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Abstract

Publicly Verifiable Outsourced Computation (PVC) allows weak devices to delegate com-
putations to more powerful servers, and to verify the correctness of results. Delegation and
verification rely only on public parameters, and thus PVC lends itself to large multi-user
systems where entities need not be registered. In such settings, individual user requirements
may be diverse and cannot be realised with current PVC solutions. In this paper, we in-
troduce Hybrid PVC (HPVC) which, with a single setup stage, provides a flexible solution
to outsourced computation supporting multiple modes: (i) standard PVC, (ii) PVC with
cryptographically enforced access control policies restricting the servers that may perform
a given computation, and (iii) a reversed model of PVC which we call Verifiable Delegable
Computation (VDC) where data is held remotely by servers. Entities may dynamically play
the role of delegators or servers as required.

Keywords Publicly Verifiable Computation, Outsourced Computation, Dual-Policy Attribute-
based Encryption, Revocation, Access Control

1 Introduction

The trend towards cloud computing means that there is a growing trust dependency on remote
servers and the functionality they provide. Publicly Verifiable Computation (PVC) [23] allows
any entity to use public information to delegate or verify computations, and lends itself to large
multi-user systems that are likely to arise in practice (as delegators need not be individually
registered).

However, in such a system, the individual user requirements may be diverse and require
different forms of outsourced computation, whereas current PVC schemes support only a single
form. Clients may wish to request computations from a particular server or to issue a request to
a large pool of servers; in the latter case, they may wish to restrict the servers that can perform
the computation to only those possessing certain characteristics. Moreover, the data may be
provided by the client as part of the computation, or it may be stored by the server; and the
role of servers and clients may be interchangeable depending on the context.

Consider the following scenarios: (i) employees with limited resources (e.g. using mobile
devices when out of the office) need to delegate computations to more powerful servers. The
workload of the employee may also involve responding to computation requests to perform tasks
for other employees or to respond to inter-departmental queries over restricted databases. (ii)
Entities that invest heavily in outsourced computations could find themselves with a valuable,
processed dataset that is of interest to other parties, and hence want to to selectively share this
information by allowing others to query the dataset in a verifiable fashion. (iii) database servers
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that allow public queries may become overwhelmed with requests, and need to enlist additional
servers to help (essentially the server acts as a delegator to outsource queries with relevant data).
Finally, (iv) consider a form of peer-to-peer network for sharing computational resources – as
individual resource availability varies, entities can sell spare resources to perform computations
for other users or make their own data available to others, whilst making computation requests
to other entities when resources run low.

Current PVC solutions do not handle these flexible requirements particularly well; although
there are several different proposals in the literature that realise some of the requirements
described above, each requires an independent (potentially expensive) setup stage. We introduce
Hybrid PVC (HPVC) which is a single mechanism (with the associated costs of a single setup
operation and a single set of system parameters to publish and maintain) which simultaneously
satisfies all of the above requirements. Entities may play the role of both delegators and servers,
in the following modes of operation, dynamically as required:
• Revocable PVC (RPVC) where clients with limited resources outsource computations

on data of their choosing to more powerful, untrusted servers using only public information.
Multiple servers can compute multiple functions. Servers may try to cheat to persuade verifiers
of incorrect information or to avoid using their own resources. Misbehaving servers can be
detected and revoked so that further results will be rejected and they will not be rewarded for
their effort;
• RPVC with access control (RPVC-AC) which restricts the servers that may perform

a given computation. Outsourced computations may be distributed amongst a pool of available
servers that are not individually authenticated and known by the delegator. Prior work [1]
used symmetric primitives and required all entities to be registered in the system (including
delegators) but we achieve a fully public system where only servers need be registered (as usual
in PVC);
• Verifiable Delegable Computation (VDC) where servers are the data owners and

make a static dataset available for verifiable querying. Clients request computations on subsets
of the dataset using public, descriptive labels.

We begin, in Section 2, with a summary of related work and the KP-ABE-based PVC
schemes [2, 23] on which we base our HPVC construction. In Section 3, we define the generic
functionality and security properties of HPVC. We then, in Section 4.1, discuss each supported
mode of computation, and how it fits our generic definition. To support user revocation [2],
we introduce a new cryptographic primitive called Revocable-Key Dual-policy Attribute-based
Encryption (rkDPABE) in Section 4.2, and finally, in Section 4.3, we instantiate HPVC using
rkDPABE. Additional details, formal security games and proofs can be found in the appendix
and will be included in the full version online.

2 Background and Related Work

Verifiable computation [10, 12, 13, 16, 17, 23, 27] may be seen as a protocol between a (weak)
client C and a server S, resulting in the provably correct computation of F (x) by the server for
the client’s choice of F and x. The setup stage may be computationally expensive (amortised
over multiple computations) but other operations should be efficient for the client. Some prior
work used garbled circuits with fully homomorphic encryption [13,17] or targeted specific func-
tions [10, 12, 16]. Chung et al. [14] introduced memory delegation which is similar to VDC; a
client uploads his memory to a server who can update and compute a function F over the entire
memory. Backes et al. [8] consider a client that outsources data and requests computations on
a data portion. The client can efficiently verify the correctness of the result without holding
the input data. Most work requires the client to know the data in order to verify [9, 11,18,22].
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Verifiable oblivious storage [3] ensures data confidentiality, access pattern privacy, integrity and
freshness of data accesses. Work on authenticated data lends itself to verifiable outsourced
computations, albeit for specific functions only. Backes et al. [7] use privacy-preserving proofs
over authenticated data outsourced by a trusted client. Similar results are presented in [25]
using public logs. It is notable that [7] and [11] achieve public verifiability. In independent and
concurrent work, Shi et al. [24] use DP-ABE to combine keyword search on encrypted data with
the enforcement of an access control policy.

Parno et al. [23] introduce Publicly Verifiable Computation (PVC) where multiple clients
outsource computations of a single function to a single server, and verify the results. Alderman
et al. [2] introduce a trusted Key Distribution Center (KDC) to handle the expensive setup for
all entities, to allow multiple servers to compute multiple functions, and to revoke misbehaving
servers. Informally, the KDC acts as the root of trust to generate public parameters and
delegation information, and to issue secret keys and evaluation keys to servers. To outsource
the evaluation of F (x), a delegator sends an encoded input σF (x) to a server S, and publishes
verification tokens. S uses an evaluation key for F to produce an encoded output θF (x). Any
entity can verify correctness of θF (x), but only entities in possession of a retrieval key created
by the delegator can learn the value of F (x). If S cheated they may be reported to the KDC
for revocation.

The constructions of [2, 23] to outsource a Boolean function, F , are based on Key-policy
Attribute-based encryption (KP-ABE), which links ciphertexts with attribute sets and decryp-
tion keys with a policy; decryption only succeeds if the attributes satisfy the policy. For PVC,
two random messages are encrypted and linked to the input data X (represented as attributes)
to form the encoded input. The evaluation key is a pair of decryption keys linked to F and F
(the complement function of F ). Exactly one message can be recovered, implying whether F or
F was satisfied, and hence if F (X) = 1 or 0. Ciphertext indistinguishability ensures S cannot
return the other message to imply an incorrect result.

3 Hybrid Publicly Verifiable Computation

To accommodate different modes of computation, we define HPVC generically in terms of
parameters ω, O, ψ and S. Depending on the mode (and which party provides the input data),
O or S will encode functions, while ω or ψ encode input data, as detailed in Section 4.1. We
retain the single, trusted key distribution centre (KDC) from RPVC [2] who initialises the
system for a function family F resulting in a set of public parameters PP and a master secret
key. For each function F ∈ F , the KDC publishes a delegation key PKF . It also registers each
entity Si that wants to act as a server by issuing a signing key SKSi . It may also update PP
during any algorithm to reflect changes in the user population.

Depending on the mode, servers either compute functions O on behalf of clients, or make a
dataset ψ available for public querying. The Certify algorithm is run by the KDC to produce
an evaluation key EK(O,ψ),Si enabling Si to perform these operations. Si chooses a set of labels
Li – in RPVC or RPVC-AC modes, Li uniquely represents the function F that Si should be
certified to compute; in VDC mode, Li is a set of labels, each uniquely representing a data
point contained in the dataset Di owned by Si.

1 In the VDC setting, the server is the data
owner and so Si also provides a list Fi advertising the functions that he is willing to evaluate
on his data in accordance with his own data usage policies; in RPVC settings, Fi advertises the
functions Si is certified to compute.

1These descriptive labels (e.g. field names in a database) allow delegators to select data points to be used in
a computation without knowing the data values.
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To request a computation of F (X) (encoded in ω or S) from Si, a delegator uses public
information to run ProbGen. He provides labels LF,X ⊆ Li describing the computation: in
RPVC or RPVC-AC modes, the delegator provides the input data X and LF,X labels the
function F to be applied; in VDC mode, the client uses the descriptive labels to choose a subset
of data points X ⊆ Di, X ⊆ Dom(F ) held by Si that should be computed on. ProbGen generates
an encoded input σF,X , a public verification key V KF,X and an output retrieval key RKF,X .

A server combines σF,X with its evaluation key to compute θF (X) encoding the result F (X).
Any entity can perform blind verification using V KF,X to verify correctness of θF (X) without
learning the value F (X). It generates an output retrieval token RTF (X) and a token τF (X)

which is sent to the KDC if verification failed; the server is then revoked from performing
further evaluations. This prevents delegators wasting their (limited) resources outsourcing to
a server known to be untrustworthy, and also acts as a deterrent, especially when servers are
rewarded per computation. If the result is valid, RTF (X) can be used in the Retrieve algorithm
with the retrieval key RKF,X to reveal yF (X) = F (X).

Definition 1. A Hybrid Publicly Verifiable Computation (HPVC) scheme for a family of func-
tions F comprises the following algorithms:

1. (PP,MK)
$← Setup(1`,F) : Run by the KDC to establish public parameters PP and a

master secret key MK for the system. The inputs are the security parameter and the
family of functions F that may be computed;

2. PKF
$← FnInit(F,MK,PP): Run by the KDC to generate a public delegation key, PKF ,

allowing entities to outsource, or request, computations of F ;

3. SKSi
$← Register(Si,MK,PP): run by the KDC to enrol an entity Si within the system

to act as a server. It generates a personalised signing key SKSi ;

4. EK(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): run by the KDC to generate an

evaluation key EK(O,ψ),Si enabling the server Si to compute on the pair (O, ψ). The
algorithm also takes as input the mode in which it should operate, a set of labels Li and
a set of functions Fi;

5. (σF,X , V KF,X , RKF,X)
$← ProbGen(mode, (ω,S), LF,X , PKF ,PP): run by an entity to re-

quest a computation of F (X) from Si. The inputs are the mode, the pair (ω,S) represent-
ing the computation, a set of labels LF,X ⊆ Li, the delegation key for F and the public
parameters. The outputs are an encoded input σF,X , a verification key V KF,X and an
output retrieval key RKF,X ;

6. θF (X)
$← Compute(mode, σF,X , EK(O,ψ),Si , SKSi ,PP): run by an entity Si to compute

F (X). The inputs are the mode, an encoded input, and an evaluation key and signing
key for Si. The output, θF (X), encodes the result;

7. (RTF (X), τF (X)) ← BVerif(θF (X), V KF,X ,PP): run by any entity. The inputs are an
encoded output produced by Si and verification key; the outputs are a retrieval token
RTF (X) encoding the computation result, and a token τF (X) which is (accept, Si) if θF (X)

is correct, or (reject, Si) otherwise;

8. y ← Retrieve(RTF (X), τF (X), V KF,X , RKF,X ,PP): run by any entity holding the retrieval
key for F (X) using the outputs from BVerif and the verification key. It outputs y = F (X)
if the result was computed correctly, or else y =⊥;
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Game 1 ExpsPubVerif
A

[
HPVC, 1`,F

]
1: (ω?,O?, ψ?, S?, LF,X? , mode)

$← A(1`,F)

2: (PP,MK)
$← Setup(1`,F)

3: if (mode = V DC) then (F ← S?, X? ← ψ?)
4: else (F ← O?, X? ← ω?)

5: PKF
$← FnInit(F,MK,PP)

6: (σ?, V K?, RK?)
$← ProbGen(mode, (ω?, S?), LF,X? , PKF ,PP)

7: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

8: (RTθ? , τθ?)← BVerif(θ?, V K?,PP)
9: y ← Retrieve(RTθ? , τθ? , V K

?, RK?,PP)
10: if (((y, τθ?) 6= (⊥, (reject, ·))) and (y 6= F (X?))) then
11: return 1
12: else return 0

9. UM
$← Revoke(τF (X),MK,PP): run by the KDC if a misbehaving server is reported. It

returns UM =⊥ if τF (X) = (accept, Si). Otherwise, all evaluation keys EK(·,·),Si for Si
are rendered non-functional and the update material UM is a set of updated evaluation
keys {EK(O,ψ),S′} for all servers.

Definition 2. A hybrid publicly verifiable outsourced computation (HPVC) scheme is correct
for a family of functions F if, for all ω, ψ, O, S defined for a computation F (X), for F ∈ F
and X ∈ Dom(F ), as described in Table 1, if ω ∈ O and ψ ∈ S then:

Pr[(PP,MK)
$← Setup(1`,F),

PKF
$← FnInit(F,MK,PP),

SKSi
$← Register(Si,MK,PP),

EK(O,ψ),Si
$← Certify(mode, Si, (O, ψ), Li,Fi,MK,PP),

(σF,X , V KF,X , RKF,X)
$← ProbGen(mode, (ω,S), LF,X , PKF ,PP),

θF (X)
$← Compute(mode, σF,X , EK(O,ψ),Si , SKSi ,PP),

(RTF (X), τF (X))← BVerif(θF (X), V KF,X ,PP),

F (X)← Retrieve(RTF (X), τF (X), V KF,X , RKF,X ,PP)]

= 1− negl(`).

3.1 Security Models

We now discuss desirable security properties for HPVC; additional formal models are found in
Appendix B2. Public verifiability, revocation and authorised computation are selective notions
in line with our rkDPABE scheme in Appendix D.

3.1.1 Public Verifiability

Public Verifiability presented in Game 1, ensures that a server that returns an incorrect result is
detected by the verification algorithm so that they can be reported for revocation. The adver-
sary, A, may corrupt other servers, generate arbitrary computations, and perform verification
steps himself. A first selects its challenge parameters, including the mode it wishes its challenge

2We don’t consider input privacy here, but note that a revocable dual-policy predicate encryption scheme, if
found, could easily replace our ABE scheme in Section 4.3. Security against vindictive servers and managers can
also be adapted from [2].
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to be generated in and the labels associated to its choice of inputs. We ask A to choose O? and
ψ?, despite the challenge inputs being only ω? and S?. This allows us to define the challenge
in terms of F and X? on line 3; note that O? and ψ? can also be gleaned from the mode and
labels, so this does not weaken the game – the adversary has already determined these values
through its choices.

The challenger runs Setup and FnInit for the chosen function F . It then runs ProbGen
to create the challenge parameters for the adversary, which are given to A along with the
public information. The adversary is also given oracle access to the functions FnInit(·,MK,PP),
Register(·,MK,PP), Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. A wins
the game if it creates an encoded output that verifies correctly yet does not encode the correct
value F (x).

Definition 3. The advantage of a PPT adversary A in the sPubVerif game for an HPVC
construction, HPVC, for a family of functions F is defined as:

AdvsPubVerif
A (HPVC, 1`,F) = Pr

[
1

$← ExpsPubVerif
A

[
HPVC, 1`,F

]]
.

HPVC is secure with respect to selective public verifiability if, for all PPT adversaries A,
AdvsPubVerif

A (HPVC, 1`,F) is negligible in `.

3.1.2 Other Security Models

In Appendix B we discuss the following security models.
• Blind Verification ensures that a verifier that does not hold the output retrieval key

RK? cannot learn the value of F (X) for the adversary’s choice of F and a randomly chosen
input X from the domain of F .
• Revocation ensures that a server that has been detected as misbehaving cannot produce

a result (even a correct result) that is accepted by a verifier – thus, the server cannot be rewarded
for future work. To reflect the revocation mechanism of the rkDPABE primitive, we include
a semi-static restriction whereby a list of entities to be revoked at the time of the challenge
computation must be declared before the adversary receives oracle access3.
• Authorised Computation extends the model of [1] to the public-key setting to ensure

that an unauthorised server cannot produce acceptable results.

4 Instantiating HPVC

We construct an HPVC scheme for the classNC1, which includes common arithmetic and matrix
operations. Let F be the family of Boolean formulas closed under complement using a revocable
key dual-policy ABE in a black-box manner. We construct our scheme from a novel use of
Dual-policy Attribute-based Encryption (DP-ABE) which combines KP-ABE and Ciphertext-
policy ABE (CP-ABE). Decryption keys are linked to an “objective” policy O and “subjective”
attribute set ψ, and ciphertexts linked to an “objective” attribute set ω and “subjective” policy
S; decryption requires both policies to be satisfied – ω ∈ O and ψ ∈ S.

Following [23], we encrypt two random messages to form the encoded input, while decryption
keys form evaluation keys; by linking these to F , F and X according to the mode, we ensure
that exactly one message can be recovered, implying whether F or F was satisfied, and hence if
F (X) = 1 or 0. DP-ABE security ensures a server cannot learn a message implying an invalid
result.

3This restriction was also used in [4] for revocable KP-ABE, and could be removed if an adaptively, indirectly
revocable ABE scheme is found.
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Table 1: Parameter definitions for different modes

mode O ψ ω S

RPVC F {TS} X {{TS}}
RPVC-AC F s X P
VDC {{TO}} Di {TO} F

mode Li LF,X Fi
RPVC {l(F )} {l(F )} {F}
RPVC-AC {l(F )} {l(F )} {F}
VDC {l(xi,j)}xi,j∈Di {l(xi,j)}xi,j∈X {(F, {l(xi,j)}xi,j∈Dom(F ))}F∈F

The values of ω, O, ψ and S depend upon the mode, as detailed in Table 1. Two additional
parameters TO and TS “disable” modes when not required. Note that, trivially, ψ ∈ S when
ψ = {TS} and S = {{TS}}, and similarly for TO.

4.1 Supporting Different Modes

4.1.1 RPVC

In this mode, a delegator owns some input data X and wants to learn F (X) but lacks the
computational resources to do so itself; thus, the computation is outsourced. In this setting,
only the parameters O and ω are required, and are set to be F and X respectively. The set
X comprises a single datapoint: the input data to this particular computation. The remaining
parameters S and ψ are defined in terms of the dummy parameter TS . The set of functions Fi
that a server is certified for during a single Certify operation is simply F , and the sets of labels
Li and LF,X both comprise a single element l(F ) uniquely labelling F .

4.1.2 RPVC-AC

RPVC-AC [1] was introduced with the motivation that servers may be chosen from a pool based
on resource availability, a bidding process etc. Delegators may not have previously authenticated
the selected server, in contrast to prior models [23] where a client set up a PVC system with a
single, known server.

The construction of [1] used a symmetric key assignment scheme allowing only authorised en-
tities to derive the required keys. However, the KDC had to register all delegators and verifiers.
This was due both to the policies being enforced (e.g. to restrict the computations delegators
may outsource), and to the use of symmetric primitives – to encrypt inputsthat only autho-
rised servers can decrypt, delegators must know the secret symmetric key. Thus, the scheme
is not strictly publicly delegable as delegation does not depend only on public information, and
similarly for verification.

We retain public delegability and verifiability whilst restricting the servers that may perform
a given computation. In some sense, servers are already authorised for functions by being issued
evaluation keys. However, we believe that access control policies in this setting must consider
additional factors than just functions. The semantic meaning and sensitivity of input data
may affect the policy, or servers may need to possess specific resources or characteristics, or
be geographically nearby to minimise latency. E.g. a government contractor may, due to the
nature of its work, require servers to be within the same country.
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One solution could be for the KDC to issue signed attributes to each server who attaches
the required signatures to computation results for verification. In this case, a verifier must
decide if the received attributes are sufficient. We consider the delegator that runs ProbGen to
“own” the computation and, as such, it should specify the authorisation policy that a server
must meet. As this is a publicly verifiable setting, any entity can verify and we believe (i)
verifiers should not accept a result that the delegator itself would not accept, and (ii) it may
be unreasonable to expect verifiers to have sufficient knowledge to determine the authorisation
policy. Of course, the delegator could attach a signed authorisation policy to the verification
key, but verifiers are not obliged to adhere to this policy and doing so creates additional work
for the verifier – one of the key efficiency requirements for PVC is that verification is very
cheap. Using DP-ABE to instantiate HPVC allows the delegator to specify the authorisation
policy during ProbGen and requires no additional work on the part of the verifier compared to
standard RPVC. Furthermore, an unauthorised server cannot actually perform the computation
and hence verification will always fail.

We use the objective parameters ω and O to compute (as for RPVC) whilst the subjec-
tive parameters ψ and S enforce access control on the server. Servers are assigned both an
evaluation key for a function F and a set of descriptive attributes describing their authorisa-
tion rights, s ⊆ US , where US is a universe of attributes used solely to define authorisation.
ProbGen operates on both the input data X and an authorisation policy P ⊆ 2US \ {∅} which
defines the permissible sets of authorisation attributes to perform this computation. Servers
may produce valid, acceptable outputs only if s ∈ P i.e. they satisfy the authorisation pol-
icy. E.g. P = (Country = UK) ∨ ((clearance = Secret) ∧ (Country = USA)) is satisfied by
s = {Country = UK, Capacity = 3TB}.

4.1.3 VDC

VDC reverses the role of the data owner – a server owns a static database and enables del-
egators to request computations/queries over the data. Hence, the user relationship is more
akin to the traditional client-server model compared to PVC. Delegators learn nothing more
than the result of the computation, and do not need the input data in order to verify. The
efficiency requirement for VDC is also very different from PVC: outsourcing a computation is
not merely an attempt to gain efficiency as the delegator never possesses the input data and so
cannot execute the computation himself (even with the necessary resources). Thus, VDC does
not have the stringent efficiency requirement present in PVC (that outsourcing and verifying
computations be more efficient than performing the computation itself, for outsourcing to be
worthwhile). Our solution behaves reasonably well, achieving constant time verification; the
size of the query depends on the function F , while the size of the server’s response depends
only on the size of the result itself and not on the input size which may be large, particularly
when querying remote databases. Future work in this area should focus on reducing the cost of
outsourcing computations.

In VDC, each entity Si that wants to act as a server owns a datasetDi = {xi,j}mij=1 comprising
mi data points. The KDC issues a single evaluation key EKDi,Si enabling Si to compute on
subsets of Di. Si publishes a list Li comprising a unique label l(xi,j) ∈ Li for each data point
xi,j ∈ Di, and a list of functions Fi ⊆ F that are (i) meaningful on their dataset, and (ii)
permissible according to their own access control policies. Furthermore, not all data points
xi,j ∈ Di may be appropriate for each function e.g. only numeric data should be input to
an averaging function. Fi comprises elements (F,

⋃
xi,j∈Dom(F ) l(xi,j)) describing each function

and the associated permissible inputs. Labels should not reveal the data values themselves to
preserve the confidentiality of Di.

8



Table 2: Example database

User ID Name Age Height

001 Alice 26 165
002 Bob 22 172

Table 3: Example list Fi

F Dom(F)

Average Age of record 1, Height of record 1, Age of record 2, Height of record
2

Most common value Name of record 1, Age of record 1, Height of record 1, Name of record
2, Age of record 2, Height of record 2

Delegators may select servers and data using only these labels e.g. they may ask Si to
compute F (X) for any function F ∈ Fi on a set of data points X ⊆ Dom(F )4 by specifying
labels {l(xi,j)}xi,j∈X . Although it may be tempting to suggest that Si simply caches the results
of computing each F ∈ Fi, the number of input sets X ⊆ Dom(F ) could be large, making this
an unattractive solution.

As an example, consider a server Si that owns the database in Table 2. The dataset Di

represents this as a set of field values for each record in turn: Di = {001,Alice, 26,165, 002,
Bob, 22, 172}. Si publishes data labels Li = {User ID of record 1, Name of record 1, Age of
record 1, Height of record 1, User ID of record 2, Name of record 2, Age of record 2, Height of
record 2}. Fi, in Table 3, lists the functions and domains that Si willing to compute. To find
the average age, a delegator queries “Average” on input X = {Age of record 1, Age of record
2}. Example applications are found in Appendix A.

4.2 Revocable Dual-policy Attribute-based Encryption

Before instantiating HPVC, we first introduce a new cryptographic primitive which forms the
basic building-block of our construction. If revocation is not required then a standard DP-ABE
scheme can be used.

Definition 4. A Revocable Key Dual-policy Attribute-based Encryption scheme (rkDPABE)
comprises five algorithms:

• (PP,MK)
$← Setup(1`,U): takes the security parameter and attribute universe and gen-

erates public parameters PP and a master secret key MK;

• CT(ω,S),t
$← Encrypt(m, (ω,S), t,PP): takes as input a message to be encrypted, an objec-

tive attribute set ω, a subjective policy S, a time period t and the public parameters. It
outputs a ciphertext that is valid for time t;

• SK(O,ψ),ID
$← KeyGen(ID, (O, ψ),MK,PP): takes an identity ID, an objective access struc-

ture O, a subjective attribute set ψ, the master secret key and the public parameters. It
outputs a secret decryption key SK(O,ψ),ID;

• UKR,t
$← KeyUpdate(R, t,MK,PP): takes a revocation list R containing all revoked iden-

tities, the current time period, the master secret key and public parameters. It outputs

4In contrast to prior modes where X was a single data point, F now takes |X| inputs.
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updated key material UKR,t which makes the decryption keys SK(O,ψ),ID, for all non-
revoked identities ID 6∈ R, functional to decrypt ciphertexts encrypted for the time t.

• PT ← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): takes as input a ciphertext
formed for the time period t and the associated pair (ω,S), a decryption key for entity ID
and the associated pair (O, ψ), an update key for the time t and the public parameters.
It outputs a plaintext PT which is the encrypted message m, if and only if the objective
attributes ω satisfies the objective access structure O and the subjective attributes ψ
satisfies the subjective policy S and the value of t in the update key matches that specified
during encryption. If not, PT is set to be a failure symbol ⊥.

Definition 4 suffices to comprehend the remainder of this paper as we shall use an rkDPABE
scheme in a black-box manner. For completeness, we give correctness and security definitions,
a construction and a security proof in Appendix D.

4.3 Construction

Consider a function to be delegated F : {0, 1}n → {0, 1} and its complement function F =
F (x)⊕1. As mentioned, we base our construction on rkDPABE by encoding inputs as attributes
in a universe Ux, and encoding Boolean functions as access structures over Ux. Computations
with n-bit outputs can be built from n Boolean functions returning each bit in turn. Negations
can be handled by building rkDPABE from non-monotonic ABE [21] or, as here, by adding
negated attributes to the universe [26]. For the ith bit of a binary input string X = x1 . . . xn,
define attributes A0

X,i and A1
X,i ∈ Ux5; X is encoded as AX = {AjX,i ∈ Ux : xi = j}.

Let Ul be a set of attributes (disjoint from Ux) uniquely labelling each function and data
item, and let UID represent server identities. Let g be a one-way function and DPABE =
(DPABE.Setup, DPABE.Encrypt, DPABE.KeyGen, DPABE.KeyUpdate, DPABE.Decrypt) be a re-
vocable key DP-ABE scheme for F with attribute universe U = Ux ∪ Ul ∪ UID.

We initialise two independent DP-ABE systems over U , and define four additional “dummy”
attributes to disable modes: T 0

O, T
0
S for the first system, and T 1

O, T
1
S for the second. We denote

the complement functions as follows: in RPVC and RPVC-AC, recall O = F and S = {{T 0
S}};

we define O = F and S = {{T 1
S}}. Similarly, for VDC, O = {{T 1

0 }} and S = F .
1. Setup initialises two rkDPABE schemes over U , an empty two-dimensional array LReg

to list registered entities, a list of revoked entities LRev and a time source T (e.g. a networked
clock or counter) to index update keys)6.

Algorithm 1 (PP,MK)
$← HPVC.Setup(1`,F)

1: (MPK0
ABE,MSK0

ABE, T
0
O, T

0
S)

$← DPABE.Setup(1`,U)

2: (MPK1
ABE,MPK1

ABE, T
1
O, T

1
S)

$← DPABE.Setup(1`,U)
3: for Si ∈ UID do
4: LReg[Si][0]← ε, LReg[Si][1]← {ε}
5: Initialise T
6: LRev ← ε
7: PP← (MPK0

ABE,MPK1
ABE, LReg, T

0
O, T

1
O, T

0
S , T

1
S ,T)

8: MK← (MSK0
ABE,MSK1

ABE, LRev)

2. FnInit sets the public delegation key PKF (for all functions F ) to be the public parameters
for the system (since we use public key primitives).

5Either by defining a large enough Ux or by hashing strings to elements of the attribute group. Unlike prior
schemes [2, 23], we include an identifier of the data X (based on the label l(xi,j)) in the attribute mapping to
specify the data items to be used; alternatively, Di could be a long bitstring formed by concatenating each data
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Algorithm 2 PKF
$← HPVC.FnInit(F,MK,PP)

1: PKF ← PP

3. Register runs a signature KeyGen algorithm and adds the verification key to LReg[Si][0].
These prevent servers being impersonated and wrongly revoked.

Algorithm 3 SKSi

$← HPVC.Register(Si,MK,PP)

1: (SKSig, V KSig)
$← Sig.KeyGen(1`)

2: SKSi
← SKSig

3: LReg[Si][0]← LReg[Si][0] ∪ V KSig

4. Certify first adds an element (F,
⋃
l∈Li l) to the list LReg[Si][1] for each F ∈ Fi; this

publicises the computations that Si can perform (either functions in RPVC and RPVC-AC
modes, or functions and data labels in VDC). The algorithm removes Si from the revocation
list, gets the current time from T and generates a decryption key for (O, ψ∪

⋃
l∈Li l) in the first

DP-ABE system. The additional attributes for the labels l ∈ Ul ensure that a key cannot be
used to evaluate computations that do not correspond to these labels. In RPVC and RPVC-AC,
this means that a key for a function G cannot evaluate a computation request for F (X). In
VDC, it means that an evaluation key must be issued for a dataset Di that includes (at least)
the specified input data X?. It is sufficient to include labels only on the subjective attribute
set; as these labels are a security measure against a misbehaving server, we amend the servers
key but need not take similar measures against the delegator. Delegators can then specify, in
the subjective policy that they create, the labels that are required; these must be in the server’s
key for successful evaluation (decryption). The KDC should check that the label corresponds
to the input to ensure that a server does not advertise data he does not own. It also generates
an update key for the current time period to prove that Si is not currently revoked. In RPVC
mode, another pair of keys is generated using the second DP-ABE system for the complement
inputs.

Algorithm 4 EK(O,ψ),Si

$← HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: for F ∈ Fi do
2: LReg[Si][1]← LReg[Si][1] ∪ (F,

⋃
l∈Li

l)

3: LRev ← LRev \ Si, t← T
4: SK0

ABE
$← DPABE.KeyGen(Si, (O, Aψ ∪

⋃
l∈Li

l),MSK0
ABE,MPK0

ABE)

5: UK0
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK0
ABE,MPK0

ABE)

6: if (mode = RPV C) or (mode = RPVC-AC) then

7: SK1
ABE

$← DPABE.KeyGen(Si, (O, Aψ ∪
⋃
l∈Li

l),MSK1
ABE,MPK1

ABE)

8: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

9: else
10: SK1

ABE ←⊥, UK
1
LRev,t

←⊥
11: EK(O,ψ),Si

← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

5. ProbGen chooses two messages m0 and m1 randomly from the message space. A random
bit b permutes the encoded input, so that a verifier without b cannot learn F (X) as it cannot
tell if a message was encrypted with F or F . mb is encrypted with (Aω, S ∧

∧
l∈LF,X l) in the

first DPABE system (where Aω is the attribute set encoding ω), whilst m1−b is encrypted with
the complement policy and either the first DPABE system for VDC or the second for RPVC

point, and the labels should identify the attributes corresponding to each data point.
6Our KDC will act as the trusted KeyGen authority already inherent in ABE schemes.
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(the attributes remain the same as it is the same input data X in RPVC, or attribute T 0
O in

VDC). g is applied to each message to form the verification key (g being one-way allows the
key to be published), and b forms the output retrieval key.

Algorithm 5 (σF,X , V KF,X , RKF,X)
$← HPVC.ProbGen(mode, (ω, S), LF,X , PKF ,PP)

1: (m0,m1)
$←M×M

2: b
$← {0, 1}, t← T

3: cb
$← DPABE.Encrypt(mb, (Aω , S ∧

∧
l∈LF,X

l), t,MPK0
ABE)

4: if mode = V DC then c1−b
$← DPABE.Encrypt(m1−b, (Aω , S ∧

∧
l∈LF,X

l), t,MPK0
ABE)

5: else c1−b
$← DPABE.Encrypt(m1−b, (Aω , S ∧

∧
l∈LF,X

l), t,MPK1
ABE)

6: return σF,X ← (cb, c1−b), V KF,X ← (g(mb), g(m1−b), LReg), RKF,X ← b

6. Compute attempts to decrypt both ciphertexts, ensuring that different modes use the
correct parameters. Decryption succeeds only if the function evaluates to 1 on the input data
X i.e. the policy is satisfied. Since F and F output opposite results on X, exactly one plaintext
will be a failure symbol ⊥. The results are signed, along with the ID of the server Si performing
the computation.

Algorithm 6 θF (X)
$← HPVC.Compute(mode, σF,X , EK(O,ψ),Si

, SKSi ,PP)

1: Parse EK(O,ψ),Si
as (SK0

ABE, SK
1
ABE, UK

0
LRev,t

, UK1
LRev,t

) and σF,X as (c, c′)

2: db ← DPABE.Decrypt(c, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

3: if mode = V DC then d1−b ← DPABE.Decrypt(c′, SK0
ABE,MPK0

ABE, UK
0
LRev,t

)

4: else d1−b ← DPABE.Decrypt(c′, SK1
ABE,MPK1

ABE, UK
1
LRev,t

)

5: γ
$← Sig.Sign((db, d1−b, Si), SKSi

)
6: θ(ω,S),(O,ψ) ← (db, d1−b, Si, γ)

7. BVerif verifies the signature using the verification key for Si stored in LReg. If correct,
it applies g to each plaintext in θF (X) and compares the results to the components of the
verification key. If either comparison results in a match (i.e. the server successfully recovered
a message), that plaintext is returned as the retrieval token and the output token is accept.
Otherwise the result is rejected.

Algorithm 7 (RTF (X), τF (X))← HPVC.BVerif(θF (X), V KF,X ,PP)

1: Parse V KF,X as (V K, V K′, LReg) and θF (X) as (d, d′, Si, γ)

2: if accept← Sig.Verify((d, d′, Si), γ, LReg[Si][0]) then
3: if V K = g(d) then return (RTF (X) ← d, τF (X) ← (accept, Si))

4: else if V K′ = g(d′) then return (RTF (X) ← d′, τF (X) ← (accept, Si))

5: else return (RTF (X) ←⊥, τF (X) ← (reject, Si))

6: return (RTF (X) ←⊥, τF (X) ← (reject,⊥))

8. Retrieve orders the components of the verification key according to the retrieval key
RKF,X = b and checks which message was returned, and hence determines the value of F (X).
If m0 was returned then F (X) = 1 as m0 was encrypted for the non-complemented inputs; if
m1 was returned then F (X) = 0.

9. Revoke first checks whether a sever, Si, should in fact be revoked. If so, it deletes the
list LReg[Si][1] of computations that Si may perform. It also adds Si to the revocation list, and
refreshes the time source. It then generates new update keys for all non-revoked entities such
that non-revoked keys are still functional in the new time period.

Given an IND-sHRSS secure rkDPABE scheme, a one-way function g, and an EUF-CMA
signature scheme, this construction is secure in the sense of selective public verifiability, blind
verification and selective semi-static revocation. A proof of security can be found in Appendix C.
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Algorithm 8 y ← HPVC.Retrieve(RTF (X), τF (X), V KF,X , RKF,X ,PP)

1: Parse V KF,X as (g(mb), g(m1−b), LReg), θF (X) as (db, d1−b, Si, γ), RKF,X as b

2: if (τF (X) = (accept, Si) and g(RTF (X)) = g(m0)) then return y ← 1

3: if (τF (X) = (accept, Si) and g(RTF (X)) = g(m1)) then return y ← 0

4: return y ←⊥

Algorithm 9 UM
$← HPVC.Revoke(τF (X),MK,PP)

1: if (τF (X) 6= (reject, Si)) then return UM ←⊥
2: LReg[Si][1]← {ε}, LRev ← LRev ∪ Si
3: Refresh T, t← T
4: UK0

LRev,t
$← DPABE.KeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE)

5: if (mode = RPV C) or (mode = RPVC-AC) then

6: UK1
LRev,t

$← DPABE.KeyUpdate(LRev, t,MSK1
ABE,MPK1

ABE)

7: for all S′ ∈ UID do
8: Parse EK(O,ψ),S′ as (SK0

ABE, SK
1
ABE, UK

0
LRev,t−1, UK

1
LRev,t−1)

9: EK(O,ψ),S′ ← (SK0
ABE, SK

1
ABE, UK

0
LRev,t

, UK1
LRev,t

)

10: return UM ← {EK(O,ψ),S′}S′∈UID

5 Conclusion

We have introduced a hybrid model of publicly verifiable outsourced computation to support
flexible and dynamic interactions between entities. Entities may request computations from
other users, restrict which entities can perform computations on their behalf, perform compu-
tations for other users, and make data available for queries from other users, all in a verifiable
manner.

Our instantiation, built from a novel use of DP-ABE, captures prior models of PVC [2,23],
extends RPVC-AC [1] to the public key setting to allow truly public delegability and verifiability,
and introduces a novel form of ABE-based verifiable computation in the form of VDC. In
further work, we will investigate VDC further, particularly with regards to searching on remote
databases.

ABE was developed to enforce read-only access control policies, and the use of KP-ABE in
PVC was a novel and surprising result [23]. A natural question to ask is whether other forms
of ABE can similarly find use in this context. Our use of all possible modes of ABE provides
an affirmative answer to this question.

DP-ABE has previously attracted relatively little attentionin the literature, which we believe
to be primarily due to its applications being less obvious than for the single-policy ABE schemes.
Whilst KP- and CP-ABE are generally considered in the context of cryptographic access control,
it is unclear that the policies enforced by DP-ABE are natural choices for access control. Thus
an interesting side-effect of this work is to show that additional applications for DP-ABE do
exist.
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A Applications for VDC

• MapReduce [15] (or Hadoop) is a programming model for the parallel processing of
large computations using a cluster or grid of computers (nodes) which can take advantage of
the locality of data to decrease transmission costs. Each worker node computes a subproblem
on a portion of the data and report to a manager who combines the results. VDC enables
verifiable MapReduce such that only valid results are combined. The manager acts as the KDC
to distribute evaluation keys for partitions of the data to workers, and then requests multiple
sub-problems to be solved over this partitioning.
• Verifiable queries on remote databases. Servers may also act as remote database

providers and register with a KDC to provide a verifiable querying service. Any delegator may
use public information to query any function allowed by the server (within the family allowed by
the VDC scheme) on these databases. Data is remotely stored and delegators see nothing more
than the results of queries which they are assured are correct. Alternatively, in this setting,
the data owner could act as the KDC to outsource its data to an untrusted server. Due to the
public delegation and verification properties, other data users can query the outsourced data
and verify the correctness of the results. The data owner need not retain any knowledge of the
data after it has been outsourced.
• Three-party computation. Backes et al. [7] consider computations over outsourced

data based on privacy-preserving proofs over authenticated data outsourced by a trusted client.
In this setting, a trusted source produces and authenticates some data which is given to a server.
Other parties can then request computations on this data and efficiently verify the results, but
learn nothing more than the computation results and their validity. The solution of Backes et
al. [7] makes use of homomorphic MACs and succinct non-interactive arguments (SNARGs) [20].
Similar results are found in [11,25].
In the context of VDC, the CP-ABE decryption mechanism achieves the same goal as SNARGs.
The source can be thought of as the KDC, the service provider as the computational server and
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Game 2 ExpBVerif
A

[
HPVC, 1`,F

]
1: (PP,MK)

$← Setup(1`,F)

2: (F, mode)
$← AO(PP)

3: PKF
$← FnInit(F,MK,PP)

4: X
$← Dom(F )

5: Si
$← UID

6: if (mode = VDC) then (ψ ← X, S← F , O← P , ω ← s, L← {l(xj)}xj∈X)
7: else (ω ← X, O← F , S← P , ψ ← s, L← {l(F )})
8: SKSi

$← Register(Si,MK,PP)

9: EK(O,ψ),Si

$← Certify(mode, Si, (O, ψ), L, {F},MK,PP)

10: (σ?, V K?, RK?)
$← ProbGen(mode, (ω, S), L, PKF ,PP)

11: θ?
$← Compute(mode, σ?, EK(O,ψ),Si

, SKSi ,PP)

12: y
$← AO(θ?, V K?, PKF ,PP)

13: return (y == F (X))

the third parties as delegators.
Backes et al. [7] considered several applications of this model. For example, trusted sensors could
be placed in client premises (e.g. a smart energy meter or a sensor placed in a car to monitor
driving habits). These sensors collect data which is authenticated (due to the trusted nature of
the collection devices) and given to the client who acts as the service provider. Because this data
could be sensitive (e.g. revealing the habits and lifestyle of the client), the service provider may
be reluctant to release the data to third parties. Nevertheless, there exist legitimate business
cases that require access to compute on the data (e.g. for billing purposes or to produce an
insurance quote). Therefore, these third parties may request appropriate computations on the
data from the service provider, and can verify that the computation is performed correctly on
the correct data.
The efficiency requirement in this setting [7] is simply that verification is more efficient than
computation, which our construction in Section 4.3 certainly meets, having constant time veri-
fication.

B Security Models

B.1 Blind Verification

In Game 2 we capture the notion of blind verification in the HPVC setting. We require that a
verifier that does not hold the output retrieval key may not learn the result of the computation,
even though the verification key is public.

On line 2, the adversary is given the public parameters for the HPVC system and oracle
access (as specified for the Public Verification game), and must choose a challenge mode and
function F . The challenger selects an input X at random from the domain of F ; in VDC mode
this will comprise k data points, whilst in the PVC modes this comprises a single input (i.e.
k = 1). The challenger also chooses a server identity Si at random to simulate performing a
computation.

On line 6, X is embedded as the challenge input data according to the chosen mode (we
use the notation s and P here to accommodate RPVC-AC; in RPVC or VDC modes these
will be the dummy attribute set and policy respectively). The adversary is given the output of
Compute on the challenge, and wins if his guess y equals F (X). The advantage is defined by
subtracting the most likely value of F (X) for all F over all inputs to model the adversary’s a
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Game 3 ExpsSS-Rev
A

[
HPVC, 1`,F , qt

]
1: (ω?,O?, ψ?, S?, LF,X? , mode?)

$← A(1`,F , qt)
2: if ((mode? = V DC)) then (F ← S?, X? ← ψ?)
3: else (F ← O?, X? ← ω?)
4: QRev ← ε
5: t← 1

6: (PP,MK)
$← Setup(1`,F)

7: PKF
$← FnInit(F,MK,PP)

8: R
$← A(PKF ,PP)

9: AO(PKF ,PP)

10: if (R 6⊆ QRev) then return 0

11: (σ?, V K?, RK?)
$← ProbGen(mode?, (ω?, S?), LF,X? , PKF ,PP)

12: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

13: (RTθ? , τθ?)← BVerif(θ?, V K?,PP)

14: if (τθ? 6= (reject, ·)) and (S ∈ R)) then
15: return 1
16: else return 0

Oracle 1 OCertify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: if ((LF,X? ⊆ Li and Si /∈ R) or (t = qt and R 6⊆ QRev \ Si)) then return ⊥
2: QRev ← QRev \ S
3: return Certify(mode, Si, (O, ψ), Li,Fi,MK,PP))

Oracle 2 ORevoke(τF ′(X),MK,PP))

1: t← t+ 1
2: if (τF ′(X) = (accept, ·)) then return ⊥
3: if (t = qt and R 6⊆ QRev ∪ Si) then return ⊥
4: QRev ← QRev ∪ S
5: return Revoke(τF ′(X),MK,PP)

priori knowledge.

Definition 5. The advantage of a PPT adversary A in the BVerif game for an HPVC
construction, HPVC, for a family of functions F is defined as:

AdvBVerif
A (HPVC, 1`,F) =

Pr
[
1

$← ExpBVerif
A

[
HPVC, 1`,F

]]
−max

F∈F

(
max

y∈Ran(F )
( Pr
X∈Dom(F )

[F (X) = y])

)
.

HPVC is secure with respect to blind verification if, for all PPT adversaries A,

AdvBVerif
A (HPVC, 1`,F) 6 negl(`).

B.2 Selective, Semi-static Revocation

Revocation requires that, if a server is detected as misbehaving, i.e. the BVerif algorithm
outputs τF (X) = (reject, Si), then any subsequent evaluations by Si should be rejected. This
notion inherits the selective, semi-static restrictions from the revocation mechanism of the
underlying rkDPABE scheme in our construction. The adversary must first select its challenge
parameters, which the challenger can parse to learn F and X? for the challenge computation.
The challenger maintains a time period t which is incremented during Revoke oracle queries,
and a list QRev of currently revoked entities. On line 4, the adversary must choose a list R of
servers to be revoked during the challenge generation (which we assume will be at time qt, given
as an input to the game).
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The adversary is then given oracle access to the functions FnInit(·,MK,PP), Register(·,MK,PP),
Certify(·, ·, (·, ·), ·, ·,MK,PP) and Revoke(·,MK,PP), denoted by O. Certify and Revoke queries
are handled as specified in Oracles 1 and 2. The Certify oracle returns ⊥ if the resulting evalua-
tion key would enable evaluation of the challenge computation. After finishing this query phase
(and in particular after qt Revoke queries), the challenge is created. The adversary wins if it
outputs any result (even a correct encoding of F (X?)) that is accepted as a valid response from
any server that was revoked at the time of the challenge.

Definition 6. The advantage of a PPT adversary A making a polynomial number, q, of oracle
queries, of which qt are Revoke queries, in the sSS-Rev game for an HPVC construction,
HPVC, for a family of functions F is defined as:

AdvsSS-Rev
A (HPVC, 1`,F , qt) = Pr

[
1

$← ExpsSS-Rev
A

[
HPVC, 1`,F , qt

]]
.

HPVC is secure with respect to selective semi-static revocation if, for all PPT adversaries A,

AdvsSS-Rev
A (HPVC, 1`,F , qt) 6 negl(`).

B.3 Selective Authorised Computation

The notion of selective authorised computation, presented in Game 4, ensures that only a server
that satisfies the additional authorisation policy specified in the encoded input may perform a
given computation and hence be rewarded for correct work. A result generated by an unautho-
rised server should be rejected (even if the result itself is correct). Note that this game is only
meaningful when the challenge parameters are generated in RPVC-AC mode.

Game 4 ExpsAuthC
A

[
HPVC, 1`,F

]
1: (F,X?, P )

$← A(1`)

2: (PP,MK)
$← Setup(1`,F)

3: PKF
$← FnInit(F,MK,PP)

4: (σ?, V K?, RK?)
$← ProbGen(RPVC-AC, (x, P ), {l(F )}, PKF ,PP)

5: θ?
$← AO(σ?, V K?, RK?, PKF ,PP)

6: (RT ?, τ?)← BVerif(θ?, V K?,PP)
7: if (τ? 6= (reject, ·)) then return 1

8: else return 0

This is a selective notion due to the selectively secure rkDPABE primitive we use in our
construction; as such, the game begins with the adversary choosing a challenge function F , a
challenge input X? and an authorisation policy P . The challenger initialises the system and gen-
erates an encoded input for the challenge computation. The adversary is given the resulting pa-
rameters and oracle access to FnInit(·,MK,PP), Register(·,MK,PP), Certify(·, ·, (·, ·), ·, ·,MK,PP)
and Revoke(·,MK,PP), denoted by O. The Certify oracle is handled as specified in Oracle 3.
It returns a failure symbol ⊥ if the queried attributes ψ satisfies the authorisation policy P ,
else the adversary could trivially produce a valid response as an authorised entity. Otherwise,
it simply runs the Certify algorithm. The adversary must return a result which is accepted by
a verifier.

Definition 7. The advantage of a PPT adversary A in the sAuthC game for an HPVC
construction, HPVC, for a family of functions F is defined as:

AdvsAuthC
A (HPVC, 1`,F) = Pr

[
1

$← ExpsAuthC
A

[
HPVC, 1`,F

]]
.
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Oracle 3 OCertify(mode, Si, (O, ψ), Li,Fi,MK,PP)

1: if (ψ ∈ P ) then return ⊥
2: return Certify(mode, Si, (O, ψ), Li,Fi,MK,PP)

HPVC is secure with respect to selective authorised computation if, for all PPT adversaries
A,

AdvsAuthC
A (HPVC, 1`,F) 6 negl(`).

C Proofs of Security

Theorem 1. Given a secure IND-sHRSS rkDPABE scheme for a class of Boolean functions F
closed under complement, a one-way function g, and a signature scheme secure against EUF-
CMA, then HPVC, defined by Algorithms 1 to 9, is secure in the sense of selective public
verifiability, blind verification, selective semi-static revocation and authorised .

Informally, public verifiability and revocation reduce to the indistinguishability of rkDPABE
ciphertexts which allows us to replace the message for the unsatisfied function (which cannot
be decrypted) with the challenge for a one-way function game. Then an adversary against these
games can attack the verification token for this message. The proof of blind verification relies
on a probability argument showing that adversarial inputs do not help in determining F (X).

C.1 Proof of Public Verifiability

Lemma 1. HPVC, given in Algorithms 1–9, is secure with respect to selective public verifiability
(Game 1) under the same assumptions as in Theorem 1.

Proof. Let AV C be an adversary with non-negligible advantage against Game 1 when instanti-
ated with Algorithms 1–9. We define the following three games:

• Game 0. This is the selective public verifiability game as in Game 1.

• Game 1. This differs from Game 0 in that ProbGen no longer returns an encryption ofm0

and m1. Instead, we choose a random message m′ 6= m0,m1. Recall that two ciphertexts
are created during ProbGen (encrypting m0 and m1) and that one is associated with the
function F , and the other with the complement function F . Now, only one of F and F is
satisfied by the input data X?. We replace the plaintext associated with the unsatisfied
function by m′ which is unrelated to m0,m1 and the verification keys.

• Game 2. This is the same as Game 1 except that we implicitly set m′ to be the challenge
input w in the one-way function game.

By hopping from Game 0 to Game 2, we show that AV C can be used to construct an adversary
that inverts the one-way function g.

Game 0 to Game 1. We begin by showing that there is a negligible distinguishing advantage
between Game 0 and Game 1. Suppose otherwise, that AV C can distinguish the two games
with non-negligible advantage δ. We construct an adversary AABE that uses AV C as a sub-
routine to break the IND-sHRSS security of the rkDPABE scheme (Game 5). In this proof, we
consider RPVC-AC mode to be a special case of RPVC (sincethe adversary can be authorised
to evaluate the challenge computation); therefore we discuss only on RPVC and VDC modes.
Let C a challenger playing the IND-sHRSS game with AABE , who in turn acts as a challenger
in the selective public verifiability game for AV C :
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1. AV C is given the security parameter, and declares its choice of challenge input parameters
(ω?,O?, ψ?, S?, ), a set of labels LF,X? and mode.

2. AABE must send a challenge input (ω̃, S̃) and a time period t̃ to the challenger. It first
sets t̃ = 1. Observe that in VDC mode, S? corresponds to the function F and ψ? is the challenge
input data X?. In RPVC mode, O? = F and ω corresponds to the challenge input X?. The
other inputs are either dummy attributes or policies that are trivially satisfied by the dummy
attribute. Now, using the relevant inputs, AABE computes r = F (X?).

• If the challenge mode is RPVC, set ω̃ = Aω? = AX? , and

S̃ = S? ∧
∧

lj∈LF,X

lj = {{T 0
S}} ∧ {l(F )}.

• If the challenge mode is VDC, we want to set (ω̃, S̃) such that the pair is not satisfied by
the challenge input.

– If r = 1: set ω̃ = Aω? = {T 0
O}, and

S̃ = S? ∧
∧

lj∈LF,X

lj = F ∧ {l(xi,j)}xi,j∈X? .

– If r = 0: set ω̃ = Aω? = {T 0
O}, and

S̃ = S? ∧
∧

lj∈LF,X

lj = F ∧ {l(xi,j)}xi,j∈X? .

3. C runs the DPABE.Setup algorithm on the security parameter to generate MPKABE and
MSKABE and gives MPKABE to AABE .

4. AABE sends R = ε (i.e. an empty list) to C and simulates running HPVC.Setup such that
the outcome is consistent with MPKABE. If mode = VDC, it runs lines 3 to 5 as written, sets
MPK0

ABE = MPKABE as given by C, and implicitly sets MSK0
ABE = MSKABE (any use of

MSK0
ABE will be simulated using oracle queries to C). Otherwise, it sets MPKr

ABE to be that
issued by C, and implicitly sets MSKr

ABE to be that held by the challenger. In both cases, it
also runs DPABE.Setup itself to generate a second DP-ABE system.

5. AABE runs HPVC.FnInit as written. To generate the challenge input, AABE begins by
choosing two random bits, b (which it defines to be RKF,X?) and s, and three random messages
m0, m1 and m′ from the message space.

AABE sends m0 and m1 to C as its challenge inputs. C chooses b?
$← {0, 1} and returns

CT ? ← DPABE.Encrypt(mb? , (ω̃, S̃), t̃,MPKABE).

• In RPVC mode, AABE sets cb to be CT ? and generates

c1−b ← DPABE.Encrypt(m′, (ω̃,S? ∧
∧

lj∈LF,X

lj), t̃,MPK1
ABE)

itself. It sets V Kb = g(ms) and V K1−b = g(m′).

• In VDC mode:

– If r = 1:
AABE generates cb ← DPABE.Encrypt(m′, (ω̃,S?)∧

∧
lj∈LF,X lj , t̃,MPK0

ABE) itself, and

sets c1−b to be CT ?. It sets V Kb = g(m′) and V K1−b = g(ms).

– If r = 0:
AABE generates c1−b ← DPABE.Encrypt(m′, (ω̃,S? ∧

∧
lj∈LF,X lj), t̃,MPK0

ABE) itself

and sets cb to be CT ?. It sets V Kb = g(ms) and V K1−b = g(m′).
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Finally, AABE sets σF,X? = (cb, c1−b), V KF,X? = (V Kb, V K1−b, LReg) and RKF,X? = b. Note
that s is essentially AABE ’s guess of b? chosen by C.

6. AV C is given these outputs and oracle access which is handled as follows.

• FnInit(·,MK,PP) and Register(·,MK,PP) can be run as written.

• Certify(mode, Si, (O, ψ), Li,Fi, Si,MK,PP): To generate the evaluation key for the queried
parameters, AABE uses the KeyGen oracle in the rkDPABE game. It first updates the
relevant list entries as specified. Then it sets O′ = O and ψ′ = Aψ ∪

⋃
lj∈Li lj and makes

an oracle query to C for OKeyGen(Si, (O′, ψ′),MK,PP) as in Oracle 4. C shall generate a
rkDPABE decryption key SKO′,ψ′ if and only if ω̃ 6∈ O′ or ψ′ 6∈ S̃ or Si ∈ R.

Observe, that Si 6∈ R since we set R to be empty.

Now, by construction (Step 2), ψ′ ∈ S̃ only if the labels {lj}lj∈Li ⊇ {lk}lk∈LF,X? . If the
labels do not satisfy this relation, then C may generate the key, which AABE will receive
as SK0

ABE.

If, on the other hand, the labels do satisfy this relation, then because each label uniquely
describes a single element (either a function or a data point):

– In RPVC mode: as both Li and LF,X? are singleton sets, and {lj}lj∈Li ⊇ {lk}lk∈LF,X? ,
it must be that Li = LF,X? = {l(F )} and hence, by uniqueness of the labels, O =
O? i.e. the adversary has requested an evaluation key for the challenge function F .
However, in Step 4, we assigned the ABE system owned by the challenger (with master
secret MSKr

ABE) precisely such that O? is not satisfied by the challenge input ω̃, and
therefore O′ is not satisfied either – that is, ω̃ 6∈ O′ and hence C can generate a valid
key which AABE will store as SKr

ABE.

– In VDC mode: {lk}lk∈LF,X? ⊆ {lj}lj∈Li ⇒ {l(xi,k)}xi,k∈X? ⊆ {l(xi,j)}xi,j∈Di ⇒ X? ⊆
Di i.e. by uniqueness of the labels, the adversary has requested an evaluation key for
a superset of the challenge input data – that is, Di contains X? and possibly some
additional data points. Now, if X? ⊆ Di then, additionally Di must satisfy either F
or F to satisfy S̃. However, note that in Step 2, S̃ was chosen specifically such that it
is not satisfied by the challenge input X? and therefore by Di. Hence C may generate
a valid key which AABE will store as SK0

ABE.

AABE also must request an update key by making a KeyUpdate oracle query to C. C will
return a valid key unless the current time period is t = t̃ and R 6⊆ QRev. Observe that the
second clause is never satisfied since R = ε and hence is a subset of any QRev. Hence C
may generate a valid update key.

If in RPVC mode, AABE additionally generates a key SK1−r
ABE using the second system

parameters (which he owns) for (O, ψ).

• Revoke(τ(O,ψ),(ω,S), (O, ψ), (ω,S),MK,PP): In response to a Revoke query, AABE runs Al-
gorithm 9 as written except that it will make a KeyUpdate oracle query to C for the update
key for to the ABE system owned by the challenger (UKr

LRev,t
in the case of RPVC and

UK0
LRev,t

in the case of VDC).

C will generate a valid update key unless the time period is t̃ = qt and there exists a server
on R that is not currently revoked. However, as R was defined to be an empty list, C can
always return a valid key.

Eventually, AV C outputs θ? which it believes is a valid forgery (i.e. that it will be accepted yet
does not correspond to the correct value of F (X?)).

7. AABE parses θ? as (db, d1−b, Si? , γ) and using the retrieval key RKF,X? = b, finds d0
and d1. One of d0 and d1 will be ⊥ (by construction) and we denote the other value by Y . If
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g(Y ) = g(ms), AABE outputs a guess b′ = s and otherwise guesses b′ = (1− s).
If s = b? (the challenge bit chosen by C), we observe that the above corresponds to Game

0 (since the verification key comprises g(m′) where m′ is the message a legitimate server could
recover, and g(ms) where ms is the other plaintext). Alternatively, s = 1− b? and the distribu-
tion of the above experiment is identical to Game 1 (since the verification key comprises the
legitimate message and a random message m1−b? that is unrelated to the ciphertext).

Now, we consider the advantage of AABE in the IND-sHRSS game. Recall that, by as-
sumption, AV C has a non-negligible advantage δ in distinguishing between Game 0 and Game
1 – that is, if ExpiAV C

[
HPVC, 1`,F

]
denotes running AV C in Game i,∣∣∣Pr

[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]]∣∣∣ > δ.

Pr[b′ = b?] = Pr [s = b?] Pr
[
b′ = b?|s = b?

]
+ Pr [s 6= b?] Pr

[
b′ = b?|s 6= b?

]
=

1

2
Pr [g(Y ) = g(ms)|s = b?] +

1

2
Pr [g(Y ) 6= g(ms)|s 6= b?]

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
+

1

2
(1− Pr [g(Y ) = g(ms)|s 6= b?])

=
1

2
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
+

1

2

(
1− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]])
=

1

2

(
Pr
[
1

$← ExpGame 0
AV C

[
HPVC, 1`,F

]]
− Pr

[
1

$← ExpGame 1
AV C

[
HPVC, 1`,F

]]
+ 1
)

>
1

2
(δ + 1)

Hence, AdvAABE >
∣∣Pr [b? = b′]− 1

2

∣∣ > ∣∣1
2(δ + 1)− 1

2

∣∣ > δ
2 . If AV C has advantage δ at distin-

guishing these games then AABE can win the IND-sHRSS game with non-negligible probabil-
ity. Thus since we assumed the rkDPABE scheme to be secure, we conclude that AV C cannot
distinguish Game 0 from Game 1 with non-negligible probability.

Game 1 to Game 2. The transition from Game 1 to Game 2 sets the value of m′ to
correspond to the challenge w in the one-way function inversion game (rather than be a randomly
chosen message). We argue that the adversary has no distinguishing advantage between these
games since the new value is independent of anything else in the system, bar the verification key
g(w), and hence looks random to an adversary with no additional information (in particular,
AV C does not see the challenge for the one-way function).

Final Proof We now show that using AV C in Game 2, AABE can invert the one-way function
g – that is, given a challenge z = g(w) we can recover w. Specifically, during ProbGen, we choose
the messages as follows:

• if r = 1, we implicitly set m1−b to be w by setting the corresponding verification key
component to be z. We choose mb and the other verification key component randomly as
usual.

• if r = 0, we implicitly set mb to be w by setting the corresponding verification key
component to be z. We choose m1−b and the other verification key component randomly
as usual.

Now, if AV C is successful, it will output a forgery comprising the plaintext encrypted under the
function F or F that evaluates to 0. By construction, this will be w (and the adversary’s view
in consistent since the verification key is simulated correctly using z). AABE can forward this
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result to C to invert the one-way function with the same non-negligible probability that AV C
has against the selective public verifiability game.

We conclude that if the rkDPABE scheme is IND-sHRSS secure and the one-way function
is hard-to-invert, then the HPV C as defined by Algorithms 1–9 is secure in the sense of selective
public verifiability.

C.2 Proof of Blind Verification

Lemma 2. HPVC, given in Algorithms 1–9, is secure with respect to blind verification (Game
2) under the same assumptions as in Theorem 1.

Proof. We first argue that only θF (X) and V KF,X may be useful to the adversary, and then
show that these inputs do not provide an advantage at guessing F (X).

Over the course of the game, the adversary sees the following inputs: θF (X), V KF,X , PKF ,
PP and the outputs from oracle queries. By construction, PKF = PP which is defined at the
beginning of the game; hence PP clearly does not reveal any information about F (X). As the
adversary does not see the challenge ciphertexts, the ABE public parameters are not helpful
(else the ABE scheme is not IND-CPA secure), and neither is LReg which contains only function
lists, data labels that do not reveal the data values, and signature verification keys.

The inputs θF (X) and V KF,X clearly do rely on the values of X and F (X) and we will
consider these shortly. We first consider oracle access:

• FnInit(·,MK,PP): FnInit queries simply return the public parameters which we considered
previously as an explicit adversarial input;

• Register(·,MK,PP): queries to this oracle generate a signing key for a server Si. However,
this does not relate to the retrieval key or the choice of X;

• Certify(·, ·, (·, ·), ·, ·,MK,PP): a call to this oracle will add an entry to LReg comprising a
function identifier and a set of data labels (which we have assumed not to leak the data
values themselves). It also creates an ABE decryption key. Again, as the adversary only
sees plaintexts and does not see the ciphertexts forming the challenge encoded input, such
a key is not useful.

Hence, oracle access does not help the adversary distinguish which input was selected and hence
the value of F (X). Thus, the only inputs that may aid the adversary are θF (X) and V KF,X ,
and we restrict our attention to these.

Recall that a well-formed response by the server will be either (mb,⊥) or (⊥,m1−b) according
to RKF,X . In detail this means, where RKF,X = b:

• if F (X) = 1, θF (X) =

{
(m0,⊥), if b = 0

(⊥,m0), if b = 1

• if F (X) = 0, θF (X) =

{
(⊥,m1), if b = 0

(m1,⊥), if b = 1

Note that V KF,X = (g(mb), g(m1−b)) (excluding LReg which we discussed above). We
denote by V the adversary’s view of θF (X) and V KF,X – that is, V = (db, d1−b, g(mb), g(m1−b))
if θF (X) = (db, d1−b) and V KF,X = (g(mb), g(m1−b)).

We now show that the probability of the adversary correctly guessing the value of F (X)
given a particular view V is identical to his success at guessing without seeing V. Thus, he
has no advantage at guessing F (X) over his a priori knowledge of the distribution of F . Let
V1 = (m′,⊥, g(m′), g(m1−b)) and let V2 = (⊥,m′′, g(mb), g(m′′)). We claim that these are the
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only possible views – A sees one message (either m0 or m1, drawn uniformly from the same
distribution) along with g applied to that message and to a different (unseen) message.

Note that: (i) the value of F (X) and b
$← {0, 1} are independent; (ii) Pr[b = 1] = 1

2 ; and
(iii) Pr[F (X) = 0] + Pr[F (X) = 1] = 1 since F is Boolean. Now,

Pr[V = V1] = Pr[(F (X) = 1 ∧ b = 0) ∨ (F (X) = 0 ∧ b = 1)]

= Pr[F (X) = 1 ∧ b = 0] + Pr[F (X) = 0 ∧ b = 1]

= Pr[F (X) = 1] Pr[b = 0] + Pr[F (X) = 0] Pr[b = 1] by (i)

=
1

2
Pr[F (X) = 1] +

1

2
Pr[F (X) = 0]

=
1

2
(Pr[F (X) = 0] + Pr[F (X) = 1])

=
1

2
(1)

Pr[F (X) = 0|V = V1] =
Pr[F (X) = 0 ∧ V = V1]

Pr[V = V1]

=
Pr[F (X) = 0 ∧ b = 1]

Pr[V = V1]

=
Pr[F (X) = 0] Pr[b = 1]

Pr[V = V1]
by (i)

=
1
2 Pr[F (X) = 0]

1
2

by (1)

= Pr[F (X) = 0]

Pr[V = V2] = Pr[(F (X) = 1 ∧ b = 1) ∨ (F (X) = 0 ∧ b = 0)]

= Pr[F (X) = 1 ∧ b = 1] + Pr[F (X) = 0 ∧ b = 0]

= Pr[F (X) = 1] Pr[b = 1] + Pr[F (X) = 0] Pr[b = 0] by (i)

=
1

2
Pr[F (X) = 1] +

1

2
Pr[F (X) = 0]

=
1

2
(Pr[F (X) = 0] + Pr[F (X) = 1])

=
1

2
(2)

Pr[F (X) = 0|V = V2] =
Pr[F (X) = 0 ∧ V = V2]

Pr[V = V2]

=
Pr[F (X) = 0 ∧ b = 0]

Pr[V = V2]

=
Pr[F (X) = 0] Pr[b = 0]

Pr[V = V2]
by (i)

=
1
2 Pr[F (X) = 0]

1
2

by (2)

= Pr[F (X) = 0]

A symmetric argument holds for F (X) = 1. We conclude that knowledge of the adversarial
inputs provides no advantage in guessing F (X) other than that which could already be guessed
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(i.e. inputs leak no information about F (X)).

C.3 Proof of Revocation

Lemma 3. HPVC, given in Algorithms 1–9, is secure in the sense of selective, semi-static
revocation (Game 3) under the same assumptions as in Theorem 1.

Proof. We reduce the security of the selective, semi-static revocation game to the IND-sHRSS
security of the rkDPABE scheme (Game 5). To achieve a contradiction, let AV C be an adversary
with non-negligible advantage against the selective, semi-static revocation game (Game 3) when
instantiated with Algorithms 1–9 and making qt Revoke queries. We show that, if such an AV C
exists, then it can be used to construct an adversary AABE that can break the IND-sHRSS
security of the revocable-key DPABE scheme. Again, we consider only RPVC and VDC modes
here (and view RPVC-AC as a special case of RPVC) as the adversary should be authorised (in
terms of the authorisation policy, if not in terms of revocation) for the challenge computation.
Let C be a challenger for the IND-sHRSS game playing with AABE , who in turn acts as the
challenger in the selective, semi-static revocation game with AV C .

1. AV C selects its challenge inputs (ω?,O?, ψ?,S?, LF,X? , mode?) for a challenge computation
of F (X?).

2. AABE initialises the list QRev = ε and time parameter t = 1. It then forms its own
challenge input as follows. It sets t? = qt. Then, it sets ω̃ = Aω? and sets S̃ = S? ∧

∧
lj∈LF,X? lj .

It sends t?, ω̃ and S̃ to C.
3. C runs DPABE.Setup and returns the public parameters MPKABE to AABE who stores

them as MPK0
ABE.

4. AABE now simulates the HPVC.Setup algorithm such that the output is consistent with
the public parameters generated by C. It runs Algorithm 1 as written, with the exception of
line 1, since MSK0

ABE and MPK0
ABE was already generated by C. AABE also runs HPVC.FnInit

as written, and gives the public parameters and public delegation key to AV C .
5. AV C chooses a challenge revocation list R, which AABE forwards to C.
6. AV C is now given oracle access to which AABE can respond as follows:

• Queries to HPVC.FnInit and HPVC.Register can be run as written.

• Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): AABE runs Oracle 1.
To simulate running the HPVC.Certify algorithm, AABE runs Algorithm 4 as written with
the exception of lines 4 and 5, as these depend on MSK0

ABE held by C.
To simulate line 4, AABE makes a query to C forOKeyGen(Si, (O, Aψ∪

⋃
lk∈Li lk),MSK0

ABE,MPK0
ABE).

C responds by running Oracle 4 which will return a valid key unless (ω̃ ∈ O) and (Aψ ∪⋃
lk∈Li lk ∈ S̃) and (Si /∈ R).

If (Aψ ∪
⋃
lk∈Li lk 6∈ S̃) then C can return a valid decryption key. Otherwise, we observe

that (Aψ∪
⋃
lk∈Li lk) ∈ (S∧

∧
lj∈LF,X? lj) only if {lk}lk∈Li ⊇ {lj}lj∈LF,X? . As labels uniquely

label the objects they relate to (either functions or data points), this implies LF,X? ⊆ Li.
However, in this case, by the first check in Oracle 1, AABE would have returned ⊥ without
querying KeyGen if Si 6∈ R, to avoid certifying AV C for the challenge computation.

Thus, at the point of making a KeyGen query, if (Aψ∪
⋃
lk∈Li lk ∈ S̃) then Si ∈ R. Therefore,

C can respond to all queries made to it during this phase with a valid key which AABE
can use to simulate line 4 correctly.

To simulate line 5 of HPVC.Certify, AABE makes a query to C of the formOKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE).
C responds as written in Oracle 5 – that is, it returns a valid update key unless t = t?

and R 6⊆ QRev. However, note that AABE chose t? = qt, and at the point of calling the

26



KeyUpdate oracle, the list QRev = QRev \Si. Therefore, if C would return ⊥ in response to
this query, then AABE would already have returned ⊥ as a result of the checks performed
in Oracle 1. Hence, for all queries made to C, a valid update key is returned and line 4 is
simulated correctly.

• Queries of the form HPVC.Revoke(τF (X),MK,PP): AABE runs Oracle 2. To simulate
running the HPVC.Revoke algorithm, AABE runs Algorithm 9 as written with the exception
of line 4. Instead, AABE makes a query to C for OKeyUpdate(QRev, t,MSK0

ABE,MPK0
ABE).

Note that, according to Oracle 2, AABE would have returned ⊥ if t = qt (where, recall,
qt = t?) and R 6⊆ QRev \ Si. This corresponds directly to the conditions wherein C cannot
form a valid update key according to Oracle 5 (since, if HPVC.Revoke is called, Si was
already removed from the list QRev). Hence, for all queries, C can form a valid update key
and AABE can simulate the expected behaviour.

7. Eventually (after qt Revoke queries), AV C finishes this query phase. AABE checks whether
the list of revoked entities is compatible with the challenge list R and returns 0 if not.

8. AABE must now generate the challenge input for AV C . To do so, it chooses three dis-
tinct messages, m0,m1 and m′, uniformly at random from the messagespace. It also chooses
a random bit b which it defines to be RKF,X? . It sends m0 and m1 to C as its challenge in-

puts in the IND-sHRSS game. C chooses a bit b? uniformly at random and returns CT ?
$←

Encrypt(mb? , ω̃, S̃, t?,MPK0
ABE). AABE sets cb to be CT ? and generates c1−b himself by en-

crypting m′ as specified on lines 4 and 5 of Algorithm 5.
Finally, AABE selects another bit s uniformly at random and, if b = 0, it sets V KF,X? =
(g(ms), g(m′), LReg), or otherwise it sets V KF,X? = (g(m′), g(ms), LReg). Note that s can be
thought of as AABE ’s guess as to the value of b?.

9. AV C is given the resulting parameters and again given oracle access whichAABE responds
to as in Step 6.

10. Eventually, AV C outputs its result θ? which, in order to appear valid, should contain
exactly one non-⊥ plaintext; we denote this plaintext by y. If g(y) = g(ms), AABE guesses
b′ = s. If g(y) = g(m′), AABE guesses randomly b′ ← {0, 1} (as AV C did not respond for
either m0 or m1, it reveals no information to aid AABE). Otherwise, AABE aborts as AV C was
not successful (either for legitimate reasons or because AABE chose s incorrectly and issued a
malformed challenge).

By assumption, AV C has non-negligible advantage δ against the selective, semi-static revo-
cation game – that is, Pr [g(y) = g(ms)] + Pr [g(y) = g(m′)] = δ. Therefore,

Pr
[
b′ = b?

]
= Pr

[
b′ = b?|g(y) = g(ms)

]
Pr [g(y) = g(ms)]

+ Pr
[
b′ = b?|g(y) = g(m′)

]
Pr
[
g(y) = g(m′)

]
= Pr [s = b?] Pr [g(y) = g(ms)] + Pr

[
b̃ = b?

]
Pr
[
g(y) = g(m′)

]
=

1

2
Pr [g(y) = g(ms)] +

1

2
Pr
[
g(y) = g(m′)

]
=

1

2
(Pr [g(y) = g(ms)] + Pr

[
g(y) = g(m′)

]
)

=
δ

2

Hence, AdvAABE ≥
∣∣Pr [b? = b′]− 1

2

∣∣ ≥ ∣∣ δ2 − 1
2

∣∣ ≥ 1
2(δ − 1), which is non-negligible. However,

the DPABE scheme was assumed to be secure in the sense of IND-sHRSS and hence such an
adversary as AABE may not exist. Therefore, our assumption on AV C must be wrong, and no
adversary with non-negligible advantage against the selective, semi-static revocation game can
exist.
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C.4 Proof of Authorised Computation

Lemma 4. HPVC, given in Algorithms 1–9, is secure with respect to selective authorised com-
putation (Game 4) under the assumptions in Theorem 1.

Proof. We reduce the security of the selective authorised computation game to the IND-sHRSS
security of the underlying revocable-key DPABE scheme (Game 5). To achieve a contradiction,
let AV C be an adversary with non-negligible advantage against the selective authorised compu-
tation game (Game 4) when instantiated with Algorithms 1–9. We show that, if such an AV C
exists, then it can be used to construct an adversary AABE that can break the IND-sHRSS
security of the revocable-key DPABE scheme. Note that this notion is only meaningful in
RPVC-AC mode. Let C be a challenger for the IND-sHRSS game playing with AABE , who in
turn acts as the challenger in the selective authorised computation game with AV C .

1. AV C first selects its challenge inputs F,X? and authorisation policy P .
2. AABE defines its own challenge inputs for the IND-sHRSS game by setting t? = 1,

ω? = AX? and S? = P ∧ {l(F )}, and sends these to C.
3. C runs the Setup algorithm for the DPABE scheme and returns the public parameters

MPKABE to AABE who stores them as MPK0
ABE.

4. AABE now simulates the HPVC.Setup algorithm such that the output is consistent with
MPK0

ABE. It runs Algorithm 1 as written, with the exception of line 1, since MSK0
ABE and

MPK0
ABE are defined to be those generated by C. AABE also runs HPVC.FnInit and sends an

empty revocation list R = ε to C.
5. AABE must next create the challenge input for AV C . To do so, it chooses three dis-

tinct messages, m0,m1 and m′, uniformly at random from the messagespace. It also chooses
a random bit b which it defines to be RKF,X? . It sends m0 and m1 to C as its challenge in-

puts in the IND-sHRSS game. C chooses a bit b? uniformly at random and returns CT ?
$←

Encrypt(mb? , ω
?, S?, t?,MPK0

ABE). AABE sets cb to be CT ? and generates c1−b himself by en-
crypting m′ as specified on lines 4 and 5 of Algorithm 5. Finally, AABE chooses another bit
s uniformly at random and, if b = 0, it sets V KF,X? = (g(ms), g(m′), LReg), or otherwise sets
V KF,X? = (g(m′), g(ms), LReg).

6. AABEgives the resulting parameters to AV C along with oracle access which AABE can
handle as follows:

• Queries to HPVC.FnInit and HPVC.Register can be run as written.

• Queries of the form HPVC.Certify(mode, Si, (O, ψ), Li,Fi,MK,PP): AABE runs Oracle 3.
If the queried ψ satisfies the challenge authorisation policy P then AABE returns ⊥. Oth-
erwise it simulates running HPVC.Certify by running Algorithm 4 as written with the
exception of lines 4 and 5, as these depend on MSK0

ABE held by C. To simulate line 4,
AABE queries C for OKeyGen(Si, (O, Aψ ∪

⋃
lk∈Li lk),MSK0

ABE,MPK0
ABE). C will return ⊥

if (ω? ∈ O) and (Aψ ∪
⋃
lk∈Li lk ∈ S?) and (Si /∈ R). However, for the query to be made,

AABE must not have returned ⊥ in Oracle 3, and therefore ψ /∈ P , and so ψ /∈ S?. Hence,
C can return a valid decryption key SK0

ABE.

To simulate line 5, AABE queries C for OKeyUpdate(QRev, t,MSK0
ABE,MPK0

ABE). C re-
sponds as in Oracle 5 and returns a valid update key unless t = t? and R 6⊆ QRev.
However, as R was chosen to be empty, R ⊆ QRev for any QRev, and hence C can create a
valid update key.

• Queries of the form HPVC.Revoke(τF (X),MK,PP): AABE runs Algorithm 9 as written
with the exception of line 4. To simulate this line, AABE makes a query to C of the form
OKeyUpdate(LRev, t,MSK0

ABE,MPK0
ABE). As specified in Oracle 5, C will return a valid

key unless t = t? and R 6⊆ R). However, AABE chose R to be empty and so it is certainly a
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subset of any R, and in particular LRev. Hence, for all queries, C can form a valid update
key and AABE can simulate the expected behaviour.

7. Eventually, AV C finishes this query phase and outputs a result θ? corresponding to
F (X?), where AV C never received a key for a set of authorisation attributes s ∈ P . As θ?

should appear valid, it should comprise exactly one non-⊥ element which we denote by y.

8. If g(y) = g(ms), AABE guesses b′ = s. If g(y) = g(m′), AABE randomly guesses b′
$←

{0, 1} (as AV C did not respond for either m0 or m1, it reveals no information to aid AABE in its
IND-sHRSS game). Otherwise, AABE aborts as AV C was not successful (either for legitimate
reasons or because AABE chose s incorrectly and issued a malformed challenge).

By assumption, AV C has non-negligible advantage δ in the selective authorised computation
game – Pr [g(y) = g(ms)] + Pr [g(y) = g(m′)] = δ. Therefore,

Pr
[
b′ = b?

]
= Pr

[
b′ = b?|g(y) = g(ms)

]
Pr [g(y) = g(ms)]

+ Pr
[
b′ = b?|g(y) = g(m′)

]
Pr
[
g(y) = g(m′)

]
= Pr [s = b?] Pr [g(y) = g(ms)] + Pr

[
b̃ = b?

]
Pr
[
g(y) = g(m′)

]
=

1

2
Pr [g(y) = g(ms)] +

1

2
Pr
[
g(y) = g(m′)

]
=

1

2
(Pr [g(y) = g(ms)] + Pr

[
g(y) = g(m′)

]
)

=
δ

2

Hence, AdvAABE ≥
∣∣Pr [b? = b′]− 1

2

∣∣ ≥ ∣∣ δ2 − 1
2

∣∣ ≥ 1
2(δ− 1), which is non-negligible. However, as

the DPABE scheme was assumed to be IND-sHRSS secure, such an adversary can not exist.
Therefore, our assumption on AV C must be incorrect, and no adversary with non-negligible
advantage against the selective authorised computation game can exist.

D Additional Details for Revocable Dual-policy Attribute-based
Encryption

Revocation in ABE schemes was introduced by Attrapadung and Imai [4], and supports two
different modes: direct revocation and indirect revocation. Direct revocation allows users to
specify a revocation list at the point of encryption such that periodic re-keying is not required,
but encryptors must have knowledge of the current revocation list. In contrast, indirect revoca-
tion requires a time period to be specified at the point of encryption and an authority to issue
updated key material at each time period to enable non-revoked entities to update their key
to be functional during that time period. With the HPVC setting in mind, we choose to focus
on indirect revocation to minimise the workload of the client devices in terms of maintaining
synchronised revocation lists.

To implement a revocation mechanism in the KP-ABE setting, the policy is amended to
include an identifier of the entity owning the key, and the current time period is embedded into
the ciphertext. Update keys are issued for all non-revoked identities at each time period which
are used in combination with the decryption key to decrypt ciphertexts formed for particular
time periods – only if the entity was issued an update key for time t (i.e. was not revoked) can
they decrypt ciphertexts formed using t. We observe that, to define a revocable DP-ABE scheme,
the revocation mechanism can be embedded either, as above, in the KP-ABE functionality or
in the CP-ABE functionality. In more detail, decryption in DP-ABE is successful if and only if
both attribute sets satisfy their corresponding access structure. To prevent decryption, therefore,
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Game 5 ExpIND-sHRSS
A

[
RKDPABE , 1`,U

]
1: (t?, (ω?, S?)) $← A(1`,U)
2: (PP,MK)

$← Setup(1`,U)
3: R

$← A(PP)
4: (m0,m1)

$← AOKeyGen(·,(·,·),MK,PP)OKeyUpdate(·,·,MK,PP)(PP)
5: if (|m0| 6= |m1|) then return 0

6: b
$← {0, 1}

7: CT ?
$← Encrypt(mb, (ω

?, S?), t?,PP)
8: b′

$← AOKeyGen(·,(·,·),MK,PP)OKeyUpdate(·,·,MK,PP)(CT ?,PP)
9: return b′ == b

Oracle 4 OKeyGen(ID, (O, ψ),MK,PP):

1: if ((ω? ∈ O) and (ψ ∈ S?) and (ID /∈ R̃)) then return ⊥
2: return KeyGen(ID, (O, ψ),MK,PP)

Oracle 5 OKeyUpdate(R, t,MK,PP):

1: if ((t = t?) and (R̃ 6⊆ R)) then return ⊥
2: return KeyUpdate(R, t,MK,PP)

at least one attribute set should not satisfy the corresponding access structure. In this work,
we consider revocable DP-ABE using indirect revocation in the key-policy. Future work will
compare the efficiency of the two approaches.

Definition 8. An rkDPABE scheme is correct if for all messages m ∈ M, for all access
structures O,S ⊆ 2U \ {∅}, and for all attribute sets ω, ψ ⊆ U where ω ∈ O and ψ ∈ S,

Pr[(PP,MK)
$← Setup(1`,U), SK(O,ψ),ID

$← KeyGen(ID, (O, ψ),MK,PP),

CT(ω,S),t
$← Encrypt(m, (ω,S), t,PP), UKR,t

$← KeyUpdate(R, t,MK,PP),

m← Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP)]

= 1− negl(`).

The security model for rkDPABE is a natural extension of the IND-sHRSS game for an
indirectly revocable KP-ABE scheme and is presented in Game 5 and Oracles 4 and 5.

Definition 9. The advantage of a PPT adversary A in the IND-sHRSS game for an rkDPABE
construction DPABE is defined as:

AdvIND-sHRSS
A (DPABE , 1`,U) = Pr

[
1

$← ExpIND-sHRSS
A

[
DPABE , 1`,U

]]
− 1

2 .

An rkDPABE scheme is indistinguishable against selective-target with semi-static query
attack (IND-sHRSS) if for all PPT adversaries A,

AdvIND-sHRSS
A (RKDPABE , 1`,U) 6 negl(`).

D.1 Preliminaries

In this section we introduce some preliminary notions we require in order to construct a Revo-
cable Dual-policy Attribute-based Encryption scheme.

Access Structures and Linear Secret Sharing

Here we define access structures and linear secret sharing schemes recapped from [26]. These
are fundamental building blocks for ABE schemes.
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Definition 10 (Access Structure). Let P = {P1, P2, . . . , Pn} be a set of parties (or attributes).
A collection A ⊆ 2P is monotone if for all B,C we have that if B ∈ A and B ⊆ C then
C ∈ A. An access structure (resp., monotonic access structure) is a collection (resp., monotone
collection) A ⊆ 2P \ {∅}. The sets in A are called the authorised sets and the sets not in A are
called unauthorised sets.

Definition 11 (Linear Secret Sharing Schemes (LSSS)). Let P be a set of parties. Let M be
a matrix of size l × k. Let π : {1, . . . , l} → P be a function that maps a row to a party for
labeling. A secret sharing scheme Π for access structure A over a set of parties P is a linear
secret-sharing scheme in Zp and is represented by (M,π) if it consists of two polynomial-time
algorithms:

• Share(M,π): The algorithm takes as input s ∈ Zp which is to be shared. It randomly chooses
y2, . . . , yk ∈ Zp and let v = (s, y2, . . . , yk). It outputs Mv as a vector of l shares. The
share λπ(i) := Mi · v belongs to party π(i), where we denote Mi as the ith row in M .

• Recon(M,π): The algorithm takes as input an authorised set S ∈ A. Let I = {i : π(i) ∈ S}.
It outputs reconstruction constants {(i, µi)}i∈I such that the secret can be reconstructed as
s =

∑
i∈I µi · λπ(i).

We require the following important fact [26] in the proof of our construction (cf. Appendix
D.3).

Proposition 1. Let (M,π) be a LSSS for access structure A over a set of parties P, where
M is a matrix of size l × k. For all unauthorised sets S /∈ A, there exists a polynomial time
algorithm that outputs a vector w = (w1, . . . , wk) ∈ Zkp such that w1 = −1 and for all i ∈ I it
holds that Mi · w = 0.

In Appendix D.2 we make use of Lagrange interpolation as the reconstruction algorithm for
LSSSs.

Definition 12 (Lagrange Interpolation). For i ∈ Z and S ⊆ Z, the Lagrange basis polynomial
is defined as ∆i,S(z) =

∏
j∈S,j 6=i

z−j
i−j . Let f(z) ∈ Z[z] be a d-th degree polynomial. If |S| = d+1,

from a set of d+ 1 points {(i, f(i))}i∈S, one can reconstruct f(z) as

f(z) =
∑
i∈S

f(i) ·∆i,S(z).

In our scheme in Appendix D.2, we especially use the interpolation for a first degree polyno-
mial. In particular, let f(z) be a first degree polynomial, one can obtain f(0) from two points
(i1, f(i1)), (i2, f(i2)) where i1 6= i2 by computing

f(0) = f(i1)
i2

i2 − i1
+ f(i2)

i1
i1 − i2

.

Bilinear Maps and Hardness Assumptions

Here we review the notions of bilinear maps and the hardness assumptions on which we base
the security of our scheme. We follow the formlisation in [4, 5].

Definition 13 (Bilinear Map). Let G and GT be multiplicative groups of order p, with g a
generator of G. A bilinear map is a map e : G×G→ GT where:

1. e is bilinear: for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab

2. e is non-degenerate: e(g, g) 6= 1
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We say that G is a bilinear group if the group action in G can be computed efficiently and there
exists GT for which e : G×G→ GT is efficiently computable.

Definition 14. Let G be a bilinear group of prime order p. The Decisional q Bilinear Diffie-
Hellman Exponent problem (q-BDHE) in G is as follows. Given a vector(

g, h, ga, g(a
2), . . . , g(a

q), g(a
q+2), . . . , g(a

2q), Z
)
∈ G2q+1 ×GT

as input, determine Z = e(g, h)a
q+1

. We write gi to denote ga
i ∈ G. Let yg,a,q = (g1, . . . , gq, Gq+2, g2q).

An algorithm A that outputs b ∈ {0, 1} has advantage ε in solving the Decisional q-BDHE prob-
lem in G if

|Pr[A
(
g, h,yg,a,q, e(gq+1, h)

)
= 0]− Pr[A(g, h,yg,a,q, Z) = 0]| ≥ ε,

where the probability is over the random choices of generators g, h ∈ G, a ∈ Zp, Z ∈ GT , and
the randomness of A. We refer to the distribution on the left as PBDHE and the one on the
right as RBDHE. The Decisional q-BDHE assumption holds in G if no polynomial-time A has
a non-negligible advantage.

Terminology for Binary Trees

Let L = {1, . . . , n} be the set of leaves of a complete binary tree. Let X be the set of node
names via some systematic naming order. For a leaf i ∈ L, let Path(i) ⊂ X be the set of nodes
on the path from node i to the root (including i and the root). For R ⊆ L, let Cover(R) ⊂ X
be defined as follows. First mark all the nodes in Path(i) if i ∈ R. Then Cover(R) is the set of
all unmarked children of marked nodes. It can be shown to be the minimal set that contains
no node in Path(i) if i ∈ R but contains at least one node in Path(i) if i /∈ R.

D.2 Construction

Our revocable DP-ABE scheme will be based on a combination of DP-ABE [6], which itself is a
combination of CP-ABE [26] and KP-ABE [19], and an ABE scheme supporting revocation [4].
We represent a subjective access structure S by a linear secret sharing scheme (LSSS) which we
denote by (M,ρ) and represent an objective access structure O as an LSSS denoted by (N, π).

Let Us and Uo be the universe of subjective and objective attributes respectively. The objec-
tive attribute universe comprises disjoint sub-universes N , T ,M and UID referring to standard
ABE attributes, time periods, messages and user identities respectively. UID is set to be the set
of leaves in a complete binary tree X = {1, . . . , n}. Without loss of generality, we assume that
T ∩ X = ∅ (e.g. by using a collision resistant hash function and using distinct prefixes to map
elements from T and X ). The attribute set for the DP-ABE scheme is defined to be U = Us∪Uo.
Let us define m to be the maximum size of a subjective attribute set assigned to a key, i.e. we
restrict |ψ| 6 m, and similarly define n to be the maximum size of an objective attribute set
associated with a ciphertext, i.e. |ω| 6 n. Furthermore we denote the maximum number of
rows of a subjective access structure matrix M to be ls,max. Now let m′ = m+ ls,max − 1 and
n′ = n − 1. Finally, let d be the maximum of |Cover(R)| for all R ⊆ UID, where Cover(R) is
defined as in Appendix D.1.

• Setup(1`,U): The algorithm picks random exponents γ, α ∈ Zp and a generator g ∈ G. It
defines three functions Fs : Zp → G, Fo : Zp → G and P : Zp → G by randomly choosing
h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud and setting

Fs(x) =

m′∏
j=0

hx
j

j , Fo(x) =

n′∏
j=0

qx
j

j , P (x) =

d∏
j=0

ux
j

j . (3)
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The public parameters are defined as

PP = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud).

For each node label x ∈ X in the tree, it randomly chooses ax ∈ Zp and rx ∈ Zp to define a
first degree polynomial fx(z) = axz + αrx + γ. The master key is MK = (γ, α, {ax, rx}x∈X ).

• Encrypt(m, (ω,S), t,PP): The encryption algorithm takes as input a LSSS access structure
(M,ρ) for the subjective policy S and an objective attribute set ω ⊂ Uo. Denote the dimen-
sions of M as ls × ks matrix. The algorithm randomly chooses values s, y2, . . . , yks ∈ Zp
and sets u = (s, y2, . . . , yks). It computes λi = Mi · u (for i = 1, . . . , ls), where Mi

is the vector corresponding to the ith row of M . The ciphertext is then computed as

CT = (C,C(1), {C(2)
k }k∈ω, {C

(3)
i }i=1,...,ls , C

(4)), where

C = m · (e(g, g)γ)s, C(1) = gs,

C
(2)
k = Fo(k)s, C

(3)
i = gαλiFs(ρ(i))−s,

C(4) = P (t)s.

Intuitively, C masks the message by a group element in the target group of the bilinear map
formed from the master secret γ and an encryption secret s (to randomise the encryption
procedure). Decryption will have to compute this mask to recover the message.

C(1) provides the encryption secret s. C
(2)
k embeds each attribute in the objective set ω

into the ciphertext, incorporating the encryption secret s such that attributes from prior

ciphertexts cannot be combined with this encryption. Similarly, C
(3)
i embeds the subjective

policy S into the ciphertext using the shares of s divided according to S – that is, s is shared
over the set of attributes such that any set of attributes that satisfies S can reconstruct
the encryption secret s. Finally, C(4) links the encryption secret (and hence this particular
ciphertext) to the specified time period t such that an update key for t is required to decrypt
the ciphertext; this enables the revocation mechanism.

• KeyGen(ID, (O, ψ),MK,PP): The key generation algorithm takes as input a LSSS access
structure (N, π) for the objective policy O and a subjective attribute set ψ ⊂ Us. Let the
dimensions of N be denoted lo × ko. The algorithm also takes an identity ID ∈ U which is a
leaf in the binary tree.

For all x ∈ Path(ID), the algorithm shares fx(1) using the LSSS (N, π). To do so, it randomly
chooses zx,2, . . . , zx,ko ∈ Zp and sets vx = (fx(1), zx,2, . . . , zx,ko). For i = 1, . . . , lo, it calculates
the share σx,i = Ni · vx, where Ni is the vector corresponding to the ith row of N .

The algorithm then randomly chooses rx,1, . . . , rx,lo ∈ Zp and rx ∈ Zp for all x ∈ Path(ID),
and outputs the private key

SK(N,π),ID = ((D
(1)
x,i , D

(2)
x,i )x∈Path(ID),i=1,...,lo , (Dx, {D(3)

k }k∈ψ)x∈Path(ID)),

where

Dx = grx , D
(1)
x,i = grx,i ,

D
(2)
x,i = gσx,iFo(π(i))rx,i , D

(3)
k = Fs(k)rx .

Intuitively, rx and rx,i for each x ∈ Path(ID) randomises the key for the user ID (so that

users may not collude). Dx and D
(1)
x,i allow use of these random key values during decryption.
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D
(2)
x,i embeds the shares of fx(1) = ax + αrx + γ such that only the authorised sets according

to O may reconstruct fx(1). Finally, D
(3)
k embeds the attributes in ψ with the randomness

chosen for this particular key. By linking these parameters to the path in a tree, only users for
whom a valid update key has been issued (i.e. the non-revoked users) will be able to make use
of these parameters to compute fx(1) for a node x; fx(1) is required as it contains the master
secret γ which is used to cancel with the ciphertext component C to recover the message.

• KeyUpdate(R, t,MK,PP): The algorithm first computes Cover(R) to find a minimal node set
that covers U \ R. For each x ∈ Cover(R), it randomly chooses rx ∈ Zp and sets the update

key as UK(R, t) =
{
U

(1)
x , U

(2)
x

}
x∈Cover(R)

, where

U (1)
x = gfx(t)P (t)rx , U (2)

x = grx .

Intuitively, each update key component is randomised by rx and linked to a particular node
x in the tree (covering only non-revoked users). P (t) embeds the current time period which
will match with the ciphertext component C(4). We also embed a point of the polynomial
fx(t); given this point, and the point fx(1) (which can be recovered from the decryption key

components D
(2)
x,i given a satisfying set of objective attributes ω), one can perform Lagrange

interpolation to recover the point fx(0) which will yield use of the master secret γ to cancel
with the ciphertext component C.

• Decrypt(CT(ω,S),t, (ω,S), SK(O,ψ),ID, (O, ψ), UKR,t,PP): The decryption algorithm takes as an
input the ciphertext CT which contains a subjective access structure (M,ρ) for S and a set
of objective attributes ω, and a decryption key SK(N,π),ID which contains a set of subjective
attributes ψ and an objective access structure (N, π) for O. Suppose that ψ satisfies (M,ρ),
the set ω satisfies (N, π), and that ID /∈ R (so that decryption is possible).

Let Is = {i : ρ(i) ∈ ψ} and Io = {i : π(i) ∈ ω}. The algorithm computes sets of reconstruction
constants {(i, µi)}i∈Is and {(i, νi)}i∈Io using the LSSS reconstruction algorithm. Since ID /∈
R, the algorithm also finds a node x such that x ∈ Path(ID)∩Cover(R). Finally, it computes
the following

C ·

∏
i∈Is

(
e(C

(3)
i , Dx) · e(C(1), D

(3)
ρ(i))

)µi
(∏

j∈Io

(
e(D

(2)
x,j ,C

(1))

e(C
(2)
π(j)

,D
(1)
x,j)

)νj) t
t−1
(
e(U

(1)
x ,C(1))

e(C(4),U
(2)
x )

) 1
1−t

= m.

We verify the correctness of the decryption as follows. Let us write the decryption com-

putation as C · C′K , where K = (K ′)
t
t−1 (K ′′)

1
1−t , and then consider each part in turn. Intu-

itively, C ′ is similar to a standard ABE decryption operation to match attributes to policies,
whilst K ′ and K ′′ combine the two components of a functional decryption key (namely, a se-
cret key and an update key) and perform a Lagrange interpolation to form a group element
e(g, g)s(γ+αrx) = e(g, g)sγ · e(g, g)sαrx . The second part of this product will be the result of
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computing C ′ whilst the first will cancel with C to leave only m.

C ′ =
∏
i∈Is

(
e(C

(3)
i , Dx) · e(C(1), D

(3)
ρ(i))

)µi
=
∏
i∈Is

(
e(gαλiFs(ρ(i))−s, grx) · e(gs, Fs(ρ(i))rx)

)µi
=
∏
i∈Is

(
e(g, g)αλirx · e(g, Fs(ρ(i)))−rxs · e(g, Fs(ρ(i)))rxs

)µi
= e(g, g)αrx

∑
i∈Is µiλi

= e(g, g)αrxs.

The second equality follows by substituting the values from the construction; the third equality
follows from the properties of bilinear maps; the fourth equality simply moves the product into
the exponent; and the final equality follows from the reconstruction constants of the LSSS,
namely that

∑
i∈Is µiλi = s.

K ′ =
∏
j∈Io

 e(D
(2)
x,j , C

(1))

e(C
(2)
x,π(j), D

(1)
x,j)

νj

=
∏
j∈Io

(
e(gσx,jFo(π(j))rx,j , gs)

e(Fo(π(j))s, grx,j )

)νj
=
∏
j∈Io

(
e(g, g)σx,js · e(g, Fo(π(j)))rx,j ,s

e(g, Fo(π(j)))rx,j ,s

)νj
= e(g, g)s

∑
j∈Io νjσx,j = e(g, g)sfx(1).

The second equality follows directly from the construction; the third equality follows from
the properties of bilinear maps; the fourth equality stems from moving the product into the
exponent; and the last equality follows from the set of LSSS reconstruction constants with∑

j∈Io νjσx,j = fx(1) = ax + αrx + γ.

K ′′ =
e(U

(1)
x , C(1))

e(C(4), U
(2)
x )

=
e(gfx(t)P (t)rx , gs)

e(P (t)s, grx)
=
e(g, g)fx(t)s · e(g, P (t)rxs)

e(g, P (t)rxs

= e(g, g)fx(t)s

Then,

K = (K ′)
t
t−1 (K ′′)

1
1−t = (e(g, g)sfx(1))

t
t−1 (e(g, g)fx(t)s)

1
1−t

= (e(g, g)s)fx(1)
t
t−1

+fx(t)
1

1−t

Notice that fx(1) t
t−1+fx(t) 1

1−t is in fact a Lagrange interpolation for the two points (1, fx(1)), (1, fx(t))

for the first degree polynomial fx. Thus, fx(1) t
t−1 + fx(t) 1

1−t = fx(0) = αrx + γ. Hence,

K = e(g, g)s(αrx+γ). Combining all of these results, we obtain the result of the decryption
operation

C · C
′

K
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)s(αrx+γ)
= m · e(g, g)sγ · e(g, g)αsrx

e(g, g)sγ · e(g, g)αsrx
= m.

D.3 Proof of Security

Theorem 2. The rkDPABE construction presented in Appendix D.2 is secure with respect to
Indistinguishability against selective-target with semi-static query attack (IND-sHRSS) assum-
ing that the Decisional q-BDHE problem is hard.
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The proof follows a combination of [4] and [5] with some adjustment in the simulation of
the private keys. We show that if an adversary can win the IND-sHRSS game with advantage
ε with a challenge subjective access structure matrix of size l?s × k?s , then a simulator with
advantage ε in solving the Decisional q-BDHE problem can be constructed, where m+ k?s 6 q.

Proof. Suppose, to achieve a contradiction with Theorem 2, that there exists an adversary A
that has an advantage ε in attacking the rkDPABE scheme. We build a simulator B that
solves the Decisional q-BDHE problem (see Definition 14) in G. Recall that we denote ga

j

by gj . The simulator B is given a random q-BDHE challenge (g, h,yg,a,q, Z) where yg,a,q =
(g1, . . . , gq, gq+2, . . . , g2q) where Z is either e(gq+1, h) or a random element in G1. B acts as the
challenger for A in the IND-sHRSS game (Game 5) as follows.

1. A begins by selecting its challenge parameters (t?, ω?, S?) where S? is represented by an
LSSS (M?, ρ?). Let the matrix M? be of size l?s × k?s , where m+ k?s ≤ q and let l?s = ls,max and
|ω?| = n.

2. B now simulates running Setup for the rkDPABE scheme, and embeds the challenge

policy into the public parameters. It first chooses γ′
$← Zp, sets gα = g1 = ga, and implicitly

defines γ = γ′ + aq+1 by defining

e(g, g)γ = e(g1, gq) · e(g, g)γ
′

= e(ga, ga
q
) · e(g, g)γ

′

= e(g, g)γ
′+aq+1

.

It then must define the polynomials Fs, Fo and P (as in [4] and [5]). To define Fs, B begins by
defining Fs(x) = gp(x), where p is a polynomial in Zp[x] of degree m+ l?s − 1 which is implicitly
defined in the following manner. It chooses k?s +m+ 1 polynomials p0, . . . , pk?s+m in Zp[x], each
of degree m+ l?s − 1, such that for all x = ρ?(i) for some i (i.e. all x in the image of ρ?, of which
there are exactly l?s since ρ? is an injective mapping):

pj(x) =

{
M?
i,j for j ∈ [1, k?s ]

0 for j ∈ [k?s + 1, k?s +m]
(4)

The polynomial p0 is chosen randomly, and for all other x (not in the image of ρ?), pj is defined
randomly by randomly choosing values at m other points). By writing the coefficients of each

polynomial as pj(x) =
∑m+l?s−1

i=0 pj,i · xi, one can define the polynomial p(x) to be

p(x) =

k?s+m∑
j=0

pj(x)aj . (5)

Then, B sets hi =
∏k?s+m
j=0 g

pj,i
j for i ∈ [0,m+ l?s − 1] Finally, as we assumed l?s = ls,max, note
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that m′ = m+ ls,max − 1 = m+ l?s − 1,

Fs(x) =
m′∏
i=0

hx
i

i (by 3)

=
m′∏
i=0

k?s+m∏
j=0

g
pj,i
j

xi

(by definition of hx
i

i )

=

m′∏
i=0

k?s+m∏
j=0

gpj,ia
j

xi

(by definition of gj = ga
j
)

= g
∑k?s+m
j=0

∑m′
i=0 pj,ix

iaj = g
∑k?s+m
j=0 pj(x)a

j

= gp(x) (by 5)

To define Fo, B randomly picks a polynomial f ′(x) =
∑n−1

j=0 f
′
jx
j in Zp[x] of degree n − 1. It

then defines f(x) =
∏
k∈ω?(x−k) =

∑n−1
j=0 fjx

j (which can be computed entirely from ω?); note

that f(x) = 0 if and only if x ∈ ω?. It defines qj = g
fj
q g

f ′j for j = [0, n− 1]. Finally,

Fo(x) =
n−1∏
j=0

q
(xj)
j = gf(x)q gf

′(x).

To define P , B defines

p̂(y) = yd−1 · (y − t?) =
d∑
j=0

p̂jy
j .

This ensures p̂(t) = 0 if and only if t = t? for t ∈ T , and that for x ∈ X , p̂(x) 6= 0 since we
assumed T ∩ X = ∅.
B then randomly picks a degree d polynomial ρ(y) =

∑d
j=0 ρjy

j in Zp[x] and lets uj = (ga)p̂jgρj

for j = 0, . . . , d. Thus,

P (y) =
d∏
j=0

uy
j

j = (ga)p̂(y)gρ(y). (6)

The public key PK for the DPABE scheme is defined to be

PK = (g, e(g, g)γ , gα, h0, . . . , hm′ , q1, . . . , qn′ , u1, . . . , ud),

which is given to A. Note that the randomness of the q-BDHE challenge (g, h,yg,a,q, Z) and
the independently chosen randomness used in the construction of the polynomials pj , f

′, and ρ
ensure the public parameters are distributed as expected.

3. A declares its list R and is then given oracle access to the KeyGen and KeyUpdate func-
tions. Let XR = {x ∈ Path(ID) : ID ∈ R}. For each node label x ∈ X in the tree, B randomly
chooses a′x ∈ Zp and implicitly defines

ax =

{
a′x − αrx − γ if x ∈ XR
a′x −

αrx−γ
t? if x /∈ XR

(7)
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Hence,

fx(1) = ax + αrx + γ = a′x − αrx − γ + αrx + γ = a′x if x ∈ XR (8)

fx(t?) = axt
? + αrx + γ = (a′x −

αrx − γ
t?

)t? + αrx + γ = a′xt
? if x /∈ XR (9)

To simulate KeyGen queries for an objective access structure (N, π), a subjective attribute set
ψ and an identity ID, we consider the following cases:

• (ω? ∈ O) and (ID ∈ R) :

For each x ∈ Path(ID), note that since ID ∈ R, x ∈ XR. Hence, from (8), B can compute
fx(1) for all x ∈ Path(ID). B can therefore compute the key components precisely as in
the construction by sharing the value of fx(1).

• (ω? /∈ O) and (ID ∈ R) :

For each x ∈ Path(ID),note that, since ID ∈ R, x ∈ XR. Hence, from (8), B can compute
fx(1) for all x ∈ Path(ID).

B randomly choses rx ∈ Zp. It then letsDx = grx , and for all k ∈ ψ letsD
(3)
k = Fs(k)rx as in

the construction. Recall that the dimensions ofN are l0×k0. Since ω? does not satisfyN for
this case of the query, and by Proposition 1, there exists a vector ax = (a1, . . . , ako) ∈ Zkop
such that a1 = −1 and Ni · ax = 0 for all i where π(i) ∈ ω?.
B randomly chooses z′x,2, . . . , z

′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It then im-
plicitly defines a vector vx = −(a′x)ax + v′x (by using 4) which will be used for creating
the share of fx(1) = γ+αrx +ax (note that the first element of vx is indeed fx(1) by (8)),
as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes D
(1)
x,i = grx,i

and
D

(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in our

construction and hence D
(2)
x,i is of the valid form.

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni · (−(a′x)ax + v′x)

= Ni · (v′x − (a′x)ax)

Note that, unlike [5], due to our definition of ax, we do not have a term in aq+1 here, and

B can generate D
(2)
x,i = gNi·vxFo(π(i))rx,i and D

(1)
x,i = grx,i .

• (ψ /∈ S?) and (ID /∈ R) :

For each x ∈ Path(ID), B does the following. Since ψ does not satisfy M?, by Proposition

1, there exists a vector wx = (w1, . . . , wk?s ) ∈ Zk
?
s
p such that w1 = −1 and Mi ·wx = 0 for all

i where ρ(i) ∈ ψ?. Now, by our definition of pj(x) in (4), we have that (p1(x), . . . , pk?s (x)) ·
(w1, . . . , wk?s ) = 0.

B then computes one possible solution of variables wk?s+1, . . . , wk?s+m for the system of |ψ|
equations: for all x ∈ ψ

(p1(x), . . . , pk?s+m(x)) · (w1, . . . , wk?s+m) = 0,

which is possible as |ψ| 6 m.
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B then randomly chooses r′x ∈ Zp and implicitly defines

rx = r′x + w1(
t?

t? − 1
) · αq + w2(

t?

t? − 1
) · αq−1 + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+1

by setting the key Dx = gr
′
x
∏k?s+m
k=1 (gq+1−k)

wk(
t?

t?−1
) = grx . Then, since γ = γ′ + αq+1 and

as x /∈ XR, we have

fx(1) = γ + αrx + ax

= γ′ + αq+1 + αrx + ax

= γ′ + αq+1 + αrx + a′x −
αrx − γ
t?

by (7)

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
))rx

= γ′ + a′x +
γ

t?
+ αq+1 + (α(

t? − 1

t?
)(r′x + w1(

t?

t? − 1
) · αq

+ w2(
t?

t? − 1
) · αq−1 + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+1)

= γ′ + a′x +
γ

t?
+ (αr′x + w2(

t?

t? − 1
) · αq + · · ·+ wk?s+m(

t?

t? − 1
) · αq−(k?s+m)+2)

where the αq+1 term in γ has canceled out. The simulator now randomly chooses zx,2, . . . , zx,ko ∈
Zp and implicitly lets vx = (γ + αrx + ax, zx,2, . . . , zx,ko) as in the construction.

B also randomly chooses rx,1, . . . , rx,lo ∈ Zp and computes for i = 1 to lo the key D
(1)
x,1 =

grx,i . The other keys are computed in the following way. We have

D
(2)
x,i =

gγ′+a′x+ γ
t? · gr

′
x

1

k?s+m∏
k=2

(gq−k+2)
wk

Ni,1

·
ko∏
j=2

gNi,jzjFo(π(i))rx,i

which can be computed since gq+1 is not required and, by collecting the exponents, it can

be verified that D
(2)
x,i = gNi·vx · Fo(π(i))ri .

Recall that (p1(k), . . . , pk?s+m(k)) · (w1, . . . , wk?s+m) = 0 for all k ∈ ψ.

D
(3)
k = Dp0(k)

x

k?s+m∏
j=1

gr′xj ∏
k∈[1,k?s+m],k 6=j

(gq+1−k+j)
wk

pj(k)

= (grx)p0(k)
k?s+m∏
j=1

(grx)α
jpj(k) = (grx)p(k)

= Fs(k)rx ,

where the second equality holds by observing that

D
(3)
k = D

(3)
k (gq+1)

(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m)

since (gq+1)
(p1(k),...,pk?s+m(k))·(w1,...,wk?s+m) = (gq+1)

0 = 1 (see [5]).

• (ω? /∈ O) and (ψ ∈ S?) and (ID /∈ R) :

For each x ∈ Path(ID), B randomly choses rx ∈ Zp. It then lets Dx = grx , and for all

k ∈ ψ lets D
(3)
k = Fs(k)rx as in the construction. Recall that the dimensions of N are
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l0× k0. Since ω? does not satisfy N for this case of the query, and by Proposition 1, there
exists a vector ax = (a1, . . . , ako) ∈ Zkop such that a1 = −1 and Ni · ax = 0 for all i where
π(i) ∈ ω?.
B randomly chooses z′x,2, . . . , z

′
x,ko
∈ Zp and defines v′x = (0, z′x,2, . . . , z

′
x,ko

). It then im-

plicitly defines a vector vx = −(a′x−
αrx−γ
t? +αrx + γ)ax +v′x which will be used to create

the share of fx(1) = γ+αrx +ax (note that the first element of vx is indeed fx(1) by (7)),
as in our construction.

Now, for all i such that π(i) ∈ ω?, B randomly chooses rx,i ∈ Zp and computes D
(1)
x,i = grx,i

and
D

(2)
x,i = gNi·v′xFo(π(i))rx,i = gNi·vxFo(π(i))rx,i ,

where the last equality holds because Ni · ax = 0. Note that σx,i = Ni · vx in our

construction and hence D
(2)
x,i is of the valid form.

For all other i, where π(i) /∈ ω?, B randomly chooses r′x,i ∈ Zp. Observe that

Ni · vx = Ni · (−(a′x −
αrx − γ
t?

+ αrx + γ)ax + v′x)

= Ni · (−(a′x −
αrx − (γ′ + aq+1)

t?
+ αrx + (γ′ + aq+1))ax + v′x)

= Ni · (v′x − (a′x + γ′(
1

t?
+ 1))ax) + (rx(

1

t?
− 1)Ni · ax)α

− ((
1

t?
+ 1)Ni · ax)aq+1

contains a term in aq+1 and hence we cannot compute this value (as aq+1 is the gap in
the q-BDHE game). Instead, we will use the ri term in Fo(π(i))rx,i to cancel the unknown

value aq+1. B implicitly defines rx,i = r′x,i −
a( 1
t?

+1)Ni·ax

f(π(i)) . To do so, it defines

D
(2)
x,i = g

(
rx(

1
t?
−1)Ni·ax−( 1

t?
+1)

Ni·axf
′(π(i))

f(π(i))

)
1 · gNi·(v′x−(a′x+γ′( 1

t?
+1)))axFo(π(i))r

′
x,i

To see that D
(2)
x,i is valid, we observe

D
(2)
x,i = g

( 1
t?

+1)Ni·ax

q+1 ·D(2)
x,i · g

−( 1
t?

+1)Ni·ax

q+1

= g
( 1
t?

+1)Ni·ax

q+1 · grx(
1
t?
−1)Ni·ax

1 · gNi·(v′x−(a′x+γ′( 1
t?

+1)))ax

·

(
g
−( 1

t?
+1)Ni·ax

q+1 g
−( 1

t?
+1)

Ni·axf
′(π(i))

f(π(i))

1

)
· Fo(π(i))r

′
x,i

= gNi·vx

(
gf(π(i))q gf

′(π(i))
)−a( 1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i

= gNi·vx · Fo(π(i))
−a( 1

t?
+1)Ni·ax

f(π(i)) · Fo(π(i))r
′
x,i by (6)

= gNi·vx · Fo(π(i))rx,i

B also defines

D
(1)
x,i = gr

′
x,ig
−

( 1
t?

+1)Ni·ax

f(π(i))

1 = grx,i

Note that f(π(i)) 6= 0 since π(i) /∈ ω?, and so D
(1)
x,i and D

(2)
x,i are well defined.
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To simulate KeyUpdate queries for time period t and revocation list R, we consider the following
cases:

• t = t? and R ⊆ R:

For each x ∈ Cover(R), B chooses a random rx ∈ Zp and computes U
(1)
x = (ga

′
xt
?
)P (t?)rx

and U
(2)
x = grx . Both keys are valid because since R ⊆ R and thus for all x ∈ Cover(R) we

have x /∈ XR. Hence, by (9), fx(t?) = a′xt
?.

• t 6= t?:

For each x ∈ Cover(R), B chooses a random r′x ∈ Zp
– If x ∈ Cover(R) ∩ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(1−t)(g

r′x
1 )(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x

U (2)
x = (gr

′
x)(gq)

− 1−t
p̂(t)+1−t

Note that p̂(t) 6= 0 for t 6= t? so this is well defined. We claim that these keys look

valid according to the construction with implicit randomness rx = r′x −
aq(1−t)
p̂(t)+1−t .

Note that, in this case, x ∈ XR and hence by (7)

fx(t) = axt+ αrx + γ = (a′x − αrx − γ)t+ αrx + γ

= a′xt+ αrx(1− t) + γ′(1− t) + aq+1(1− t)

Then,

U (1)
x = gfx(t)P (t)rx by the construction

= ga
′
xt+arx(1−t)+γ′(1−t)+aq+1(1−t)gap̂(t)rxgρ(t)rx by fx(t) and (6)

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)garx(1−t)gap̂(t)rxgρ(t)rx

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)ga(1−t)r

′
xg−a(1−t)Bgap̂(t)r

′
xg−ap̂(t)Bgρ(t)r

′
xg−ρ(t)B

by rx = r′x −B

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−a(1−t)Bg−ap̂(t)Bg−ρ(t)B by (6)

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg−ρ(t)Bg−B

a(1−t)+ap̂t

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)( a

q(1−t)
p̂(t)+1−t )(ga)

−( a
q(1−t)

p̂(t)+1−t )
(1−t)+p̂t

by B =
aq(1− t)
p̂(t) + 1− t

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)( a

q(1−t)
p̂(t)+1−t )(ga)−(a

q(1−t))

= ga
′
xtgγ

′(1−t)ga
q+1(1−t)P (t)r

′
xga(1−t)r

′
xg
−ρ(t)( a

q(1−t)
p̂(t)+1−t )g−a

q+1(1−t)

= ga
′
xtgγ

′(1−t)P (t)r
′
xga(1−t)r

′
xg
−ρ(t)( a

q(1−t)
p̂(t)+1−t )

= (ga
′
x)t(gγ

′
)(1−t)(g

r′x
1 )(1−t)g

− ρ(t)(1−t)
p̂(t)+1−t

q P (t)r
′
x as we defined

– If x ∈ Cover(R) \ XR, it defines

U (1)
x = (ga

′
x)t(gγ

′
)(

t
t?

+1)(g
r′x
1 )(1−

t
t?

)g
−
ρ(t)(1+ t

t?
)

p̂(t)+1− t
t?

q P (t)r
′
x
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U (2)
x = (gr

′
x)(gq)

−
1+ t

t?

p̂(t)+1− t
t?

In this case, by (7), ax = a′x−
αrx−γ
t? . By a similar argument as above, these keys look

valid according to the construction with implicit randomness rx = r′x −−
aq(1+ t

t?
)

p̂(t)+1− t
t?

.

4. A selects two messages m0 and m1. B chooses b
$← {0, 1} and creates a ciphertext

C = mb · Z · e(h, gγ
′
), C(1) = h, and for k ∈ ω? we write C

(2)
k = hf

′(x). We write h = gs for
some unknown s. The simulator then chooses random elements y′2, . . . , y

′
k?s
∈ Zp and lets y′ =

(0, y′2, . . . , y
′
k?s

). It defines C
(3)
i = (g1)

M?
i ·y
′ · (gs)−p0(ρ?(i)) for i = 1, . . . , l′s and C(4) = (gs)ρ(t

?),
to implicitly share the secret s via the vector

vx = (s, sα+ y′2, sα
2 + y′3, . . . , sα

k′s−1 + y′k′s).

We claim that if Z = e(gq+1, h) then the created ciphertext is a valid challenge. The validity
of C(1) = h = gs comes from the implicit definition of h. To see that C is valid, recall that
γ = γ′ + aq+1. Then,

C = mb · Z · e(h, gγ
′
) = mb · e(gq+1, h) · e(h, gγ′) = mb · e(g, g)sa

q+1 · e(g, g)sγ
′

= mb · e(g, g)s(γ
′+aq+1) = mb · e(g, g)sγ .

For all k ∈ ω?, we defined f(k) such that f(k) = 0, and hence

C
(2)
k = hf

′(k) = (gs)f
′(k) = (gf(k)q gf

′(k))s = Fo(k)s.

For i = 1, . . . , l′s, we have

C
(3)
i = (g1)

M?
i ·y
′ · (gs)−p0(ρ?(i))

= (gα)M
?
i ·y
′
k?s∏
j=1

gM
?
i,jsα

j

· (gs)−p0(ρ?(i))
k?s∏
j=1

(gs)−M
?
i,jα

j

= gαM
?
i ·vx · (gs)−p(ρ?(i)) = gαM

?
i ·vx · Fs(ρ?(i))−s,

Finally, since p̂(t?) = 0, C(4) = (gs)ρ(t
?) = ((ga)p̂(t

?)gρ(t
?))s = P (t?)s.

5. The challenge ciphertext is given to A along with oracle access which is handled as in
Step 3.

6. A eventually outputs b′ ∈ {0, 1} as its guess of b. If b = b′ then B outputs 1 to guess that
Z = e(gq+1, h). Otherwise, B outputs 0 to guess that Z is random.

If (g, h,yg,a,q, Z) is sampled from RBDHE then Pr[B(g, h,yg,a,q, Z) = 0] = 1
2 since A was given a

malformed challenge and hence can only guess the value of b. On the other hand if (g, h,yg,a,q, Z)
is sampled from PBDHE then we formed a valid challenge ciphertext and, as A is assumed to
have non-negligible advantage ε in the IND-sHRSS game, |Pr[B(g, h,yg,a,q, Z) = 0]− 1

2 | ≥ ε. It
follows that B has advantage at least ε in solving q-BDHE problem in G. However, we assumed
that this problem is hard, so an adversary with non-negligible advantage in the IND-sHRSS
game cannot exist.
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