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Abstract

Increasing the computational complexity of evaluating a hash function, both for the
honest users as well as for an adversary, is a useful technique employed for example in
password-based cryptographic schemes to impede brute-force attacks, and also in so-called
proofs of work (used in protocols like Bitcoin) to show that a certain amount of computation
was performed by a legitimate user. A natural approach to adjust the complexity of a hash
function is to iterate it c times, for some parameter c, in the hope that any query to the
scheme requires c evaluations of the underlying hash function. However, results by Dodis et
al. (Crypto 2012) imply that plain iteration falls short of achieving this goal, and designing
schemes which provably have such a desirable property remained an open problem.

This paper formalizes explicitly what it means for a given scheme to amplify the query
complexity of a hash function. In the random oracle model, the goal of a secure query-
complexity amplifier (QCA) scheme is captured as transforming, in the sense of indifferen-
tiability, a random oracle allowing R queries (for the adversary) into one provably allowing
only r < R queries. Turned around, this means that making r queries to the scheme
requires at least R queries to the actual random oracle. Second, a new scheme, called
collision-free iteration, is proposed and proven to achieve c-fold QCA for both the honest
parties and the adversary, for any fixed parameter c.
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1 Introduction

1.1 Motivation of This Work

Moderately hard hashing. Hash functions are one of the most basic and widely used build-
ing blocks in practically deployed cryptographic protocols. Their use in different contexts puts
diverse requirements on their properties. There is a vast body of literature exploring vari-
ous desirable properties of cryptographic hash functions such as collision resistance, (second-)
preimage resistance, indifferentiability from a random oracle, and several others.

A seemingly orthogonal property of a hash function is its efficiency — quantified by the
amount of computational resources that are required to evaluate it. Naturally, the typical
design goal is to provide hash functions that are as efficient as possible, while still maintaining
the desired security requirements mentioned above. As a result of the long-term design effort
with this motivation, the currently standardized and used cryptographic hash functions such
as SHA-1, SHA-2 [SHA12] and SHA-3 [SHA14] are extremely efficient: for example, a software
implementation of SHA-2 can process data at (very roughly) about 100 MB/s on a typical PC.

However, in several application scenarios the efficiency of the hash function actually has
serious security implications, and these motivate design efforts going in the opposite direction.
Namely, sometimes hash functions are used to perform computation by the honest parties that
would need to be repeated on a significantly higher scale by an adversary trying to compromise
the security of the system. One example of such a setting is any non-interactive password-based
scheme where the hash function is used to, say, derive a key from this password. Here, increasing
the complexity of the hash-function evaluation, while slightly increasing the computational
burden for the honest user, also significantly increases the cost of a brute-force and password-
guessing (dictionary) attack. Another setting that could benefit from an adjustable complexity
of a hash function is a proof of work [DN93] where a legitimate protocol participant shows that
he performed a certain amount of computation. This concept was proposed, among other uses,
as a countermeasure against denial-of-service attacks or junk mail. Similar ideas are used in
the now widely used Bitcoin system [Nak08] and other cryptocurrencies basing their security
on proofs of work.

The common denominator of all the settings mentioned above is that it would be desirable to
employ hash functions that are, loosely speaking, moderately hard to compute [Nao03]. While
the occasional evaluation of such a function by an honest user needs to still remain feasible,
at the same time the scaling resulting from a brute-force attack must be prohibitive for any
adversary.

Complexity amplification. Since designing new cryptographic hash functions from scratch
is a long and intricate process (e.g., the SHA-3 competition spanned over almost 5 years), to
answer the above-described demand it would be preferable to give generic schemes that would
instead turn an existing hash function h into a new function H with moderately increased
evaluation complexity. A natural first candidate for such a scheme is the simple c-iteration (or
plain iteration), i.e., letting

H(·) := hc(·) := h(. . . h(·) . . .)︸ ︷︷ ︸
c times

for some integer c > 1.
Indeed, many password-hashing schemes are based on some form of iteration. Historically,

the earliest implementations of crypt(3) used several iterations of (a variant of) the block cipher
DES to hash users’ passwords on Unix systems [MT79], the more recent bcrypt [PM99] iterates
the block cipher Blowfish instead. Iteration is also used in the password-based key derivation
function PBKDF2 standardized in PKCS#5 [Kal00] and recommended by NIST [TBBC10].

However, when it comes to assessing the security of any such generic scheme for increasing
evaluation complexity (for example to justify the choice of plain iteration), it turns out that
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merely defining the security requirement formally is a surprisingly subtle task. This is especially
true if one asks for a composable definition that then allows every scheme secure under this
definition to be plugged into any possible application, so that proving a scheme secure according
to this single definition immediately implies that it can be used in, e.g., key derivation, proofs
of work, or other applications. One of our main contributions will be to give such a composable
definition by modeling the underlying hash function h as a random oracle and exploiting the
well-established notion of indifferentiability. Before inspecting it in greater detail, let us first
mention a surprising observation given in recent work that is very relevant in our context.

The caveats of plain iteration. Dodis et al. [DRST12] studied the structural differences
between a random oracle and its second iterate: more precisely, they investigated the indiffer-
entiability of the 2-iteration of a random oracle from a plain random oracle. Interestingly, they
showed that such indifferentiability does hold, but only with poor parameters. Namely (and very
roughly), any simulator in this indifferentiability statement, if asked r queries during the distin-
guishing experiment, would itself have to issue a large number of queries Ω(`r) to the underlying
random oracle in order to succeed in simulation, where ` denotes (an upper bound on) the num-
ber of honest queries. (We show in Section 4 that the result extends to higher-order iterates.)
On a high level, this large number of simulator queries means that if one uses the c-iterate of a
hash function in some application, then the concrete security statement obtained through the
composition theorem of indifferentiability is weaker than intuitively expected. Therefore, any
strong security guarantee could only be obtained through an ad-hoc security analysis depending
on the particular scenario considered, as done by Bellare et al. [BRT12].

Let us recall an example of Dodis et al. [DRST12] to illustrate this last point. In the
hash-then-sign paradigm, a signature scheme SSn signing n-bit messages and a hash function
h : {0, 1}∗ → {0, 1}n are combined into a signature scheme SS∗ (h) for arbitrary length messages
by signing the hash h(m) of the message instead of the message m itself. Forging a signature for
the extended scheme SS∗ (h) requires either to find a collision for the hash function h or to find
a forgery for the original fixed-length signature scheme SSn. If the hash function h is modelled
as a random oracle, then its second iterate h2 is indifferentiable from h [DRST12, Thm. 2],
and the composition theorem of indifferentiability [MRH04, RSS11] implies that the security
of SS∗

(
h2) can be reduced to that of SS∗ (h). However, such a reductionist argument, which

is standard in any composable cryptographic framework such as indifferentiability, consists of
obtaining an adversary against SS∗ (h) from an adversary against SS∗

(
h2) which additionally

performs the job of the simulator given in the indifferentiability statement. Due to the blow-up
in simulator queries mentioned above, this concretely means that one relates an adversary trying
to forge a signature for SS∗

(
h2) with at most ` signing queries and r random oracle queries,

to an adversary trying to forge a signature for SS∗ (h) also with ` signing queries, but with
` · r random oracle queries. Thus, although SS∗ (h) is secure as long as the collision probability
(` + r)2/2n is sufficiently small (assuming that the original length-restricted signature scheme
SSn is secure within ` queries), the security of SS∗

(
h2) derived through composition depends

instead on the much higher collision probability (` · r)2/2n, representing a quadratic decrease
of security.

1.2 Contributions of This Paper

In this work, we develop a new formal framework for treating the amplification of the evalua-
tion complexity for random oracles (which are often used to model hash functions in practical
scenarios). We first develop a security definition that tightly captures how well a given scheme
increases the computational burden for an adversary in evaluating the function. Being based
on indifferentiability, our definition is naturally composable and hence guarantees the desired
universal applicability of any scheme meeting it. Secondly, guided by the observations of Dodis
et al. [DRST12] about the second iterate, we show that plain iteration, regardless of the num-
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ber of iterations employed, fails to achieve the amplification of the hash-function complexity in
the above sense. In response, we develop a modification of the plain-iteration scheme, called
collision-free iteration, that does provably and generically achieve the desired amplification. Let
us now discuss the details of each of these contributions.

Composable security for hash-complexity amplification. Employing the random oracle
model (ROM) [BR93], we model hash functions as random oracles. A random oracle can be
viewed as a resource that is available to all parties in a given setting, and allows each of them
to evaluate the oracle by querying it—this corresponds to the party internally computing the
output of the hash function. A restriction on the computational resources of the adversary
hence naturally translates to a restriction on the number of queries it is allowed to ask the
random oracle. In a typical security proof in the ROM, one establishes that the scheme in
question is secure unless the ROM-adversary performs a huge number of queries to the random
oracle. This then suggests that the adversary against the real implementation has to evaluate
the hash function on a prohibitive number of inputs. Following this intuition, we model the
increase in evaluation complexity of a hash function by a decrease in the number of queries that
the adversary is allowed to issue to the random oracle (before its computational resources are
exhausted).

As a starting point, we make explicit the number of queries that such an oracle allows to
each party: for two integers L and R, a random oracle that allows up to L queries at the
left (honest user’s) interface and up to R queries at the right (adversary’s) interface formalizes
the guarantee that the honest user has sufficient resources to evaluate the hash function (at
least) L times, whereas the resources of the adversary are bounded to (at most) R evaluations.
Naturally, a desirable guarantee for the honest user is that the number L is large enough to
execute higher-level protocols, whereas the number R must be small enough to prevent the
adversary from attacking those protocols with significant probability. The goal of a protocol for
the amplification of query complexity is hence to reduce the number R, while at the same time
not affecting the number L more than necessary.

Following the paradigm of constructive cryptography [MR11], we understand a crypto-
graphic protocol or scheme as a way to construct, in a well-defined sense, a certain desired
resource from one or more assumed resources. In the context of query-complexity amplification
(QCA), this means that the goal is to construct, from a random oracle that allows the adver-
sary to do some number R of queries, a random oracle that allows the adversary only a smaller
number r < R of queries. Intuitively, such a construction means that an adversary with the
same computational resources can evaluate the random oracle less often, which will generally
reduce his success in attacking higher-level protocols.

This constructive way of stating security definitions comes with a natural notion of com-
position. Denoting the statement that a protocol π constructs the desired resource S from the
assumed resource R as R π S, any two such construction steps that “syntactically” match
can be composed: If we consider another protocol ψ that assumes the resource S and constructs
a resource T, the composition theorem immediately implies that

R π S ∧ S ψ T =⇒ R ψ ◦ π T,

where ψ◦π denotes the composed protocol. For example, let π in the above represent a protocol
for hash-complexity amplification that is capable of transforming a random oracle R that can
be evaluated R times within the adversary’s resources into a (“much harder”) random oracle S
that the adversary can only evaluate r � R times. Then, for any higher-level construction ψ
of some useful resource T that uses an underlying random oracle S and guarantees that T will
be secure as long as the adversary is not capable of evaluating S more than r times, we can
instead start from the oracle R and amplify its complexity using π before using it to construct
T. The security will not be compromised by this as long as the adversary cannot evaluate R
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more than R times; and this guarantee then heuristically translates into the setting where we
use an efficient hash function instead of R.

Finally, while aiming for a formalization of hash-complexity amplification, we also arrive at
a new formalism of parameterized construction statements, as detailed in Section 3. We believe
that this formalism will be useful also in many other settings, such as secure communication
as discussed in [Tac14], and consider it an additional contribution of this paper of independent
interest.

A scheme for hash-complexity amplification. As our second contribution, we present a
simple scheme, called collision-free iteration, that achieves query-complexity amplification in
the sense of our new definition discussed above.

One would naturally expect that the c-iteration of a random oracle for some c ≥ 2 would
lead to a reduction of adversary queries from R to R/c, at the cost of simultaneously reducing
the honest party’s queries from L to L/c. However, we show in Section 4 that c-iteration, much
like the second iterate studied by Dodis et al. [DRST12], suffers from the blow-up in the number
of simulator queries and therefore falls short of achieving this goal.

We show that modifying the c-iterate of a random oracle by a proper encoding of the
queries will indeed lead to the desired (and expected) result. The high-level idea is to make
sure that each query will access a distinct part of the random oracle and hence the “shifted
chains” of queries that caused problems for the plain iteration will not occur. In greater detail,
collision-free iteration works almost like the plain iteration, but each query to the underlying
function h(·) during the computation of H(x) is prefixed by a prefix-free encoding bxe of the
original query x, as well as the sequence number within the iterative process. Formally, we
define W0(x) to be the empty string and

Wj (x) := h(bxe ‖〈j〉 ‖Wj−1 (x)) for all j ∈ {1, . . . , c} ,

where b·e and 〈·〉 denote a prefix-free encoding and an injective encoding of an integer over
dlog ce bits, respectively. Finally, we simply let H(x) := Wc(x). We prove in Section 5 that this
construction reduces the number of adversary queries from R to R/c, at the cost of simultane-
ously reducing the honest party’s queries from L to L/c.
Towards proving optimality. In Section 6 we study whether this simultaneous reduction
of the honest-party queries is inherent to any query-complexity amplification scheme. Based on
the observation that the adversary can always choose to evaluate the honest scheme, we can
show that our construction, which reduces the adversary’s queries exactly as much as the honest
party’s queries, is optimal with respect to a natural, albeit restricted, class of simulators.

We aimed for simplicity in the design of our construction and did not tailor it to minimize
query lengths. In particular, extending the length of each subquery by the length of bxe is most
likely not necessary. We leave the question of improving the lengths of the honest-user queries
open for future work.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters or capital Greek letters (e.g., X , Σ). Throughout this
paper, we consider only discrete random variables. A discrete random variable will be denoted by
an upper-case letter X, its range by the corresponding calligraphic letter X , and a realization
of the random variable X will be denoted by the corresponding lower-case letter x. Unless
stated otherwise, X $← X denotes a random variable X selected independently and uniformly
at random in X . A tuple of n random variables (X1, . . . , Xn) is denoted by Xn. Similarly, xn
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denotes a tuple of n values (x1, . . . , xn). The set of bit strings of finite length is denoted {0, 1}∗
and λ denotes the empty bit string.

2.2 Random Systems

Many cryptographic primitives like block ciphers, MAC schemes, random functions, etc., can
be described as (X ,Y)-random systems [Mau02] taking inputs X1, X2, . . . ∈ X and generating
for each input Xk an output Yk ∈ Y. In full generality, such an output Yk depends prob-
abilistically on all the previous inputs Xk as well as all the previous outputs Y k−1. For an
(X ,Y)-random system S, such a dependency is captured by a (possibly infinite) sequence of
functions pS

Yk|XkY k−1 : Y ×X k×Yk−1 → [0, 1] such that for all choices of the arguments xk and
yk−1 the sum of the function values over the choices of yk equals 1, and where the superscript
indicates the considered system. Random systems are usually denoted by upper-case boldface
letters such as R or S. An (X ,Y)-random system S considered in isolation does not define
a random experiment since the distribution of the inputs to the system S is not defined. For
this reason, the function pS

Yk|XkY k−1 , which is called a conditional probability distribution, is
denoted by a lower-case letter p instead of an upper-case letter P, which we use for probability
distributions in a fully specified random experiment.

A random system S can alternatively be described by the sequence of conditional distribu-
tions pS

Y k|Xk , where pS
Y k|Xk :=

∏k
j=1 pS

Yj |XjY j−1 . Note that the conditional distribution pS
Y k|Xk

contains the conditional distribution pS
Y j |Xj for all j < k and hence the above description of a

system is redundant. The conditional distribution pS
Y k|Xk must satisfy a consistency condition

which ensures that Yj does not depend on Xj+1, . . . , Xk. Two random systems R and S are
said to be equivalent, denoted R ≡ S, if they behave identically, i.e., pR

Y k|Xk = pS
Y k|Xk , for all

k ≥ 1.

Distinguishers and a distance measure on random systems. A natural notion of similar-
ity for random systems can be based on the concept of distinguishers. Intuitively, a distinguisher
can be viewed as a system that connects to a random system, interacts with this system, and at
some point outputs a single bit. In the case of (X ,Y)-random systems, a distinguisher D that
makes some arbitrary but fixed number q ∈ N of queries corresponds to a finite (Y,X )-random
system which is one query ahead [MPR07], i.e., distributions pD

Xi|Y i−1Xi−1 for i ∈ {1, . . . , q},
and an additional distribution pD

Z|Y qXq . The distinguisher interacts with an (X ,Y)-random
system R by providing inputs X1, X2, . . . ∈ X to R and by receiving its corresponding outputs
Y1, Y2, . . . ∈ Y. Connecting a distinguisher D to an (X ,Y)-random system R defines a binary
random variable (the output bit Z of the distinguisher), denoted DR. For two (X ,Y)-random
systems R and S, the distinguishing advantage of a distinguisher D in telling apart R from S
is then defined as

∆D (R,S) := |P (DR = 1)− P (DS = 1)| .

For a class D of distinguishers, we define ∆D (R,S) := supD∈D∆D (R,S). (The only classes
we are interested in are the class of all distinguishers, in which case we omit the superscript
and write ∆ (R,S), and the class NA of all non-adaptive distinguishers.)

Games. A central tool in deriving an indistinguishability proof between two systems is to
characterize both systems as being equivalent until a certain condition arises [Mau02, BR06].
Thus, being able to distinguish both systems requires to provoke this condition, and one is then
interested in upper-bounding the probability of this event. Interacting with a random system
in order to provoke a certain condition is naturally modeled by defining an additional monotone
binary output (MBO) on the original system, where the binary output is monotone in the sense
that it is initially set to 0 and that, once it has turned to 1, it can not turn back to 0. An
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(X ,Y × {0, 1})-system where the second output component is monotone is often indicated by
using a system symbol with a hat, such as R̂.

For an (X ,Y × {0, 1})-system R̂ with an MBO, we consider two particular (X ,Y)-systems
which are derived from R̂, following Maurer et al. [MPR07]:

1. R̂− is the (X ,Y)-system obtained from R̂ by ignoring the MBO, we usually refer to this
system as R (i.e., we simply omit the hat);

2. R̂a is the (X ,Y ∪ {�})-system which masks the Y-output to a dummy symbol � 6∈ Y as
soon as the MBO turns 1, and in addition, it does not output the MBO itself.1

We will alternatively refer to an (X ,Y × {0, 1})-random system R̂ with an MBO as an
(X ,Y)-game, in particular if we are interested in the probability with which the MBO can
be provoked. More formally, we are then interested in the probability that some (X ,Y)-game
winner W (which, like a distinguisher, can be viewed as a finite (Y,X )-random system that is
one query ahead) provokes the MBO of a game R̂ to be 1. As in a distinguishing experiment,
the game winner W and the game R̂ define a binary random variable, the value of the MBO of
R̂ after W stops, which we denote as WR̂. Hence, the winning probability of W in the game R̂
is defined as

ΓW(R̂) := Pr[WR̂ = 1] .

Similarly to ∆D, the supremum of ΓD(R̂) over D is denoted ΓD(R̂).

Restricted systems and games. The concept of a blocked system R̂a, derived from a given
system R̂ with MBO, is particularly useful if R̂ is in turn derived from some underlying system R
(i.e., R̂− = R, where R is of interest to us) by adding an MBO representing some restriction
on R (e.g., an upper bound on the number of queries than can be made to this system). In
this case, the restricted distinguishing advantage of a distinguisher D in distinguishing the two
systems with MBO R̂ and Ŝ is defined as

∆̂D(R̂, Ŝ) := ∆D(R̂a, Ŝa) . (1)

The concept of restricting a system via an additional MBO can also be applied to the case
of games and game winning. In such a case, we consider a system restricted by some MBO
A1, A2, . . . with an additional MBO B1, B2, . . . specifying when the game is won. Formally,
this is an (X ,Y × {0, 1} × {0, 1})-random system R, where the outputs are triples (Yj , Aj , Bj)
and the latter two components are monotone. Then, we can consider the task of winning the
restricted game, i.e., provoking the event modelled by the MBO B1, B2, . . . before violating the
restriction modelled by the MBO A1, A2, . . ., as the task of winning the game with the MBO
C1, C2, . . . with Cj = Cj−1 ∨ (¬Aj ∧Bj). Denoting the system with the single MBO C1, C2, . . .
as R<, we define the restricted game-winning advantage as

Γ̂W (R) := ΓW (
R<) .

Conditional equivalence. The notion of conditional equivalence has been introduced by Mau-
rer [Mau02, Mau13] and is a useful tool in deriving indistinguishability proofs. An (X ,Y)-game
R̂ with MBO B1, B2, . . . is said to be conditionally equivalent to an (X ,Y)-random system S, de-
noted R̂ S, if pR̂

Y j |XjBj=0 = pS
Y j |Xj , for all j ≥ 1 and for all arguments for which pR̂

Y j |XjBj=0

is defined. If a game R̂ is conditionally equivalent to a system S, then the distinguishing advan-
tage between the systems R and S is upper bounded by the probability of winning the game R̂
in a non-adaptive manner, a statement which was first presented by Maurer [Mau02] and was
studied more extensively later by Jetchev et al. [JÖS12] and Maurer [Mau13].
1This definition deviates from the one used by Maurer et al. [MPR07], where the MBO is still output by R̂a.
The difference between the definitions is irrelevant because the output is � if and only if the MBO is 1.
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2.3 Two-Interface Systems and Converters

Two-interface systems. Systems that can be accessed by multiple parties can be viewed as
systems with multiple interfaces and formalized as random systems by making the interface
identifier an explicit part of the input (or output) of the system. In this work, we focus on
systems with two interfaces, which we naturally label by elements of the set I := {left, right}.

We restrict our considerations to the particular class of two-interface systems that only
produce an output (from some set Y) in response to an input (from X ) and on the same
interface where the input was received, and hence we omit the interface label from the output.
Then, such a two-interface system S takes as input a pair (Ik, Xk) ∈ I×X , where the kth query
Xk was input at the Ik-interface, and produces as output Yk ∈ Y, where it is understood that
the response Yk of the system S is output at the same interface Ik that the query Xk was input.
In other words, a two-interface system corresponds (due to our restrictions) to an (I × X ,Y)-
random system and can be described by a sequence of conditional probability distributions
pS
Yk|IkXkY k−1 , k ≥ 1. Moreover, we will usually consider two-interface systems which have an

additional MBO, this is defined exactly as above and will be used to restrict the access of the
distinguisher as in equation (1).

In this work, we focus on variants of the arbitrary input-length random oracle RO with
output length n, which we understand as two-interface systems with one interface for the honest
party and one interface for the adversary, and which are thus formally seen as (I × {0, 1}∗ , {0, 1}n)-
random systems.

Converters. Strategies employed locally by a party are modeled by a converter2, which can
also be viewed as a system with two interfaces: an inside interface and an outside interface,
denoted by in and out, respectively. In this view, the inside interface is attached to the i-interface
of a resource and models how the scheme makes use of this resource, where i ∈ I, while the
outside interface of the converter becomes the i-interface of the composite system and models
how the scheme can be used in applications and higher-level protocols.

We consider that a converter is always invoked by queriesX1, X2, . . . ∈ X at the out-interface.
For each such query, it (adaptively) makes zero or more3 queriesX ′1, . . . , X ′j1 (resp.,X

′
j1+1, . . . , X

′
j2

etc.) at the inside interface, i.e., to the two-interface system whose i-interface is attached to
the in-interface of the converter. After having received the corresponding answers Y ′1 , . . . , Y ′j1
(resp., Y ′j1+1, . . . , Y

′
j2 etc.), it finally produces an output Y1 ∈ Y (resp., Y2 etc.) at the out-

interface. As it is always clear at which interface the input to the converter is obtained (it
is the same interface where the converter produced the last output), it need not be explicitly
specified. Finally, we will usually consider converters which have an additional MBO, also for
the purpose of restricting the distinguisher’s access. Summarizing the above, such a converter
can be formalized as a (X ∪ Y, (({out} × Y) ∪ ({in} × X ))× {0, 1})-random system.

Attaching a converter to the i-interface of a two-interface system with label set I, where
i ∈ I, results in a two-interface system that can be described as follows.4 Inputs to interfaces
i′ 6= i are processed by the system as before. Whenever an input is given to the i-interface of
the combined system, the converter is evaluated on this input. If the output of the converter
(without the MBO) is of the form (in, x) for some x ∈ X , the resource is evaluated on (i, x) and
provides an output y ∈ Y (and an MBO). Then, the converter is evaluated on y. This process
continues until the output of the converter is of the form (out, y′) for some y′ ∈ Y, and this value
y′ is then considered the output of the composed system. This process leads to a well-defined
random system because the number of inside queries is bounded for each query to the random
2We use the term converter here although it is only fully appropriate once we consider the object within a
cryptographic algebra [MR11].

3We assume that, for each converter, there is some (constant) upper bound on the number of inside queries it
makes per outside query.

4The described process can be written as a closed formula to formally obtain a random system.
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system. The MBO of the overall system is defined to be the disjunction of the MBOs of the
two-interface system and the converter.

Converters are denoted by lower-case Greek letters (e.g., α, π, σ) or by sans-serif fonts
(e.g., ampc). The set of all converters is denoted as Σ. To denote the composition of con-
verters and two-interface systems, we will understand the left and the right side of the symbol
R as representing the left- and right-interface of the system R, respectively. Hence, attaching
a converter π to the left-interface of a two-interface system R results in a two-interface system
πR while attaching a converter σ to the right-interface of a two-interface system S results in a
two-interface system Sσ.

2.4 Indifferentiability

Indifferentiability was introduced by Maurer et al. [MRH04] as a generalization of indistin-
guishability for settings where some access to the internal state of the considered resources is
available publicly, within reach of any potential adversary. In such a scenario, the left-interface
of a two-interface system R models interaction with honest users and is referred to as the “pri-
vate” interface, while the right-interface formalizes adversarial access and is referred to as the
“public” interface. For a protocol π ∈ Σ and ε ∈ [0, 1], the system πR is said to be (strongly)
ε-indifferentiable from the system S if there exists a converter σ ∈ Σ such that ∆D (πR,Sσ) ≤ ε
for all distinguishers D ∈ D. We usually refer to the converter σ as the simulator. Indifferentia-
bility has been widely applied, especially in the context of hash functions [CDMP05, BDPVA08]
and reductions among idealized primitives [HKT11].

3 Parameterized Constructions and QCA
As outlined in Section 1, we formalize query-complexity amplification as a construction of
random oracles which only allow for a limited number of queries from random oracles which
allow more queries, both at the (honest user’s) left and at the (adversary’s) right interface.
That is, we consider a random oracle as a resource, and the “quality” of a certain QCA scheme
will be captured by the translation of restrictions (in the numbers of queries) that it achieves at
both the honest and the adversarial interface. In this section we formalize the above intuition.

Query-restricted systems. We are interested in two-interface systems that only allow a
certain number of queries that can be made to their left- or right-interface.5 This is formalized
by extending the considered system R with an MBO that captures when the system is exhausted.
Notationally, for some integers L,R ∈ N, we denote by S|R the system S with an MBO that
becomes 1 as soon as more than R queries have been made at the right-interface of the system
S, and similarly SL| denotes the system S with an MBO that becomes 1 as soon as more than
L queries have been made at the left-interface of S. If a system has both types of restrictions,
we consider the MBO which is the disjunction of the two individual MBOs described above,
i.e., SL| |R denotes the restricted system allowing at most L queries at the left-interface and at
most R queries at the right-interface. We use the same notation for restricting the number of
queries at the outside interface of a converter (i.e., we write αL| for α ∈ Σ and L ∈ N), and it
is easy to see that for a converter α and a system S we have (αS)L| ≡ ( αL| )S and hence we
typically drop the parentheses.

Parameterized families of construction statements. We recall the definition of a con-
struction statement for the case where there is only a single (external) adversary as described
5In contrast to most other definitional approaches, we restrict the number of queries in a distinguishing experiment
by restricting the system, not the distinguisher.
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originally by Maurer et al. [MR11, Mau12, MT10].6 This construction notion, specialized to
two-interface resources, is equivalent to (strong) indifferentiability as described in Section 2.4.7
The described construction notion is composable if the pseudo-metric on the set of resources
(i.e., the distinguishing advantage) is non-expanding. We defer the simple proof that ∆̂(·, ·) is
non-expanding to Appendix A.

Definition 1. A protocol π ∈ Σ constructs a restricted resource S from an assumed restricted
resource R relative to a simulator σ ∈ Σ and within ε ∈ [0, 1], denoted R (π, σ, ε) S, if

R (π, σ, ε) S :⇐⇒ ∆̂ (πR,Sσ) ≤ ε .

In the distinguishing advantage ∆̂(·, ·) that we consider, the outputs of a system are blocked
once the MBO of the system becomes 1. In the particular case of query-restricted systems this
means that the distinguisher does not obtain further outputs from the system once the specified
number of queries is exhausted.

We extend the “arrow notation” from Definition 1 to the case where we consider parameter-
ized families of construction statements, where we require that all of the individual statements
must hold. More formally, given a space K of parameters, a family of protocols π := {πk}k∈K
constructs a family of restricted resources {Sk}k∈K from an assumed family of restricted re-
sources {Rk}k∈K, relative to a family of simulators σ := {σk}k∈K and within ε : K → [0, 1],
denoted {Rk}k∈K

(π,σ, ε) {Sk}k∈K, if

{Rk}k∈K
(π,σ, ε) {Sk}k∈K :⇐⇒ ∀k ∈ K : Rk

(πk, σk, ε (k)) Sk .

Uniform protocols. A family of converters α = {αk}k∈K is said to be uniform if all the
converters in the family are identical without their MBO, i.e., α−k = α−k′ , for all k, k′ ∈ K. Thus,
in a uniform parameterized family of converters, the parameter can only influence the MBO of
each converter in the family and can therefore only influence the end of a random experiment
(and not the values of the random variables). The reason to consider uniform families of
converters is that (semantically) a protocol shall not depend on the number of queries that are
made to it, since the restriction is a parameter of the environment in which the protocol is used
(and not of the protocol itself). We often denote uniform families of converters only by a symbol
that denotes a single converter which has no specified MBO, with the implicit understanding
that for each single instance of the construction statement, the converter is amended by an
MBO that formalizes the suitable restriction of queries.

Query-complexity amplifiers. The construction notion in Definition 1 induces a definition
of ε-security for protocols, with respect to a given simulator, if one considers a specific assumed
resource R and a specific desired resource S. In our case, both resources R and S will be
variants of the random oracle RO.

Definition 2. Consider two functions ϕ : N × N → N × N and ε : N × N → [0, 1]. Then,
a uniform family of protocols {πL,R}L,R∈N, where π−L,R = π for all L,R ∈ N and for some
deterministic and stateless protocol π ∈ Σ, is said to be a (ϕ, ε)-query-complexity amplifier,
with respect to a family of simulators σ := {σL,R}L,R∈N , if{

ROL| |R
}
L,R∈N

(π,σ, ε) {
RO`| |r

}
L,R∈N

,

where (`, r) := ϕ (L,R) and r < R, for all L,R ∈ N.
6The exact form we describe here, which considers the simulator to be an explicit parameter of the construction,
has appeared in the work of Coretti et al. [CMTV15]. However, we formalize the definition only for the
information-theoretic case where ε is a constant.

7The statement that πR is indifferentiable from S corresponds to the statement that π constructs S from R.
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π ROL| |R

(a) Assumed world.

RO`| |r σL,R

(b) Desired world.

Figure 1. A (ϕ, ε)-query-complexity amplifier π: For any number of queries L,R, the resource
on the left is within ε (L,R) from the resource on the right and the simulator σL,R does at most
r < R inner queries, where (`, r) := ϕ (L,R).

Schemes for query-complexity amplification are often used in contexts where they are evalu-
ated independently by several parties. Requiring such schemes to be deterministic and stateless8

ensures that the results remain consistent for all parties9. According to Definition 2, proving
that a protocol π is a (ϕ, ε)-query-complexity amplifier requires in particular to show that the
system π ROL| |R is within ε (L,R) from the system RO`| |r σL,R, and where (`, r) := ϕ (L,R)
quantifies the exact amplification achieved for all L,R ∈ N. Both resources are depicted in
Fig. 1.

4 The Caveats of Plain Iterated Hashing
We show in this section that the protocol consisting of iterating c times a random oracle,
denoted iterc, is not a query-complexity amplifier, for any number c ≥ 2 of iteration. To do so,
we generalize some of the results of Dodis et al. [DRST12], who specifically focused on the case
c = 2, to deal with a higher number of iterations. The next theorem shows that if one assumes
a random oracle with only 2 adversarial queries, then the random oracle constructed by the c-
iteration protocol iterc must allow at least ` adversarial queries, where ` roughly corresponds to
the number of honest queries in the constructed random oracle. For example, this implies that
the c-iteration protocol iterc cannot construct the random oracle RO4| |1 from RO4c| |2 (unless
the distinguishing advantage becomes trivial), and therefore iterc is not a query-complexity
amplifier according to Definition 2.

To give some intuition behind this result, consider the c-iteration of a random oracle iterc RO
and a chain

(
y(0), y(c), . . . , y(c`)

)
of ` hashes, where y(cj) denotes the output of the c-iteration

protocol iterc when queried on the previous chain element y(c(j−1)). The key observation here is
that y(c`+1), the output of the random oracle RO when queried on the last chain element y(c`),
forms the end of another chain of ` hashes starting with y(1), the output of RO when queried
on the first element y(0) of the previous chain, and that both chains do not have any element
in common (with overwhelming probability). In contrast, such shifted chains of queries cannot
occur in the system RO σ, unless the simulator σ does at least ` inner queries to its underlying
random oracle.

Note that if the assumed random oracle in Theorem 3 had more adversarial queries, say R
instead of 2, then one could force the simulator to make in total in the order of Ω(`R) queries
to the underlying random oracle by “hiding” the query on the last chain element y(c`) among
R− 2 random queries. A similar technique was used in [DRST12, Th. 1].

8A converter is said to be stateless if it does not keep a state between answering outer queries, i.e., its behavior
for a particular outer query depends only on the query itself and the ongoing interaction at the inside interface.
We refer to [DGHM13, Def. 1] for a more formal treatment.

9Definition 2 is a slight departure from the corresponding definition in the proceedings version of this
work [DGMT15], where it was only mentioned afterwards that the protocols of interest are deterministic and
stateless. The reason for this change is that of course lazy-sampling, which is a probabilistic and stateful
protocol, could then trivially and perfectly achieve any query-complexity amplification.
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Algorithm 1: Distinguisher D`,n

y(0) $← {0, 1}n
for j = 1 to ` do
y(cj) := result of querying y(c(j−1)) at the left-interface

y(c`+1) := result of querying y(c`) at the right-interface
y(1) := result of querying y(0) at the right-interface
ỹ(1) := y(1)

for j = 1 to ` do
ỹ(cj+1) := result of querying ỹ(c(j−1)+1) at the left-interface
C :=

{
y(c), y(2c), . . . , y(c`)

}
and C̃ :=

{
ỹ(1), ỹ(c+1), . . . , ỹ(c`+1)

}
return y(c`+1) = ỹ(c`+1) ∧ C ∩ C̃ = ∅

Theorem 3. The protocol iterc, consisting of iterating c times a random oracle, where c ≥ 2,
is such that for any number ` of queries and any simulator σ,

RO2c`| |2 (iterc, σ, ε) RO2`| |r =⇒ r ≥ ` ∨ ε ≥ 1− µ,

where µ := 2−n · f (c, `) and f (c, `) := 1
1−3`·2−n + 1

2 (3`)2 + 2 (c`+ 1)2.

Proof. Let us assume that r < ` since otherwise the proof is finished. In order to have shorter
notations within the proof, let us denote by R and S the systems iterc RO2c`| |2 and RO2`| |r σ,
respectively, for some simulator σ. Then, we give a distinguisher D`,n, described in Alg. 1, and
show that it achieves the desired restricted distinguishing advantage, i.e., ∆̂D`,n (R,S) ≥ 1−µ.
Intuitively, the distinguisher D`,n is based on the aforementioned shifted chains of queries. In
greater details, the distinguisher D`,n first prepares a `-chain

(
y(0), y(c), . . . , y(c`)

)
of hashes,

starting at a random n-bit string y(0), by querying ` times the left-interface of R or S. Note
that when interacting with the system R, the chain element y(cj) is indeed the c-iterate of the
random oracle when queried on the previous chain element y(c(j−1)), for all j ∈ {1, . . . , `}. Then,
the distinguisher D`,n tries to “shift” the obtained chain by querying successively y(c`) and y(0)

at the right-interface to obtain y(c`+1) and y(1), respectively. When interacting with R, the
values y(c`+1) and y(1) are simply the answers of the random oracle when queried on y(c`) and
y(0), respectively. Finally, the distinguisher D`,n checks by doing ` queries at the left-interface
that y(c`+1) is indeed the end of a `-chain of hashes starting with y(1) and that the shifted
chain does not have any element in common with the chain initially prepared. Overall, the
distinguisher D`,n does 2` queries at the left-interface and only 2 queries at the right-interface.

To lower bound the restricted distinguishing advantage of the distinguisher D`,n, it will be
convenient to consider a variation of the random oracle, denoted T, which answers to the first
2n fresh queries by a n-bit string chosen uniformly at random but without replacement, i.e., on
the first 2n fresh queries T corresponds to a random injective function. Trivially, RO and T
are indistinguishable unless a collision occurs in RO, i.e.,

∆̂
(

ROL| |R, TL| |R
)
≤ pcoll (L+R, 2n) , (2)

for all L,R ∈ N, and where pcoll (q, t) denotes the probability that there exists a collision among
q values distributed independently and uniformly at random over a set of t elements. Let R′
and S′ denote the systems R and S, respectively, where the random oracle RO was replaced
by its variation T, i.e., R′ := iterc T2c`| |2 and S′ := T2`| |r σ. Note that (2) implies that
∆̂ (R′,R) ≤ pcoll (2c`+ 2, 2n), and similarly ∆̂ (S′,S) ≤ pcoll (2`+ r, 2n). It suffices thus to
lower bound the distinguishing advantage of D`,n when interacting with R′ or S′ since

∆̂ (R,S) ≥ ∆̂
(
R′,S′

)
− (pcoll (2c`+ 2, 2n) + pcoll (2`+ r, 2n)) .
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In the random experiment defined by the distinguisher D`,n interacting with the system R′,
we always have y(c`+1) = ỹ(c`+1). Since no collision can occur in R′, the two chains C and C̃,
which both contain n-bit strings coming only from the system R′, do not collide, i.e., C ∩ C̃ = ∅.
Thus, D`,n always outputs 1 when interacting with R′.

In contrast, in the random experiment defined by the distinguisher D`,n interacting with
the system S′, D`,n outputs 1 if the simulator σ in S′ outputs the start and the end of a `-chain(
ỹ(1), ỹ(c+1), . . . , ỹ(c(`−1)+1), ỹ(c`+1)

)
of hashes later queried by D`,n, i.e., the simulator σ must

output y(c`+1) and y(1) such that ỹ(1) = y(1) and ỹ(c`+1) = y(c`+1). The simulator σ does at most
r queries to the underlying variant of the random oracle T and therefore σ receives at most
r responses from T, where by assumption r ≤ ` − 1. Thus, at least one of the chain element
ỹ(cj+1) that the distinguisher D`,n obtained was never received by the simulator σ, for some
j ∈ {1, . . . , `}. If j = `, then the simulator σ never queried the second to last chain element
ỹ(c(`−1)+1) and therefore the last chain element ỹ(c`+1) is uniformly distributed over a set of size
at least 2n − 3`, since at most 2`+ r ≤ 3` queries were done to T, so that the probability that
y(c`+1) = ỹ(c`+1) is at most 1/ (2n − 3`). Similarly, if j < ` and the simulator σ did receive all
the next chain elements ỹ(c(j+1)+1), . . . , ỹ(c`+1), then ỹ(cj+1) is uniformly distributed over a set
of size at least 2n − 3`, and the probability that it equals the value input by the simulator σ
when it received the next chain element ỹ(c(j+1)+1) is therefore at most 1/ (2n − 3`). Thus, when
interacting with S′, the distinguisher D`,n outputs 1 with probability at most 1/ (2n − 3`), and
overall we have

∆̂
(
R′,S′

)
≥ 1− 1

2n − 3` .

The proof is finished by combining the two previous equations and by using the standard
argument that pcoll (q, t) ≤ q2/(2t).

A vulnerable application. There are concrete applications where the fact that the plain
iteration protocol iterc fails to be a query-complexity amplifier is problematic. One example
of such a vulnerable application is the setting of mutual proofs of work, introduced by Dodis
et al. [DRST12], which is secure if a monolithic random oracle RO is employed, but becomes
insecure if the c-iterate iterc RO is used instead, for any c ≥ 2. This fact was already known
for the special case c = 2 [DRST12] and it is easy to show, with the same kind of arguments as
used to prove Theorem 3, that it generalizes to higher iteration counts.

Recall that in mutual proofs of work, two parties aim at proving to each other that they
did a certain amount of computation. In the protocol proposed by Dodis et al. [DRST12], both
parties exchange in the first round a nonce and then compute a chain of hashes of a certain
length (chosen by the computing party) starting with the received nonce. In the second round,
both parties exchange the length and the last element of their computed chain. Then, each party
checks that the other party actually did the claimed amount of computation by first computing
a chain of hashes of the asserted length starting with the nonce that was originally sent, and
second, by checking that both computed chains do not have any common element.

Note that such a scheme is insecure if the parties use iterc RO to compute their chain of
hashes. Indeed, a malicious party, similarly to the distinguisher D`,n in Alg. 1, can simply “shift”
the chain of hashes computed by the honest party and needs therefore only two hash evaluations
to compute the beginning and the end of a valid chain of hashes (which with overwhelming
probability has no common element with the chain computed by the honest party). In contrast,
this protocol for mutual proofs of work is secure if the parties use a query-complexity amplifier,
such as the collision-free iteration protocol ampc presented in the next section, to compute their
chain of hashes.
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ampc ROL| |R

x

y := Wc (x)

V1 (x) := bxe ‖〈1〉

W1 (x)

Vc (x) := bxe ‖〈c〉 ‖Wc−1 (x)

Wc (x)

Figure 2. Protocol ampc for amplifying the complexity of a random oracle by a factor c. A
prefix-free encoding of a bit-string x is denoted by bxe, and an encoding of an integer j over
dlog2 ce-bit strings is denoted by 〈j〉.

5 Complexity Amplification via Collision-Free Iteration
The main result of this section is to present the collision-free iteration protocol, denoted ampc,
for amplifying the query complexity of a random oracle by a constant factor c, for some fixed
parameter c ∈ N. We present the (uniform) protocol ampc and the corresponding (uniform)
simulator sim in Section 5.1 and prove the actual construction stated below in Section 5.2.

Theorem 4. The collision-free iteration protocol ampc is an
(
(L,R) 7→

(
bLc c, b

R
c c
)
, δ
)
-query-

complexity amplifier with respect to the simulator sim, i.e.,{
ROL| |R

}
L,R∈N

(ampc, sim, δ) {
RObL

c
c| |bR

c
c
}
L,R∈N

,

where δ (L,R) := R · 2−n and n is the output length of the random oracle RO, for all L,R ∈ N.
The protocol ampc and the simulator sim are described in Fig. 2 and Alg. 2, respectively.

Notice that the upper bound δ on the distinguishing advantage in the previous theorem is
independent of the number L of queries made to the left-interface and also of the factor c,
which also corresponds to the number of iterations in the protocol ampc given in Fig. 2 above.
Throughout this section, we will denote by ` and r the two integers corresponding to bLc c and
bRc c, respectively, for all L,R ∈ N.

5.1 The Protocol and the Simulator

Protocol ampc. Consider the collision-free iteration protocol ampc attached to the left-interface
of a random oracle as described in Fig. 2. When queried on an input x ∈ {0, 1}∗ (at its outside
interface), the protocol ampc does c queries V1 (x) , . . . , Vc (x) to the random oracle, where the
query Vj (x) contains the answer of the random oracle on the previous query Vj−1 (x). In
addition, ampc uses prefixing to ensure that there is no collision among the queries asked, i.e.,
Vj (x) 6= Vj′ (x′) whenever (j, x) 6= (j′, x′). Namely, ampc prefixes each query Vj (x) with a prefix-
free encoding bxe of x and with an iteration counter 〈j〉 where 〈·〉 : {1, . . . , c} → {0, 1}dlog2 ce

denotes an arbitrary injective function from {1, . . . , c} to the set of dlog2 ce-bit strings. The
former guarantees no overlap between the queries for two different inputs x and x′, while the
second prevents collisions within the sequence of queries for the same input x. More generally,
lettingW0 (x) be the empty bit string andWj (x) be the inner response of the connected resource
to the inner query Vj (x), we then define iteratively

Vj (x) := bxe ‖〈j〉 ‖Wj−1 (x)
Wj (x) := result of querying Vj (x) at the in-interface,

for all j ∈ {1, . . . , c}. Finally, we simply let Wc (x), the response of the connected resource to
the final query, be the output of the protocol.
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Prefix-Free Encodings. A prefix-free encoding function b·e : {0, 1}∗ → {0, 1}∗ is a function
ensuring that bx̃e is not a prefix of bxe whenever x 6= x̃. We also assume it can be easily decided
whether a bit string y ∈ {0, 1}∗ is in the range of b·e, and in that case the (unique) pre-
image of y can be efficiently recovered. Our results are independent of which such prefix-free
encoding function is used. A simple example of such a prefix-free encoding is the function
b e : {0, 1}∗ → {0, 1}∗ ; (b1, . . . , bn) 7→ (1, b1, 1, b2, . . . , 1, bn, 0). Many other (more efficient)
examples exist, such as those described by Coron et al. [CDMP05].

Simulator sim. Before describing the behavior of the simulator sim defined in Alg. 2, let us
first characterize more precisely the different types of queries we will consider. A query v is said
to be well-formed, denoted isWellFormed (v), if it contains the prefixes as used by the protocol
ampc, i.e., v ∈ V ⊆ {0, 1}

∗, where V :=
⋃
x∈{0,1}∗
j∈{1,...,c}

Vj (x), with

V1 (x) := {bxe ‖〈1〉} and Vj (x) := {bxe ‖〈j〉 ‖ z : z ∈ {0, 1}n} for j ≥ 2 .

An element of Vj (x) will be called a well-formed query of level j with prefix x. We denote by
parse (·) : V → {0, 1}∗×{1, . . . , c} the function which, given a well-formed query v, returns the
pair (x, j) corresponding to the prefix and level associated with this query, respectively. Given
an arbitrary subset of well-formed queries Ṽ ⊆ V, a prefix x ∈ {0, 1}∗ is declared to be “fresh”,
denoted isPrefixFresh(x, Ṽ), if it was never encountered, i.e.,

isPrefixFresh(x, Ṽ) :⇐⇒ ∀v ∈ Ṽ ∀j ∈ {1, . . . , c} : (x, j) 6= parse (v) .

The simulator sim works as follows: whenever it receives a well-formed query v ∈ {0, 1}∗
of some level j ∈ {1, . . . , c} with a “fresh” prefix x ∈ {0, 1}∗, it emulates the behavior of the
protocol ampc on input x by generating a “fake” chain of queries Ṽ1 (x), W̃1 (x), . . . , Ṽc−1 (x),
W̃c−1 (x), Ṽc (x), where the emulated answers W̃k (x) are simply uniform n-bit strings locally
sampled by the simulator. Then, the simulator sim returns the answer of the random oracle

RO`| |r when queried on the prefix x, only if the outer query v matches the last chain element
Ṽc (x) and all previous chain elements Ṽ1 (x) , . . . , Ṽc−1 (x) were already queried. On the other
hand, if the query v matches one of the lower-level chain elements, i.e., v = Ṽj (x) with j < c
and all previous chain elements were already queried, then the simulator sim replies with the
answer W̃j (x) that was already chosen earlier (when generating the chain for the prefix x).
In the (unlikely) case where a distinguisher happens to have guessed the value of Ṽj (x), i.e.,
v = Ṽj (x) but the previous chain element Ṽj−1 (x) was never queried, the simulator sim gives
up on simulation by outputting the all zero bit string 0n and setting internally the event hit
to 1 in order to prevent any further inner query to the random oracle. Finally, if the query v
considered is not well-formed, then the simulator sim replies with a fresh uniform n-bit string.
We refer to Alg. 2 for a precise description of the simulator sim. Note that it maintains a state
over all invocations, keeping track of the set Ṽ of well-formed queries received, the values Ṽj (x)
and W̃j (x) corresponding to the locally generated chains of queries, and the mapping g to be
able to reply consistently to any repeated query.

5.2 Indistinguishability Proof

Recall that the statement of Theorem 4 considers a construction between an assumed random
oracle ROL| |R and a desired random oracle RO`| |r, for all integers L,R. If the number of
queries that can be made to the left-interface of the desired random oracle is limited to `, then
so should also be restricted the number of queries that can be made to the outside interface of
the protocol. Similarly, restricting the assumed random oracle to at most R queries at its right-
interface implies the same restriction on the number of queries that can be made to the outside
interface of the simulator. Thus, we will prove Theorem 4 for the uniform family of protocols
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Algorithm 2: Simulator sim
g(v) := λ, for all v ∈ {0, 1}∗ // λ denotes the empty bit string

Ṽ = ∅ and hit := 0
on input v ∈ {0, 1}∗ at the out-interface
if g(v) = λ then // v was never queried before

if isWellFormed (v) then
(x, j) := parse (v)
if isPrefixFresh(x, Ṽ) then // generate a “fake” chain of queries

(Ṽ1 (x) , W̃1 (x) , . . . , Ṽc−1 (x) , W̃c−1 (x)) := GenerateChain(x, c− 1)
Ṽc (x) := bxe ‖〈c〉 ‖ W̃c−1 (x)

if v = Ṽj (x) then
if j > 1 ∧ g(Ṽj−1 (x)) = λ then // previous chain element was not queried

hit := 1
Ỹ := 0n

else if j = c ∧ hit = 0 then
Ỹ := result of querying x at the in-interface

else if j = c ∧ hit = 1 then
Ỹ := 0n

else Ỹ := W̃j (x)
else Ỹ $← {0, 1}n

Ṽ ← Ṽ ∪ {v}
else Ỹ $← {0, 1}n

g(v) := Ỹ

output: g(v) at the out-interface

Procedure GenerateChain(x,m)
W̃0 (x) := λ
for j = 1 to m do
Ṽk (x) := bxe ‖〈k〉 ‖ W̃k−1 (x)
W̃k (x) $← {0, 1}n

return (Ṽ1 (x) , W̃1 (x) , . . . , Ṽm (x) , W̃m (x))

{
ampc`|

}
L,R∈N

and for the uniform family of simulators
{

sim|R
}
L,R∈N

. We therefore need to

upper bound the distinguishing advantage between the query-restricted systems ampc`| ROL| |R

and RO`| |r sim|R, for all L,R ∈ N. The idea for upper bounding this distinguishing advantage
is to first transform the system RO sim into a game RO sim , where the latter is defined to be
won if the event hit is provoked in the simulator sim described in Alg. 2; and second, to show
that this game RO sim is conditionally equivalent to the system ampc RO. Before proving
the corresponding conditional equivalence statement in Lemma 5 below, we start by describing
informally how it implies Theorem 4. A more formal treatment appears in the full version.

Query complexity. The protocol ampc makes exactly c inner queries for every query it receives
at its outside interface. Consequently, the protocol ampc does in total at most L inner queries
if it is queried at most ` times at its outside interface. The simulator sim makes a query x
at its inside interface only if it receives a chain of c (distinct) queries Ṽ1 (x) , . . . , Ṽc (x). The
simulator sim keeps in memory the previous interaction, so that when such a chain of c queries
is received, at most one query is made to the inside interface of sim. Furthermore, the prefix
scheme employed prevents any form of collision among the queries so that making multiple, say
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k, such chains of c queries requires at least k · c queries. Hence, any tuple of R queries contains
at most r such chains of c queries, and thus the simulator does in total at most r inner queries if
it is queried at most R times at its outside interface. Thus, the protocol ampc and the simulator
sim are such that[

ampc RO`| |R
]a
≡

[
ampc`| ROL| |R

]a
and

[
RO sim`| |R

]a
≡

[
RO`| |r sim|R

]a
.

It is therefore sufficient to upper bound the restricted distinguishing advantage between
the query-restricted systems ampc RO`| |R and RO sim`| |R. To do so, we consider two games
RO sim and RO sim`| |R , where both games are won if and only if the event hit in the simulator
sim is provoked. We show in Lemma 5 below that the game RO sim is conditionally equivalent
to the system ampc RO. Then, Lemma 9 in Appendix B implies that the restricted game

RO sim`| |R is conditionally equivalent to the restricted system ampc RO`| |R, the intuitive
reason being that the added MBO, corresponding to a restriction on the number of queries, is
simply a deterministic function of the inputs. Similarly to [Mau13, Th. 3], we show in Lemma 8
in Appendix B that this conditional equivalence statement between query-restricted systems
implies that the restricted distinguishing advantage between ampc RO`| |R and RO`| sim|R is
upper bounded by the probability for non-adaptive game winners to win the query-restricted
game RO sim`| |R , where the latter is shown in Lemma 6 below to be at most R · 2−n. Overall,
we thus have for all integers L,R ∈ N that

∆̂
(

ampc`| ROL| |R, RO`| |r sim|R
)

= ∆̂
(

ampc RO`| |R, RO sim`| |R
)

≤ Γ̂NA
(

RO sim`| |R
)

≤ R · 2−n .

The proof of the following lemma, together with Lemma 6 below, complete the proof of Theo-
rem 4.

Lemma 5. Consider the protocol ampc and the simulator sim defined in Fig. 2 and Alg. 2,
respectively. Let RO sim denote the game which is won if and only if the event hit in sim is
provoked. Then,

RO sim ampc RO .

Proof. Let us denote by R and Ŝ the systems ampc RO and RO sim , respectively (where Ŝ is
actually a game). We need to show that Ŝ R. We are going to argue that as long as the
game Ŝ is not won, the probability distribution of the response to any possible query is the same
in both R and Ŝa. Both systems reply consistently to any repeated queries, let us hence without
loss of generality only consider fresh queries. To analyze the sampling process of responses, note
that we can see both R and Ŝa as generating the responses to all possible queries in advance
(according to distributions described below) and then using the pre-generated responses to an-
swer all actual queries. To describe these distributions, let us denote by Left (x) and Right (v)
the responses of the system in question (either R or Ŝa) to queries (left, x) and (right, v), re-
spectively. The (inefficient) sampling processes for the systems R and Ŝa (as long as the game
is not won) are described in Alg. 3 and 4, respectively. It is now easy to see that these two sam-
pling processes result in the same distribution of all the random variables Left (x) and Right (v).
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Algorithm 3: Sampling for R
1. foreach x ∈ {0, 1}∗ do

U1, . . . , Uc
$← {0, 1}n

Right (bxe ‖〈1〉) := U1
Right (bxe ‖〈j〉 ‖Uj−1) := Uj , for all
j ∈ {1, . . . , c}
Left (x) := Uc

2. Sample all remaining values
Right (v) $← {0, 1}n

Algorithm 4: Sampling for Ŝa

1. foreach x ∈ {0, 1}∗ do
Left (x) $← {0, 1}n
U1, . . . , Uc−1

$← {0, 1}n
Right (bxe ‖〈1〉) := U1
Right (bxe ‖〈j〉 ‖Uj−1) := Uj , for all
j ∈ {1, . . . , c− 1}
Right (bxe ‖〈c〉 ‖Uc−1) := Left (x)

2. Sample all remaining values
Right (v) $← {0, 1}n

Lemma 6. Let RO simL| |R denote the game formed by the restricted system RO simL| |R and
which is won if and only if the event hit in the simulator sim is provoked. Then,

Γ̂NA
(

RO simL| |R
)
≤ δ (L,R) ,

for all L,R ∈ N and for δ defined as in Theorem 4.

Proof. Let L,R ∈ N and consider a non-adaptive game winner W trying to win the restricted
game RO simL| |R . The game winner W wins the game only if it provokes the event hit in the
simulator sim within R (well-formed) queries. Any well-formed query has a certain prefix x and
level j, where x ∈ {0, 1}∗ and j ∈ {1, . . . , c}, and the probability for such a query to win the
game is therefore at most 2−n since it requires to guess the value of W̃j−1 (x), an independent
and uniformly distributed n-bit string. By applying the union bound it follows that

Γ̂NA
(

RO simL| |R
)
≤ R · 2−n = δ (L,R) ,

for all L,R ∈ N.

6 Towards Optimality
Theorem 4 gives a simple protocol to amplify the query-complexity of a random oracle by a
constant factor c, at the cost of simultaneously reducing the number of honest-party queries by
the same factor. Such a decrease is of course undesired, and the goal of this section is to study
whether such a reduction of the honest-party queries is inherent to any query-complexity ampli-
fication scheme. To do so, we consider an arbitrary (deterministic) protocol π and an arbitrary
simulator σ, and show in Lemma 7 that in order for the construction ROL| |R (π, σ, ε) RO`| |r to
be achievable, the composed converter σ ◦ π must do (with high probability) at least as many
inner queries as many outer queries it receives. This in particular implies that if the simulator
σ considered is such that for every r-tuple of outer queries it does at most r/c inner queries, for
some positive constant c, then the protocol π must do at least c ·` inner queries for every `-tuple
of outer queries it receives. Therefore, the protocol ampc given in Theorem 4 is in this sense
optimal (if one restricts oneself to such a class of simulators). In the following, we denote by
Qα

(
xk
)
the random variable corresponding to the sequence of inner queries made by α when

queried at its outside interface on x1, . . . , xk in a given random experiment (e.g., a distinguisher
interacting with ROα). The number of distinct elements in such a tuple, which is also a random
variable, will be denoted by

∣∣∣Qα (xk)∣∣∣.
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Algorithm 5: Distinguisher Dxk for an (I × {0, 1}∗ , {0, 1}n ∪ {�})-system S
Z := 0
for j = 1 to k do yj :=result of querying xj at the left-interface of S
for j = 1 to k do ỹj :=EmulateProtocol(right, xj) // Emulate π at the right-interface
if ∃j ∈ {1, . . . , k} : yj 6= � ∧ yj 6= ỹj then Z := 1
output: Z
Procedure EmulateProtocol(i, x)

(i′, x′) :=emulate result of querying π at the out-interface on x
while i′ = in do
y′ := result of querying x′ at the i-interface of S
(i′, x′) :=emulate result of querying π at the in-interface on y′

return x’

Lemma 7. Consider four integers L,R, `, r ∈ N, where R ≥ L > 0 and ` > 0. Consider a
deterministic protocol π ∈ Σ and a simulator σ ∈ Σ. Then, for any integer k ≤ ` and for any
sequence of k distinct bit strings xk = (x1, . . . , xk) ∈ ({0, 1}∗)k,

∆̂D
xk

(
π ROL| |R, RO`| |r σ

)
≥

(
1− 2−n

)
· P
(∣∣∣Qσ (Qπ (xk))∣∣∣ < k

)
,

where the distinguisher Dxk is defined in Alg. 5 and the probability is taken in the random
experiment defined by Dxk interacting with the system

[
RO`| |r σ

]a
.

Proof. Consider an integer k such that k ≤ ` and a sequence of k distinct bit strings x1, . . . , xk,
where xj ∈ {0, 1}∗. Consider the distinguisher Dxk described in Alg. 5. In the DxkS random
experiment, where S is one of the two systems

[
π ROL| |R

]a
or
[

RO`| |r σ
]a
, the distinguisher

Dxk emulates the protocol π at the right-interface of S. The distinguisher Dxk first queries
the left-interface of S on the sequence of inputs xk, obtaining the corresponding sequence of
answers yk, and queries also the right-interface of S (through the emulated protocol π) on the
same sequence of inputs xk to obtain the sequence of responses ỹk. The distinguisher outputs
its decision bit Z which is 1 if and only the answers obtained are not consistent, i.e., yj 6= � and
yj 6= ỹj for some j ∈ {1, . . . , k}.

Consider first the random experiment where the distinguisher Dxk interacts with the system[
π ROL| |R

]a
. If the answer yj obtained at the left-interface during the jth query is such that

yj 6= �, then the protocol π did at most L inner queries to the left-interface of the random oracle
ROL| |R. Since the protocol π is assumed to be deterministic, it follows therefore that when

queried on the same sequence of inputs xk, the emulated protocol π at the right-interface of the
random oracle ROL| |R did also at most L ≤ R queries and thus yj = ỹj whenever yj 6= �, for
all j ∈ {1, . . . , k}. Thus, the decision bit Z output by Dxk in such a random experiment can
never be 1.

Consider now the random experiment where the distinguisher Dxk interacts instead with the
system

[
RO`| |r σ

]a
. The probability that the decision bit Z output by Dxk is 1 in such a random

experiment is trivially lower bounded by that of the joint event Z = 1 and
∣∣∣Qσ (Qπ (xk))∣∣∣ < k.

Since the distinguisher Dxk first does k ≤ ` queries to the left-interface of the random oracle
RO`| |r, the answers yk to such queries are such that yj 6= �, for all j ∈ {1, . . . , k}. Given the

event
∣∣∣Qσ (Qπ (xk))∣∣∣ < k, at least one of the inputs xj was never queried by the simulator σ

and thus the corresponding answer ỹj will differ from yj with probability at least 1− 2−n.
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A Properties of the Distinguishing Metric
For the composability of the construction notion stated in Definition 1 we need the metric ∆̂(·, ·)
to be non-expanding under the application of converters, i.e. ∆̂(αR, αS) ≤ ∆̂(R,S) [Mau12,
Definition 2 (2)]. This holds, since

∆̂(αR, αS) = sup
D∈D

∣∣∣Pr(D[αR]a = 1)− Pr(D[αS]a = 1)
∣∣∣

≤ sup
D∈D

∣∣∣Pr(DRa = 1)− Pr(DSa = 1)
∣∣∣ = ∆̂(R,S),

where the inequality holds since the distinguisher can emulate the behavior of α and ignore the
outputs once the MBO of α becomes 1.

B Conditional Equivalence and Query-Restricted Systems
We show in the next lemma how the notion of conditional equivalence helps upper-bounding
the distinguishing advantage between query-restricted systems. Before doing so, we first recall
the definition of a particular non-adaptive distinguisher introduced in [Mau13] and that will
be relevant to the statement of Lemma 8. Given an arbitrary distinguisher D for (I × X ,Y)-
systems as well as an (I × X ,Y)-system S, we denote by [[DS]] the non-adaptive distinguisher
which interacts with some (I × X ,Y ′)-system R as follows, for some set Y ′. At the jth step the
distinguisher D issues a query (Ij , Xj) ∈ I ×X to the system S and receives Yj as answer; then
the distinguisher [[DS]] issues exactly the same query (Ij , Xj) to the system R but completely
discards its answer, for all j ≥ 1. We refer to [Mau13, Fig. 1] for a more pictorial description
of the distinguisher [[DS]].

Lemma 8. Consider two (I × X ,Y × {0, 1})-systems RL| |R and SL| |R, both restricted to L

and R queries at their left- and right-interface, respectively, for some L,R ∈ N. Let RL| |R

denote the game obtained from the system RL| |R adjoined with an arbitrary MBO. Then, for
any distinguisher D,

RL| |R SL| |R =⇒ ∆̂D
(

RL| |R, SL| |R
)
≤ Γ̂[[D[ SL| |R]a]]

(
RL| |R

)
,

and in particular,
∆̂
(

RL| |R, SL| |R
)
≤ Γ̂NA

(
RL| |R

)
.

Proof. The proof basically follows by seeing the MBO indicating the restriction on the number
of queries as part of the system’s output and by applying [Mau13, Th. 3]. More precisely, let us
consider an arbitrary distinguisher D for (I × X ,Y ∪ {�})-systems trying to tell apart

[
RL| |R

]a
from

[
SL| |R

]a
. Let D′ be a distinguisher for (I × X ,Y × {0, 1})-systems that works as follows:

it simulates D but whenever it receives a response (y, a) ∈ Y × {0, 1} to any of its queries it
forwards instead y′ to the distinguisher D, where y′ = y if a = 0, and otherwise y′ = �. Once
the MBO is 1, i.e., a = 1 and D′ thus forwarded the default value � to D, the distinguisher D′
does not query further the system it was interacting with, but instead replies to any additional
query made by D directly by the dummy symbol �. By definition of the distinguisher D′ and
of the restricted distinguishing avantage ∆̂D in (1) it follows that

∆̂D
(

RL| |R, SL| |R
)

= ∆D′
(

RL| |R, SL| |R
)
.

Since the game RL| |R is conditionally equivalent to the system SL| |R by assumption, [Mau13,
Th. 3] implies that

∆D′
(

RL| |R, SL| |R
)
≤ Γ[[D′ SL| |R]]

(
RL| |R

)
.
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Note that the distinguisher D′ stops interacting with the system SL| |R once its restriction on
the number of queries has been violated. In the random experiment formed by the distinguisher
[[D′ SL| |R]] interacting with the game RL| |R , both systems RL| |R and SL| |R receive the same
inputs, and consequently the value of the restriction, which is a deterministic function of the
inputs, is the same in both systems. Thus, the distinguisher [[D′ SL| |R]] stops interacting with the
game RL| |R as soon as the restriction of the latter has been violated, and since the distinguisher
[[D′ SL| |R]] does not see the output of the game RL| |R it follows that

Γ[[D′ SL| |R]]
(

RL| |R
)

= Γ̂[[D′ SL| |R]]
(

RL| |R
)
.

Finally, the distinguisher D′ modifies the outputs of the system SL| |R to exactly correspond to
what the system

[
SL| |R

]a
would have output when interacting with D. Since all the queries

issued by the distinguisher [[D′ SL| |R]] originate from the original distinguisher D, it follows that

Γ̂[[D′ SL| |R]]
(

RL| |R
)

= Γ̂[[D[ SL| |R]a]]
(

RL| |R
)
.

The previous equations and the observation that the distinguisher [[D
[

SL| |R
]a

]] is non-adaptive
lead to the desired result.

Lemma 8 requires a conditional equivalence statement between query-restricted systems in
order to upper bound the corresponding restricted disitnguishing advantage. The next lemma
shows that one could equivalently consider a conditional equivalence between unrestricted sys-
tems.

Lemma 9. Consider and (I × X ,Y)-system S and an (I × X ,Y)-game R̂ outputting pairs
(Yj , Bj). Let RL| |R denote the (I × X ,Y × {0, 1})-game outputting triples (Yj , Aj , Bj), where
the MBO A1, A2, . . . models the restriction on the number of queries, for some L,R ∈ N. Then,

R̂ S ⇐⇒ RL| |R SL| |R .

Proof. Note that RL| |R is an (I × X ,Y × {0, 1} × {0, 1})-system outputting triples (Yj , Aj , Bj),
where the MBO A1, A2, . . . models the restriction on the number of queries and the MBO
B1, B2, . . . specifies when the game R̂ is won. Such an MBO A1, A2, . . . is a (binary) determin-
istic function of the inputs and it thus follows that if the game R̂ is conditionally equivalent to
the system S, then so is the game RL| |R to the system SL| |R.

The other direction of the equivalence trivially follows from the fact that each of the two con-
ditional probability distrubtions involved in the left conditional equivalence statement R̂ S
is a marginal distribution of the corresponding one involved in the right conditional equivalence
statement RL| |R SL| |R.
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