ(m)/2 orthogonal to the all-1s
vector 1. We refer to Λ as the log-unit lattice.

Cyclotomic units. Let A be the multiplicative subgroup of K∗ generated by ±ζ and

zj := ζj − 1, j ∈ Zm \ {0}.

Notice that zj = −ζj · z−j , so zj and z−j are equivalent modulo ±U ; in particular, Log(zj) = Log(z−j).
The group of cyclotomic units, denoted C, is defined by

C = A ∩R∗ .

The zj given above are not necessarily units in R, and thus do not generate C. However, a closely related
generating set, which we call the canonical generators, is given by the following lemma. Recall that
G = Z∗m/{±1}, and identify it with some canonical set of representatives in Z∗m.

Lemma 2.7 (Lemma 8.1 of [Was97]). Let m be a prime power, and define bj := zj/z1 = (ζj − 1)/(ζ− 1).
The group C of cyclotomic units is generated by ±ζ and bj for j ∈ G \ {1}.

Notice that LogC is a sublattice of Λ. As shown below, the index of Λ over LogC is finite. In fact,
it is h+(m), the class number of the real subfield K+ = Q(ζ + ζ̄), defined as the index of the subgroup
of principal fractional ideals in the multiplicative group of all fractional ideals (in K+). The proof of this
theorem is left as Exercise 8.5 in [Was97]. For completeness, we sketch the solution in Appendix B.

Theorem 2.8. For a prime power m > 2, the index of the log-unit lattice Λ over LogC is

[Λ : LogC] = h+(m).

Some facts and conjectures concerning h+. For our purposes, we need h+(m) not to be very big. For
all power-of-two m up to m = 256, and also for m = 512 under GRH, it is known that h+(m) = 1
(see [Mil14a]). Whether h+(m) = 1 for all power-of-two m is known as Weber’s class number problem, and
is presented in the literature as a reasonable conjecture.

In the case of odd primes, it also appears that h+ is quite small. Computations of Schoof [Sch03] and
Miller [Mil14b] show that h+(p) ≤ 11 for all primes p ≤ 241. For powers of odd primes it has been
conjectured (with support of the Cohen-Lenstra heuristic) that, for all but finitely many pairs (p, `) where p
is a prime, h+(p`+1) = h+(p`) [BPR04]. A direct consequence is that h+(p`) is bounded for a fixed p and
increasing `.
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3 Geometry of the Canonical Generators

Throughout this section, let the cyclotomic index m be a prime power. Our goal here is to show that the
canonical generators of the cyclotomic units, under the logarithmic embedding, are geometrically well-suited
for bounded-distance decoding.

Recalling that G = Z∗m/{±1} is identified with some set of canonical representatives in Z∗m and that
Log(bj) = Log(b−j), define

bj = Log(bj), j ∈ G \ {1},

to be the log-embeddings of the canonical generators bj = (ζj − 1)/(ζ − 1) defined in Lemma 2.7. By
Lemma 2.7, these bj form a basis of the sublattice LogC, which by Theorem 2.8 has index h+(m) in Λ.

In order to apply the round-off algorithm and Claim 2.1 with this basis, we bound the norms ‖b∨j ‖ of the
dual basis vectors. The remainder of this section is dedicated to proving the following theorem.

Theorem 3.1. Let m = pk for a prime p, and let {b∨j }j∈G\{1} denote the basis dual to {bj}j∈G\{1}. Then
all ‖b∨j ‖ are equal, and ∥∥b∨j ∥∥2 ≤ 2k|G|−1 · `(m)2 = O(m−1 · log3m) .

To prove the theorem we start by relating the basis vectors bj to a certain G-circulant matrix. Recalling
that zj = ζj − 1 is the numerator of bj , define zj := Log(zj) = bj + z1. Collect these vectors into a square
G-by-G matrix Z whose jth column is zj−1 , and notice that its (i, j)th entry log|ωi·j−1 − 1| is determined
by ij−1 ∈ G alone, so Z is the G-circulant matrix associated with z1. For each eigenvector χ ∈ Ĝ of Z, let
λχ := 〈z1, χ〉 denote the corresponding eigenvalue.

Lemma 3.2. For all j ∈ G \ {1} we have∥∥b∨j ∥∥2
= |G|−1 ·

∑
χ∈Ĝ\{1}

|λχ|−2. (1)

Proof. Let z∨j denote the vectors dual to the zj , i.e., the columns of Z−t. (As shown below in the proof of
Theorem 3.1, Z−1 is indeed well defined because all eigenvalues λχ of Z are nonzero.)

We first claim that b∨j is simply the projection of z∨j orthogonal to 1, i.e., b∨j = z∨j − |G|
−1 · 〈z∨j ,1〉 · 1.

Indeed, these vectors are all in span(bj′)j′ , the space orthogonal to 1, and moreover, for all j, j′ ∈ G \ {1}
they satisfy

〈z∨j − |G|
−1 · 〈z∨j ,1〉 · 1,bj′〉 = 〈z∨j ,bj′〉 = 〈z∨j , zj′ − z1〉 = δj,j′ − 0.

Now, ∥∥b∨j ∥∥2
=
∥∥z∨j ∥∥2 − |G|−1 · 〈z∨j ,1〉

2.

Recall by Lemma 2.4 that Z−t is the G-circulant matrix associated with z∨1 , which has eigenvalue λ−1
χ =

〈z∨1 , χ〉 for eigenvector χ ∈ Ĝ. By the remarks following Lemma 2.4, ‖z∨j ‖
2 = |G|−1 ·

∑
χ∈Ĝ|λχ|

−2. The
lemma follows by noting that 〈z∨j ,1〉 = 〈z∨1 ,1〉 = λ−1

1 .

We now provide an upper bound on the right-hand side of Equation (1). Our proof is similar to the proof
that the cyclotomic units have finite index in the full group of units [Was97, Theorem 8.2].
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Theorem 3.3 ([Was97, Lemma 4.8 and Theorem 4.9]). Let χ be an even Dirichlet character of conductor
f > 1, and let ωf = exp(2πı/f) ∈ C. Then∣∣∣∣∑

a∈Z∗f

χ(a) · log|1− ωaf |
∣∣∣∣ =

√
f · |L(1, χ)|.

For completeness, we briefly explain how the finite sum on the left hand side gives rise to an L-series,
and refer to [Was97] for the details. Using the Taylor expansion

log |1− x| = −
∑
k≥1

xk/k ,

one gets a sum over finitely many a and infinitely many k of terms χ(a) · ωakf /k. For a fixed k, the sum
over a can easily be rewritten as τ(χ) ·χ(k)/k, where τ(χ) is a Gauss sum (see [Was97, Lemma 4.7]), which
makes the Dirichlet L-function apparent.

Corollary 3.4. Suppose f > 1 divides a prime power m. For any even Dirichlet character of conductor f ,∣∣∣∣ ∑
a∈Z∗m

χ(a) · log|1− ωam|
∣∣∣∣ =

√
f · |L(1, χ)|.

Proof. Let φ : Z∗m → Z∗f be the map given by reduction modulo f . We have∑
a∈Z∗m

χ(a) · log|1− ωam| =
∑
a∈Z∗f

χ(a)
∑
b∈Z∗m
φ(b)=a

log|1− ωbm|

=
∑
a∈Z∗f

χ(a) · log

∣∣∣∣ ∏
b∈Z∗m
φ(b)=a

(1− ωbm)

∣∣∣∣
=
∑
a∈Z∗f

χ(a) · log
∣∣1− ωaf ∣∣,

where in the last equality we have used the identity
∏
i∈Zn(1−ωinY ) = 1−Y n and ωnm = ωf with n = m/f .

The claim follows by applying Theorem 3.3.

We are now ready to complete the proof of the main theorem.

Proof of Theorem 3.1. Recall that the characters χ ∈ Ĝ correspond to the even characters of Z∗m, because
χ(±1) = 1. Also recall that by Lemma 2.4, the eigenvalues are

λχ = 〈z1, χ〉 =
∑
a∈G

χ(a) · log |1− ωam| =
1

2

∑
a∈Z∗m

χ(±a) · log |1− ωam|,

where the second equality holds because |1 − ω−am | = |1 − ωam|. Therefore, using Corollary 3.4 and
Theorem 2.6, we have

|λχ| =
1

2

√
fχ · |L(1, χ)| ≥

√
fχ

2`(fχ)
≥
√
fχ

2`(m)
.

9



Hence, by Lemma 3.2,∥∥b∨j ∥∥2
= |G|−1 ·

∑
χ∈Ĝ\{1}

|λχ|−2 ≤ 4|G|−1 · `(m)2
∑

χ∈Ĝ\{1}

f−1
χ ≤ 2k|G|−1 · `(m)2 ,

where the last inequality follows from Claim 3.5 below.

Claim 3.5. Let m = pk for a prime p. Then, for G = Z∗m/{±1},∑
χ∈Ĝ\{1}

f−1
χ ≤ k

2
.

Proof. Notice that there are at most f Dirichlet characters of conductor f , at most half of which are even
(when f > 1), so ∑

χ∈Ĝ\{1}

f−1
χ ≤

k∑
`=1

p`

2
· 1

p`
=
k

2
.

4 Algorithmic Implications

The following is our main algorithmic result, showing that under mild restrictions on the distribution of the
short generator, we can recover it from any generator that differs from it by a unit in C.

Theorem 4.1. LetD be a distribution over Q(ζ) with the property that for any tuple of vectors v1, . . . ,vϕ(m)/2−1 ∈
Rϕ(m)/2 of Euclidean norm 1 that are orthogonal to the all-1 vector 1, the probability that |〈Log(g),vi〉| <
cm1/2 log−3/2m holds for all i is at least some α > 0, where g is chosen from D and c is a universal
constant. There is an efficient algorithm that given g′ = g · u, where g is chosen from D and u ∈ C is a
cyclotomic unit, outputs an element of the form ±ζjg with probability at least α.

Proof. The algorithm applies the roundoff algorithm from Claim 2.1 to Log(g′) = Log(g) + Log(u), using
the vectors bj (defined and analyzed in Section 3) as the basis. By the assumption on D and Theorem 3.1,
with probability at least α the output is Log(u) ∈ Log(C). We next find integer coefficients aj such that
Log(u) =

∑
ajbj , and compute u′ =

∏
b
aj
j . Since Log(u′) = Log(u) it follows that u′ must be of the form

±ζju for some sign and some j. Therefore, g′/u′ is the desired element.

In the next section we show that the condition on D in the theorem is satisfied by several natural
distributions.

One possible concern with the above algorithm is that it expects as input g ·u for a cyclotomic unit u ∈ C,
whereas the first phase of the attack described in the introduction, i.e., a PIP algorithm, is only guaranteed to
output g · u for an arbitrary unit u ∈ R∗. There are several reasons why this should not be an issue. First,
as mentioned in Section 2, in some cases, e.g., for power-of-2 cyclotomic, it is conjectured that C = R∗.
More generally, the index of C in R∗, which we recall is h+, the class number of the totally real subfield,
is often small. In such a case, if we have a list of coset representatives of C in R∗, we can enumerate over
all of them and use the algorithm above to recover g, increasing the running time only by a factor of h+. In
order to obtain such a list of representatives, we can use an algorithm for computing the unit group, either

10



classical [BF14] or quantum [EHKS14]. These algorithms are no slower than the known PIP algorithms and
moreover, need only be applied once for a given cyclotomic field (as opposed to once for each public key).
Alternatively, by running the PIP algorithm multiple times on a basis of a principal ideal with a known short
generator chosen using the secret key generation algorithm, we can recover a list of representatives for all the
cosets that show up as output of the PIP algorithm with non-negligible probability; we can then enumerate
over that list.

5 Tail Bounds

In this section we show that the condition on D in Theorem 4.1 is satisfied by two natural distributions: the
continuous Gaussian and a wide enough discrete Gaussian (over any lattice). This section is independent
of the other sections in this paper, and we avoid the use of notation from algebraic number theory. Instead,
we identify elements of K with vectors in Rϕ(m) by taking the real and the imaginary part of their ϕ(m)/2
complex embeddings, i.e., a is mapped to (<(σj(a)),=(σj(a)))j∈G. As a result, all random variables
appearing here are real. The results in this section should be easy to extend to other distributions.

We start with Lemma 5.2, a tail bound on the sum of subexponential random variables. The proof is based
on a standard Bernstein argument, and follows the proof in [Ver12] apart from some minor modifications for
convenience.

Definition 5.1. For α, β > 0, we say that a random variable X is (α, β)-subexponential if

E[cosh(αX)] ≤ β ,

where recall that cosh(x) := (ex + e−x)/2.

Lemma 5.2 (Tail bound). LetX1, . . . , Xn be independent centered (i.e., expectation zero) (α, β)-subexponential
random variables. Then, for any a = (a1, . . . , an) ∈ Rn and every t ≥ 0,

Pr
[∣∣∣∑ aiXi

∣∣∣ ≥ t] ≤ 2 exp

(
−min

(
α2t2

8β‖a‖22
,

αt

2‖a‖∞

))
.

Proof. By scaling, we can assume without loss of generality that α = 1. Next, we use the inequality

eδx − δx− 1 ≤ (eδx − δx− 1) + (e−δx + δx− 1) = 2(cosh(δx)− 1) ≤ 2δ2(cosh(x)− 1)

which holds for all−1 ≤ δ ≤ 1 and all x ∈ R, where the second inequality follows from the Taylor expansion.
By applying this inequality to a (1, β)-subexponential centered random variable X , and taking expectations
we see that for all −1 ≤ δ ≤ 1,

E[exp(δX)] ≤ 1 + 2δ2 E[cosh(X)− 1]

≤ 1 + 2δ2(β − 1) ≤ exp(2δ2β) . (2)

Using Markov’s inequality, we can bound the upper tail probability for any λ > 0 as

Pr
[∑

aiXi ≥ t
]

= Pr
[
exp
(
λ
∑

aiXi

)
≥ exp(λt)

]
≤ exp(−λt) · E

[
exp
(
λ
∑

aiXi

)]
= exp(−λt) ·

∏
E[exp(λaiXi)]

≤ exp(−λt+ 2βλ2‖a‖22) ,
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where in the second inequality we used (2) and assumed that λ‖a‖∞ ≤ 1. Taking λ = min(t/(4β‖a‖22), 1/‖a‖∞)
this bound becomes at most

exp

(
−min

(
t2

8β‖a‖22
,

t

2‖a‖∞

))
.

We complete the proof by applying the same argument with −a.

The next claim follows immediately from Definition 5.1.

Claim 5.3. If Y is a non-negative random variable such that both E[Y ] and E[Y −1] are finite, then log Y is
a (1, β)-subexponential random variable for some β > 0.

The following is an immediate corollary of the tail bound. It shows that the condition in Theorem 4.1
holds with overwhelming probability for a continuous Gaussian distribution of any radius that is spherical in
the embedding basis. Notice that the parameter r plays no role in the conclusion of the statement.

Lemma 5.4. Let X1, . . . , Xn, X
′
1, . . . , X

′
n be i.i.d. N(0, r) variables for some r > 0, and let X̂i = (X2

i +
X ′2i )1/2. Then, for any vectors a(1), . . . ,a(`) ∈ Rn of Euclidean norm 1 that are orthogonal to the all-1
vector, and every t ≥ C for some universal constant C,

Pr
[
∃j,

∣∣∣∑
i

a
(j)
i log(X̂i)

∣∣∣ ≥ t] ≤ 2` exp(−t/2) .

Proof. By union bound, it suffices to prove the lemma for the case ` = 1, and we let a = a(1). Since∑
ai = 0, we can assume without loss of generality that r = 1. Notice that X̂i has a chi distribution with

2 degrees of freedom (also known as a Rayleigh distribution) whose density function is given by xe−x
2/2

for x > 0 and zero otherwise. In particular, it is easy to see that both E[X̂i] and E[X̂−1
i ] are finite (both

are
√
π/2). Therefore, by Claim 5.3, log X̂i is (1, β) subexponential for some constant β > 0. From this it

follows that X̂i = log X̂i−E[log X̂i] are centered (1, β′) subexponential random variables for some constant
β′ > 0. The result now follows by applying Lemma 5.2 to X̂1, . . . , X̂n, using the bound ‖a‖∞ ≤ 1, and the
observation that

∑
i ai E[log X̂i] = 0.

In the next lemma we show that small perturbations of the continuous Gaussian distribution still satisfy
the condition in Theorem 4.1.

Lemma 5.5. Let X = (X1, . . . , Xn, X
′
1, . . . , X

′
n) be i.i.d. N(0, r) variables for some r > 0, and let

Y = (Y1, . . . , Yn, Y
′

1 , . . . , Y
′
n) be a (not necessarily independent) random vector satisfying ‖Y ‖2 ≤ u with

probability 1 for some u ≤ r/(20
√
n). Let Z = X + Y and define X̂i, Ŷi, Ẑi as before. Then for any

vectors a(1), . . . ,a(`) ∈ Rn of Euclidean norm 1 that are orthogonal to the all-1 vector, it holds with constant
probability that for all j, ∣∣∣∑

i

a
(j)
i log(Ẑi)

∣∣∣ ≤ 1 + 10 log ` .

Proof. By Lemma 5.4 we have that with some constant probability close to 1,

∀j,
∣∣∣∑
i

a
(j)
i log(X̂i)

∣∣∣ < 10 log ` . (3)
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Moreover, since X̂i < r/(10
√
n) implies that both |Xi| and |X ′i| are smaller than r/(10

√
n), we see that by

independence of Xi, X
′
i, the probability of the former event is at most c/n for some small constant c. As a

result we have that with constant probability close to 1,

∀i, X̂i > r/(10
√
n) .

In the following we assume that these two conditions hold (which happens with constant probability close to
1 by union bound), and bound the effect of Y . Now let a be one of the vectors in the statement of the lemma.
Then, ∣∣∣∑

i

ai log(Ẑi)
∣∣∣ ≤ ∣∣∣∑

i

ai log(X̂i)
∣∣∣+
∣∣∣∑
i

ai log(Ẑi/X̂i)
∣∣∣

≤ 10 log `+
∣∣∣∑
i

ai log(Ẑi/X̂i)
∣∣∣ ,

where we used Eq. (3). Notice that by the triangle inequality (for two-dimensional Euclidean space),

X̂i − Ŷi ≤ Ẑi ≤ X̂i + Ŷi .

Since Ŷi ≤ ‖Y ‖2 ≤ u ≤ r/(20
√
n) ≤ X̂i/2, and using the inequality | log(1 + δ)| ≤ 2|δ| valid for all

δ ∈ [−1/2, 1/2], ∣∣∣∑
i

ai log(Ẑi/X̂i)
∣∣∣ ≤ (∑

i

(log(Ẑi/X̂i))
2
)1/2

≤
(∑

i

(2Ŷi/X̂i)
2
)1/2

≤ 20
√
n/r ·

(∑
i

Ŷ 2
i

)1/2

≤ 20
√
nu/r ≤ 1 ,

where the first inequality follows from Cauchy-Schwarz.

Finally, we consider the spherical (in the embedding basis) discrete Gaussian distribution over an arbitrary
lattice L ⊆ R2n. Such distributions show up often in cryptographic constructions (see, e.g., [LPR13]), and
often that lattice is the (embedding of the) ring of integers R. For background on the discrete Gaussian
distribution and the smoothing parameter, see, e.g., [MR04]. In order to apply Lemma 5.5 to this distribution,
takeX to be the continuous GaussianDr for some r ≥ 100nηε(L), and Y the discrete GaussianDL−X,s over
the coset L−X of parameter s = ηε(L) for some negligible parameter ε. Using Banaszczyk’s result [Ban93]
we have that with all but exponentially small probability in n, ‖Y ‖2 ≤

√
2nηε(L) ≤ r/(60

√
n). Moreover,

by the lemma below, the distribution of Z = X + Y is within negligible statistical distance of the discrete
Gaussian distribution DL,r′ for r′ = (r2 + ηε(L)2)1/2. We therefore see that the condition in Theorem 4.1
holds for the discrete Gaussian distribution DL,r′ for any lattice L and any r′ > 200nηε(L).

Lemma 5.6 (Special case of [Pei10, Theorem 3.1]). Let L be a lattice and r, s > 0 be such that s ≥ ηε(L)
for some ε ≤ 1/2. Then if we choose x from the continuous Gaussian Dr and then choose y from the discrete
Gaussian DL−x,s then x + y is within statistical distance 8ε of the discrete Gaussian DL,(r2+s2)1/2 .

13



A Numeric Data

The previous sections established asymptotic bounds related to the log-embeddings of the cyclotomic units.
Figure 1 gives concrete numeric data for several practical (and even impractical) choices of cyclotomic fields.
This data confirms that the method works in practice.

k (m = 2k) 6 7 8 9 ≥ 10

‖b∨j ‖
−1 5.04 8.56 14.69 25.71 ≥ 45.85

k (m = 3k) 4 5 ≥ 6

‖b∨j ‖
−1 5.72 13.65 ≥ 34.04

k (m = 5k) 3 4 ≥ 5

‖b∨j ‖
−1 10.04 36.43 ≥ 143

Figure 1: Lower bounds on the inverse lengths of the dual vectors b∨j defined in Section 3, for various
cyclotomics of prime-power index. Larger values correspond to larger decoding distances for the log-
embedding of the cyclotomic units.

B Proof of Theorem 2.8

Proof. First, Corollary 4.13 of [Was97] gives that Z[ζ]∗ is generated by Z[ζ + ζ]∗ and ζ, so it follows that

Λ = LogZ[ζ]∗ = LogZ[ζ + ζ]∗,

since the kernel of Log is the group {±1} · U .
Next, recall that the group of cyclotomic units is defined as C = A ∩ R∗. We define the group of real

cyclotomic units as C+ = A ∩ Z[ζ + ζ̄]∗. The analogue of Lemma 2.7 for the real cyclotomic units, also
included in Lemma 8.1 of [Was97], says that the group C+ of real cyclotomic units is generated by −1 and
ζ(1−j)/2 · bj . So as above, we obtain that

LogC = LogC+ .

The theorem then follows from the sequence of equalities

[Λ : LogC] =
[
LogZ

[
ζ + ζ

]∗
: LogC+

]
=
[
Z
[
ζ + ζ

]∗
: C+

]
= h+ ,

where the second equality follows from ker(Log) ∩ C+ = ker(Log) ∩ Z[ζ + ζ]∗ (= {±1}), and the third
equality is Theorem 8.2 of [Was97].
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