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Abstract. We analyze the point decomposition problem (PDP) in binary elliptic curves. It
is known that PDP in an elliptic curve group can be reduced to solving a particular system
of multivariate non-linear system of equations derived from the so called Semaev summation
polynomials. We modify the underlying system of equations by introducing some auxiliary
variables. We argue that the trade-off between lowering the degree of Semaev polynomials and
increasing the number of variables is worth.

1. Introduction

Point decomposition problem (PDP) in an additive abelian group G with respect to a factor
base B ⊂ G is the following: Given a point1 R ∈ G, find Pi ∈ B such that

R =

m∑
i=1

Pi

for some positive integer m; or conclude that R cannot be decomposed as a sum of points in B.
Discrete logarithm problem (DLP) in G with respect to a base P ∈ G is the following: Given
P and Q = aP ∈ G for some secret integer a, compute a. DLP can be solved using the index
calculus algorithm in two main steps. In the relation collection step, fix a factor base B, and
find a set of points Ri = aiP + biQ for some randomly chosen integers ai, bi, such that Ri can
be decomposed with respect to B, i.e.,

Ri =
∑
j

Pij , Pij ∈ B.

Here, we may assume for convenience that Pij are not necessarily distinct, and only finitely
many of them are non-identity. Note that each decomposition induces a modular linear de-
pendence on the discrete logarithms of Q ∈ G and Pij ∈ B with respect to the base P . After
collecting sufficiently many relations2, linear algebra step solves for the discrete logarithm of
Q ∈ G, as well as the discrete logarithms of the factor base elements. Clearly, the success
probability and the running time of the index calculus algorithm heavily depend on the de-
composition probability of a random element in G, the cost of the decomposition step, and the
size of the factor base. In particular, the overall cost of the relation collection and the linear
algebra steps must be optimized with a non-trivial success probability.

In 2004, Semaev [10] showed that solving PDP in an elliptic curve group is equivalent to
solving a particular system of multivariate non-linear system of equations derived from the so
called Semaev summation polynomials. Semaev’s work triggered the possibility of the existence
of an index calculus type algorithm which is more efficient than the Pollard’s rho algorithm
to solve the discrete logarithm problem in elliptic curves defined over Fqn , which we denote
ECDLP(q, n). Note that Pollard’s rho algorithm is a general purpose algorithm that solves

DLP in a group G, and runs in time O(
√

|G|). Gaudry [6] showed that Semaev summation

polynomials can be effectively used to solve ECDLP(q, n) in heuristic time O(q2−
2
n ), where

1We prefer to use point rather than element because elliptic curve group elements are commonly called points.
2This is roughly when the number of relations exceeds |B|.
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the constant in O(·) is exponential in n. For example, Gaudry’s algorithm and Pollard’s rho
algorithm solve ECDLP(q, 3) in time O(q1.33) and O(q1.5), respectively. Due to the exponential
in n constant in the running time of Gaudry’s algorithm, his attack is expected to be more
effective than Pollard’s rho algorithm if n ≥ 3 is relatively small and q is large. Diem [2]
rigorously showed that ECDLP(q, n) can be solved in an expected subexponential time when
a(log q)α ≤ n ≤ b(log q)β for some a, b, α, β > 0. On the other hand, Diem’s method has

expected exponential running time O(en(logn)
1/2

) for solving ECDLP(2, n). As a result, index
calculus type algorithms presented in [6, 2] do not yield ECDLP solvers which are more effective
than Pollard’s rho method when q = 2 and n is prime. The ideas for choosing an appropriate
factor base in [2] have been adapted in [5, 9], and the complexity of the relation collection
step have been analyzed. In both papers [5] and [9], a positive integer m, which we call the
decomposition constant, is fixed to represent the number of points in the decomposition of a
random point in the relation collection step. The factor base consists of elliptic curve points
whose x-coordinates belong to an n′-dimensional subspace V ⊂ F2n over F2, where n

′ is chosen
such that mn′ ≈ n. We refer to PDP in this setting by PDP(n,m, n′) throughout the rest of
this paper.

Faugère et al. [5] showed, under a certain assumption, that ECDLP(2, n) can be solved in time

O(2wn/2), where 2.376 ≤ w ≤ 3 is the linear algebra constant. The running time analysis in
[5] considers the linearization technique to solve the multivariate nonlinear system of equations
which are derived from the (m+ 1)’st Seamev polynomial Sm+1 during the relation collection
step to solve PDP(n,m, n′). Faugère et al. further argue that, Groebner basis techniques
may improve the running time by a factor m in the exponent, where m is the decomposition
constant. This last claim has been confirmed in the experiments in [5] for elliptic curves defined
over F2n with n ∈ {41, 67, 97, 131} and m = 2. Petit and Quisquater’s heuristic analysis in [9]

claims that ECDLP(2, n) can asymptotically be solved in time O(2cn
2/3 logn) for some constant

0 < c < 2. The subexponential running time in [9] is based on a rather strong assumption on
the behavior of the systems of equations that arise from Semaev polynomials. In particular,
it is assumed in [9] that the degree of regularity Dreg and the first fall degree DFirstFall of the
underlying polynomial systems to solve PDP(n,m, n′) are approximately equal. The analysis
in [9] also assumes that n′ = nα and m = n1−α for some positive constant α. Experiments
with a very limited set of parameters (n,m, n′), n ∈ {11, 17}, m ∈ {2, 3}, n′ = ⌈n/m⌉ were
conducted in [9] in the favor of their assumption.

A recent paper by Shantz and Teske [12] presented some extended experimental results on
solving PDP(n,m, n′) for the same setting as in the Petit and Quisquater’s paper [9]. In
particular, [12] validates the degree of regularity assumption in [9] for the set of parameters
(n,m, n′) such that n ∈ {11, 13, 15, 17, 19, 23, 29}, m = 2, n′ = ⌈n/m⌉; and for (n,m, n′) such
that n ∈ {11, 13, 15, 17, 19, 21}, m = 3, n′ = ⌈n/m⌉. Shantz and Teske [12] were able to
extend their experimental data for the parameters (n,m, n′,∆), n ≤ 48, m = 2, and where
∆ = n − mn′ is chosen appropriately to possibly improve the running time of ECDLP(2, n).
In another recent paper [7], Yun-Ju et al. exploit the symmetry in Semaev polynomials, and
improve on the running time and memory requirements of the PDP(n,m, n′) solver in [5]. The
efficiency of the method in [7] is tested for parameters (n,m, n′) such that n ≤ 53, m = 3,
n′ = 3, 4, 5, 6.

Petit and Quisquater’s heuristic analysis [9] claims that index calculus methods for solving
ECDLP(2, n) is more effective than the Pollard’s rho method for n > 2000, m ≥ 4 andmn′ ≈ n.
However, all the experiments reported so far on solving PDP(n,m, n′) for the set of parameters
(n,m, n′,∆) with ∆ = n−mn′ ≤ 1 and m = 3 are limited to n ≤ 19; see [12, 7]. Similarly, all
the experiments for the set of parameters (n,m, n′,∆) with m = 3 are limited to n′ ≤ 6, which
forces ∆ ≥ 2 for n ≥ 20. In general, it is desired to have n′ increasing as a function of n, rather
than having some upper bound on n′, so that n ≈ mn′ as assumed in the running time analysis
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of ECDLP(2, n) solvers in [5, 9]. Therefore, it remains as a challenge to run experiments on
an extensive set of parameters (n,m, n′) with larger prime n values, m ≥ 4, and mn′ ≈ n. For
example, it is stated in [7, Section 4.1] that

On the other hand, the method appears unpractical for m = 4 even for very
small values of n because of the exponential increase with m of the degrees in
Semaev’s polynomials.

In this paper, we modify the system of equations, that are derived from Semaev polynomials,
by introducing some auxiliary variables. We show that PDP(n,m, n′) can be solved by finding
a solution to a system of equations derived from several third Semaev polynomials S3 each of
which has at most three variables. For a comparison, PDP(n,m, n′) in E(F2n) with decompo-
sition constant m = 5 would be traditionally attacked via considering the Semaev polynomial
S6 with 5 variables, which is likely to have a root in V 5, where V ⊂ F2n is a subspace of
dimension n′ = ⌊n/5⌋. On the other hand, when m = 5, our polynomial system consists of
third Semaev polynomials S3,i (i = 1, 2, 3, 4), and a total of 8 variables which is likely to have a
root in V 5 × F3

2n , where V ⊂ F2n is a subspace of dimension ⌊n/5⌋. As a result, our technique
overcomes the difficulty of dealing with the (m+ 1)’st Semaev polynomial Sm+1 when solving
PDP(n,m, n′) with m ≥ 4. We should emphasize that choosing m ≥ 4 is desirable for an
index calculus based ECDLP(2, n) solver to be more effective than a generic DLP solver such
as Pollard’s rho algorithm. Our method introduces an overhead of introducing some auxil-
iary variables. However, we argue that the trade-off between lowering the degree of Semaev
polynomials and increasing the number of variables is worth. In particular, we present some
experimental results on solving PDP(n,m, n′) for the following parameters:

– n ≤ 19, m = 4, 5, and n′ = ⌊n/m⌋. We are not aware of any previous experimental data for
n > 16 and m = 4; and for n > 15 and m = 5.
– n ≤ 26, m = 3, n′ = ⌊n/m⌋. We are not aware of any previous experimental data for n > 21,
m = 3, and ∆ = n−mn′ ≤ 2.

We observe in our experiments that regularity degrees of the underlying systems are relatively
low. We also observe that running time and memory requirement of algorithms can be im-
proved significantly if the the Groebner basis computations are first performed on a subset of
polynomials and if the ReductionHeuristic parameter in Magma is set to be a small number;
see Section 5. We are able to solve PDP(15, 5, 3) instances in about 7 seconds (with 256 MB
memory). Note that, PDP(15, 5, 3) is solved in about 175 seconds (with 2635 MB memory)
in [11]. Our experimental findings with m = 3, 4, 5 extend and improve on recently reported
results in [12, 7, 11].

The rest of this paper is organized as follows. In Section 2, we recall Seamev polynomials and
their application to ECDLP(2, n). In Section 3, we describe and analyze a new method to solve
PDP(n,m, n′) in E(F2n). In Section 4, we present our experimental results. In Section 5, we
extend our results from Section 3.

Recent papers. The author of this paper would like to acknowledge two recent papers [11, 8].

Seamev [11] claims a new complexity bound 2c(
√
n lnn) for solving ECDLP(2, n) under the

assumption that the degree of regularity in Groebner computations of particular polynomial

systems is Dreg ≤ 4. Semaev also shows that ECDLP(2, n) can be solved in time 2o(
√
n lnn)

under a weaker assumption that Dreg = o(
√

n/ lnn) The techniques used in [11] and in this
paper are similar. In [8], Kosters and Yeo provide experimental evidence that the degree of
regularity of the underlying polynomial systems is likely to increase as a function of n, whence
the conjecture Dreg ≈ DFirstFall may be false.

3



2. Semaev Polynomials and ECDLP

Let F2n = F2[σ]/⟨f(σ)⟩ be a finite field with 2n elements, where f(σ) is a monic irreducible
polynomial of degree-n over the field F2 = {0, 1}. let E be a non-singular elliptic curve defined
by the short Weierstrass equation

E/F2n : y2 + xy = x3 + ax2 + b, a, b ∈ F2n .

We denote the identity element of E by ∞. The i’th Seamev polynomial associated with E is
defined as follows:

Si(x1, x2, . . . , xi) =

{
(x1x2 + x1x3 + x2x3)

2 + x1x2x3 + b if i = 3

ResX(Si−j(x1, . . . , xi−j−1, X), Sj+2(xi−j , . . . , xi, X)) if i ≥ 4,
(2.1)

where 1 ≤ j ≤ i− 3.

Let

V = {a0 + a1σ + · · ·+ an′−1σ
n′−1 : ai ∈ F2, n′ ≤ n} ⊂ F2n

and define the factor base

B = {P = (x, y) ∈ E : x ∈ V }.
Recall that in PDP(n,m, n′), we are looking for Pi = (xi, yi) ∈ B such that

P1 + · · ·Pm = R,(2.2)

for some given point R = (xR, yR) ∈ E. We refer to (2.2) as an m-decomposition of R in B. We
expect that, on average, a random point R ∈ E has an m-decomposition in B with probability
2mn′

/2nm! simply because |B| ≈ 2n
′
and permuting Pi does not change the sum

∑
Pi (see [6]).

As described in Section 1, DLP in E can be solved via an index-calculus based approach by
computing about |B| explicit m-decompositions and solving a sparse linear system of about |B|
equations. Therefore, the cost of solving ECDLP(2, n) may be estimated as

2n
′ 2nm!

2mn′ Cn,m,n′ + 2w
′n′

,(2.3)

where Cn,m,n′ is the cost of solving PDP(n,m, n′), and w′ = 2 is the sparse linear algebra
constant. Seamev [10] showed that a decomposition of the form (2.2) exists if and only
if the x-coordinates of Pi and R are zeros of the (m + 1)’st Semaev polynomial, that is,
Sm+1(x1, . . . , xm, xR) = 0. In the rest of this paper, we focus on solving PDP(n,m, n′) (and
estimating Cn,m,n′) via modifying the equation reduced by Sm+1.

3. A new approach to solve point decomposition problem

Let E/F2n , V , and B be as defined in Section 2. Recall that an m-decomposition of a point

R = P1 + · · ·Pm,

where R = (xR, yR) ∈ E, Pi = (xi, yi) ∈ B, can be computed (if exists) by identifying a tuple
(x1, . . . , xm) ∈ V m that satisfies

Sm+1(x1, . . . , xm, xR) = 0(3.1)

Note that xi belong to an n′-dimensional subspace of F2n . Therefore, (3.1) defines a system
Sys1 of a single equation over F2n in m variables. In [5, 9], the Weil descent technique is
applied, and a second system Sys2 of n equations over F2 in mn′ boolean variables is derived
from Sys1. The cost Cn,m,n′ of solving PDP(n,m, n′) in [5, 9] is estimated through the analysis
of solving Sys2 using linearization and Groebner basis techniques. Next, we describe a new
approach to derive another system Sys3 of boolean equations such that a solution of Sys3 yields
an m-decomposition of a point R.
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Notation. Throughout the rest of this paper, we distinguish between two classes Semaev poly-
nomials. The first class of Semaev polynomials is denoted by Sm,1(x1, . . . , xm), which represents
the m’th Semaev polynomial with m variables. The second class of Semaev polynomials is de-
noted by Sm,2(x1, . . . , xm−1, xR), which represents the m’th Semaev polynomial with m − 1
variables (i.e., the last variable xm is evaluated at a number xR).

3.1. The case: m = 3. Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 −R = ∞

if and only if there exist Pi ∈ B and P12 ∈ E such that{
P1 + P2 − P12 = ∞
P3 + P12 −R = ∞

(3.2)

Therefore, a 3-decomposition of R = P1 + P2 + P3 may be found as follows:

(1) Define the following system of equations derived from Semaev polynomials{
S3,1(x1, x2, x12) = 0

S3,2(x3, x12, xR) = 0.
(3.3)

Note that this system is defined over F2n and has 4 variables x1, x2, x3, x12.
(2) Introduce boolean variables xi,j such that

xi =

n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, and

x12 =
n∑

j=0

x12,jσ
j .

Apply the Weil descent technique to (3.3) and define an equivalent system of 2n equa-
tions over F2 with 3n′ + n boolean variables

{xi,j : i = 1, 2, 3, j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n− 1}.

Solve this new system of boolean equations and recover x1, x2, x3 ∈ F2n from xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with 3n′ + n boolean
variables rather than solving a system of n equations over F2 with 3n′ boolean variables.

3.2. The case: m = 4. Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 −R = ∞

if and only if there exist Pi ∈ B and P12 ∈ E such that{
P1 + P2 − P12 = ∞
P3 + P4 + P12 −R = ∞

(3.4)

Therefore, a 4-decomposition of R = P1 + P2 + P3 + P4 may be found as follows:

(1) Define the following system of equations derived from Semaev polynomials{
S3,1(x1, x2, x12) = 0

S4,2(x3, x4, x12, xR) = 0
(3.5)

Note that this system is defined over F2n and has 5 variables x1, x2, x3, x4, x12.
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(2) Introduce boolean variables xi,j such that

xi =

n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, and

x12 =

n∑
j=0

xi,jσ
j .

Apply the Weil descent technique to (3.5) and define an equivalent system of 2n equa-
tions over F2 with 4n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4 j = 0, . . . n′ − 1} ∪ {x12,j : j = 0, . . . n− 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4 ∈ F2n from xi,j ∈
F2.

Note that the proposed method solves a system of 2n equations over F2 with 4n′ + n boolean
variables rather than solving a system of n equations over F2 with 4n′ boolean variables.

3.3. The case: m = 5. Let R = (xR, yR) ∈ E. Notice that there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 −R = ∞

if and only if there exist Pi ∈ B and P123 ∈ E such that{
P1 + P2 + P3 − P123 = ∞
P4 + P5 + P123 −R = ∞

(3.6)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as follows:

(1) Define the following system of equations derived from Semaev polynomials{
S4,1(x1, x2, x3, x123) = 0

S4,2(x4, x5, x123, xR) = 0
(3.7)

Note that this system is defined over F2n and has 6 variables x1, x2, x3, x4, x5, x123.
(2) Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

for i = 1, 2, 3, 4, 5, and

x123 =

n∑
j=0

x123,jσ
j .

Apply the Weil descent technique to (3.7) and define an equivalent system of 2n equa-
tions over F2 with 5n′ + n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′ − 1} ∪ {x123,j : j = 0, . . . n− 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n from
xi,j ∈ F2.

Note that the proposed method solves a system of 2n equations over F2 with 5n′ + n boolean
variables rather than solving a system of n equations over F2 with 5n′ boolean variables.
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3.4. Analysis of new polynomial systems. One of the methods to solve a multivariate non-
linear system of equations is to compute the Groebner basis of the underlying ideal. Groebner
basis computations can be performed using Faugère’s algorithms [3, 4], which reduce the prob-
lem to Gaussian elimination of Macaulay-type matrices Md of degree d. The Macaulay matrix
Md encodes degree (at most) d polynomials, that are generated during Groebner basis com-
putation. Therefore, the cost of solving a system of equations is determined by the maximal
degree D (also known as the degree of regularity of the system) reached during the compu-
tation. If N is the number of variables in the system, then the cost is typically estimated

as O
((

N+D−1
D

)w)
, where

(
N+D−1

D

)
is the maximum number of columns in MD and w is the

linear algebra constant. In general, it is hard to estimate D. In the recent paper [9], it is
conjectured that the degree of regularity Dreg of systems arising from PDP(n,m, n′) satisfies
Dreg = DFirstFall + o(1), where DFirstFall is the first fall degree of the system and defined as
follows.

Definition 3.1. [9] Let R be a polynomial ring over a field K. Let F := {f1, . . . , fℓ} ⊂ R
be a set of polynomials of degrees at most DFirstFall. The first fall degree of F is the smallest
degree DFirstFall such that there exist polynomials gi ∈ R with maxi deg(fi) + deg(gi) = DFirstFall,

satisfying deg(
∑ℓ

i=1 gifi) < DFirstFall but
∑ℓ

i=1 gifi ̸= 0.

Experimental studies in recent papers [9, 12] give supporting evidence that Dreg ≈ DFirstFall.
However, experimental data is yet very limited (see Section 1) to verify this conjecture. In this
section, we compute the first fall degree of the systems proposed in Section 3.1, Section 3.2,
and Section 3.3. Our experimental results in Section 4 indicate that Dreg ≈ DFirstFall.

DFirstFall of the system when m = 3. In this case, one needs to solve the system of 2n
equations over F2 with 3n′ + n boolean variables. The system of equations is derived by
applying Weil descent to (3.3) that consists of two Semaev polynomials S3,1 and S3,2. The
monomial set of S3,1(x1, x2, x12) is

{1, x21x22, x21x212, x22x212, x1x2x12}.

Therefore, the Weil descent of S3,1(x1, x2, x12) yields a 2n′+n variable polynomial set {fi} over
F2 such that maxi(deg(fi)) = 3. On the other hand, the monomial set of x1 ·S3,1(x1, x2, x12) is

{x1, x31x22, x31x212, x22x212, x21x2x12}.

Therefore, the Weil descent of x1 ·S3,1(x1, x2, x12) yields a polynomial set {Fi} over F2 such that
maxi(deg(Fi)) = 3. It follows from the definition that DFirstFall(S3,1) ≤ 4 because the maximum
degree of polynomials obtained from the Weil descent of x1 is 1. Similarly, the monomial set
of S3,2(x3, x12, xR) is

{1, x23x212, x23, x212, x3x12}.

Therefore, the Weil descent of S3,2(x3, x12, xR) yields a n′+n variable polynomial set {fi} over
F2 such that maxi(deg(fi)) = 2. On the other hand, the monomial set of x33 · S3,2(x3, x21, xR)
is

{x33, x53x212, x53, x33x212, x43x12}.

Therefore, the Weil descent of x33 · S3,2(x3, x12, xR) yields a polynomial set {Fi} over F2 such
that maxi(deg(Fi)) = 3. It follows from the definition that DFirstFall(S3,2) ≤ 4 because the
maximum degree of polynomials obtained from the Weil descent of x33 is 2. We conclude that
DFirstFall ≤ 4.
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DFirstFall of the system when m = 4. In this case, one needs to solve the system of 2n
equations over F2 with 4n′+n boolean variables. The system of equations is derived by applying
Weil descent to (3.5) that consists of two Semaev polynomials S3,1 and S4,2. From our above
discussion, DFirstFall(S3,1) ≤ 4. Now, analyzing the monomial set of S4,2(x3, x4, x123, xR), we
can see that the Weil descent of S4,2(x3, x4, x123, xR) yields a 2n′ + n variable polynomial set
{fi} over F2 such that maxi(deg(fi)) = 6 (this follows from the Weil descent of the monomial
(x3x4x123)

3). On the other hand, analyzing the monomial set of x3 · S4,2(x3, x4, x123, xR), we
see that the Weil descent of x3 · S4,2(x3, x4, x123, xR) yields a polynomial set {Fi} over F2 such
that maxi(deg(Fi)) = 6. It follows from the definition that DFirstFall(S4,2) ≤ 7 because the
maximum degree of polynomials obtained from the Weil descent of x3 is 1. We conclude that
DFirstFall ≤ 7.

DFirstFall of the system when m = 5. In this case, one needs to solve the system of 2n
equations over F2 with 5n′+n boolean variables. The system of equations is derived by applying
Weil descent to (3.7) that consists of two Semaev polynomials S4,1 and S4,2. From our above
discussion, DFirstFall(S4,2) ≤ 7. Now, analyzing the monomial set of S4,1(x1, x2, x3, x123), we
can see that the Weil descent of S4,1(x1, x2, x3, x123) yields a 3n′ + n variable polynomial set
{fi} over F2 such that maxi(deg(fi)) = 8 (this follows from the Weil descent of the monomial
(x1x2x3x123)

3). On the other hand, analyzing the monomial set of x3 · S4,1(x1, x2, x3, x123),
we see that the Weil descent of x3 · S4,1(x1, x2, x3, x123) yields a polynomial set {Fi} over F2

such that maxi(deg(Fi)) = 8. It follows from the definition that DFirstFall(S4,1) ≤ 9 because the
maximum degree of polynomials obtained from the Weil descent of x3 is 1. We conclude that
DFirstFall ≤ 9.

4. Experimental results

We implemented the proposed methods in Section 3 on a desktop computer (Intel(R) Xeon(R)
CPU E31240 3.30GHz) using Groebner basis algorithms in Magma [1]. For each parameter set
(n,m, n′), we solved 5 random instances of PDP over a randomly chosen elliptic curve E/F2n .
In Table 1, we report on our experimental results for solving PDP(n,m, n′ = ⌊n/m⌋) with
m = 3, 4, 5. In particular, for each of these 5 computations, we report on the maximum CPU
time (seconds) and memory (MB) required for solving PDP. We also report on the maximum of
the maximum step degrees D (for which ) in the Groebner basis computations. Recall that in
Section 3, we estimated DFirstFall ≤ 4 when m = 3; DFirstFall ≤ 7 when m = 4; and DFirstFall ≤ 9
when m = 5. In our experiments, we observe that Dreg ≈ DFirstFall.

Let m = 5 and n′ = ⌊n/m⌋. Based on our experimental data, it is tempting to assume
that the underlying system of polynomial equations has Dreg ≈ 9. Moreover, the system has
N = 5n′ + n ≈ 2n boolean variables. Therefore, when m = 5, we may estimate the cost of
solving ECDLP(2, n) (see (2.3)) as

2n
′ 2nm!

2mn′

(
N +Dreg − 1

Dreg

)w

+ 2w
′n′

≈ 2n/5m!(2n)9w + 2w
′n/5

≈ 2342n/5n27 + 22n/5,

where we assume w = 3 and w′ = 2. For example, when n ≈ 1200, the cost of solving
ECDLP(2, n) is estimated to be 2550 which is significantly smaller than the cost 2600 of square-
root time algorithms.
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Table 1. Experimental results on solving PDP(n,m, n′ = ⌊n/m⌋). Time in
seconds; Memory in MB; D is the maximum step degree.

m = 3 m = 4 m = 5
n Time Memory D Time Memory D Time Memory D
n 0.520 25.8 7
n 0.670 33.0 7
n 0.890 42.8 7
n 4.260 126.7 8
n 350.100 1839.5 8
n 414.320 5100.7 7 408.270 2633.9 8
n 1.690 38.8 4 1395.170 5632.8 7 506.340 4050.3 8
n 26.680 264.5 4 497.770 5632.8 7 920.790 6186.9 8
n 15.270 321.8 4 509.330 5634.1 7 1265.090 8282.9 8
n 49.350 397.6 4
n 163.100 1228.3 4
n 126.290 1413.2 4
n 248.820 1668.7 4
n 1266.610 5142.2 4
n 1623.180 6363.8 4
n 1645.78 6596.9 4

5. Extensions and Optimization

In Section 3, we introduced a single auxiliary variable to lower the degree of Semaev polynomi-
als. The degree of polynomials can further be lowered by introducing more auxiliary variables.
As an example, we consider the case m = 5. Let R = (xR, yR) ∈ E, as before. Notice that
there exist Pi ∈ B such that

P1 + P2 + P3 + P4 + P5 −R = ∞

if and only if there exist Pi ∈ B and P12, P34, P50 ∈ E such that
P1 + P2 − P12 = ∞
P3 + P4 − P34 = ∞
P5 − P50 −R = ∞
P12 + P34 + P50 = ∞

(5.1)

Therefore, a 5-decomposition of R = P1 + P2 + P3 + P4 + P5 may be found as follows:

(1) Define the following system of equations derived from Semaev polynomials
S3,1(x1, x2, x12) = 0

S3,1(x3, x4, x34) = 0

S3,2(x5, x50, xR) = 0

S3,1(x12, x34, x50) = 0

(5.2)

Note that this system is defined over F2n and has 8 variables x1, x2, x3, x4, x5, x12, x34, x50.
(2) Introduce boolean variables xi,j such that

xi =
n′−1∑
j=0

xi,jσ
j ,

9



Table 2. Experimental results on solving PDP(n,m, n′ = ⌊n/m⌋). Time in
seconds; Memory in MB; D is the maximum step degree; DHeuristic is set to be
4 in Groebner basis computations.

DHeuristic = 4
m = 5 m = 5

n Time Memory D Time Memory
11 2.380 58 4
12 4.150 116.7 4
13 6.390 124.1 4
14 9.510 245.2 4
15 393.170 6421.9 4 7.130 256.3
16 242.500 5911.7 4 6.900 320.4
17 365.460 7063.8 4 6.660 320.4
18 836.080 8619.4 4 11.700 394.6
19 531.420 8864.2 4 45.570 2505.3

for i = 1, 2, 3, 4, 5, and

xi,j =
n∑

k=0

xi,jσ
j ,

for i = 12, 34, 50. Apply the Weil descent technique to (5.2) and define an equivalent
system of 4n equations over F2 with 5n′ + 3n boolean variables

{xi,j : i = 1, 2, 3, 4, 5 j = 0, . . . n′ − 1} ∪ {xi,j : i = 12, 34, 50, j = 0, . . . n− 1}.

Solve this new system of boolean equations and recover x1, x2, x3, x4, x5 ∈ F2n from
xi,j ∈ F2.

Note that the proposed method solves a system of 4n equations over F2 with 5n′ +3n boolean
variables rather than solving a system of n equations over F2 with 5n′ boolean variables. Similar
to the analysis in Section 3, we can show that DFirstFall ≤ 4.

In Table 2, we report on our experimental results for solving PDP(n,m, n′ = ⌊n/m⌋) with
m = 5 deploying only the third Semaev polynomials; see (5.2). The time and memory results in
the second and third column of Table 2 are obtained using the Groebner basis implementation of
Magma with the grevlex ordering of monomials. We observe that the the maximum step degree
is Dreg = 4 for 11 ≤ n ≤ 19. The time and memory results in the last two columns of Table 2
are obtained using the Groebner basis implementation of Magma with the grevlex ordering of
monomials in a boolean ring. We also introduced two modifications in the computations: We
set the ReductionHeuristic parameter in Magma to 4; and we first computed Groebner bases
of partial systems described by single equations in (5.2), and merged them later. These two
techniques yield non-trivial optimization both in time and memory. For a comparison, when
n = 15 and m = 3, (Time, Memory) values decrease from (393.170, 6421.9) to (7.130, 256.3)
when this modification is deployed in the computation; see Table 2. For the same parameters
(n = 15 and m = 3), (Time, Memory) values are reported as (174.47, 2635.4) in [11].

Based on our experimental data, we may assume that the underlying system of polynomial
equations has Dreg ≈ 4 for all n. Moreover, the system has N = 5n′ + 3n ≈ 4n boolean
variables. Therefore, when m = 5, we may estimate the cost of solving ECDLP(2, n) (see
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(2.3)) as

2n
′ 2nm!

2mn′

(
N +Dreg − 1

Dreg

)w

+ 2w
′n′

≈ 2n/5m!(4n)4w + 2w
′n/5

≈ 2312n/5n12 + 22n/5,

where we assume w = 3 and w′ = 2. This running time outperforms square-root methods when
n > 457. For example, when n ≈ 550, the cost of solving ECDLP(2, n) is estimated to be 2250

which is significantly smaller than the cost 2275 of square-root time algorithms.
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