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Abstract

Publicly Verifiable Outsourced Computation (PVC) allows weak devices to delegate com-
putations to more powerful servers, and to verify the correctness of results. Delegation and
verification rely only on public parameters, and thus PVC lends itself to large multi-user
systems where entities need not be registered, yet in such settings the individual user re-
quirements may be diverse. In this paper, we introduce Hybrid PVC (HPVC) which, with a
single setup stage, provides a flexible solution to outsourced computation supporting stan-
dard PVC, the enforcement of access control policies restricting the servers that may evaluate
a given computation, and a reversed model of PVC which we call Verifiable Delegable Com-
putation (VDC) where data is held remotely by servers. We provide formal frameworks and
constructions for such systems.

Keywords— Hybrid Publicly Verifiable Computation, Verifiable Delegable Computation,
Dual-Policy Attribute-based Encryption, MapReduce, Access Control

1 Introduction

We consider the use of attribute-based encryption in the context of Verifiable Outsourced Com-
putation (VC) [22, 17, 37, 20, 15, 11, 29] to achieve public verifiability and delegation. The trend
towards cloud computing means that there is a growing trust dependency on remote servers and
the functionality that they provide. Publicly Verifiable Computation (PVC) allows any entity
to use public information to delegate or verify computations, and lends itself to large multi-user
systems (as delegators need not be individually registered). However, in such a system, the
individual user requirements may be diverse. In this work, we provide a flexible solution, called
Hybrid PVC, that enables multiple modes of operation with a single set of system parameters.
In particular, we capture:

• Revocable Publicly Verifiable Outsourced Computation (RPVC) [2] where servers are cer-
tified to evaluate certain functions and delegators use public parameters to send input
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data to a server and to verify correctness of the result. Servers may try to return incor-
rect results to persuade verifiers of incorrect information or to avoid using computational
resources. Misbehaving servers can be detected and prevented from performing further
evaluations;

• an extension of Publicly Verifiable Computation with Access Control (PVC-AC) [3] to
enforce restrictions on which servers may perform a given computation (based on factors
such as sensitivity of the input data, physical server location etc.). This is motivated by
the possibility that, within a large system, outsourced computations may be distributed
amongst a pool of available servers that are not individually authenticated by the delegator
and so there may be less control over access to computational data. Prior work required all
entities to be registered in the system (including delegators) but we achieve a fully public
system where only servers need be registered (as required in usual Publicly Verifiable
Outsourced Computation anyway);

• a reversal of the usual model for Publicly Verifiable Computation where remote servers
make available a static database over which any delegator may request computations (or
queries) to be performed. This architecture, which we call Verifiable Delegable Compu-
tation (VDC), can naturally be applied to problems such as MapReduce and verifiable
queries on remote databases. The efficiency requirement for this model differs from the
classical VC setting; outsourcing a computation is no longer merely an attempt to gain
efficiency since the delegator is never in possession of the input data and cannot execute
the computation himself. Our solution achieves constant time public verification and the
communication costs to delegate computations depends on the function F , while the size
of the response depends on the size of F (x) and not on the size of x which may be large,
particularly when querying remote databases.

We begin by recapping related work and provide a formal definition and construction for
our third mode of operation, VDC, built from a novel use of Ciphertext-policy Attribute-based
Encryption (CP-ABE). This construction will inform that of HPVC in Sect. 3. We then define
HPVC and see that it provides a natural application for Dual-Policy Attribute-based Encryp-
tion (DP-ABE) [7] which conjunctively combines both KP- and CP-ABE. We introduce a new
primitive called Revocable Dual-policy Attribute-based Encryption (DP-ABE) which is a build-
ing block of our HPVC construction which we introduce in Sect. 3. Full details, construction
and security proof for this primitive can be found in App. B. DP-ABE has previously attracted
relatively little attention in the literature, which we believe to be because applications for the
primitive are less obvious than for the single-policy ABE schemes which are often used to cryp-
tographically enforce access control policies (where objects are encrypted and can only be read
by users holding keys satisfying some decryption policy). It is unclear that the policies enforced
by DP-ABE are natural choices for access control. Thus an interesting side-effect of this work is
to show that additional applications for DP-ABE exist. Finally, in Sect. 4, we observe that the
above use of DP-ABE in HPVC does not use the full power of DP-ABE, instead using DP-ABE
to separately enforce KP- and CP policies. We show that by using both forms of policy simul-
taneously we can enforce access control policies on the servers that can perform a computation.
Furthermore, we provide a discussion about access control on the delegator in App. C. Finally
in App. D we briefly present another application of DP-ABE where we demonstrate how to use
DP-ABE in order to achieve a form of entity authentication and authenticated key agreement
protocol.
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1.1 Related Work

Verifiable computation [22] may be seen as a protocol between two polynomial-time parties: a
(weak) client C and a server S which results in the provably correct computation of F (x) by
the server for the client’s choice of x. There may be a computationally expensive setup stage
(amortised over multiple computations of F ) but other operations should be efficient for the
client. Some prior work used garbled circuits with fully homomorphic encryption [22, 17] or
targeted specific functions [11, 20, 15]. Chung et al. [18] introduced memory delegation which is
close to our notion of VDC; here, the client uploads his memory to a server who can update and
compute a function F over the entire memory. Backes et al. [9] considers a client that outsources
a large amount of data and requests computations on a data portion. The client can efficiently
verify the correctness of the result without holding the input data. Most work in this realm of
outsourced data requires the client to know the data to verify e.g. in SNARG-based approaches
[23, 10, 13] and signatures of correct computation [28]. Apon et al. [4] propose a notion of
verifiable oblivious storage to ensure data confidentiality, access pattern privacy, integrity and
freshness of data accesses of data. Work from the realm of authenticated data lends itself to
the concept of verifiable computations over outsourced data, albeit for specific functions only.
Backes et al. [8] consider computations over outsourced data based on privacy-preserving proofs
over authenticated data outsourced by a trusted client. Similar results were presented in [34]
using public logs. It is notable that the work by [8] and [13] also achieve the notion of public
verifiability. In independent and concurrent work, Shi et al. [33] considered using DP-ABE to
combine keyword search on encrypted data with the enforcement of an access control policy.

Parno et al. [29] introduced Publicly Verifiable Computation (PVC) where multiple clients
can outsource and verify computations. Alderman et al. [2] extended this to include a trusted
Key Distribution Centre (KDC), multiple servers and to revoke misbehaving servers. Informally,
the KDC acts as the root of trust to generate public parameters and to issue personalized secret
keys, evaluation keys for servers, and public delegation information. To outsource the evaluation
of F (x), a delegator C sends an encoded input σF (x) to a server S, and publishes verification
tokens for the computation. S uses an evaluation key for F to produce an encoded output θF (x)

which any entity can blindly verify correctness of using the verification token. The verifier may
not learn the value of F (x) if not in possession of the retrieval key. If S cheated they may report
S to the KDC for revocation, otherwise the retrieval key RKF (x) can be used to recover F (x).

2 Verifiable Delegable Computation

In prior models of PVC [29, 2], delegators owned the input data and outsourced computations
on that data to a more powerful server. It is often the case however that the server owns a
large database and makes portions of it available to be queried. This fits with the traditional
client-server model and is also similar to other areas of verifiable computation such as memory
delegation. We refer to this model as Verifiable Delegable Computation (VDC) and believe it
can applied to many practical problems. For example:

• MapReduce [19] (or Hadoop [36]) is a framework for parallel processing of large com-
putations where a set of worker nodes each compute subproblems on portions of the data
and report to a manager who combines the results. VDC enables verifiable MapReduce
such that only valid results are combined. The manager acts as the Key Distribution
Center (KDC) to distribute evaluation keys for partitions of the data to workers. He can
then request multiple sub-problems to be solved over this data partitioning.

• Verifiable queries on remote databases. Servers may also act as remote database
providers and register with a KDC to provide a verifiable querying service. Any delegator
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Figure 1: Comparison between PVC and VDC

may use public information to query any function (within the family allowed by the VDC
scheme) on these databases. Data is remotely stored and delegators see nothing more
than the results of queries which they are assured are correct.

Parno et al. [29] showed that KP-ABE provides a proof that a Boolean circuit was satisfied
in the PVC setting. In a similar way, we believe CP-ABE is a natural choice to provide
VDC functionality. Data remains statically stored at the server and may be embedded in a
server’s secret key, whilst the computation of many different functions can be requested by
creating ciphertexts using only public information. In the PVC setting, efficiency is a strong
requirement – it must be cheaper to outsource and verify a computation than to perform it
locally. With VDC, we do not require such stringent efficiency conditions since, without holding
the input data, delegators necessarily must outsource the computation; outsourcing is no longer
merely an attempt to gain efficiency but to gain functionality. Despite this, CP-ABE behaves
reasonably well in this setting. The outsourcing of a computation does, unfortunately, require
work comparable to performing the computation itself, but verification is constant time and very
efficient and we achieve efficient communication costs in that the size of results is O(|F (x)|)
and does not depend on the size of the data (unlike some naive methods). Future work should
concentrate on reducing the cost of outsourcing.

2.1 Specification

Let there be n servers Si, each holding one input xi, 1 6 i 6 n. Informally, a VDC scheme for a
family of functions F begins with a Key Distribution Center (KDC) (e.g. a trusted third party
or a delegator) running Setup to produce public parameters and a master secret key. The KDC
also registers each server Si to provide a private signing key for SKSi , and publishes a public
delegation key PKF for each function of interest F . Each server, Si registers their interest in
performing work on data xi by requesting a (single) evaluation key EKxi from the KDC in the
Certify stage. They also provide a list of functions, Fi ⊆ F , that they are willing to evaluate1.
The KDC maintains a public list LReg that, for each server, lists the functions they are willing
to compute and a unique description l(xi) of their data. The unique label means that delegators
may choose servers and data with only knowledge of this label (e.g. a database name) and need
not know the data itself (we assume that the KDC assigns or verifies this label). The ProbGen
algorithm requests the computation of F . The delegator chooses a server Si with data label
l(xi) from the list LReg. In the MapReduce example, ProbGen would be run once per worker
for the same function F . ProbGen generates an encoded input σF (xi), verification key V KF (xi)

and output retrieval key RKF (xi). A server Si uses their evaluation key EKxi to compute θF (xi)

encoding F (xi).

1Each server Si may specify the functions Fi ⊆ F that they are willing to perform. In settings such as
MapReduce, this may be F since the delegator is the data owner and distributes input data. However when
servers are remote data providers, they themselves own the input data and should specify what that data be used
for.
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Verification is divided into two algorithms. We consider public verifiability where any party
(including an adversary) may verify a result. An example motivation is MapReduce in a grid
computing environment where some management software ensures results are correct before
returning them to the user. Blind verification is performed by any user using a verification key
V KF (xi) to verify correctness. It generates a retrieval token RTF (xi) for valid outputs (or ⊥
otherwise) but does not reveal the actual output value. Finally, Retrieve takes a (non-⊥) token
RTF (xi) and the output retrieval key RKF (xi) to reveal the final result yF (xi) = F (xi). More
formally:

Definition 1. A Publicly Verifiable Delegable Computation (VDC) scheme comprises the fol-
lowing algorithms2:

1. (PP,MK)← Setup(1κ)

2. PKF ← FnInit(F,MK,PP )

3. SKSi ← Register(Si,MK,PP )

4. EKxi,Si ← Certify(Si, xi, l(xi),Fi,MK,PP )

5. (σF (xi), V KF (xi), RKF (xi))← ProbGen(F, l(xi), PKF , PP )

6. θF (xi) ← Compute(σF (xi), EKxi,Si , SKSi , PP )

7. yF (xi) ← Verify(θF (xi), RTF (xi), V KF (xi), RKF (xi), PP ):

• (RTF (xi) or ⊥)← BVerif(θF (xi), V KF (xi), PP )

• yF (xi) ← Retrieve(RTF (xi), V KF (xi), RKF (xi), PP )

We do not consider revocation here but observe that an indirectly revocable CP-ABE scheme
could be employed in a similar fashion to [2]. Additionally, the hybrid scheme in Sect. 3 can
revoke policies in decryption keys – revoking a “dummy policy” disables all evaluation keys for
the entity (even for VDC).

We also assume a mechanism (e.g. tagged messages) linking messages related to a single
computation. Note that the server must provide its input data in order to be certified by
the trusted KDC. In some settings, the data may be partitioned beforehand by the KDC and
distributed to the servers along with their keys. For example, if the manager of an organization
divides a database according to a separation of duty policy and allows particular verifiable
queries. In other settings, the server may have to trust the KDC with its data (but not the
delegators). By restricting the issuing of keys, servers may not use a key for data they do not
own (or indeed a subset of the data). Future work will attempt to relax this requirement.

A VDC scheme is correct if verification almost certainly succeeds when all algorithms are
run honestly. A more formal definition follows:

Definition 2. A Verifiable Delegable Computation system is correct for a family of functions
F if for all functions F ∈ F , servers Si and inputs xi where negl(·) is a negligible function of

2We retain the algorithm names from prior PVC schemes for consistency.
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its input:

Pr[(PP,MK)← Setup(1κ), PKF ← FnInit(F,MK,PP ),

SKSi ← Register(Si,MK,PP ),

EKxi,Si ← Certify(Si, xi, l(xi),Fi,MK,PP ),

(σF (xi), V KF (xi), RKF (xi))← ProbGen(F, l(xi), PKF , PP ),

yF (xi) ← Verify(Compute(σF (xi), EKxi,Si , SKSi , PP ), V KF (xi), RKF (xi), PP )]

= 1− negl(κ).

2.2 Security Models

We now introduce several security models capturing different requirements of a VDC scheme.
We will formalize these notions of security as a series of cryptographic games run by a chal-
lenger. The adversary against a particular function F is modelled as a PPT algorithm A run
by a challenger with input parameters chosen to represent the knowledge of a real attacker
as well as the security parameter κ. The adversary algorithm may maintain state and be
multi-stage (i.e. be called several times by the challenger, with different input parameters) and
we overload the notation by calling each of these adversary algorithms A. This represents
the adversary performing tasks at different points during the execution of the system, and we
assume that the adversary may maintain a state storing any knowledge it gains during each
phase (we do not provide the state as an input or output of the adversary for ease of nota-
tion). The notation AO denotes the adversary A being provided with oracle access to the
following functions: FnInit(·,MK,PP ), Register(·,MK,PP ), Certify(·, (·, ·), ·, ·, ·MK,PP ) and
Revoke(·, (·, ·), (·, ·),MK,PP ). This means that the adversary can query (multiple times) the
challenger for any of these functions with the adversary’s choice of values for parameters rep-
resented with a dot above. This models information the adversary could learn from observing
a functioning system or by acting like a legitimate client (or corrupting one) to request some
functionality.

In particular for the VDC framework we consider security against Public Verifiability and
Revocation.

2.2.1 Public Verifiability

We formalize security against Public Verifiability in the VDC framework. This notion acco-
modates that multiple servers should not be able to collude in order to gain an advantage in
convincing any verifying party of an incorrect result.

Full Public Verifiability. This is captured in Game 1. The game begins with the challenger
setting up the system and running FnInit to initialize the challenge function F . Then the adver-
sary A is given the resulting public parameters and given oracle access to FnInit(·,MK,PP ),
Register(·,MK,PP ), Certify(·, (·, ·), ·, ·, ·MK,PP ) and Revoke(·, (·, ·), (·, ·),MK,PP ) as men-
tioned previously. All oracles simply run the relevant algorithm. Eventually, the adversary will
finish this query phase and output challenge input and corresponding label (x?, l(x?)). Then the
challenger forms a challenge by running ProbGen on this input and sends the resulting encoded
input to A. The adversary is provided with oracle access again and wins the game if it is able to
produce an encoded output that verifies correctly but does not correspond to the actual result
F (x?).
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Game 1 ExpPubVerif
A [VDC, F, 1κ]:

1: (PP,MK)← Setup(1κ)

2: PKF ← FnInit(F,MK,PP )

3: (x?, l(x?))← AO(PKF , PP )

4: (σF (x?), V KF (x?), RKF (x?))← ProbGen(F, l(x?), PKF , PP )

5: θF (x?) ← AO(σF (x?), V KF (x?), RKF (x?), PKF , PP )

6: RTF (x?) ← BVerif(θF (x?), V KF (x?), PP )

7: yF (x?) ← Retrieve(RTF (x?), RKF (x?), PP )

8: if (yF (x?) 6=⊥) and (yF (x?) 6= F (x?)) then return 1

9: else return 0

Game 2 ExpsPubVerif
A [VDC, F, 1κ]:

1: (x?i , l(x
?
i ))← A(1κ)

2: (PP,MK)← Setup(1κ)

3: PKF ← FnInit(F,MK,PP )

4: (σF (x?i )
, V KF (x?i )

, RKF (x?i )
)← ProbGen(F, l(x?i ), PKF , PP )

5: θF (x?i )
← AO(σF (x?i )

, V KF (x?i )
, RKF (x?i )

, PKF , PP )

6: RTF (x?i )
← BVerif(θF (x?i )

, V KF (x?i )
, PP )

7: yF (x?i )
← Retrieve(RTF (x?i )

, RKF (x?i )
, PP )

8: if (yF (x?i )
6=⊥) and (yF (x?i )

6= F (x?i )) then return 1

9: else return 0

Selective Public Verifiability. In Game 2, we capture the security notion of selective public
verifiability. This is a selective notion of security for a given challenge function F where, at the
start of the game, the adversary chooses the challenge input data x?i with unique label l(x?i ).
The challenger then initializes the system, runs FnInit for the challenge function F to create the
public delegation key, and runs ProbGen on x?i . The adversary is given the resulting outputs, all
public information as well as oracle access. Thus he may create delegation keys for any function
in F , simulate the corruption of other servers by registering them and certifying them for input
data of his choice, and view details of other delegated computations. The adversary eventually
outputs θF (x?i )

which it believes to be an incorrect result that will, nevertheless, be accepted by
a verifier. The challenger runs the verification steps on this output and the adversary wins if
verification succeeds yet the result is not F (x?i ).

The requirement for a selective notion stems from the underlying CP-ABE primitive used in
the construction: a selectively secure CP-ABE scheme will result in selective Public Verification
for the VDC scheme, whilst a fully secure CP-ABE scheme will yield (in exactly the same
fashion) a fully Public Verifiable VDC scheme. We focus here on the selective case purely
to maintain consistency with our notion of HPVC which, using current primitives, is only
selectively secure. However, it is straightforward to amend the proof to accommodate full
security if desired.

Definition 3. The advantage of an adversary A running in probabilistic polynomial time
(PPT), making a polynomial number of queries q, where X ∈ {PubV erif, sPubV erif}, is
defined as:

AdvXA (VDC, F, 1κ, q) = Pr[ExpX
A [VDC, F, 1κ] = 1].

A VDC scheme is secure against Game X for a function F , if for all PPT adversaries A,
AdvXA(VDC, F , 1κ,q) ≤ negl(κ), where negl(·) is negligible in its input.

2.2.2 Blind Verification

The notion of Blind Verification, captured in Game 3, ensures that a verifier without the output
retrieval key RKF (x) cannot learn the value of F (x) from the encoded output (this does not
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Game 3 ExpBV erifA [VDC, F, 1κ]:

1: (PP,MK)← Setup(1κ);
2: PKF ← FnInit(F,MK,PP );

3: x
$← Dom(F );

4: Si
$← UID;

5: SKSi
← Register(Si,MK,PP );

6: EKx,Si
← Certify(Si, x, l(x), {F},MK,PP );

7: (σF (x), V KF (x), RKF (x))← ProbGen(F, l(x), PKF , PP );

8: θF (x) ← Compute(σF (x), EKx,Si
, SKSi

, PP );

9: ŷ ← AO,Retrieve(θF (x), V KF (x), PKF , PP );

10: if (ŷ = F (x)) then

11: return 1
12: else

13: return 0

mean to say that they cannot ascertain correctness however). The challenger chooses an input
value, x, at random from the domain of F and generates an encoded input for computing F (x).
He also simulates a computational server S, runs Compute on the encoded input and gives the
resulting output and verification key to the adversary who must output a guess for the value of
F (x). We provide A with oracle access as in the selective Public Verifiability game.

We must be somewhat careful about the data labels l(·) with regards to this notion. The
label is uniquely defined for each possible input data. If this unique label enables an adversary
to identify and learn the actual value of the input data then it may trivially apply F to this data
and win the game. A simple method to solve this is to restrict the labelling function such that it
describes the data in a non-invertible manner (e.g. the label may contain a cryptographic hash
of the data). Alternatively, based on the actual CP-ABE construction being used, it may be
possible to avoid this problem. For example, as in a predicate encryption scheme, the functions
could hide the input attributes or policies such that it is not possible to learn the input data.
In many CP-ABE schemes, including [12], the ciphertext contains a description of the policy
whilst the decryption key does not immediately reveal the input attributes. In this game, we
choose not to provide the adversary with the encoded inputs (ciphertexts) or the evaluation key
to avoid giving the descriptive label that could be inverted to learn the input data. We will
explore these restrictions further in future work.

Definition 4. The advantage of a PPT adversary A making a polynomial number of queries
q in the Blind Verification Experiment is defined as:

AdvBVerif
A (VDC, F, 1κ, q) = Pr[ExpBVerif

A [VDC, F, 1κ] = 1]− max
y∈Ran(F )

( Pr
x∈Dom(F )

[F (x) = y]).

A VDC is secure against Blind Verification for a function F , if for all PPT adversaries A,
AdvBVerif

A (VDC, F , 1κ,q) ≤ negl(κ).

Clearly, the adversary can trivially make a guess for F (x) based on a priori knowledge of
the distribution of F over all possible inputs. Unless F is balanced (i.e. outputs 1 exactly half
the time), the adversary could gain an advantage. Thus, we define security by subtracting the
most likely guess for F (x).

2.3 Instantiation

Informally, the delegator will choose a random message from the message space M to act as a
verification token and encrypt this using a CP-ABE scheme under the Boolean3 function F to

3Following Parno et al. [29] we restrict our attention to Boolean functions, and in particular the complexity
class NC1 which includes all circuits of depth O(log n) including many common operations. Note, n-bit outputs
can be implemented by n Boolean functions that use a mask to produce each bit of output in turn.
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be evaluated. Each server is given a decryption key for the data x that they hold. The server
attempts to decrypt the ciphertext and learns the chosen message if and only if F (x) = 1.
By the security of the CP-ABE scheme, servers learn nothing about the message if F (x) = 0
since this corresponds to an access structure not being satisfied. Thus, if the correct message is
returned, the delegator is convinced that F (x) = 1.

If, however, F (x) = 0, the decryption will return ⊥. This is insufficient for verification since
any server can return ⊥ to convince a delegator of a false negative result. Thus, we produce
two CP-ABE ciphertexts. As above, one corresponds to F , whilst the other corresponds to
F = F (x) ⊕ 1 (which always outputs the opposite result to F for Boolean functions). Thus,
if F (x) = 0 then, necessarily, F (x) = 1.Hence, the server’s key for data x will decrypt exactly
one ciphertext and the returned message will distinguish whether F or F was satisfied, and
therefore the value of F (x). A well formed response, (d0, d1), from a server, therefore, satisfies
the following:

(d0, d1) =

{
(m0,⊥), if F (x) = 1;

(⊥,m1), if F (x) = 0.
(1)

If the returned plaintext does not match the chosen random message then the server has returned
an incorrect result (also if both results are ⊥ but a rational malicious server would never return
this)Public Verifiability is achieved by publishing a token comprising a one-way function g
applied to both plaintexts. Any entity can apply g to the server’s response and compare with
this token to check correctness. For blind verification, a random bit b permutes the ciphertexts
thus hiding whether the matched plaintext is associated with F or F . The public parameters
contains a two-dimensional array LReg where the first dimension, LReg[Si][0] is indexed by server
identities and contains signature verification keys, whilst the second dimension, LReg[Si][1], lists
functions and labels for which Si is certified.

Although superficially similar to the PVC construction of Parno et al. [29], we consider
adversaries that have access to multiple keys and must ensure that a key for different data
cannot produce a valid looking response. We do this by labelling each data set x with a unique
label l(x) and define an attribute for each label. Then, for data x, the decryption key is formed
over the attribute set (x ∪ l(x)). During ProbGen for F (x), the encryption uses the access
structure encoding of the conjunction (F ∧ l(x)). Thus, decryption only succeeds if F (x) = 1
and the label l(x) is matched in the key and ciphertext – a key for different data will not
include the correct label. The instantiation of VDC is also somewhat more efficient than that
for PVC since we do not require the setup of two independent ABE systems or two (expensive)
key generations.

To encode an n-bit binary input string ~x = ~x1~x2 . . . ~xn as an attribute set x, we define a
universe Ux = {x1, x2, . . . , xn} of n attributes and let xi ∈ x if and only if the ith bit of the
input string is 1 – that is, x = {xi : ~xi = 1}. Let U = Ux ∪Ul ∪UID where Ul is a disjoint (from
Ux) universe representing unique labels, l(x), for each input data x, and UID comprises server
identities.4If such a universe becomes too large it is, of course, possible to use a large universe
CP-ABE scheme where attributes need not be defined ahead of time. However, it is very likely
that, for efficiency, the inputs and number of servers will be polynomially sized in the security
parameter and can therefore be accommodated by a small universe construction if required.

Let CPABE = (ABE.Setup, ABE.KeyGen, ABE.Encrypt and ABE.Decrypt) define a CP-ABE
encryption scheme over the universe U for a class of Boolean functions F closed under com-
plement. We also make use of a signature scheme with algorithms Sig.KeyGen, Sig.Sign and
Sig.Verify, and a oneway function g. Then Algorithms 1–8 define a VDC scheme for the class

4We assume that the following algorithms check, where relevant, that all functions and input data are formed
over Ux and each additionally contains exactly one attribute/clause over the label universe Ul.
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of functions F .

Alg. 1 (PP,MK)← VDC.Setup(1κ)

1: (MPKABE,MSKABE)← ABE.Setup(1κ,U)
2: for Si ∈ UID do

3: LReg[Si][0] = ε, LReg[Si][1] = {ε}
4: PP = (MPKABE, LReg), MK = (MSKABE)

Alg. 2 PKF ← VDC.FnInit(F,MK,PP )

1: Set PKF = PP

Alg. 3 SKSi ← VDC.Register(Si,MK,PP )

1: (SKSig, V KSig)← Sig.KeyGen(1κ)

2: SKSi
= SKSig

3: LReg[Si][0] = LReg[Si][0] ∪ V KSig

Alg. 4 EKxi,Si ← VDC.Certify(Si, xi, l(xi),Fi,MK,PP )

1: for Fj ∈ Fi do
2: LReg[Si][1] = LReg[Si][1] ∪ (Fj , l(xi))

3: SKABE,xi
← ABE.KeyGen((xi ∪ l(xi)),MSKABE,MPKABE)

4: EKxi,Si
= SKABE,xi

Alg. 5 (σF (xi), V KF (xi), RKF (xi))← VDC.ProbGen(F, l(xi), PKF , PP )

1: (m0,m1)
$←M×M, b

$← {0, 1}
2: cb ← ABE.Encrypt((F ∧ l(xi)),mb,MPKABE)

3: c1−b ← ABE.Encrypt((F ∧ l(xi)),m1−b,MPKABE)

4: return σF (xi)
= (cb, c1−b), V KF (xi)

= (g(mb), g(m1−b), LReg) and RKF (xi)
= b

Alg. 6 θF (xi) ← VDC.Compute(σF (xi), EKxi,Si , SKSi , PP )

1: Parse EKxi,Si
= SKABE,xi

and σF (xi)
= (cb, c1−b)

2: db ← ABE.Decrypt(cb, SKABE,xi
,MPKABE)

3: d1−b ← ABE.Decrypt(c1−b, SKABE,xi
,MPKABE)

4: γ ← Sig.Sign((db, d1−b, Si), SKSi
)

5: return θF (xi)
= (db, d1−b, Si, γ)

Alg. 7 (RTF (xi) or ⊥)← VDC.BVerif(θF (xi), V KF (xi), PP )

1: Parse V KF (xi)
= (V K, V K′, LReg) and θF (xi)

= (d, d′, Si, γ)

2: if ((Fj , l(xi)) ∈ LReg[Si][1]) and (Sig.Verify((d, d′, Si), γ, LReg[S][0])→ accept) then

3: if V K = g(d) then return RTF (xi)
= d

4: if V K′ = g(d′) then return RTF (xi)
= d′

5: return RTF (xi)
=⊥

Alg. 8 yF (xi) ← VDC.Retrieve(RTF (xi), V KF (xi), RKF (xi), PP )

1: Parse V KF (xi)
= (g(mb), g(m1−b), LReg), RTF (xi)

and RKF (xi)
= b

2: if g(RTF (xi)
) = g(m0) then return yF (xi)

= 1

3: if g(RTF (xi)
) = g(m1) then return yF (xi)

= 0

4: return yF (xi)
=⊥
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Theorem 1. Given a secure sIND-CPA CP-ABE scheme for a class of Boolean functions F
closed under complement, a one-way function g, and a signature scheme secure against EUF-
CMA, let VDC be the verifiable delegable computation scheme defined in Algorithms 1–8. Then
VDC is secure in the sense of selective Public Verifiability (Game 2) and Blind Verification
(Game 3).

Informally, Public Verifiability relies on the IND-CPA property of the CP-ABE encryption
and the one-wayness of g. The proof proceeds by showing that, for the unsatisfied function F
or F , an adversary cannot observe if the plaintext is altered. Thus, the verification key can
be the one-way function challenge g(w) and the plaintext can be implicitly set to be w. A
successful adversary returns w to break the one-wayness of g. Blind Verification relies on a
standard probability argument.

2.3.1 Proof of Public Verifiability

Lemma 1. VDC as defined by Algorithms 1–8 is secure against selective Public Verifiability
(Game 2) under the same assumptions as in Theorem 1.

Proof. Suppose AV DC is an adversary with non-negligible advantage against the selective Public
Verifiability game (Game 2) when instantiated with Algorithms 1–8. We begin by defining the
following three games:

• Game 0. This is the selective Public Verifiability game as defined in Game 2.

• Game 1. This is the same as Game 0 with the modification that in ProbGen, we no
longer return an encryption of m0 and m1. Instead, we choose another random message
m′ 6= m0,m1 and, if F (x?i ) = 1, we replace c1 by ABE.Encrypt((F ∧ l(x?i )),m′,MPKABE).
Otherwise, we replace c0 by ABE.Encrypt((F ∧ l(x?i )),m′,MPKABE). In other words, we
replace the ciphertext associated with the unsatisfied function with the encryption of a
separate random message unrelated to the other system parameters, and in particular to
the verification keys.

• Game 2. This is the same as Game 1 with the exception that instead of choosing a
random message m′, we implicitly set m′ to be the challenge input w in the one-way
function game.

We show that an adversary with non-negligible advantage against the selective Public Veri-
fiability game can be used to construct an adversary that may invert the one-way function
g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage
between Game 0 and Game 1. Suppose otherwise, that AV C can distinguish the two games
with non-negligible advantage δ. We then construct an adversary AABE that uses AV DC as a
sub-routine to break the selective IND-CPA security of the CP-ABE scheme. We consider a
challenger C playing the IND-CPA game with AABE , who in turn acts as a challenger in the
Verifiability game for AV DC :

1. AV DC is given the security parameter by the environment, and declares (to AABE) its
choice of input data x?i and data label l(x?i ).

2. AABE must send a challenge access structure to the challenger. It first computes r = F (x?i )
– that is, the outcome of the challenge function F applied to the challenge input data. If
r = 1, AABE sets A? = (F ∧ l(x?i )). Else, r = 0, A? = (F ∧ l(x?i )).
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3. C runs the ABE.Setup algorithm on the security parameter to generate MPKABE and
MSKABE. He gives MPKABE to AABE .

4. AABE now simulates running VDC.Setup such that the outcome is consistent withMPKABE.
It initializes the list LReg and sets PP = (MPKABE, LReg). The master key is implicitly
set to MSKABE. AABE also runs FnInit as given in the construction.

5. To generate the challenge input, AABE begins by choosing a random bit b, three random
messages m0, m1 and m′ from the message space, and another random bit t.

AABE sends the messages m0 and m1 to C as the challenge messages for the CP-ABE
game. C chooses a random bit c and returns CT ? ← Encrypt(mc,A?,MPKABE).

• If r = 1 (that is, A? = (F∧l(x?i ))), AABE generates cb ← Encrypt((F∧l(x?i )),m′,MPKABE)
and sets c1−b = CT ? (formed over A? by C). It also sets V Kb = g(m′) and
V K1−b = g(mt).

• Else r = 0, andAABE sets cb = CT ? and computes c1−b ← Encrypt((F∧l(x?i )),m′,MPKABE).
It sets V Kb = g(mt) and V K1−b = g(m′).

Finally, AABE sets σF (x?i )
= (cb, c1−b), V KF (x) = (V Kb, V K1−b) and RKF (x?i )

= b.

6. AABE sends the output from ProbGen along with the public information to AV C , who is
also given oracle access to which AABE responds as follows:

• FnInit(·,MK,PP ): run as per Algorithm 2.

• Register(·,MK,PP ): run as per Algorithm 3.

• Certify(·, ·, ·, ·,MK,PP ): To generate the evaluation key for the queried attribute
set x, AABE makes use of the KeyGen oracle in the CP-ABE game. It first updates
LReg as in lines 1–2 of the Certify algorithm. Then it sets x′ = x∪ l(x) and makes an
oracle query to C for OKeyGen(x′,MK,PK) as in Oracle Query 5. C shall generate
a CP-ABE decryption key SKx′ for x if and only if x′ 6∈ A?. Now, since each data
label is unique, l(x) = l(y) if and only if x = y. By the definition of A?, x′ will
satisfy A? only if the data labels l(x) and l(x?i ) match, hence only if x = x?i . Now,
if x = x?i , then additionally, x must satisfy either F or F as chosen in A? in Step 2.
However, this was chosen specifically such that x?i (and therefore x) does not satisfy
the function, and therefore x′ 6∈ A? and C may generate the key, which AABE will
receive as EKx,Si .

7. Eventually, AV C outputs θF (x?i )
which it believes is a valid forgery (i.e. that it will be

accepted yet does not correspond to the correct value of F (x?i )).

8. AABE parses θF (x?i )
as (db, d1−b, Si, γ) and using the retrieval key RKF (x?i )

= b, finds d0
and d1. One of d0 and d1 will be ⊥ (by construction) and we denote the other value by
Y .

Observe that, since AV C is assumed to be a successful adversary against selective public
verifiability, the non-⊥ value, Y , that it will return will be the plaintext mc since the
challenge access structure was always set to be unsatisfied on the challenge input.

Thus, if g(Y ) = g(mt), AABE outputs a guess c′ = t and otherwise guesses c′ = (1− t).
If t = c (the challenge bit chosen by C), we observe that the above corresponds to Game

0 (since the verification key comprises g(m′) where m′ is the message a legitimate server could
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recover, and g(mc) where mc is the other plaintext). Alternatively, t = 1− c and the distribu-
tion of the above experiment is identical to Game 1 (since the verification key comprises the
legitimate message and a random message m1−c that is unrelated to the ciphertext).

Now, we consider the advantage of this constructed AABE playing the sIND-CPA game for
CP-ABE: Recall that by assumption, AV C has a non-negligible advantage δ in distinguishing
between Game 0 and Game 1 – that is

|Pr(Exp0
AV C [VDC, F, 1κ])− Pr(Exp1

AV C [VDC, F, 1κ])| > δ

where ExpiAV C [VDC, F, 1κ] denotes the output of running AV C in Game i.

Pr(c′ = c) = Pr(t = c) Pr(c′ = c|t = c) + Pr(t 6= c) Pr(c′ = c|t 6= c)

=
1

2
Pr(g(Y ) = g(mt)|t = c) +

1

2
Pr(g(Y ) 6= g(mt)|t 6= c)

=
1

2
Pr(Exp0

AV C [VDC, F, 1κ]) +
1

2
(1− Pr(g(σy?) = g(mt)|t 6= c))

=
1

2
Pr(Exp0

AV C [VDC, F, 1κ]) +
1

2

(
1− Pr(Exp1

AV C [VDC, F, 1κ])
)

=
1

2

(
Pr(Exp0

AV C [VDC, F, 1κ])− Pr(Exp1
AV C [VDC, F, 1κ]) + 1

)
>

1

2
(δ + 1)

Hence,

AdvAABE >

∣∣∣∣Pr(c = c′)− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
>
δ

2

Hence, if AV C has advantage δ at distinguishing these games then AABE can win the sIND-
CPA game for CP-ABE with non-negligible probability. Thus since we assumed the CP-ABE
scheme to be secure, we conclude that AV C cannot distinguish Game 0 from Game 1 with
non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the value of
m′ to no longer be random but instead to correspond to the challenge w in the one-way function
inversion game. We argue that the adversary has no distinguishing advantage between these
games since the new value is independent of anything else in the system bar the verification key
g(w) and hence looks random to an adversary with no additional information (in particular,
AV C does not see the challenge for the one-way function as this is played between C and AABE).

Final Proof. We now show that using AV C in Game 2, AABE can invert the one-way
function g – that is, given a challenge z = g(w) we can recover w. Specifically, during ProbGen,
we choose the messages as follows:

• if F (x) = 1, we implicitly set m1−b to be w and set the verification key component
V K1−b = z. We choose mb and V Kb randomly as usual.
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• if F (x) = 0, we implicitly set mb to be w and set the verification key component V Kb = z.
We choose m1−b and V K1−b randomly as usual.

Now, since AV C is assumed to be successful, it will output a forgery comprising the plaintext
encrypted under the unsatisfied function (F or F ). By construction, this will be w (and the
adversary’s view is consistent since the verification key is simulated correctly using z). AABE
can therefore forward this result to C in order to invert the one-way function with the same
non-negligible probability that AV C has against the public verifiability game.

We conclude that if the ABE scheme is sIND-CPA secure and the one-way function is
hard-to-invert, then VDC as defined by Algorithms 1–8 is secure in the sense of selective Public
Verifiability.

2.3.2 Blind Verification

Lemma 2. VDC as defined by Algorithms 1–8 is secure against Blind Verification (Game 3)
under the same assumptions as in Theorem 1.

Proof. We show that if the underlying CP-ABE scheme is sIND-CPA secure then the construc-
tion in Algorithms 1–8 is secure against Blind Verification. The proof follows from a standard
probability argument. We first argue that only θF (x) and V KF (x) may reveal useful information
to the adversary. We then show that the adversarial view of these inputs does not provide an
advantage at guessing the result.

Over the course of the game, the adversary sees the following inputs: θF (x), V KF (x), PKF ,
PP and the outputs from oracle queries. By construction, PKF = PP and as the public
parameters are defined at the beginning of the game, this clearly does not reveal any information
about F (x). In particular, since the adversary does not see the encoded input (ciphertexts) from
the challenge computation, the ABE public parameters in PP are not helpful (else the ABE
scheme would not be IND-CPA secure), and neither is the list LReg which contains only function
lists and signature verification keys.

The inputs θF (x) and V KF (x) clearly do rely on the values of x and F (x) and we will consider
these shortly. We first consider the oracle access given to the following functions:

• FnInit(·,MK,PP ): FnInit queries simply return the public parameters which we consid-
ered previously as an explicit adversarial input.

• Register(·,MK,PP ): Queries to this oracle generate a signing key for a server Si. How-
ever, this does not relate to the retrieval key or the choice of x.

• Certify(·, ·, ·, ·,MK,PP ): A call to this oracle will add an entry to LReg comprising a
function identifier and a data label (which we have assumed not to leak the input value
itself). It also creates a decryption key for the underlying ABE system. Again, as the
adversary only sees plaintexts and does not see the ciphertexts forming the challenge
encoded input, such a key is not useful.

Hence, oracle access to these functions does not help the adversary to distinguish which input
was selected and hence the value of F (x). Thus, the only inputs to the adversary that depend
on the choice of challenge input are θF (x) and V KF (x), and so we restrict our attention to these.

Recall that a well-formed response by the server will be either (mb,⊥) or (⊥,m1−b) according
to RKF (x). In detail this means, where RKF (x) = b:

• if F (x) = 1, θF (x) =

{
(m0,⊥), if b = 0

(⊥,m0), if b = 1
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• if F (x) = 0, θF (x) =

{
(⊥,m1), if b = 0

(m1,⊥), if b = 1

Note that V KF (x) = (g(mb), g(m1−b)) by definition (excluding LReg which we discussed
above). We denote by V the adversary’s view of θF (x) and V KF (x) – that is, V = (db, d1−b, g(mb), g(m1−b))
if θF (x) = (db, d1−b) and V KF (x) = (g(mb), g(m1−b)).

We now show that the probability of the adversary correctly guessing the value of F (x)
given a particular view V is identical to his success at guessing without seeing V. Thus, he has
no advantage at guessing F (x) over his a priori knowledge of the distribution of F .

Let V1 = (m′,⊥, g(m′), g(m1−b)) and let V2 = (⊥,m′′, g(mb), g(m′′)). We claim that these
are the only possible views – A sees one message (either m0 or m1, both drawn uniformly from
the same distribution) along with g applied to that message and to a different (unseen) message.

We begin by noting the following facts: (i) the value of F (x) and of b
$← {0, 1} are indepen-

dent events; (ii) Pr[b = 1] = 1
2 ; and (iii) Pr[F (x) = 0] + Pr[F (x) = 1] = 1 since F is a Boolean

function. Now,

Pr[V = V1] = Pr[(F (x) = 1 ∧ b = 0) ∨ (F (x) = 0 ∧ b = 1)]

= Pr[F (x) = 1 ∧ b = 0] + Pr[F (x) = 0 ∧ b = 1]

= Pr[F (x) = 1] Pr[b = 0] + Pr[F (x) = 0] Pr[b = 1] by (i)

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(2)

Now,

Pr[F (x) = 0|V = V1] =
Pr[F (x) = 0 ∧ V = V1]

Pr[V = V1]

=
Pr[F (x) = 0 ∧ b = 1]

Pr[V = V1]

=
Pr[F (x) = 0] Pr[b = 1]

Pr[V = V1]
by (i)

=
1
2 Pr[F (x) = 0]

1
2

by (2)

= Pr[F (x) = 0]

Similarly,

Pr[V = V2] = Pr[(F (x) = 1 ∧ b = 1) ∨ (F (x) = 0 ∧ b = 0)]

= Pr[F (x) = 1 ∧ b = 1] + Pr[F (x) = 0 ∧ b = 0]

= Pr[F (x) = 1] Pr[b = 1] + Pr[F (x) = 0] Pr[b = 0] by (i)

=
1

2
Pr[F (x) = 1] +

1

2
Pr[F (x) = 0]

=
1

2
(Pr[F (x) = 0] + Pr[F (x) = 1])

=
1

2
(3)
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Now,

Pr[F (x) = 0|V = V2] =
Pr[F (x) = 0 ∧ V = V2]

Pr[V = V2]

=
Pr[F (x) = 0 ∧ b = 0]

Pr[V = V2]

=
Pr[F (x) = 0] Pr[b = 0]

Pr[V = V2]
by (i)

=
1
2 Pr[F (x) = 0]

1
2

by (3)

= Pr[F (x) = 0]

A symmetric argument holds for F (x) = 1, and hence we conclude that knowledge of the
adversarial inputs provides no advantage in determining F (x) other than that which could be
guessed without that knowledge (i.e. the inputs leak no information about F (x)).

3 Hybrid Publicly Verifiable Computation

We have seen how CP-ABE can be applied in a similar fashion to PVC schemes using KP-
ABE [29, 2] to construct VDC. We now unify these notions under the umbrella of Hybrid Publicly
Verifiable Compuation (HPVC). This is a single system (with associated costs of a single setup
operation and system parameters) that can flexibly handle multiple modes of operation. Thus,
within an organization, a single KDC may initialize an HPVC system that provides functionality
for many users with diverse requirements. We give formal definitions and a provably secure
construction based on a novel use of DP-ABE. The key observation is that DP-ABE can, using
special attribute tokens, implement KP-ABE, CP-ABE or DP-ABE policies. In more detail, we
capture the following functionality:

• RPVC: Uses KP-ABE policies only to achieve RPVC (Sect. 1.1). Thus weak delegators
may outsource computations and receive verifiably correct results;

• RPVC with Access Control: Uses DP-ABE policies to achieve RPVC with restrictions
on the servers that may perform a computation. This will be discussed further in Sect. 4;

• VDC: Uses CP-ABE policies only to achieve the verifiable delegation of a function to
servers owning their own input data as discussed in Sect. 2.

3.1 Revocable Dual-policy Attribute-based Encryption

Dual-Policy Attribute-Based Encryption (DP-ABE) [7] conjunctively combines Key-Policy ABE
(KP-ABE) [25] and Ciphertext-Policy ABE (CP-ABE) [12]. Both the ciphertext and the de-
cryption key comprise an attribute set and an access policy. Thus, the ciphertext is associated
with both an subjective access policy (as per CP-ABE) detailing which entities may decrypt
and an objective attribute set describing the data. Decryption keys comprise an objective ac-
cess policy (as per KP-ABE) and a subjective attribute set. Decryption succeeds when both
attribute sets satisfy their corresponding access policies.

For our HPVC instantiation, we require the new notion of revocable DP-ABE scheme which
we introduce by combining the DP-ABE construction [7] with indirectly revocable KP-ABE [5].
Full details can be found can be found in App. B. We observe that it is sufficient to revoke the
policy in either the key or the ciphertext – decryption succeeds if and only if both attribute sets
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satisfy their corresponding access structure. To prevent decryption, at least one attribute set
should not satisfy the corresponding access structure. This may be viewed as a consequence of
De Morgan’s law: decryption succeeds if both (ω ∈ O)∧ (ψ ∈ S). Hence to prevent decryption,
we require ¬((ω ∈ O)∧ (ψ ∈ S)) = (ω 6∈ O)∨ (ψ 6∈ S). Here we define revocable DP-ABE using
indirect revocation in the key-policy (maintaining consistency with [2]). Revocable KP-ABE
and CP-ABE can be found by ignoring relevant parameters.

Definition 5 (Revocable Key DP-ABE). A Dual-Policy Attribute-based Encryption scheme
with revocation in the key-policy comprises five algorithms:

• (PP,MK) ← Setup(1κ): Takes the security parameter as input and generates public
parameters PP for the system and a master secret key MK.

• CT(ω,S),t ← Encrypt(m, (ω,S), t, PP ): Takes in the public parameters, a message to be
encrypted, a subjective access policy S and an objective attribute set ω. It outputs a
ciphertext that is valid for time t.

• SK(O,ψ),ID ← KeyGen(ID, (O, ψ),MK,PP): Takes the public parameters and master secret
key, an identity ID as well as an objective access policy O and a subjective attribute set
ψ. It outputs a secret decryption key SK(O,ψ),ID.

• UKR,t ← KeyUpdate(R, t,MK,PP ): Takes a revocation list R that contains the identities
of revoked entities, the current time period, as well as the public parameters and master
secret key. It outputs updated key material UKR,t.

• m or ⊥ ← Decrypt(CT(ω,S),t, (ω,S), (O, ψ),SK(O,ψ),ID, UKR,t, PP ): Takes as input the
public parameters, a ciphertext and key with associated policies and attribute sets, and
updated key material. It outputs the correct plaintext m if and only if the f objective at-
tributes ω satisfies the objective access structure O and the subjective attributes ψ satisfies
the subjective policy S and the value of t in the update key matches that specified during
encryption.

The necessary background, security definition, full construction as well as a security proof
can be found in Appendix B.

3.2 Specification

We give a generic definition in terms of objective (RPVC) and subjective (VDC) policies (O
and S) and corresponding attribute sets (ω and ψ respectively). These depend upon the mode
in which the algorithm is being run, and are detailed in Table 1.5 Informally, a HPVC scheme
for a family of functions F begins with a trusted Key Distribution Center (KDC) (e.g. a trusted
third party or a delegator) setting up the system by producing public parameters and a master
secret key. For each function of interest F , the KDC provides a public delegation key PKF and
maintains a list LReg of servers willing to provide a computation service for F along with a unique
label l (in VDC this describes the data held by those servers). Next, the KDC registers each
server Si by deriving a private signing key SKSi . The Certify algorithm allows each server Si to
provide a list of functions Fi that they wish to provide computational services for, and the KDC
generates an evaluation key EK(O,ψ),Si and updates LReg accordingly. Depending on the mode,
we choose the values of O and ψ as given in Table 1. A delegator runs ProbGen to outsource the
computation of F (x); again the values of ω and S depend on the mode. The algorithm generates

5The meaning of TO and TS will become clear in Section 3.4 but for now it suffices to consider these as null
terms.
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Table 1: Parameter definitions for different modes

mode O ψ ω S l Fi
RPVC F {TS} x {{TS}} l(F ) {F}
VDC {{TO}} x {TO} F l(x) {F1, . . . , Fm}
PVC-AC F s x P l(F ) {F}

an encoded input σ(ω,S), a public verification key V K(ω,S) and an output retrieval key RK(ω,S).
A server may use the encoded input with their evaluation key EK(O,ψ),Si to compute an output
θ(O,ψ),(ω,S) encoding F (xi). Verification comprises two steps. Blind Verification is performed by
any user using the verification key V K(ω,S) to verify correctness of the result without learning
the output value, and generates an output retrieval token RT(O,ψ),(ω,S). The algorithm also
generates a token τ(O,ψ),(ω,S) indicating the correctness and the server ID. If verification failed,
this token is sent to the KDC and the server is revoked from performing further evaluations and
hence incurs a penalty. Otherwise, RT(O,ψ),(ω,S) can be used in the Retrieve algorithm to reveal
the final result y(O,ψ),(ω,S) = F (xi). An HPVC scheme is correct if verification almost certainly
succeeds when all algorithms are run honestly.

We adapt the PVC framework introduced by Alderman et al. [2, 3].

Definition 6. A Hybrid Publicly Verifiable Computation (HPVC) scheme comprises the fol-
lowing algorithms:

1. (PP,MK)← Setup(1κ)

2. PKF ← FnInit(F,MK,PP )

3. SKSi ← Register(Si,MK,PP )

4. EK(O,ψ),Si ← Certify(mode, (O, ψ), l,Fi, Si,MK,PP )

5. (σ(ω,S), V K(ω,S), RK(ω,S))← ProbGen(mode, (ω,S), l, PKF , PP )

6. θ(O,ψ),(ω,S) ← Compute(mode, σ(ω,S), EK(O,ψ),Si , SKSi , PP )

7. y(O,ψ),(ω,S) ← Verify(θ(O,ψ),(ω,S), RT(O,ψ),(ω,S), τ(O,ψ),(ω,S), V K(ω,S), RK(ω,S), PP ):

• (RT(O,ψ),(ω,S), τ(O,ψ),(ω,S))← BVerif(θ(O,ψ),(ω,S), V K(ω,S), PP )

• y(O,ψ),(ω,S) ← Retrieve(RT(O,ψ),(ω,S), τ(O,ψ),(ω,S), V K(ω,S), RK(ω,S), PP )

8. {EK(O,ψ),S′} or ⊥← Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP )

Definition 7. A Hybrid Publicly Verifiable Outsourced Computation (MPVC) scheme is correct
for a family of functions F if for all functions F ∈ F and inputs x, where negl(·) is a negligible
function of its input:

Pr[(PP,MK)← Setup(1κ), PKF ← FnInit(PP,MK,F ), SKSi ← Register(Si,MK,PP ),

EK(O,ψ),Si ← Certify(mode, (O, ψ), l,Fi, Si,MK,PP ),

(σ(ω,S), V K(ω,S), RK(ω,S))← ProbGen(mode, (ω,S), l, PKF , PP ),

y(O,ψ),(ω,S) ← Verify(Compute(mode, σ(ω,S), EK(O,ψ),Si , SKSi , PP ), V K(ω,S), RK(ω,S), PP )]

= 1− negl(κ).
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3.3 Security Models

In this section we discuss some security models which are of interested in HPVC. However, in
the cases of Public Verifiability and Revocation, we also define weaker notions of security which
we term selective, semi-static notions. This is due to the particular IND-sHRSS indirectly
revocable key-policy attribute-based encryption scheme we use in our construction, which in-
troduces similar restrictions. Thus, with our current primitives we cannot achieve full security
for these notions, but can achieve the slightly weaker variants presented here. In this section
we will discuss the restrictions we must impose and how they could be removed in the future.

These variants require two additional restrictions on the adversary. Firstly, the adversary
must declare upfront (before seeing the public parameters) the set of input values to be used
in the challenge stage. This is in contrast to the full game where the inputs are chosen after
the adversary has oracle access to the system. Secondly, the adversary must (e.g. on line 5 in
Game 5), declare a list R of servers that must be revoked when the challenge encoded inputs
are generated from ProbGen. The adversary must do this before receiving oracle access.

The selective restriction (requiring the adversary to declare its challenge input before seeing
the public parameters) stems from the selectively secure DP-ABE construction we use, whilst the
semi-static restriction arises from the revocation mechanism employed (requiring the adversary
to declare a list of entities to be revoked at challenge time before receiving oracle access). With
our current primitives, we cannot achieve ‘full security’, but instead achieve the slightly weaker
notion.

In the selective semi-static game, we actually have the adversary select challenge inputs for
both objective and subjective policies, and both types of attribute set. Thus, we cover both
flavours of functionality (RPVC and VDC) as these will, in either mode, select F , the input
data, and a dummy attribute and a dummy policy (for single mode operation).

To accommodate the semi-static restriction, the challenger must define two additional pa-
rameters: QRev and t. The counter t models system time and is incremented whenever a Revoke
query is made. Keys that were generated during previous time periods should no longer be
considered valid unless a fresh update key is issued. In the IND-sHRSS notion for revocable
DP-ABE, the adversary could query for update keys for arbitrary time periods. In our model,
however, we consider an interactive protocol in which time increases linearly and hence oracle
queries use the current value of t. Similarly, an adversary against IND-sHRSS could select a
time period for the challenge ciphertext. In our model, we parameterize the adversary by the
number of queries made to the Revoke oracle, qt. Thus the challenge time can be inferred in
terms of qt.

QRev is a list of currently revoked servers (this will be more important in the Revocation
game). Whereas in the IND-sHRSS game for the revocable DP-ABE scheme, the revocation
list could be dynamically changed per oracle query, here we require the revocation list to remain
consistent between subsequent oracle queries to model realistic system evolution. Recall that
the semi-static restriction required the adversary to select a list of revoked servers R for the
challenge time before receiving oracle access. To ensure that this list is correct at the time of
creating the challenge, we compare it to the list of currently revoked servers QRev and require
that R ⊆ QRev. If not, the adversary loses as he has not performed a valid sequence of queries
to match his choice of R.

Otherwise, the game proceeds much as in Game 2 with updated notation to account for the
general policy specification. The adversary is given access to oracles for FnInit, Register, Certify
and Revoke. To avoid trivial wins, we must add additional restrictions to oracle queries made to
Certify and Revoke so that the adversary may not obtain an evaluation key and an update key
for a server that should be revoked at the time of the challenge, as specified in Oracle Queries 1
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Game 4 ExpPubVerif
A [HPVC, mode, F, 1κ]:

1: (PP,MK)← Setup(1κ)

2: PKF ← FnInit(F,MK,PP )

3: ((O?, ω?, S?, ψ?), l?)← AO(PKF , PP )

4: (σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))← ProbGen(mode, (ω?, S?), l?, PKF , PP )

5: θ(O?,ψ?),(ω?,S?) ← AO(σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))

6: (RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?))← BVerif(θ(O?,ψ?),(ω?,S?), V K(ω?,S?), PP )

7: y(O?,ψ?),(ω?,S?) ← Retrieve(RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?), V K(ω?,S?), RK(ω?,S?), PP )

8: if ((y(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?) 6= (⊥, (reject,A)))) and (y(O?,ψ?),(ω?,S?) 6= F (x))) then

9: return 1

10: else

11: return 0

and 2. A query to the Certify oracle in RPVC mode, will return ⊥ if (i) the list of functions
comprises the challenge F for a server Si that will not be revoked at the time of the challenge,
or (ii) if the query is made during the challenge time period qt and, excluding Si as it is about
to be certified, there is a server that should be revoked according to R but is not currently.
Similarly, a query to the Revoke oracle will increment the time parameter t, and return ⊥ if
there is no server to revoke. As t is still incremented in this case, the adversary may query
acceptance tokens to Revoke to progress system time if desired. The challenger also returns ⊥ if
the query is made during the challenge time qt and R is not a subset of the current revocation
list QRev (including Si as it is about to be revoked) – that is, if there exists a server other than
Si that is listed on R and so should be revoked at this challenge time, but is not currently
revoked.

3.3.1 Public Verifiability

We extend the Public Verifiability game of Alderman et al. [2] to formalize in the HPVC model
that no server may return an incorrect result for a computation without a verifier detecting it.
We allow the adversary to corrupt other servers, generate arbitrary computations itself, and to
perform verification steps himself.

Full Public Verifiability. This is captured in the game presented in Game 4. The game
begins with the challenger setting up the system and running FnInit to initialize the challenge
function F . The adversary, A, is given the resulting public parameters and given oracle access to
FnInit(·,MK,PP ), Register(·,MK,PP ), Certify(·, (·, ·), ·, ·, ·MK,PP ) and Revoke(·, (·, ·), (·, ·),MK,PP )
as mentioned previously. All oracles simply run the relevant algorithm. Eventually, the adver-
sary will finish this query phase and output challenge inputs for both objective and subjective
policies, and both types of attribute set, which corresponds to ((O?, ω?,S?, ψ?), l?). The chal-
lenger will then generate a challenge by running ProbGen on this input (S?, ψ?) for one of the
modes, and give the resulting encoded input to A. The adversary is again given oracle access
and wins if it can produce an encoded output that verifies correctly but does not encode the
value F (x).

Selective, semi-static Public Verifiability. In Game 5 we present a selective, semi-static
Public Verifiability game for HPVC.

The adversary first selects an input value. The challenger initializes a list of currently
revoked entities QRev and a time parameter t before running Setup and FnInit to create a public
delegation key for the function F . The adversary is given the generated public parameters and
must output a list R of servers to be revoked when the challenge is created. It is then given

20



Game 5 ExpsSS−PubVerif
A [HPVC, mode, F, qt, 1κ]:

1: ((O?, ω?, S?, ψ?), l?)← A(1κ)
2: QRev = ε, t = 1

3: (PP,MK)← Setup(1κ)

4: PKF ← FnInit(F,MK,PP )

5: R← A(PKF , PP )

6: AO(PKF , PP )

7: if (R 6⊆ QRev) then return 0

8: (σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))← ProbGen(mode, (ω?, S?), l?, PKF , PP )

9: θ(O?,ψ?),(ω?,S?) ← AO(σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))

10: (RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?))← BVerif(θ(O?,ψ?),(ω?,S?), V K(ω?,S?), PP )

11: y(O?,ψ?),(ω?,S?) ← Retrieve(RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?), V K(ω?,S?), RK(ω?,S?), PP )

12: if ((y(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?) 6= (⊥, (reject, Si))) and (y(O?,ψ?),(ω?,S?) 6= F (x))) then

13: return 1

14: else

15: return 0

Oracle Query 1 OCertify(mode, (O, ψ), l,Fi, Si,MK,PP ):

1: if mode = RPVC then
2: if (F ∈ Fi and Si /∈ R) or (t = qt and R 6⊆ QRev \ Si) then return ⊥
3: QRev = QRev \ Si
4: return Certify(mode, (O, ψ), l,Fi, Si,MK,PP );

Oracle Query 2 ORevoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP ):

1: t = t+ 1
2: if τ(O?,ψ?),(ω?,S?) = (accept, ·) then return ⊥
3: if t = qt and R 6⊆ QRev ∪ Si then return ⊥
4: QRev = QRev ∪ Si;
5: return Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP );

oracle access to the above functions which simulate all values known to a real server as well as
those learnt through corrupting entities. The challenger responds to Certify and Revoke queries
as detailed in Oracle Queries 1 and 2 respectively. It must ensure that QRev is kept up-to-date
by adding or removing the queried entity, and in the case of revocation must increment the time
parameter. It also ensures that issued keys will not lead to a trivial win.

Once the adversary has finished this query phase (and in particular, due to the parameter-
isation of the adversary, after exactly qt Revoke queries), the challenger must check that the
queries made by the adversary has indeed left the list of revoked entities to be at least that
selected beforehand by the adversary. If there is a server that the adversary included on R but
is not currently revoked, then the adversary loses the game. Otherwise, the challenger generates
the challenge by running ProbGen on x?. The adversary is given the resulting encoded input
and oracle access again, and wins the game if it creates an encoded output that verifies correctly
yet does not encode the correct value F (x).

Definition 8. The advantage of a PPT adversary A making a polynomial number of queries
q (including qt Revoke queries) is defined as:

• AdvPubVerifA (HPVC, F, 1κ, q) = Pr[ExpPubVerif
A [HPVC, F, 1κ] = 1]

• AdvsSS -PubVerifA (HPVC, F, 1κ, q) = Pr[Exp sSS-PubV erif
A [HPVC, F, qt, 1κ] = 1]

A HPVC is secure against Game PubVerif or sSS-PubVerif for a function F , if for all PPT
adversaries A,
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AdvPubVerif ,sSS -PubVerifA (HPVC, F , 1κ,q) ≤ negl(κ).

3.3.2 Blind Verification

In Game 6 we capture the notion of Blind Verification in the HPVC setting. We require that a
verifier that does not hold the output retrieval key may not learn the result of the computation,
even though they hold the public verification key. As in Game 3, the challenger will select an
input x from the domain of F . We then embed x as the challenge input data according to the
mode of operation (we have used here the notation s and P for the dummy attribute set and
policy respectively, as this then permits the access control policies from Section 4 as well). The
adversary is given the results of a computation on this data and must determine the value of
F (x). As in Section 2.2.2, we choose not to provide the adversary with the encoded inputs
(ciphertexts) or the evaluation key to avoid giving them the descriptive label that could allow
them to learn the input data.

Game 6 ExpBV erifA [HPVC, mode, F, 1κ]:

1: (PP,MK)← Setup(1κ)
2: PKF ← FnInit(F,MK,PP )

3: x
$← Dom(F )

4: Si
$← UID

5: if mode = VDC then

6: ψ = x, S = F , O = P , ω = s, l = l(x)
7: else

8: ω = x, O = F , S = P , ψ = s, l = l(F )

9: SKSi
← Register(Si,MK,PP )

10: EK(O,ψ),Si
← Certify(mode, (O, ψ), l, {F}, Si,MK,PP )

11: (σ(ω,S), V K(ω,S), RK(ω,S))← ProbGen(mode, (ω, S), l, PKF , PP )

12: θ(O,ψ),(ω,S) ← Compute(mode, σ(ω,S), EK(O,ψ),Si
, SKSi

, PP )

13: ŷ ← AO(θ(O,ψ),(ω,S), V K(ω,S), PKF , PP )
14: if (ŷ = F (x)) then

15: return 1

16: else
17: return 0

Definition 9. The advantage of a PPT adversary A making a polynomial number of queries
q in the Blind Verification Experiment is defined as:

AdvBVerif
A (HPVC, F, 1κ, q) = Pr[ExpBVerif

A [HPVC, F, 1κ] = 1]− max
y∈Ran(F )

( Pr
x∈Dom(F )

[F (x) = y]).

A RPVC is secure against blind verification for a function F , if for all PPT adversaries A,

AdvBVerif
A (HPVC, F , 1κ,q) ≤ negl(κ).

3.3.3 Revocation

The notion of revocation requires that if a server is detected as misbehaving, i.e. the BVerif
algorithm output τ(O,ψ),(ω,S) = (reject, Si), then any subsequent evaluations by Si should be
rejected. The motivation here is that even though we have outsourced the costly computation
and pre-processing stages to the server and KDC respectively, there is still a cost involved in
delegating and verifying a computation. If a server is known not to be trustworthy then we
remove any incentive for it to attempt to provide an outsourcing service. In addition, we may
want to punish and further disincentivize malicious servers by removing their ability to perform
work for a period of time. Finally, also from a privacy perspective, we may not wish to supply
input data or specific queries on server’s databases depending on the mode (e.g. in VDC, we
may wish to prevent a malicious server convincing users of a particular, false, property of their
remote data).
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Game 7 ExpRevocation
A [HPVC, mode, F, 1κ]:

1: chall = false

2: QRev = ε

3: (PP,MK)← Setup(1κ)

4: PKF ← FnInit(F,MK,PP )

5: ((O?, ω?, S?, ψ?), l?)← AO(PKF , PP )

6: chall = true

7: (σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))← ProbGen(mode, (ω?, S?), l?, PKF , PP )

8: θ(O?,ψ?),(ω?,S?) ← AO(σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))

9: (RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?))← BVerif(θ(O?,ψ?),(ω?,S?), V K(ω?,S?), PP )

10: y(O?,ψ?),(ω?,S?) ← Retrieve(RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?), V K(ω?,S?), RK(ω?,S?), PP )

11: if (τ(O?,ψ?),(ω?,S?) = (accept, Si)) and (Si ∈ QRev) then

12: return 1

13: else

14: return 0

Oracle Query 3 OCertify(mode, (O, ψ), l,Fi, Si,MK,PP ):

1: if chall = false then QRev = QRev \ Si
2: return Certify(mode, (O, ψ), l,Fi, Si,MK,PP )

Oracle Query 4 ORevoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP ):

1: r ← Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP );
2: if r 6=⊥ and chall = false then QRev = QRev ∪ Si;
3: return r;

Full Revocation. The full notion, in Game 7, begins by declaring a Boolean flag chall

which is initially set to false and a list QRev which servers will be added to when revoked and
removed from when certified. The chall flag will be set to true when the challenge is created,
and after this point QRev is no longer updated. Thus QRev will comprise all servers that are
revoked at the challenge time and hence all servers that, if an adversary can output a result
‘from’ one of these servers and have it accepted, will count as a win for the adversary.

The game proceeds in a similar fashion to Public Verifiability with the challenger running
Setup and FnInit to initialize the system and providing the public parameters to the adversary
along with oracle access. All oracles simply run the relevant algorithms except for Certify
and Revoke which additionally maintain the list of revoked entities as mentioned above and
specified in Oracle Queries 3 and 4 respectively. After the adversary has finished this query
phase, it outputs a challenge input for both objective and subjective policies and both types of
attribute set, and the challenger sets the chall flag to true. It then generates the challenge by
running ProbGen and gives the resulting parameters to the adversary along with oracle access
again (however, since chall is set, QRev will no longer be updated). Eventually, the adversary
outputs a result θ(O?,ψ?),(ω?,S?) and wins if Verify outputs accept for a server that was revoked
when the challenge was generated (even a correct result).

Selective, semi-static Revocation. On the other hand, the selective, semi-static notion of
Revocation given in Game 8 proceeds exactly as the sSS-PubVerif game for Public Verifiability
except for the winning condition. Here, the adversary wins if it outputs any result (even a
correct encoding of F (x)) that is accepted as a valid response from any server that was revoked
at the time of the challenge. This game also uses the Certify and Revoke oracles specified in
Oracle Queries 1 and 2 respectively.

Definition 10. The advantage of a PPT adversary A making a polynomial number of queries
q (including qt Revoke queries) against Revocation or sSS-Revocation is defined as:
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Game 8 ExpsSS−Revocation
A [HPVC, mode, F, qt, 1κ]:

1: ((O?, ω?, S?, ψ?), l?)← A(1κ)
2: QRev = ε, t = 1

3: (PP,MK)← Setup(1κ)

4: PKF ← FnInit(F,MK,PP )

5: R← A(PKF , PP )

6: AO(PKF , PP )

7: if (R 6⊆ QRev) then return 0

8: (σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))← ProbGen(mode, (ω?, S?), l?, PKF , PP )

9: θ(O?,ψ?),(ω?,S?) ← AO(σ(ω?,S?), V K(ω?,S?), RK(ω?,S?))

10: (RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?))← BVerif(θ(O?,ψ?),(ω?,S?), V K(ω?,S?), PP )

11: y(O?,ψ?),(ω?,S?) ← Retrieve(RT(O?,ψ?),(ω?,S?), τ(O?,ψ?),(ω?,S?), V K(ω?,S?), RK(ω?,S?), PP )

12: if (τ(O?,ψ?),(ω?,S?) = (accept, Si)) and (Si ∈ R) then

13: return 1

14: else

15: return 0

• AdvRevocationA (HPVC, F, 1κ, q) = Pr[ExpRevocation
A [HPVC, F, 1κ] = 1]

• AdvsSS -RevocationA (HPVC, F, 1κ, q) = Pr[ExpsSS -Revocation
A [HPVC, F, qt, 1κ] = 1]

A HPVC is secure against Revocation or sSS-Revocation for a function F , if for all PPT
adversaries A,

AdvRevocation,sSS -RevocationA (HPVC, F , 1κ,q) ≤ negl(κ).

3.4 Instantiation

We construct a HPVC scheme for a family F of monotone Boolean formulas closed under
complement using Dual-Policy ABE in a black-box manner. Consider a function to be delegated
F : {0, 1}n → {0, 1} and its complement function F = F (x)⊕ 1As in Section 2.3, n-bit binary
input strings are encoded as attribute sets x ⊆ Ux. Let Ul be a set of attributes (disjoint from
Ux) uniquely labelling each function and possible input, and let UID represent server identities.
Let g be a one-way function and DPABE = (DPABE.Setup, DPABE.Encrypt, DPABE.KeyGen,
DPABE.KeyUpdate, DPABE.Decrypt) be a revocable DP-ABE scheme for F (see Appendix B)
with attribute universe U = Ux ∪Ul ∪UID ∪TO ∪TS , where TO and TS are extra attributes that
enable single-policy modes [6].

These allow a DP-ABE scheme to efficiently function as either KP-ABE or CP-ABE. For
KP-ABE, the subjective policy S = {{TS}} is satisfied by the presence in ψ of the special
attribute TS – thus, S is always trivially satisfied and decryption only depends on the objective
attributes and policy. Similarly, for CP-ABE, ω = {TO} and O = {{TO}}. We will initialize two
independent DP-ABE systems over U . Hence, we define a total of four additional attributes:
T 0
O, T

0
S relating to the first system, and T 1

O, T
1
S for the second system. We denote the complement

functions in different modes as follows: In RPVC, O = F and S = {{T 0
S}}. Hence O = F whilst

S = {{T 1
S}}. Similarly, for VDC, O = {{T 1

0 }} and S = F .

Overview. Each mode operates by encrypting a pair of random messages and issuing keys
such that the recovery of one message implies whether the ciphertext was linked to F or F
and hence if F (x) = 1 or 0. Ciphertext indistinguishability ensures an adversary cannot cheat
by returning the other message. Setup initializes two revocable DP-ABE schemes over the
universeU , an empty two-dimensional array LReg (as in the VDC construction above), a list of
revoked servers and a time source T (e.g. a networked clock or counter updated by Revoke) to
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index update keys. FnInit sets the public delegation key PKF to be the public parametersfor
the system (since we use public key primitives).

Register runs a signature KeyGen algorithm and adds the verification key to LReg[Si][0].
Signatures ensure that honest servers are not impersonated and maliciously revoked. Certify
first adds a pair to LReg[Si][1] comprising the function identifier and the data label l for each
function Fj ∈ Fi chosen by the server, and removes Si from the revocation list. It then runs
KeyGen for the first DP-ABE system to generate a decryption key for (O∧l, ψ∪l). The inclusion
of the label l ∈ Ul, as an additional attribute or as a conjunctive policy clause, ensures that only
matching keys and ciphertexts may be used (i.e. that a key for different data may not be used).
The KDC should check that the label actually corresponds to the input (for example, define a
one-way, injective label mapping from F × Ux to Ul). It also generates an update key for the
current time period to prove that Si is not currently revoked. If operating in RPVC mode,
another pair of keys is generated using the second DP-ABE system and for the complement
inputs.

ProbGen chooses random messages m0 and m1. A random bit b randomly permutes the
messages such that a verifier that does not know bdoes not know which message was recovered
and hence the value of F (x). Message mb is encrypted with (ω ∪ l,S ∧ l) and the first system
parameters, whilst m1−b is encrypted using the complement policy and either the first system
parameters for VDC or the second for RPVC (the attribute set remains the same as it is either
the same input data x in RPVC, or the same special attribute T 0

O in VDC). The verification
key is computed by applying the one-way function g to the messages (the one-wayness allows
the key to be published), and b forms the output retrieval key(as this reveals the order of the
decrypted results and hence the output).

Compute decrypts the two ciphertexts and signs the results, again ensuring that the differ-
ent modes use the correct system parameters. BVerif verifies the signature and compares the
components of the verification key against g applied to the decryptions. If either matches (i.e.
the server successfully recovered a message), that plaintext is returned as the retrieval token
and the output token is accept. Otherwise the result is rejected and the server is reported for
revocation. Retrieve checks which message was returned correctly and hence the result of the
computation – m0 was encrypted for the non-complemented input set so implies F (x) = 1.
Finally, to revoke a server, the KDC refreshes the time source (e.g. increments a counter) and
generates new update keys for all unrevoked entities in the system. More formally, our scheme
is defined by Algorithms 9–17.

Alg. 9 (PP,MK)← HPVC.Setup(1κ)

1: (MPK0
ABE,MSK0

ABE, T
0
O, T

0
S)← DPABE.Setup(1κ,U)

2: (MPK1
ABE,MPK1

ABE, T
1
O, T

1
S)← DPABE.Setup(1κ,U)

3: for Si ∈ UID do

4: LReg[Si][0] = ε, LReg[Si][1] = {ε}
5: Initialize T, LRev = ε

6: PP = (MPK0
ABE,MPK1

ABE, LReg, T
0
O, T

1
O, T

0
S , T

1
S ,T)

7: MK = (MSK0
ABE,MSK1

ABE, LRev)

Alg. 10 PKF ← HPVC.FnInit(F,MK,PP )

1: Set PKF = PP
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Alg. 11 SKSi ← HPVC.Register(Si,MK,PP )

1: (SKSig, V KSig)← Sig.KeyGen(1κ)

2: SKSi
= SKSig

3: LReg[Si][0] = LReg[Si][0] ∪ V KSig

Alg. 12 EK(O,ψ),Si
← HPVC.Certify(Si, mode, (O, ψ), l,Fi,MK,PP )

1: for Fj ∈ Fi do
2: LReg[Si][1] = LReg[Si][1] ∪ (Fj , l)

3: LRev = LRev \ Si, t← T
4: SK0

ABE ← DPABE.KeyGen(Si, (O ∧ l, ψ ∪ l),MSK0
ABE,MPK0

ABE)

5: UK0
LRev,t

← DPABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

6: if mode = RPV C then

7: SK1
ABE ← DPABE.KeyGen(Si, (O ∧ l, ψ ∪ l),MSK1

ABE,MPK1
ABE)

8: UK1
LRev,t

← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

9: else SK1
ABE =⊥, UK1

LRev,t
=⊥

10: EK(O,ψ),Si
= (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

Alg. 13 (σ(ω,S), V K(ω,S), RK(ω,S))← HPVC.ProbGen(mode, (ω, S), l, PKF , PP )

1: (m0,m1)
$←M×M, b

$← {0, 1}, t← T
2: cb ← DPABE.Encrypt(t, (ω ∪ l, S ∧ l),mb,MPK0

ABE)

3: if mode = V DC then

4: c1−b ← DPABE.Encrypt(t, (ω ∪ l, S ∧ l),m1−b,MPK0
ABE)

5: else c1−b ← DPABE.Encrypt(t, (ω ∪ l, S ∧ l),m1−b,MPK1
ABE)

6: return σω,S = (cb, c1−b), V Kω,S = (g(mb), g(m1−b), LReg) and RKω,S = b

Alg. 14 θ(O,ψ),(ω,S) ← HPVC.Compute(mode, σ(ω,S), EK(O,ψ),Si
, SKSi , PP )

1: Parse EK(O,ψ),Si
= (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σω,S = (c, c′)

2: db ← DPABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

3: if mode = V DC then

4: d1−b ← DPABE.Decrypt(c′, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

5: else d1−b ← DPABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

6: γ ← Sig.Sign((db, d1−b, Si), SKSi
)

7: θ(ω,S),(O,ψ) = (db, d1−b, Si, γ)

Alg. 15 (RT(O,ψ),(ω,S), τ(O,ψ),(ω,S))← HPVC.BVerif(θ(O,ψ),(ω,S), V K(ω,S), PP )

1: Parse V K(ω,S) = (V K, V K′, LReg) and θ(O,ψ),(ω,S) = (d, d′, Si, γ)

2: if LReg[Si][0] 6= ε and (Fj , l) ∈ LReg[Si][1] then

3: if accept← Sig.Verify((d, d′, Si), γ, LReg[Si][0]) then

4: if V K = g(d) then return (RT(O,ψ),(ω,S) = d, τ(O,ψ),(ω,S) = (accept, S))

5: else if V K′ = g(d′) then return (RT(O,ψ),(ω,S) = d′, τ(O,ψ),(ω,S) = (accept, S))

6: else return (RT(O,ψ),(ω,S) =⊥, τ(O,ψ),(ω,S) = (reject, S))

7: return (RT(O,ψ),(ω,S) =⊥, τ(O,ψ),(ω,S) = (reject,⊥))

Alg. 16 y(O,ψ),(ω,S) ← HPVC.Retrieve(RT(O,ψ),(ω,S), τ(O,ψ),(ω,S), V K(ω,S), RK(ω,S), PP )

1: Parse V K(ω,S) = (g(mb), g(m1−b), LReg), θ(S,ω),(O,ψ) = (db, d1−b, Si, γ), RK(ω,S) = b, and (RT(O,ψ),(ω,S), τ(O,ψ),(ω,S))

where RT(O,ψ),(ω,S) ∈ {db, d1−b,⊥}
2: if τ(O,ψ),(ω,S) = (accept, S) and g(RT(O,ψ),(ω,S)) = g(m0) then return y(O,ψ),(ω,S) = 1

3: if τ(O,ψ),(ω,S) = (accept, S) and g(RT(O,ψ),(ω,S)) = g(m1) then return y(O,ψ),(ω,S) = 0

4: return y(O,ψ),(ω,S) =⊥
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Alg. 17 {EK(O,ψ),S′} or ⊥← HPVC.Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω, S),MK,PP )

1: if τ(O,ψ),(ω,S) 6= (reject, Si) then return ⊥
2: LReg[S][1] = {ε}, LRev = LRev ∪ Si
3: Refresh T, t← T
4: UK0

LRev,t
← DPABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

5: UK1
LRev,t

← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

6: for all S′ ∈ UID do

7: Parse EK(O,ψ),S′ as (SK0
ABE, SK

1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

8: Update and send EK(O,ψ),S′ = (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

Theorem 2. Given a secure IND-sHRSS rkDPABE scheme for a class of Boolean functions F
closed under complement, a one-way function g, and a signature scheme secure against EUF-
CMA, then HPVC is secure in the sense of selective semi-static Public Verifiability, Blind
Verification and selective semi-static Revocation.

Informally, Public Verifiability and Revocation reduce to the indistinguishability of cipher-
texts within the rkDPABE scheme which allows us to replace the message for the unsatisfied
function (which cannot be decrypted) with the challenge for a one-way function game. Then
an adversary against these games can attack the verification token for this message. Blind
Verification relies on a standard probability argument.

3.5 Security Proofs

In this section we provide the proofs of security in order to prove Theorem 2.
The proof of Blind Verification proceeds exactly as for VDC in Lemma 2 in Section 2.2.2

with updated notation.

3.5.1 Proof of Public Verifiability

Lemma 3. The HPV C construction defined by Algorithms 9–16 is secure against Public Ver-
ifiability (Game 5) under the same assumptions as in Theorem 2.

One way to view this proof is to reduce, based on the mode to either the RPVC or VDC
Public Verifiability game. Observe that the choice of dummy attributes and a dummy policy
that is trivially satisfied by the presence of that dummy attribute means that one type of policy
is always trivially satisfied, and hence decryption hinges entirely on the remaining policy. Thus
we are in the setting of the single mode games.

We now give a proof sketch of a unified proof.

Proof. Let AHPV C be an adversary with non-negligible advantage against the selective, semi-
static Public Verifiability game (Game 5) when instantiated with Algorithms 9–16. We define
the following three games:

• Game 0. This is the correct selective, semi-static Public Verifiability game as in Game 5.

• Game 1. This differs from Game 0 in that ProbGen no longer returns an encryption
of m0 and m1. Instead, we choose a random message m′ 6= m0,m1. Note that there are
two ciphertexts created during ProbGen (being the encryption of m0 and m1) and that
one of these will be associated with the function F , and the other with the complement
function F . Now, only one of F and F will be satisfied by the input data x?i . We replace
the plaintext associated with the unsatisfied function by m′ which is unrelated to m0,m1

and the verification keys.
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• Game 2. This is the same as Game 1 with the exception that instead of choosing a
random message m′, we implicitly set m′ to be the challenge input w in the one-way
function game.

By hopping from Game 0 to Game 2, we show that an adversary with non-negligible advantage
against Public Verifiability can be used to construct an adversary that inverts the one-way
function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage
between Game 0 and Game 1. Suppose otherwise, that AHPV C can distinguish the two games
with non-negligible advantage δ. We construct an adversary AABE that uses AHPV C as a sub-
routine to break the IND-sHRSS security of the rkDPABE scheme (Game 10). We consider a
challenger C playing the IND-sHRSS game with AABE , who in turn acts as a challenger in the
selective, semi-static Public Verifiability game for AHPV C :

1. AHPV C is given the security parameter, and declares its choice of challenge input param-
eters (O?, ω?, S?, ψ?) and the challenge label l?.

2. AABE must send a challenge input (ω̃, S̃) and a challenge time period t̃ to the challenger.
It first sets t̃ = qt. Observe that in VDC mode, S? corresponds to the function F and ψ? is
the challenge input data x?i . In RPVC mode, O? = F and ω corresponds to the challenge
input x?i . The other inputs are either dummy attributes or corresponding policies, and
these policies are trivially satisfied by the dummy attribute. Now, using the relevant
inputs, AABE computes r = F (xi?).

• If the challenge mode is RPVC, set ω̃ = ω? ∪ l? = x?i ∪ l(F ) and S̃ = S? ∧ l? =
{{T 0

S}} ∧ l(F ).

• If the challenge mode is VDC, we want to set (ω̃, S̃) such that the pair is not satisfied
by the challenge input.

– If r = 1: ω̃ = ω? ∪ l? = {T 0
O} ∪ l(x?i ) and S̃ = S? ∧ l? = F ∧ l(x?i )

– If r = 0: ω̃ = ω? ∪ l? = {T 0
O} ∪ l(x?i ) and S̃ = S? ∧ l? = F ∧ l(x?i )

3. C runs the DPABE.Setup algorithm on the security parameter to generate MPKABE and
MSKABE. He gives MPKABE to AABE .

4. AABE initializes QRev and t and simulates running HPVC.Setup such that the outcome is
consistent with MPKABE. It runs lines 3 to 5 as written, sets MPK0

ABE = MPKABE as
given by C, and implicitly sets MSK0

ABE = MSKABE. It also runs DPABE.Setup himself
to generate a second DP-ABE system.

5. AABE runs HPVC.FnInit as written and gives the resulting PKF and the public parameters
to AHPV C . AHPV C returns a list R of servers to be revoked at the time of the challenge,
which AABE forwards to C.

6. AHPV C is now given oracle access which AABE responds to as follows:

• FnInit(·,MK,PP ): run as per Algorithm 10.

• Register(·,MK,PP ): run as per Algorithm 11.

• Certify(mode, (O, ψ), l,Fi, Si,MK,PP ): AABE will immediately return ⊥ if the set
of queried functions includes the challenge function F and the query is for a server
Si /∈ R since the adversary would be given an evaluation key for a valid server at the
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challenge time otherwise, leading to a trivial win. It will also return ⊥ if the current
time period t equals the challenge time period, set to be qt and (other than Si) there
exists a server that the adversary claimed would be revoked in R but is not currently
revoked (listed in QRev). If neither failure condition occurs, then AABE removes Si
from the revocation list and simulates running HPVC.Certify as follows.

To generate the evaluation key for the queried parameters, AABE uses the KeyGen
oracle in the rkDPABE game. It first updates the relevant list entries as speci-
fied. Then it sets ψ′ = ψ ∪ l and O′ = O ∧ l and makes an oracle query to C
for OKeyGen(Si, (O′, ψ′),MK,PP ) as in Oracle Query 6. C shall generate a rkDPABE
decryption key SKψ′ if and only if ω̃ 6∈ O′ or ψ′ 6∈ S̃ or Si ∈ R.

Now, by construction (Step 2), ω̃ ∈ O′ only if the label l? = l. If the labels do not
match (e.g. if the query is for a different function than F ), then C may generate the
key, which AABE will receive as SK0

ABE.

If, on the other hand, the labels do match, then since each data label uniquely
describes its input, l? = l if and only if (ψ? = ψ) and (O? = O). In the case of the
challenge mode being VDC, we chose (ω̃, S̃) in Step 2 specifically such that these were
not satisfied on (O?, ψ?) (and hence, by the above equality, on (O, ψ)). Thus, C may
generate the key SK0

ABE. If the challenge mode is RPVC however, then the label l
corresponds to a function identifier, and since l? = l it corresponds to the challenge
function. Now, since the KDC is assumed to check that the label corresponds to the
input to Certify (by applying a injective mapping for example), it must be that the
challenge function F ∈ Fi (in particular, Fi = {F}). Hence, if Si /∈ R, AABE would
have returned ⊥ immediately as specified in line 2 of Oracle Query 1. Thus, to have
got to this point in the execution, it must be that Si ∈ R and C may generate the
secret key (as Si will be revoked for the challenge, this key will not lead to a trivial
win).

AABE also must request an update key by making a KeyUpdate oracle query to C.
C will return a valid key unless the current time period is t = t̃ and R 6⊆ QRev.
However, if the failure case were true, then AABE would already have returned ⊥ by
line 2 of Oracle Query 1.

If in RPVC mode, AABE additionally generates a key using the second system pa-
rameters (which he owns) for (O, ψ).

• Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP ): In response to a Revoke query, AABE
will increment the time counter and return ⊥ if the token does not call for an entity
to be revoked (note that this is consistent with the Revoke algorithm). It also returns
⊥ if the updated time period is the challenge time qt and QRev (with the inclusion
of the about-to-be-revoked server Si) does not contain all the servers declared in R
(as the adversary has not executed a valid sequence of oracle queries in this case).
Otherwise, Si is added to QRev and AABE simulates running HPVC.Revoke as follows.

It runs Algorithm 17 as written with the exception of line 4, where it will instead
make a KeyUpdate oracle query to C. C will generate a valid update key unless the
time period is t̃ = qt and there exists a server on R that is not currently revoked.
However this is precisely the condition under which AABE would have returned ⊥,
so C can always return a valid key.

7. Once AHPV C has finished this phase of querying (in particular, after qt Revoke queries),
AABE must check that all servers listed in R are indeed currently revoked. If not, then
AHPV C loses the game as he has not performed correctly.
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8. To generate the challenge input for either Game 0 or Game 1, AABE begins by choosing
a random bits RK(ω?,S?) = b and s, and three random messages m0, m1 and m′ from the
message space.

AABE sends the messagesm0 andm1 to C as the challenge messages for the DP-ABE game.
C chooses a random bit b? and returns CT ? ← DPABE.Encrypt(mb? , (ω̃, S̃), t̃,MPKABE).

• In RPVC mode, recall that ω̃ = ω? ∪ l? = x?i ∪ l(F ) and S̃ = S? ∧ l? = {{T 0
S}}∧ l(F ).

AABE sets cb to be CT ? and generates c1−b ← DPABE.Encrypt(m′, (ω̃, S̃), t̃,MPK1
ABE)

himself. It sets V Kb = g(ms) and V K1−b = g(m′).

• In VDC mode:

– If r = 1: recall, ω̃ = ω? ∪ l? = {T 0
O} ∪ l(x?i ) and S̃ = S? ∧ l? = F ∧ l(x?i ).

AABE generates cb ← DPABE.Encrypt(m′, (ω? ∪ l?,S?∧ l?), t̃,MPK0
ABE) himself,

and sets c1−b to be CT ?. It sets V Kb = g(m′) and V K1−b = g(ms).

– If r = 0: recall, ω̃ = ω? ∪ l? = {T 0
O} ∪ l(x?i ) and S̃ = S? ∧ l? = F ∧ l(x?i )

AABE sets cb to be CT ? and generates c1−b ← DPABE.Encrypt(m′, (ω? ∪ l?,S? ∧
l?), t̃,MPK0

ABE) himself. It sets V Kb = g(ms) and V K1−b = g(m′).

Finally, AABE sets σ(ω?,S?) = (cb, c1−b), V K(ω?,S?) = (V Kb, V K1−b, LReg) and RK(ω?,S?) =
b. Note that s is essentially AABE ’s guess for the value of b? chosen by C.

9. AHPV C is provided the output of ProbGen and again given oracle access which is handled
in the same manner as in Stage 6. Eventually, it outputs θ(O?,ψ?),(ω?,S?) which it believes
is a valid forgery (i.e. that it will be accepted yet does not correspond to the correct value
of F (x?i )).

10. AABE parses θ(O?,ψ?),(ω?,S?) as (db, d1−b, Si? , γ) and using the retrieval keyRK(O?,ψ?),(ω?,S?) =
b, finds d0 and d1. One of d0 and d1 will be ⊥ (by construction) and we denote the other
value by Y .

If g(Y ) = g(ms), AABE outputs a guess b′ = s of b? chosen by C, and otherwise guesses
b′ = (1− s).

If s = b? (the challenge bit chosen by C), we observe that the above corresponds to Game
0 (since the verification key comprises g(m′) where m′ is the message a legitimate server could
recover, and g(ms) where ms is the other plaintext). Alternatively, s = 1− b? and the distribu-
tion of the above experiment is identical to Game 1 (since the verification key comprises the
legitimate message and a random message m1−b? that is unrelated to the ciphertext).

Now, we consider the advantage of this constructed AABE playing the IND-sHRSS game for
rkDPABE Recall that by assumption, AHPV C has a non-negligible advantage δ in distinguishing
between Game 0 and Game 1 – that is

|Pr(Exp0
AHPV C [HPVC, F, qt, 1κ])− Pr(Exp1

AHPV C [HPVC, F, qt, 1κ])| > δ

where ExpiAHPV C [HPVC, F, qt, 1κ] denotes the output of running AHPV C in Game i.
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Pr(′= b?) = Pr(s = b?) Pr(b′ = b?|s = b?) + Pr(s 6= b?) Pr(b′ = b?|s 6= b?)

=
1

2
Pr(g(Y ) = g(ms)|s = b?) +

1

2
Pr(g(Y ) 6= g(ms)|s 6= b?)

=
1

2
Pr(Exp0

AHPV C [HPVC, F, qt, 1κ]) +
1

2
(1− Pr(g(σy?) = g(ms)|s 6= b?))

=
1

2
Pr(Exp0

AHPV C [HPVC, F, qt, 1κ]) +
1

2

(
1− Pr(Exp1

AHPV C [HPVC, F, qt, 1κ])
)

=
1

2

(
Pr(Exp0

AHPV C [HPVC, F, qt, 1κ])− Pr(Exp1
AHPV C [HPVC, F, qt, 1κ]) + 1

)
>

1

2
(δ + 1)

Hence,

AdvAABE >

∣∣∣∣Pr(b? = b′)− 1

2

∣∣∣∣
>

∣∣∣∣12(δ + 1)− 1

2

∣∣∣∣
>
δ

2

Hence, if AHPV C has advantage δ at distinguishing these games then AABE can win the
IND-sHRSS game for rkDPABE with non-negligible probability. Thus since we assumed the
rkDPABE scheme to be secure, we conclude that AHPV C cannot distinguish Game 0 from
Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 is simply to set the value of
m′ to no longer be random but instead to correspond to the challenge w in the one-way function
inversion game. We argue that the adversary has no distinguishing advantage between these
games since the new value is independent of anything else in the system bar the verification key
g(w) and hence looks random to an adversary with no additional information (in particular,
AHPV C does not see the challenge for the one-way function as this is played between C and
AABE).

Final Proof We now show that using AHPV C in Game 2, AABE can invert the one-way
function g – that is, given a challenge z = g(w) we can recover w. Specifically, during ProbGen,
we choose the messages as follows:

• if r = 1, we implicitly set m1−b to be w and the corresponding verification key component
to be z. We choose mb and the other verification key component randomly as usual.

• if r = 0, we implicitly set mb to be w and set the corresponding verification key component
to be z. We choose m1−b and the other verification key component randomly as usual.

Now, since AHPV C is assumed to be successful, it will output a forgery comprising the plaintext
encrypted under the unsatisfied function (F or F ). By construction, this will be w (and the
adversary’s view in consistent since the verification key is simulated correctly using z). AABE
can therefore forward this result to C in order to invert the one-way function with the same
non-negligible probability that AHPV C has against the selective, semi-static Public Verifiability
game.
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We conclude that if the rkDPABE scheme is IND-sHRSS secure and the one-way function is
hard-to-invert, then the HPV C as defined by Algorithms 9–17 is secure in the sense of selective,
semi-static Public Verifiability.

3.5.2 Proof of Revocation

Lemma 4. The HPVC construction defined by Algorithms 9–17 is secure in the sense of selec-
tive, semi-static Revocation (Game 8) under the same assumptions as in Theorem 2.

Proof. The proof follows in a very similar way as the proof for Lemma 3.
Let AHPV C be an adversary with non-negligible advantage against the selective, semi-static
Revocation game (Game 8) when instantiated with Algorithms 9–16. We define the following
three games:

• Game 0. This is the correct selective, semi-static Revocation game as in Game 8.

• Game 1. This differs from Game 0 in that ProbGen no longer returns an encryption
of m0 and m1. Instead, a random message m′ 6= m0,m1 is chosen and we replace the
plaintext associated with the unsatisfied function by m′.

• Game 2. This is the same as Game 1 except that m′ is implicitly chosen to be the
challenge input w in the one-way function game.

By hopping from Game 0 to Game 2, we can show that an adversary with non-negligible
advantage against selective, semi-static Revocation can be used to construct an adversary that
inverts the one-way function g. The transition to Game 2 is identical to that given in the proof
of Lemma 3, and we do not replicate it here.

We now show that using AHPV C in Game 2 as a subroutine, AABE can invert the one-way
function g – that is, given a challenge z = g(w) AABE can recover w. To do so, during ProbGen,

AABE tosses a random coin v
$← {0, 1} and chooses the messages as follows. It implicitly sets

mv = w and sets the corresponding verification key component to be z. The remaining message
m1−v is chosen randomly and the remainder of the verification key computed as usual.

Now, since AHPV C is assumed to be successful, it will output a valid forgery for one of these
messages. If AABE has guess v correctly (which he does with probability 1

2), this will be w
(and the adversary’s view is consistent since the verification key is simulated correctly using
z). AABE can therefore forward this result to C in order to invert the one-way function. Thus
if AV C has non-negligible advantage ε against the selective, semi-static Revocation game, then
AABE wins with the non-negligible probability ε

2 .
We conclude that if the rkDPABE scheme is IND-sHRSS secure and the one-way function is

hard-to-invert, then the HPV C as defined by Algorithms 9–17 is secure in the sense of selective,
semi-static Revocation.

4 Enforcing Access Control in VC with DP-ABE

While the introduction of HPVC built on DP-ABE allows for a single system that supports
PVC and VDC functionality, both options use only a single-policy mode. We can also use the
full power of DP-ABE to enforce restrictions on how entities may behave within the system.
The notion of PVC-AC enforces access control in the PVC setting such that only servers that
meet an authorization policy attached to the encoded input may produce valid results (and
hence be rewarded for their effort).
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Alderman et al. [3] introduced PVC-AC with the motivation that, in practice, it is likely
that servers be selected from a (large) pool of available servers based on a system-dependent
mechanism (e.g. resource availability or a bidding process). (This contrasts with prior mod-
els [29] where a client chose a server up-front with which to set up a PVC system.) Thus
delegators have less knowledge about the selected server and may not authenticate them be-
forehand. The PVC-AC construction of [3] used symmetric encryption and Key Assignment
Schemes such that only authorized entities could derive decryption keys. However, delegators
and verifiers must be registered by the KDC. This is partly due to the policies being enforced
(e.g. such that delegators may outsource only certain computations) but also due to the use
of symmetric primitives – to encrypt an input such that only authorized servers may decrypt,
delegators must be privately issued the symmetric key. Thus, the scheme is not strictly publicly
delegable – any party may register to be a delegator but delegation does not depend only on
public information, and similarly for verification.

Here, we give a more relaxed framework that retains public verifiability and public delega-
bility6. In some sense, servers are already authorized for functions by virtue of being issued
evaluation keys. However, we believe not all outsourced computations should be considered
purely in terms of functions and that access control policies in this setting should allow for ad-
ditional context. For example, a government contractor that subscribes to a verifiable software-
as-a-service system may, due to the nature of its work, require that servers be physically located
within the same country. Alternatively, input data may affect access control requirements – for
example, an averaging function over rainfall data may be fairly innocuous but when applied to
military spending may be more sensitive.

DP-ABE allows two policies to be simultaneously enforced: an objective (key-policy) O and a
subjective (ciphertext-policy) S. Informally, for PVC-AC, we use the objective policy to evaluate
an outsourced computation (as before) whilst the subjective policy will additionally be used to
enforce access control on the server. Let UC be the attribute universe used for PVC in Section 3
and let UA be a universe of authorization attributes (disjoint from UC). Servers are assigned
both an evaluation key for a function F formed over UC and a set of descriptive attributes
s ⊆ UA describing their authorization rights. ProbGen operates on both the input data x and an
authorization policy P which dictates the sets of necessary authorization attributes to perform
this computation. Decryption, and hence computation, may occur if and only if F (x) outputs 1
and the server satisfies the authorization policy – s ∈ P . If either property fails, no information
about the encrypted message is learnt. For example, s may be {UK, Capacity = 3TB} while
P = (UK) ∨((clearance = Secret) ∧ (USA)) = {{UK},{clearance = Secret, USA}}. Similarly,
we could, in the VDC setting allow the subjective policy to specify the function F whilst the
objective policy contains the authorization policy P . Then we can restrict the delegators that
may request a computation to only those that can provide certain attributes, but we do not
discuss this in detail here. Table 2 reiterates the choice of parameters from Table 1 along with
appropriate choices for access control functionality. The instantiation for PVC-AC is identical
to that given in Algorithms 9–17 with these choices of parameters – where dummy attributes
and policies were used before, we substitute for the authorization attributes s and policy P
respectively, and we get this additional functionality for free. We give additional details and
security models in Appendix C.

6At present we do not consider input privacy against unauthorized servers, but note that a dual-policy predi-
cate encryption scheme could be used. Since the construction and techniques make black-box use of the DP-ABE
scheme, this exchange can easily be made if a suitable dual-policy predicate encryption scheme is found.
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Table 2: Parameter definitions for different modes

mode O ψ l(O, ψ) ω S l(ω,S) Fi
PVC F {TS} l(F ) x {{TS}} l(F ) {F}
VDC {{TO}} x l(x) {TO} F l(x) {F1, . . . , Fm}
PVC-AC F s l(F ) x P l(F ) {F}

5 Conclusion

We have introduced the notion of Hybrid Publicly Verifiable Computation that flexibly supports
multiple modes of operation to meet the diverse user requirements of a large multi-user system.
We capture the notions of RPVC, RPVC with access control on servers (maintaining public
delegability and verification), and a reversed model, VDC, where servers own static data. We
have seen that this notion leads to a natural and novel use of DP-ABE. In future work, we will
consider the use of multiple KDCs in a DP-ABE scheme such that, in HPVC, the responsibilities
for assigning function evaluation keys and for assigning security attributes are not borne by a
single entity. We believe that in practice, it is more likely that entities will be authoritative
on only one of these areas (and that the security KDC could also be used in other systems).
This amounts to splitting the KeyGen operations for the KP and CP parts of the DP-ABE
scheme, yet ensuring that the scheme remains secure by tying these keys together by using
a global identifier [16, 26].We will also further investigate our revocable DP-ABE scheme to
compare the efficiency of revoking between the key- and ciphertext-policies. Finally, interesting
open questions are whether predicate encryption could enable private information retrieval,
and whether multi-authority techniques could allow servers themselves to generate evaluation
keys for only their own data. Furthermore we will investigate techniques to allow dynamically
updatable data stored on the server.
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A Background and Related Work

A.1 Verifiable Outsourced Computation

The concept of non-interactive verifiable computation was introduced by Gennaro et al. [22] and
may be seen as a protocol between two polynomial-time parties: a client, C, and a server, S. A
successful run of the protocol results in the provably correct computation of F (x) by the server
for an input x supplied by the client. More specifically, a VC scheme comprises the following
steps [22]:

1. C computes evaluation information EKF that is given to S to enable it to compute F
(pre-processing)

2. C sends the encoded input σx to S (input preparation)

3. S computes y = F (x) using EKF and σx and returns an encoding of the output θF (x) to
C (output computation)

4. C checks whether θF (x) encodes F (x) (verification)

KeyGen may be computationally expensive (and amortized over multiple computations of
F ) but the remaining operations should be efficient for the client.

Parno et al. [29] introduced Publicly Verifiable Computation (PVC), which we discuss further
in Appendix A.2. Some works have also considered the multi-client case in which the input data
to be sent to the server is shared between multiple clients, and notions such as input privacy
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Table 3: PVC using KP-ABE

Abstract PVC parameter Parameter in KP-ABE instantiation

EKF SKAF
PKF Master public key PP
σx Encryption of m using PP and Ax
σy m or ⊥
V KF,x g(m)

become more important. Choi et al. [17] extended the garbled circuit approach [22] using a
proxy-oblivious transfer primitive to achieve input privacy in a non-interactive scheme. Recent
work of Goldwasser et al. [24] extended the construction of Parno et al. [29] to allow multiple
clients to provide input to a functional encryption algorithm.

Other works [11, 20, 15] design VC schemes for specific functions (e.g. matrix multiplica-
tion) without using FHE and even partially achieve function privacy. In particular [37] uses
multilinear maps to achieve the aforementioned.

A.2 PVC using Key-Policy Attribute-based Encryption.

Parno et al. [29] provide a concrete instantiation of PVC using KP-ABE7 for the case when F
is a Boolean function [29]. Define a universe U of n attributes and associate V ⊆ U with a
binary n-tuple in which the ith place is 1 if and only if the ith attribute is in V . We call this the
characteristic tuple of V . Thus, there is a natural one-to-one correspondence between n-tuples
and attribute sets; we write Ax to denote the set associated with x. An alternative way to view
this is to let U = {A1, A2, . . . , An}. Then, a bit string v of length n is the characteristic tuple
of the set V ⊆ U if V = {Ai : vi = 1}. A function F : {0, 1}n → {0, 1} is monotonic if x 6 y
implies F (x) 6 F (y), where x = (x1, . . . , xn) is less than or equal to y = (y1, . . . , yn) if and only if
xi 6 yi for all i. For a monotonic function F : {0, 1}n → {0, 1}, the set {x ∈ {0, 1}n : F (x) = 1}
defines a monotonic access structure which we denote AF . The mapping between PVC and
KP-ABE parameters is shown in Table 3. Informally, for a Boolean function F , the client
generates a private key SKAF using the KeyGen algorithm. Given an input x, a client encrypts
a random message m “with” Ax using the Encrypt algorithm and publishes V KF,x = g(m)
where g is a suitable one-way function (e.g. a pre-image resistant hash function). The server
decrypts the message using the Decrypt algorithm, which will either return m (when F (x) = 1)
or ⊥. The server returns m to the client. Any client can test whether the value returned by the
server is equal to g(m). Note, however, that a “rational” malicious server will always return ⊥,
since returning any other value will (with high probability) result in the verification algorithm
returning a reject decision. Thus, it is necessary to have the server compute both F and its
“complement” (and for both outputs to be verified). The interested reader may also consult
the original paper for further details [29]. Note that, to compute the private key SKAF , it
is necessary to identify all minimal elements x of {0, 1}n such that F (x) = 1. There may be
exponentially many such x. Thus, the initial phase is indeed computationally expensive for the
client.
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Figure 2: The operation of Revocable PVC

A.3 Revocable PVC

A revocable PVC scheme [2] comprises the algorithms Setup, FnInit, Register, Certify, ProbGen,
Compute, BVerif, Retrieve and Revoke which correspond to the following steps, and as in Figure
2 :

• The KDC generates public parameters, issues personalised secret keys, and evaluation
keys to servers and publishes function delegation information.

• To outsource the evaluation of F (x), a delegator C, sends an encoded input σF (x) to a
server S, and publishes verification tokens for the computation.

• S uses σF (x) and an evaluation key for F to produce an encoded output θF (x) (sent to C,
the manager, or published depending on the system architecture).

• Any entity can use the verification token to blind verify correctness of the output. The
verifier may not learn the value of F (x) if not in possession of the retrieval key. If S
cheated they may report S to the KDC for revocation.

• If blind verification was successful, a party possessing the retrieval key RKF (x) can recover
F (x).

• The KDC may revoke a cheating server to prevent it computing F in the future (and
hence from receiving any reward for future work).

We now give an updated definition for Revocable PVC to be in line with the notation used
in our Hybrid PVC definition in Section 3:

Definition 11. A Revocable PVC scheme comprises the following algorithms:

1. (PP,MK)← Setup(1κ)

2. PKF ← FnInit(F,MK,PP )

3. SKSi ← Register(Si,MK,PP )

4. EKF,Si ← Certify(Si, F, l(F ),MK,PP )

5. (σF (x), V KF (x), RKF (x))← ProbGen(x, l(F ), PKF , PP )

6. θF (x) ← Compute(σF (x), EKx, SKSi , PP )

7. yF (x) ← Verify(θF (x), RTF (x), V KF (x), RKF (x)PP ): Verification comprises two steps.

7If input privacy is required then a predicate encryption scheme could be used in place of the KP-ABE scheme.
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• (RTF (x), τθF (x)
)← BVerif(θF (x), V KF (x), PP )

• yF (x) ← Retrieve(RTF (x), V KF (x), RKF (x)PP )

8. {EKF,S′} or ⊥← Revoke(τθF (x)
,MK,PP )

A.4 Dual-Policy Attribute-Based Encryption

Dual-Policy Attribute-Based Encryption (DP-ABE) [7] conjunctively combines the two stan-
dard approaches of Key-Policy ABE [25] (supporting objective policies) and Ciphertext-Policy
ABE [12] (enforcing subjective policies) such that both the ciphertext and the decryption key
comprise an attribute set and an access policy. Thus, the ciphertext is associated with both an
subjective access policy (as per CP-ABE) detailing which entities may decrypt and an objec-
tive attribute set describing the data. Decryption keys comprise an objective access policy (as
per KP-ABE) and a subjective attribute set. Decryption succeeds if and only if both attribute
sets satisfy their corresponding access policies. More formally, a DP-ABE scheme is defined as
follows (definitions for KP-ABE and CP-ABE can be found by ignoring the relevant policies
and attribute sets):

Definition 12 (Dual-Policy Attribute-based Encryption [7]). A Dual-Policy Attribute-based
Encryption scheme comprises four algorithms as follows:

• (PK,MK) ← Setup(1κ): The randomized setup algorithm takes the security parameter
as input and generates a public key PK for the system which is published, and a master
secret key MK which is kept by the executor of this algorithm.

• CTω,S ← Encrypt(m, (ω,S), PK): This randomized algorithm takes in the public key, a
message to be encrypted, a subjective access policy S and an objective attribute set ω. It
outputs a ciphertext CT .

• SKO,ψ ← KeyGen((O, ψ),MK,PK): This randomized algorithm takes as input the public
key and master secret key output by Setup, as well as an objective access policy O and a
subjective attribute set ψ. It outputs a secret decryption key SKO,ψ.

• m or ⊥← Decrypt(SKO,ψ, CTω,S, PK): The decrypt algorithm takes as input the public
key, the secret key and the ciphertext. It outputs the correct plaintext m if and only if
the set of objective attributes ω satisfies the objective access structure O and the set of
subjective attributes ψ satisfies the subjective policy S – that is, ω ∈ O and ψ ∈ S. We
assume throughout that the policies and attributes are implicit from the relevant keys and
ciphertexts (otherwise these can also be given as arguments to this function).

Correctness of the decryption is defined to be: if Setup(1κ)→ (PK,MK) then

Decrypt (KeyGen((O, ψ),MK,PK),Encrypt(m, (ω,S), PK), PK)→ m

for all m in the message space and for all ω ∈ O and ψ ∈ S. Selective security for DP-ABE is
defined in Game 9.

The advantage of an adversary in the selective security game (Game 9) is defined as Pr[b =
b′]− 1

2 . Attrapadung et al. [6] note that the game can be changed such that we are able to handle
chosen-ciphertext attacks by providing the adversary with an additional decryption oracle in
the query phases.

Definition 13. A DP-ABE scheme is secure in the selective-set security notion if all PPT
adversaries have at most a negligible advantage in Game 9.
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Game 9 ExpsIND-CPA
A [DPABE , 1κ]:

1: (ω?,S?)← A(1κ)
2: (PK,MK)← Setup(1κ)

3: (m0,m1)← AO
KeyGen((·,·),MK,PK)(PK), where |m0| = |m1|

4: b
$← {0, 1}

5: CT ? ← Encrypt(mb, (ω
?, S?), PK)

6: b′ ← AOKeyGen((·,·),MK,PK)(CT ?, PK)
7: if b′ = b then
8: return 1
9: else

10: return 0

Oracle Query 5 OKeyGen((O, ψ),MK,PK):

1: if ω? /∈ O or ψ /∈ S? then
2: return SKO,ψ
3: else
4: return ⊥

A.5 MapReduce

MapReduce is a programming model for the parallel processing of large datasets using a cluster
or grid of computers (nodes) which can take advantage of the locality of data to decrease
transmission costs. It comprises two stages:

• Map A master node (or manager) takes the input and divides it into smaller sub-problems
which are distributed to the worker nodes. The worker computes the function associated
with the sub-problem and passes the result back to the manager.

• Reduce The manager collects the answer to all sub-problems and combines them to form
the output to the original problem.

The functions that can be computed using a MapReduce procedure is limited to those
that can be split into completely independent sub-problems (since the worker nodes cannot
interact). Thus, this setting can be considered as a type of verifiable outsourced computation
where each worker client is provided with the evaluation key for a sub-problem possibly unique
to them and they must return a valid result from the evaluation of this problem. The data in
this MapReduce setting could be either stored locally at the worker nodes or distributed by
the manager. Also note that there could potentially be multiple managers who perform the
reduction phase (assuming that all outputs are collected at the same time or that the function
is associative so that results can be accumulated).

B Revocation in DP-ABE

In Appendix A.4 we have reviewed the notation and properties of Dual-policy ABE, introduced
by Attrapadung et al. [7], that conjunctively combines KP-ABE and CP-ABE such that both
the decryption key and the ciphertext comprise an attribute set and an access structure. At-
trapadung et al. [5] introduced the formal notion of revocation in ABE schemes supporting two
different modes: direct revocation and indirect revocation. Direct revocation allows users to
specify a revocation list at the point of encryption such that periodic re-keying is not required
but encryptors must have knowledge of the current revocation list. In contrast, indirect revoca-
tion requires a time period to be specified at the point of encryption and an authority to issue
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updated key material at each time period to enable non-revoked entities to update their key to
be functional during that time period. Alderman et al. [2] use indirectly revocable KP-ABE in
order to provide a revocation mechanism in Publicly Verifiable Outsourced Computation.

B.1 Background

In this section we provide the necessary background about the notions we need in order to define
a revocable DP-ABE scheme.

Access Structures and Linear Secret Sharing

Here we define the notion of access structures and linear secret sharing schemes recapped from
[35]. These are fundamental building blocks for attribute-based encryption schemes.

Definition 14 (Access Structure). Let P = {P1, P2, . . . , Pn} be a set of parties (attributes). A
collection A ⊆ 2P is monotone if for all B,C we have that if B ∈ A and B ⊆ C then C ∈ A. An
access structure (resp., monotonic access structure) is a collection (resp., monotone collection)
A ⊆ 2P \ {∅}.

Definition 15 (Linear Secret Sharing Schemes (LSSS)). Let P be a set of parties. Let M be
a matrix of size l × k. Let π : {1, . . . , l} → P be a function that maps a row to a party for
labeling. A secret sharing scheme Π for access structure A over a set of parties P is a linear
secret-sharing scheme in Zp and is represented by (M,π) if it consists of two polynomial-time
algorithms:

• Share(M,π): The algorithm takes as input s ∈ Zp which is to be shared. It randomly chooses
y2, . . . , yk ∈ Zp and let v = (s, y2, . . . , yk). It outputs Mv as a vector of l shares. The
share λπ(i) := Mi · v belongs to party π(i), where we denote Mi as the ith row in M .

• Recon(M,π): The algorithm takes as input S ∈ A. Let I = {i : π(i) ∈ S}. It outputs
reconstruction constants {(i, µi)}i∈I which is a linear reconstruction property:

∑
i∈I µi ·

λπ(i) = s.

Proposition 1. Let (M,π) be a LSSS for access structure A over a set of parties P, where M
is a matrix of size l× k. For all S /∈ A, there exists a polynomial time algorithm that outputs a
vector w = (w1, . . . , wk) ∈ Zkp such that w1 = −1 and for all x ∈ S it holds that Mi · w = 0.

Bilinear Maps and Hardness Assumptions

Here we review the notions of bilinear maps and the hardness assumptions. We follow the
formlization in [5, 6].

Bilinear Maps. Let G,GT be multiplicative groups of order p. Let g be a generator of G. A
bilinear map is a map e : G×G→ GT for which the following hold:

1. e is bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab

2. e is non-degenerate: e(g, g) 6= 1

We say that G is a biliear group if the group action in G can be computed efficiently and there
exists GT for which the bilinear map e : G×G→ GT is efficiently computable.
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Decision BDHE Assumption. Let G be a bilinear group of prime order p. The Decision
q-BDHE (Bilinear Diffie-Hellman Exponent) problem [14] in G is stated as follows. Given a
vector (

g, h, ga, g(a
2), . . . , g(a

q), g(a
q+2), . . . , g(a

2q), Z
)
∈ G2q+1 ×GT

as input, determine Z = e(g, h)a
q+1

. We denote gi = ga
i ∈ G for shorthand. Let yg,a,q =

(g1, . . . , gq, Gq+2, g2q). An algorithm A that outputs b ∈ {0, 1} has advantage ε in solving the
Decision q-BDHE problem in G if

|Pr[A
(
g, h,yg,a,q, e(gq+1, h)

)
= 0]− Pr[A(g, h,yg,a,q, g

s, Z) = 0]| ≥ ε,

where the probability is over the random choice of generators g, h ∈ G, the random choice of
a ∈ Zp, the random choice of Z ∈ GT , and the randomness of A. We refer to the distribution
on the left as PBDHE and the one on the right hand side as RBDHE . We say that the Decision
q-BDHE assumption holds in G if no polynomial-time algorithm has a non-negligible advantage
in solving the problem.

Terminology for Binary Trees

We denote some terminology for complete binary tree. Let L = {1, . . . , n} be the set of leaves.
Let X be the set of node names in the tree via some systematic naming order. For a leaf i ∈ L,
let Path(i) ⊂ X be the set of nodes on the path from node i to the root (including i and the
root).
For R ⊆ L, let Cover(R) ⊂ X be defined as follows. First mark all the nodes in Path(i) if i ∈ R.
Then Cover(R) is the set of all unmarked children of marked nodes. It can be shown to be the
minimal set that contains no node in Path(i) if i ∈ R but contains at least one node in Path(i)
if i /∈ R.

Lagrange Interpolation

For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial is defined as ∆i,S(z) =
∏
j∈S,j 6=i

z−j
i−j . Let

f(z) ∈ Z[z] be a d-th degree polynomial. If |S| = d+ 1, from a set of d+ 1 points {(i, f(i))}i∈S ,
one can reconstruct f(z) as

f(z) =
∑
i∈S

f(i) ·∆i,S(z).

In our scheme in Appendix B.3, we especially use the interpolation for a first degree polyno-
mial. In particular, let f(z) be a first degree polynomial, one can obtain f(0) from two points
(i1, f(i1)), (i2, f(i2)) where i1 6= i2 by computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

.

B.2 More Details on Revocable Key DP-ABE

Correctness of rkDPABE is defined as follows:

Definition 16 (Correctness). A rkDP-ABE scheme is correct if Setup(1κ)→ (PK,MK) then

Decrypt(Encrypt(m, (ω,S), t, PK), (ω,S), (O, ψ),

KeyGen(ID, (O, ψ),MK,PK),KeyUpdate(R, t,MK,PK),PK)→ m,

for all t, all m in the message space M, all ω ∈ O and ψ ∈ S.
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Game 10 ExpIND-sHRSS
A [rkDPABE , 1κ]:

1: ((ω?, S?), t?)← A(1κ)
2: (PK,MSK)← Setup(1κ)
3: R̃← A(PK)

4: (m0,m1)← AO
KeyGen(·,(·,·),MK,PK)OKeyUpdate(·,·,MK,PK)(PK) , where |m0| = |m1|

5: b
$← {0, 1}

6: CT ? ← Encrypt(mb, (ω
?, S?), t?, PK)

7: b′ ← AOKeyGen(·,(·,·),MK,PK)OKeyUpdate(·,·,MK,PK)(CT ?, R̃, PK)
8: if b′ = b then
9: return 1

10: else
11: return 0

Oracle Query 6 OKeyGen(ID, (O, ψ),MK,PK):

1: if ω? ∈ O and ψ ∈ S? then
2: if ID /∈ R̃ then
3: return ⊥
4: return SK(O,ψ),ID ← KeyGen(ID, (O, ψ),MK,PK)

Oracle Query 7 OKeyUpdate(R, t,MK,PK):

1: if t = t? then
2: if R̃ 6⊆ R then
3: return ⊥
4: return UKR,t ← KeyUpdate(R, t,MK,PK)

Definition 17. An rkDP-ABE scheme is secure in the selective-set security notion if all poly-
nomial time adversaries have at most a negligible advantage in Game 10.

B.3 The Construction

Our revocable DP-ABE scheme will be based on a combination of DP-ABE [7], which itself is
a combination of [35] and [25], and an ABE scheme supporting revocation [5]. Both subjective
and objective access structures are those which there exist linear secret sharing schemes that
realize them. We represent a subjective access structure S by a LSSS which we denote by (M,ρ)
and for an objective access structure O we use the LSSS representation denoted by (N, π).

Let Us,Uo be the universe of of subjective and objective attributes respectively. We define
the universe set of identities UID as the set of leaves in the complete binary tree L = {1, . . . , n}.
Let us denote by m the maximum size of subjective attribute set to be assigned to a key, i.e.
we restrict |ψ| ≤ m. By n we denote the maximum size of objective attribute set allowed to
be associated with a ciphertext, i.e. we restrict |ω| ≤ n. Furthermore we denote the maximum
number of rows allowed in a subjective access structure matrix to be ls,max. Now let m′ =
m+ ls,max − 1 and n′ = n− 1. Let d be the maximum of |Cover(R)| for all R ⊆ UID.

Setup(κ): The algorithm first picks a random generator g ∈ G and random exponents
γ, α ∈ Zp. It then defines three functions Fs : Zp → G, Fo : Zp → G and P : Zp → G by first
randomly choosing h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud and setting

Fs(x) =

m′∏
j=0

hx
j

j , Fo(x) =

n′∏
j=0

qx
j

j , P (x) =

d∏
j=0

ux
j

j .
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The algorithm assigns the public key as PK = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).
For all node x ∈ X in the tree, it randomly chooses ax ∈ Zp and rx ∈ Zp for defining a first
degree polynomial fx(z) = axz + αrx + γ. The master key is MK = (γ, α, {ax}, rx).

Encrypt(t, (ω,S),m, PK): The encryption algorithm takes as input a LSSS access structure
(M,ρ) for subjective policy and an objective attribute set ω ⊂ Uo. LetM be a ls×ks matrix. The
algorithm now randomly chooses s, y2, . . . , yks ∈ Zp and sets u = (s, y2, . . . , yks). It calculates
λi = Mi · u (for i = 1, . . . , ls), where Mi is the vector corresponding to the ith row of M .
Furthermore the algorithm takes the present time attribute as an input. It then computes the

ciphertext CT = (C,C(1), {C(2)
k }k∈ω, {C

(3)
i }i=1,...,ls , C

(4)), where

C = m · (e(g, g, )γ)s, C(1) = gs, C
(2)
k = Fo(k)s,

C
(3)
i = gαλiFs(ρ(i))−s, C(4) = P (t)s.

KeyGen(PK,MK, (O, ψ), ID): The key generation algorithm takes as input a LSSS access
structure (N, π) for objective policy and a subjective attribute set ψ ⊂ Us. Let N be a lo × ko
matrix and the algorithm takes identity ID ∈ U which is a leaf in the binary tree. It then
computes the key as follows.
For all x ∈ Path(ID), the algorithm first shares fx(1) with the LSSS (N, π) and it randomly
chooses zx,2, . . . , zx,ko ∈ Zp and sets vx = (fx(1), zx,2, . . . , zx,ko). For i = 1, . . . , lo, it calculates
the share σx,i = Ni · vx, where Ni is the vector corresponding to the ith row of N . Then the
algorithm randomly chooses rx,1, . . . , rx,lo ∈ Zp and rx ∈ Zp and outputs the private key as

SK(N,π),ID = ((D
(1)
x,i , D

(2)
x,i )x∈Path(ID),i=1,...,lo , (D, {D

(3)
k }k∈ψ)x∈Path(ID)), where

D = grx , D
(1)
x,i = grx,i ,

D
(2)
x,i = gσx,iFo(π(i))rx,i , D

(3)
k = Fs(k)rx .

KeyUpdate(PK,MK,R, t): The algorithm first runs Cover(R) in order to find a minimal
node set that covers U \ R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp and sets the

update keys as UK(R, t) = (U
(1)
x , U

(2)
x )x∈Cover(R), where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx .

Decrypt(PK,CT, (ω,S), SK(N,π),ID, (O, ψ), UK(R, t)): The decryption algorithm takes as
an input the ciphertetxt CT which contains a subjective access structure (M,ρ) and a set
of objective attributes ω, and a decryption key SK(N,π),ID which contains a set of subjective
attributes ψ and an objective access structure (N, π). Suppose that the set ψ for subjective
attribute satifies (M,ρ) and that the set ω satisfies (N, π) as well as ID /∈ R (so that decryption
is possible). Let Is = {i : ρ(i) ∈ ψ} and Io = {i : π(i) ∈ ω}. The algorithm now constructs
the respective set of reconstruction constants {(i, µi)}i∈Is = Recon(M,ρ)(ψ) and {(i, νi)}i∈Io =
Recon(N,π)(ω). Since ID /∈ R, the algorithm also finds a node x such that x ∈ Path(ID) ∩
Cover(R). Then it computes the following

C ·

∏
i∈Is

(
e(C

(3)
i , D) · e(C(1), D

(3)
ρ(i))

)µi
(∏

j∈Io

(
e(D

(2)
x,j ,C

(1))

e(C
(2)
x,π(j)

,D
(1)
x,j)

)νj) t
t−1
(
e(U

(1)
x ,C(1))

e(C(4),U
(2)
x )

) 1
1−t

= m.
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Correctness.

We verify the correctness of the decryption as follows. Let us write the fraction in the decryption

algorithm as C ′/K and K = (K ′)
t
t−1 (K ′′)

1
1−t . We first consider each part seperately. First we

compute

C ′ =
∏
i∈Is

(
e(C

(3)
i , D) · e(C(1), D

(3)
ρ(i))

)µi
=
∏
i∈Is

(
e(gαλiFs(ρ(i))−s, grx) · e(gs, Fs(ρ(i))rx)

)µi
=
∏
i∈Is

(
e(g, g)αλir · e(g, Fs(ρ(i)))−rxs · e(g, Fs(ρ(i)))rxs

)µi
= e(g, g)srxα.

The second equality follows from the construction, the third one form the properties of bilinear
maps and the last equality follows from the set of reconstruction constants with

∑
i∈Is µiλi = s.

In the next step we compute the following

K ′ =
∏
j∈Io

 e(D
(2)
x,j , C

(1))

e(C
(2)
x,π(j), D

(1)
x,j)

νj

=
∏
j∈Io

(
e(gσx,jFo(π(j))rx,j , gs)

e(Fo(π(j))s, grx,j )

)νj
=
∏
j∈Io

(
e(g, g)σx,js · e(g, Fo(π(j)))rx,j ,s

e(g, Fo(π(j)))rx,j ,s

)νj
= e(g, g)sfx(1).

The second equality follows from the construction, the third one follows from the properties
of bilinear maps and the last equation follows from the set of reconstruction constants with∑

j∈Io νjσx,j = ax + γ + αrx.
Now we can combine K ′ with the update key material to obtain

K = (K ′)
t
t−1

(
e(U

(1)
x , C(1))

e(C(4), U
(2)
x )

) 1
1−t

= (e(g, g)sfx(1))
t
t−1

(
e(gfx(t)P (t)rx , gs)

e(P (t)s, grx)

) 1
1−t

= (e(g, g)sfx(1))
t
t−1

(
e(g, g)fx(t)s · e(g, P (t)rxs)

e(g, P (t)rxs

) 1
1−t

= e(g, g)s(γ+αrx),

which is indeed the Lagrange interpolation from two points (1, fx(1)), (1, fx(t)) to evaluate
fx(0) = αrx + γ.
Combining all of those steps we obtain

C · e(g, g)srxα

e(g, g)s(γ+αrx)
= C · e(g, g)srxα

e(g, g)sγ · e(g, g)sαrx
= m.
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Sketch. Suppose there exist an adversary A that has an advantage ε in attacking the rkDP-
ABE scheme. We build a simulator B that solves the Decision q-BDHE problem (Appendix
B.1) in G. The simulator B is given a random q-BDHE challenge (g, h,yg,a,q, Z) where
yg,a,q = (g1, . . . , gq, gq+2, . . . , g2q) as input and Z is either e(gq+1, h) or a random element in

G1. Recall that gj = ga
j
.

Initialization. The selective-set game begins with the adversary A choosing (ω?, (M?, ρ?)),
where (M?, ρ?) is a target subjective access structure in the form of a LSSS matrix and as usual
ω? is a target objective attribute set. Let the matrix M? be of size l?s × k?s , where m+ k?s ≤ q
and w.l.o.g. we assume that ls,max and |ω?| = n. Furthermore due to the indirect mode ouf
our scheme we have the auxiliary input t?.

Setup. The simulator B wants to generate PK. In order to do so B has to program
the polynomials Fs, Fo and P (as in [5] and [6]) and chooses γ ∈ Zp and implicitly sets
γ = γ′ + αq+1. We start with programming the function Fs. The simulator B defines
Fs(x) = gp(x), where p is a polynomial in Zp[x] of degree m+ l?s − 1 which is implicitly defined
in the following way. It first chooses k?s + m + 1 polynomial p0, . . . , pk?s+m in Zp[x] of degree
m + l?s − 1 in such a way that there exists an i where x = ρ?(i) (there are exactly l?s values of
such x, since ρ? is injective). Now we set

pj(x) =

{
M?
i,j for j ∈ [1, k?s ]

0 for j ∈ [k?s + 1, k?s +m]

and p0 is chosen completely at random. We can now write the coefficients in each polynomial
as pj(x) =

∑m+l?s−1
i=0 pj,i · xi. It then defines

p(x) =

k?s+m∑
j=0

pj(x)aj .

Set hi =
∏k?s+m
j=0 g

pj,i
j for i ∈ [0,m+ l?s − 1]. From combining these steps and the definition of

Fs we obtain

Fs(x) =

m+l?s−1∏
i=0

hx
i

i = gp(x).

The simulator then programs the next function Fo in the following way. B randomly picks a
polynomial in Zp[x] of degree n− 1, f ′(x) =

∑n−1
j=0 f

′
jx
j . Next B defines f(x) =

∏
k∈ω?(x−k) =∑n−1

j=0 fjx
j . We note that fj ’s terms can be computed completely from ω?. From this we can

ensure that f(x) = 0 if and only if x ∈ ω?. It then lets qj = g
fj
q g

f ′j for j = [0, n− 1]. Therefore
we have

Fo(x) =

n−1∏
j=0

q
(xj)
j = gf(x)q gf

′(x).

Next the simulator defines

p(y) = yd−1 · (y − t?) =
d∑
j=0

pjy
j .

47



From this we can ensure that for all t ∈ T , p(t) = 0 if and only if t = t? and that for x ∈ X ,
p(x) 6= 0 which follows from T ∩ X = ∅. B then picks randomly a degree d polynomial in Zp[x]

as ρ(x) =
∑d

j=0 ρjx
j and then lets uj = (ga)pjgρj for j = 0, . . . , d. Thus we have

P (x) =

d∏
j=0

ux
j

j = (ga)p(x)gρ(x).

It gives A the public key PK = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).

Query Phase 1. The adversary now makes requests for private keys corresponding to
objective access structure and subjective attribute set pairs ((N, π), ψ) subject to the condition
that ψ does not satisfy M? or ω? does not satisfy N . Furthermore, since we deal with the
semi-static query notion, at the beginning of this phase the adversary A has to announce R̃.
Let XR̃ = {x ∈ Path(ID) : ID ∈ R̃}. The simulator B must simulate answers to queries in the
following 4 cases.

1. ω? does not satisfy N : B randomly choses rx ∈ Zp. It then lets D = grx and for all k ∈ ψ
lets D

(3)
k = Fs(k)rx as in the construction. Due to the condition that ω? does not satisfy

N and Proposition 1, there must exist a vector a = (a1, . . . , ako) ∈ Zkop such that a1 = −1
and that for all i where π(i) ∈ ω?, it holds that Ni · a = 0. The simulator now randomly
chooses z′x,2, . . . , z

′
x,ko
∈ Zp and v′ = (0, z′x,2, . . . , z

′
x,ko

). It then implicitely defines a vector
vx = −(γ+αrx+ax)a+v′x which will be used for creating the share of γ+αrx+ax as in our
construction. Now we consider the case that π(i) ∈ ω?. Here we randomly choose rx,i ∈ Zp
and compute D

(1)
x,i = grx,i and D

(2)
x,i = gNi·v′

xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i , where this
holds because Ni · a = 0. In case π(i) /∈ ω? we have to observe some implicit relations
between Ni and v; we cannot compute as usual because the term αq+1 is missing. But we
can use Fo(π(i))rx,i to cancel out the unknown value and by redefining rx,i = r′x,i+

α(Ni·a)
f(π(i))

we are able to simulate the same keys for D
(1)
x,i and D

(2)
x,i .

2. ω? does satisfy N : In this case we have to use that ψ does not satisfy M?. By Proposition 1
and with the same pj as in the setup stage above, there exists a vector (w1, . . . , wk?s ) ∈ Zk

?
s
p

such that w1 = −1 and for all x ∈ ψ such that there exist i where x = ρ?(i), we have
(p1(x), . . . , pk?s (x)) · (w1, . . . , wk?s ) = 0. Next it also computes one possible solution of
variables wk?s+1, . . . , wk?s+m for the system of |ψ| equations. Since |ψ| ≤ m we have for all
x ∈ ψ

(p1(x), . . . , pk?s+m(x)) · (w1, . . . , wk?s+m) = 0.

The simulator B then randomly chooses r′x ∈ Zp and implicitly defines

rx = r′x + w1 · αq + w2 · αq−1 + · · ·+ wk?s+m · α
q−(k?s+m)+1

by setting the key D = gr
′
x
∏k?s+m
k=1 (gq+1−k)

wk = grx . From our definition of r and γ =
γ′ + αq+1, we have

γ + αrx + ax = ax + γ′ + αr′x + w2 · αq + · · ·+ wk?s+m · α
q−(k?s+m)+2

where the αq+1 term in γ has canceled out. The simulator now randomly chooses
zx,2, . . . , zx,ko ∈ Zp and lets vx = (γ + αrx + ax, zx,2, . . . , zx,ko) as in the construction. It
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now randomly chooses rx,1, . . . , rx,lo ∈ Zp and computes for i = 1 to l the key D
(1)
x,1 = grx,i .

The other keys are computed in the following way. We have

D
(2)
x,i =

gax+γ′ · gr′x1 k?s+m∏
k=2

(gq−k+2)
wk

Ni,1

·
ko∏
j=2

gNi,jzjFo(π(i))rx,i

which can be computed since gq+1 is not contained and it follows that D
(2)
x,i = gNi·vx ·

Fo(π(i))ri . The simulator then creates D
(3)
k and since we have (p1(x), . . . , pk?s+m(x)) ·

(w1, . . . , wk?s+m) = 0 for all k ∈ ψ we have

D
(3)
k = (grx)p0(k)

k?s+m∏
j=1

gr′xj k?s+m∏
k=1

(gq+1−k+j)
wk

pj(k)

= (grx)p0(k)
k?s+m∏
j=1

(grx)α
jpj(k) = (grx)p(k) = Fs(k)rx .

3. t = t? and R̃ ⊆ R: To create
(
U

(1)
x , U

(1)
x

)
x∈Cover(R)

, the simulator B chooses a random

rx ∈ Zp for each x ∈ Cover(R) and computes U
(1)
x = (ga

′
xt
?
)P (t?)rx and U

(2)
x = grx . Both

keys are valid since R̃ ⊆ R thus for all x ∈ Cover(R) we have x /∈ XR̃. Thusa′xt
? = fx(t?)

since for all x in the binary tree the adversary randomly chooses a′x ∈ Zp and pre-defines
ax by using a′x in such a way that for x /∈ XR̃ we have fx(t?) = a′xt

?.

4. t 6= t?: Follows similary as in the previous case only that we have to differentiate between
the cases that x is an element in Cover(R) ∩ XR̃ and Cover(R) \ XR̃. Those update keys
can be computed since p(t) from setup does not equal 0 due to the fact that t ∈ T , and
we have that p(t) = 0 if and only if t = t?.

Challenge. The adversary A gives two messages m0,m1 to the simulator. The simulator
flips a coin b and creates ciphertexts C = mb · Z · e(h, gγ

′
), Ĉ = h, and for x ∈ ω? we write

C ′x = hf
′(x). We write h = gs for some unknow s. The simulator then chooses some random

elements to share the secret s by redefining vx and claim that if Z = e(gq+1, h) then the above
ciphertexts are a valid challenge.

Query Phase 2. B performs exactly as in Query Phase 1.

Guess. A outputs b′ ∈ {0, 1} for its guess of b. If b = b′ then B outputs 1 which
means that Z = e(gq+1, h). Else, it outputs 0 which means that Z is random from GT .
We see that if (g, h,yg,a,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,a,q, Z) = 0] = 1

2 . On
the other hand if (g, h,yg,a,q, Z) is sampled from PBDHE then we have |Pr[B(g, h,yg,a,q, Z) =

0]− 1
2 | ≥ ε. It follows that B has advantage at least ε in solving q-BDHE problem in G.

C Additonal Details for Access Control using DP-ABE

C.1 Access control on the delegator in PVC

Whilst the primary model we consider in Section 4 applies access control only to servers in
order to maintain public delegability and verifiability, we note that in some situations it may
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be desirable for the server to specify a policy over the functions or delegators that he will
accept. For example, a server may only wish to receive a certain set of functions so that he can
perform load management, or will only accept requests from delegators that have purchased a
subscription for the service. In this brief section, we discuss some simple ways in which these
additional policies can be incorporated into the above model.

Firstly, if delegators can be assumed to honestly describe the computations they outsource,
then they can include additional descriptive attributes with the input data (recall that the input
data shall be represented as a characteristic attribute set for a bitstring, and hence this is just
a set union). When a server requests an evaluation key for a function F from the KDC, it
can additionally specify an access control policy, A. Since the functions we can outsource are
Boolean functions, the KDC may issue a key for F ∧A. Thus, the computation can only succeed
if the access control policy part of the key policy is also satisfied by the additional descriptive
attributes provided by the client.

A slightly more compelling scenario is for the server to restrict requests to certain delegators
only. A simple way to achieve this is for the KDC to define an additional set of attributes UD
which describe delegators. During Setup the KDC normally publishes as part of the public
parameters PP , a set of values corresponding to each attribute in the attribute universe. If,
however, the KDC does not publish these terms for the subset UD ⊆ U , and instead issues them
privately to only users described by each specific attribute, then only authorized delegators may
use these attributes to create a ciphertext. As with the function policies above, the server may
declare an additional policy when requesting an evaluation key, and then only those encoded
inputs which contain valid attributes describing the user that satisfy this policy will be able to
be evaluated.

Note that one downside to these methods is that a server must request a new evaluation
key for each policy they wish to specify. We believe that it is likely that server policies will be
based more on static factors such as descriptors of delegators and time rather than ephemeral
contextual information about the computation in question (as with delegator policies). Thus,
this may be a more reasonable restriction for computational servers. The same techniques can
be applied in the reverse direction for VDC policies.

C.2 Security Model: Authorized Computation

The notion of Authorized Computation ensures that only a server that satisfies the additional
authorization policy specified in the encoded input may perform a given computation and hence
be rewarded for correct work. A server that does not satisfy this policy cannot produce a result
that will cause the verification stages to accept the result (even if the result itself is correct). The
challenger initializes a list L of authorization sets queried to the Certify oracle. The adversary
loses if for any s queried, s ∈ P where P is the challenge access control policy since the resulting
key would lead to a trivial win.

Note that the proof is very similar to that for Public Verifiability in the HPVC setting.
Instead of using dummy attributes and policies, we substitute for the authorization attributes
and policies specified in the game.

D Authentication with DP-ABE

In this section we briefly demonstrate that DP-ABE can not only be used to provide confi-
dentiality of messages or to prove validity of a computation, but also to allow a form of entity
authentication and authenticated key agreement protocol. The basic idea is that two parties
may be assigned a set of security labels for which they are authorized, and may decide (on a
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Game 11 ExpAuthCompA [HPVC, mode, F, 1κ]:
1: L = ε

2: (PP,MK)← Setup(1κ)

3: (x, P )← AO(SKA, PP );

4: for all s ∈ L do

5: if s ∈ P then

6: return 0

7: (PKF , LF )← FnInit(F,MK,PP )

8: (σx,P , V Kx,P , RKx,P )← ProbGen(PVC-AC, (x, P ), PKF , PP )

9: θ(F,s),(x,P ) ← AO(σx,P , V Kx,P , EK(F,s),A, SKA, RKx,P , PKF , PP )

10: (RT(F,s),(x,P ), τ(F,s),(x,P ))← BVerif(θ(F,s),(x,P ), V K(x,P ), PP )

11: if (τ(F,s),(x,P ) 6= (⊥, (reject,A))) then

12: return 1

13: else

14: return 0

per-protocol run basis) a security policy determining the sets of security labels they require a
communicating party to possess. Then, instead of directly running a (one-round) key agreement
protocol, they encrypt their messages using their own security attributes and their chosen policy
and exchange the resulting ciphertexts.

Now, each party can decrypt the received ciphertext if and only if both sets of attributes
satisfy the policy dictated by the other party. If successful, both parties can complete the
key agreement protocol to generate a shared, secret key to be used in further cryptographic
primitives. Note that if either party does not satisfy the specified policy then neither will be
able to decrypt. Thus, use of the resulting secret key is both proof that the user is indeed the
party that was interacted with in the above protocol and that the user satisfies a security policy.
This means that the secret key can act as a form of ticket providing authorization for further
services without needing to look up the identity of the user in additional access control policies
for example. This protocol is akin to those studied in [1, 21, 27, 32] for example where entities
are not authenticated as individuals but rather as members of a group associated with certain
attributes. We also note that the use of DP-ABE provides a form of implicit key confirmation.
Since decryption succeeds if and only if both parties satisfy the specified policies, if one party
successfully decrypts (i.e. the Decrypt algorithm does not output ⊥), then they implicitly know
that the other party could also decrypt successfully and hence they could both access the same
key agreement messages8. This would not be the case if single-policy ABE were used since then
one party may be able to decrypt and access the full key whilst the other could not.

As a simple example, Protocol 1 illustrates an extension using DP-ABE of a two-party key
agreement protocol KA = (KA.Gen,KA.Combine) where KA.Gen generates a message mA if run
by entity A, and KA.Combine takes two such messages and combines them to compute a shared
secret key. Let the two entities be denoted A and B, and let each be assigned a set of security
labels (attributes), XA and XB respectively, by a KDC. Each may determine a security policy
SA and SB respectively which may be applied to particular protocol runs as determined by
the entities themselves (based on the proposed use of the agreed key for example), and request
a secret key for this policy and their assigned attributes from the KDC9. The two parties
then encrypt their key agreement messages using this policy and their attributes and exchange
ciphertexts. Decryption, in both cases, succeeds if and only if XA ∈ SB and XB ∈ SA – that is,
both parties attributes satisfy the other’s security policy.

By the indistinguishability security of the DP-ABE scheme, no information about the key

8A message integrate check would still be required by both parties however.
9Note that they may request many such keys for different policies ahead of time and select an appropriate

one for each protocol run.
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Protocol 1

A → KDC: SA
KDC→ A: SK(SA,XA) ← DPABE.KeyGen(PP,MK, (SA, XA))
B → KDC: SB
KDC→ B: SK(SB ,XB) ← DPABE.KeyGen(PP,MK, (SB, XB))
A: mA ← KA.Gen(1κ)
B: mB ← KA.Gen(1κ)
A → B: CTA = DPABE.Encrypt(PP,mA, (SA, XA))
B → A: CTB = DPABE.Encrypt(PP,mB, (SB, XB))
A: mA ← DPABE.Decrypt(PP, (SB, XB), SK(SA,XA), (SA, XA), CTB)
B: mB ← DPABE.Decrypt(PP, (SA, XA), SK(SB ,XB), (SB, XB), CTA)
A: SK ← KA.Combine(mA,mB)
B: SK ← KA.Combine(mA,mB)

Figure 3: Authenticated key exchange protocol using DP-ABE

agreement messages leaks unless both parties satisfy the policies – that is, XA ∈ SB and XB ∈ SA
except with negligible probability. Thus, the parties agree on the same key if and only if they
guess the other party’s key agreement message (which happens with only negligible probability
if p is large enough) or they are both authorized in relation to the other party’s policy.

Since the DP-ABE mechanism is public-key, anybody may encrypt messages. Thus, a trusted
authority (perhaps the KDC) could encrypt messages of the form in Protocol 1 with plaintexts
specifying a key, which both (or neither) parties will be able to read and use if both parties
request a decryption key for the specified policy and their own security attributes that satisfy it.
This would provide a key distribution mechanism (with key escrow) only to authorized parties.

Finally, we observe that as well as authentication protocols, a similar mechanism could be
used for any fair exchange of information protocol where each party sends (encrypted) data that
should only be accessed by the other party if both parties are authorized according to a policy
dictated by the other – thus, if either party is not authorized then neither learn any information
about the data being exchanged. In the context of VC, it may be that one may access some
additional data (the plaintext) only if both parties hold evaluation keys for functions that accept
the other party’s input data.
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