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Abstract

In this paper we focus our attention on private set intersection protocols, through which two parties,
each holding a set of inputs drawn from a ground set, jointly compute the intersection of their sets.
Ideally, no further information than which elements are actually shared is compromised to the other
party, yet the input set sizes are often considered as admissible leakage. Considering the (more restricted)
size-hiding scenario, we are able to

• prove that it is impossible to realize an unconditionally secure set intersection protocol (size-hiding
or not);

• prove that unconditionally secure size-hiding set intersection is possible in a model where a set up
authority provides certain information to the two parties and disappears;

• provide several new computationally secure size-hiding set intersection protocols.

Regarding the latter, in particular we provide a new generic construction without random oracles for the
unbalanced setting, where only the client gets the intersection and hides the size of its set of secrets. The
main tool behind this design are smooth projective hash functions for languages derived from perfectly-
binding commitments. We stand on the seminal ideas of Cramer–Shoup and Gennaro–Lindell, which
have already found applications in several other contexts, such as password-based authenticated key
exchange and oblivious transfer.

1 Introduction

The Private Set Intersection (PSI) problem, in a nutshell, concerns with two parties, each holding a set of
inputs drawn from a ground set, that wish to jointly compute the intersection of their sets, without leaking
any additional information [26]. In particular, cryptographic solutions to the PSI problem allow interaction
between a clientC and a server S, with respective private input sets C = {c1, . . . , cv} and S = {s1, . . . , sw},
both drawn from the ground set U . At the end of the interaction, C learns S ∩ C and |S|, while S learns
nothing beyond |C|.
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Plenty of applications have been discussed since its introduction: the Department of Homeland Security
that wishes to check its list of terrorists against the passenger list of a flight operated by a foreign air
carrier, the federal tax authority wishing to check if any suspect tax evader has a foreign bank account and
other folklore case scenarios have been the leading examples in many papers (see [20] for a detailed list).
Remarkably, in many of these scenarios it is in the interest of the client (and maybe also of the server), that
the size of its input set is not leaked through the interaction. Consider for instance the case in which two
competing companies wish to find out the set of common clients in a certain geographical area, while they
might rather not disclose to what extent they are already established there. If size-hiding is a requirement,
many of the techniques proposed for private set intersection fail to do the job.

History of PSI: Results and Techniques. Freedman et al. [26] introduced the first PSI protocol based on
oblivious polynomial evaluation (OPE). The key intuition is that elements in the client’s private set can be
represented as roots of a polynomial, i.e., P (x) =

∏v
i=1(x − ci) =

∑v
i=1 aix

i. Hence, leveraging any
additively homomorphic encryption scheme (e.g., [39]), the encrypted polynomial is obliviously evaluated
by S on each element of its data set. In particular, S computes {uj}j=1,...,w = {E(rjP (sj) + sj)}j=1,...,w

where E() is the encryption function of the additively homomorphic encryption scheme and rj is chosen
at random. Clearly, if sj ∈ S ∩ C, then C learns sj upon decryption of the corresponding ciphertext (i.e.,
uj); otherwise C learns a random value. OPE-based PSI protocols have been extended in [35, 24, 21, 22] to
support multiple parties and other set operations (e.g., union, element reduction, etc.).

Hazay et al. [31] proposed Oblivious Pseudo-Random Function (OPRF) [25] as an alternative prim-
itive to achieve PSI. In [31], given a secret index k to a pseudo-random function family, S evaluates
{uj}j=1,...,w = {fk(sj)}j=1,...,w and sends it to C. Later, C and S engage in v executions of the OPRF
protocol where C is the receiver with private input C and S is the sender with private input k. As a result,
C learns {fk(ci)}i=1,...,v such that ci ∈ S ∩ C if and only if fk(ci) ∈ {uj}j=1,...,w. Improvements by using
the same approach were provided in [29, 30].

Given U as the ground set where elements of C and S are drawn (i.e., C,S ⊆ U), none of the above
techniques prevents a client to run a PSI protocol on private input C ≡ U in order to learn the elements in S .
To this end, Camenisch et al. extended PSI to Certified Sets [15], where a Trusted Third Party (TTP) ensures
that private inputs are valid and binds them to each participant. The certification issue was also addressed in
[18], where a related problem to PSI was considered. Moreover, the same extension, under a different name,
Authorised PSI, was considered in [20], where protocols that use modular exponentiation, multiplication
and hash evaluation were described.

Efficiency of the protocols on large data sets is an important practical issue, and it has been addressed
in several papers in the last years. One of the most relevant applications in this respect come from the
bursting field of genomic computing: the user wants to protect the privacy of sensitive information coded in
her genomic sequence but at the same time wishes to engage in private computations with other parties, in
order to get some advantage, e.g., understand whether she has a predisposition to certain diseases or whether
some medicines could be useful to improve her state of health. The interested reader is referred to [3] and
[6] (and the references therein quoted) for an in-depth introduction to the area. In [19] linear-complexity
private set intersection protocols were proposed for malicious adversaries. Along the line of [37], to gain
efficiency, Bloom filters have been applied in [34, 17]. The protocols proposed in [34] are elegant and one
of them is designed for an outsourced scenario. On the other hand, the protocols described in [17] and their
optimizations suggested in [40] are currently, with respect to semi-honest adversaries, the most efficient
available solutions on the market.
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Related work. All of the above techniques reveal the size of the participants’ sets. That is, C (resp. S)
learns |S| (resp. |C|), even if S ∩C ≡ ∅. To protect the size of private input sets, Ateniese et al. [2] proposed
a size-hiding PSI protocol where C can privately learn S ∩ C and |S| without leaking the size of C. Their
scheme is based on RSA accumulators and the property that the RSA function is an unpredictable function.
The authors proved its security against honest but curious adversaries in the random oracle model.

Very recently, general results on hiding the input-size in two party computation were given in [36]; at
this, the authors prove that hiding the input size of both participants involved in a set intersection protocol is
impossible in the cryptographic model, considering honest but curious adversaries, if after the interaction:

• both C and S get S ∩ C and nothing else,

• client only gets S ∩ C, server gets nothing

• client gets S ∩ C, server gets its size, |S ∩ C|.

Further, they are able to evidence that hiding one party’s input size is possible using fully homomorphic
encryption; this construction is essentially theoretical but is the first to encourage searching for new designs
without random oracles.

Another (loosely related) work in which the input-size issue has been addressed is [7], where the authors
present a simple database commitment functionality where besides the standard security properties the input
size of the committed database set is not revealed. They consider malicious users and use as a main tool
universal arguments of quasi-knowledge.

Contributions. This paper focuses on PSI protocols where honest-but-curious parties hide the size of their
private sets, under different security models. It is an improved and revised full version of [16]; note however
we have refined and extended some results, and Section 5 is new.

We start looking at unconditionally secure SHI-PSI where both parties hide the size of their sets (Sec-
tion 3). In this context, we show that PSI protocols are not achievable, while size-hiding PSI is possible
involving a trusted third party which disappears after the set up phase (see Figure 1). Then, in Section 4
we move to computational security and show that there exists a private set intersection protocol where both
parties hide the size of their sets (Figure 2); this does not contradict [36], for our protocol is not general, as
it cannot be used unless the universe size U is polynomial (as computations have to actually run over the full
universe). Further, we prove that the polynomial construction of [26] can be easily twisted to hide the input
size of both participants if an upper bound on |C| and |S| is known (see Figure 4).

Finally, in Section 5 we provide an explicit construction of an unbalanced protocol where only the client
hides the size of its set. Our construction builds on top of the protocol from [2], but is actually designed
without random oracles. As far as we know, this is the first practical construction along these lines without
random oracles, as the (somewhat conceptual) design of [36] is geared towards an existential result that can
be applied generically to a large class of functions.

2 Preliminaries

In this section we provide definitions and tools used in the rest of the paper. We essentially follow the
model from [2]; however, we refine their definitions slightly in order to deal with both computationally
and unconditionally secure protocols, and to introduce the size-hiding constraint on both the client and the
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server side. Moreover, we generalize the underlying scenario by considering a finite set of clients C =
{C1, . . . , Cn} and a finite set of servers S = {S1, . . . , Sk} (possibly not disjoint) holding corresponding
data sets Ci, i = 1, . . . n and Sj , j = 1, . . . , k which elements are drawn from a common universe U . Each
client Ci may interact with each server Sj in order to compute the intersection Ci ∩ Sj . Note that as the set
of clients and the set of servers may not be disjoint, we capture the situation in which the same participants
may be enrolled in various executions playing a different role each time.

Furthermore, in some cases we also introduce a set-up authority SA which is fully trusted and interacts
with the parties in a setup phase before the actual protocol execution takes place (so, it is in a sense a Trusted
Initializer as introduced by Rivest in [42]). This authority might provide secret information to the parties,
and its presence is actually unavoidable if participants cannot be assumed honest but curious, to certify the
sets of secrets held by the parties in order to prevent any party to execute the protocol with a different set
than the one it owns (for instance, the full universe).

Definition 2.1 A party is referred to as honest-but-curious, HBC for short, if it correctly follows the steps
of the protocol but eventually tries to get extra-knowledge from the transcript of the execution.

A size-hiding private set intersection protocol, enabling two participants Ci ∈ C = {C1, . . . , Cn}
and Sj ∈ S = {S1, . . . , Sk} to compute the intersection of their set of inputs, while revealing no further
information (in particular, keeping secret all sizes of the involved sets) can be defined as follows:

Definition 2.2 A SH-PSI is a scheme involving Ci ∈ C = {C1, . . . , Cn}, Sj ∈ S = {S1, . . . , Sk} and
(possibly) a fully trusted set-up authority SA, with two components, Setup and Interaction, where

• Setup is an algorithm that selects all global parameters, run by the server Sj and the client Ci an
possibly involving the set-up authority SA.

• Interaction is a protocol involving only Sj and Ci on respective input sets Sj = {sj1, . . . , s
j
wj} and

Ci = {ci1, . . . , civi}, which are subsets of a ground set U = {u1, . . . , u|U|},

satisfying correctness, client privacy and server privacy. 1.

Correctness is formalized by:

Definition 2.3 A scheme specified in Definition 2.2 is correct if, when run by HBC parties, C ∈ C and
S ∈ S, at the end of Interaction, run on corresponding inputs S and C, with overwhelming probability S
outputs ⊥ and C outputs S ∩ C or ⊥ if the intersection is empty.

Notice that, compared to the definition of correctness provided in [2], we do not require that |S| is part of
the client’s output. In Section 5 in which we will apply the size-hiding restriction only on the client’s side,
we will stick to the definition of correctness from [2] and require the client C to output S ∩ C and |S| or
just |S| if the intersection is empty. In the sequel, we will refer to such protocols as unbalanced size-hiding,
thus coining the term USH-PSI to address schemes fulfilling the definition of correctness from [2]. Unless
otherwise specified, the definition of correctness used in the sequel is the one above.

Concerning client privacy, since the server does not get any output from the protocol, it is enough to
require that the server, from the interaction, does not distinguish between cases in which the client has
different input sets.

1when specifying the set or concrete elements from a client’s or servers’s set the index i may be dropped – if that yields no
ambiguity
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Definition 2.4 Let V iewS(C,S) be a random variable representing S’s view during the execution of Inter-
action with inputs C (from a client in C) and S. A scheme specified as in Definition 2.2 guarantees client
privacy if, for every S∗ that plays the role of S, for every set S, and for any two possible client input sets
C, Ĉ it holds that:

V iewS∗(C,S) ≡ V iewS∗(Ĉ,S).

Notice that in the above definition, when considering the unconditional setting, the parties S,C and
S∗ are unbounded and indistinguishable means that the two views are perfectly indistinguishable, i.e., they
are identically distributed. On the other hand, in the computational setting, S,C and S∗ are probabilistic
polynomial time turing machines and, hence, indistinguishable means that the two views are computationally
indistinguishable.
Server privacy needs a bit more: the client gets the output of the protocol, and by using its input and
the output, by analyzing the transcript of the execution, could get extra-knowledge about the server’s se-
crets. Nevertheless, if the transcript can be simulated by using only input and output, then server privacy is
achieved.

Definition 2.5 Let C ∈ C and V iewC(C,S) be a random variable representing C’s view during the ex-
ecution of Interaction with inputs C and S. Then, a scheme defined as in Definition 2.2 guarantees server
privacy if, for any C ∈ C there exists an algorithm C∗ such that

{C∗(C,S ∩ C)}(C,S) ≡ {V iewC(C,S)}(C,S).

As before, in the unconditional setting the parties are unbounded and the transcript produced by C∗ and
the real view need to be identically distributed. On the other hand, in the computationally secure setting,
the parties are probabilistic polynomial time turing machines and the transcript produced by C∗ and the real
view are required to be computationally indistinguishable.

We remark that in this paper we will always consider HBC parties, even though the above Definitions
2.4 and 2.5 are written without that restriction.

3 SH-PSI: the unconditionally secure case

In this section we deal with the unconditionally secure setting and show two results: first, we evidence that
unconditionally secure 2-party PSI protocols do not exist. Further, we prove that unconditionally secure
size-hiding PSI can indeed be achieved if we allow the involvement of SA in the Setup algorithm.

3.1 Impossibility of unconditionally secure 2-party PSI

We here state that there is no 2-party PSI protocol which is unconditionally secure. This result is true for any
flavor of PSI, namely, it does not matter whether one or both players receive the intersection as an output
neither if the size of the input sets is revealed or not, our claim remains true. The proof is done in two steps.
First we show that, from a PSI secure protocol Π which outputs the intersection and the set sizes to both
participants, one can construct a protocol which securely computes theAND function. The existence of the
latter is known to be impossible in the unconditionally secure setting (see [10], page 22), therefore Π cannot
exist. We conclude by pointing out that the rest of output-variants of PSI protocols can actually be obtained
from a protocol like Π, thus completing our argument.
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Theorem 3.1 Let F = (F1, F2) be the functionality that, on input a pair of sets (C,S), outputs F1(C,S) =
(C ∩ S, |S|) to the first participant and F2(C,S) = (C ∩ S, |C|) to the second one. Then an unconditionally
secure 2-party protocol which computes F does not exist.

PROOF. Let us reason by contradiction and assume that a secure 2-party protocol Π which computes F
does exist. From Π we will build a secure private AND protocol Γ. A private AND protocol is a two-party
protocol, run by users A and B, at the end of which the players get the logical AND of their input bits and
nothing else (i.e., a secure protocol for computing a · b from private inputs a, b ∈ {0, 1}).

Indeed, assume that, for i ∈ {1, 2}, Pi is holding as input for Γ a bit bi ∈ {0, 1}. For the PSI protocol
Π, choose as the universe the set of integers U = {0, 1, 2, 3}. Each player Pi constructs its input set Xi as
follows:

• If bi = 0, then Xi is chosen as {0, i}.

• If bi = 1, then Xi is chosen as {0, 3}.

Then P1 and P2 run the protocol Π for PSI with inputs X1 and X2 respectively. Each player, depending on
the output of Π, sets the output of Γ as follows:

• If the intersection X1 ∩X2 = {0}, then the output of Γ is set to 0.

• If the intersection X1 ∩X2 = {0, 3}, then the output of Γ is set to 1.

It is easy to check that Γ is a secure protocol for the computation of AND(b1, b2):

Correctness. Note that X1 ∩X2 = {0, 3} if and only if b1 = b2 = 1 and X1 ∩X2 = {0} otherwise,
thus Γ correctly computes AND(b1, b2).

Security. First note that all the possibly involved sets have two elements, therefore the size of the other
player’s set does not provide any information. Let us analyze the information leaked fromX1∩X2 to player
Pi. If the input of player Pi is bi = 0 then X1 ∩X2 = {0}, regardless of the input of the other player. Thus
Pi does not gain any information. On the other hand, if bi = 1, the intersection X1 ∩X2 allows Pi to learn
the input of the other player, but this is also what happens in an ideal execution of an AND protocol.

As Π is supposed to be an unconditionally secure protocol, players do not learn anything beyond the
output, so Γ is also an unconditionally secure protocol, which concludes the proof.

2

Corollary 3.2 Let G = (G1, G2) be any functionality that, on input a pair of sets (C,S), outputs G(C,S)
such that

• Gi consists in both, one or none of the components of Fi for i ∈ {1, 2}, where F is the functionality
described in Theorem 3.1.

• C ∩ S is present in at least one of the two outputs G1(C,S) or G2(C,S).

Then an unconditionally secure 2-party protocol which computes G does not exist.
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PROOF. From a protocol Λ which securely computes G is easy to build a protocol Π which securely
computes F . For that purpose, each player simply sends the missing outputs to the other player. Namely,
the player holding the intersection C ∩ S sends it to the other player, if needed. Further, each player sends
the size of its input to the other player. Theorem 3.1 states no such protocol Π can exist; as a result, neither
can Λ as stated above. 2

3.2 Unconditionally secure SH-PSI with a trusted initializer

Allowing the involvement of SA we can actually achieve size-hiding in the unconditional setting; such
a construction can be seen in Figure 1.

Set up

Client SA Server

U = {u1, . . . , u|U|}
f, g : P(U) −→ {0, 1}|U|

C = {c1, . . . , cv} C - R = f(C)
�
R,L L = {(g(D), D) : D ⊆ C}

� S S = {s1, . . . , sw}
T = {(f(E), g(E ∩ S)) : E ⊆ U} T -

Interaction

Client Server

R - Search for (R,R′) ∈ T
Search for (R′, D) ∈ L � R′

Output D

Figure 1: An unconditionally secure size-hiding set intersection protocol.

The idea of the scheme is the following: in the Setup, the SA chooses two random bijections f, g :
P(U) −→ {0, 1}|U|. When the SA interacts with a client, once received the client’s set of secrets, the SA
sends the client an identifier, computed by using the first random function, and a list of sub-identifiers, one
for each possible subset of the client’s set of secrets, computed through the second random function.

On the other hand, when the SA interacts with a server and receives its set of secrets, it constructs a
two-column table: in the first column there is, for each possible subset E of the ground set, an identifier of
E, computed with the first random function; the second column has an identifier, computed with the second
random function, of the intersection E ∩ S of the subset E and the server’s set of secrets S. The table is
given to the server. The Interaction between a client and a server is a simple two-round protocol: the client
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sends its set identifier; the server looks up in the table the row with the received identifier, and sends it back
the identifier of the second column. Finally, the client looks up in the list of sub-identifiers and determines
the intersection with the server. We emphasize that the goal of this construction is only to show that the
construction of SH-PSI schemes is possible in the unconditionally setting, but the scheme we provide is, by
no means, of practical interest for a universe of large size.

Theorem 3.3 Let f, g : P(U) −→ {0, 1}|U| be two random bijections. The protocol described in Figure 1
is a SHI-PSI protocol achieving correctness, client privacy and server privacy in the unconditional model.

PROOF.

Correctness. It is easy to check that the protocol is correct; indeed, the table T contains the pair (R, g(C∩
S)) and the client will indeed retrieve C ∩ S by looking up in L.

Server Privacy. Note that the client only gets a (random) identifier from the interaction, which can indeed
be simulated without S.

Client Privacy. First of all, notice that the server does not get any information about the correspondence
value-subset, since the construction of the table is completely blind to it. Moreover, independently of the
client set of secrets, the table the server gets has in the second column exactly 2|S| different random values,
that is, the number of all possible subsets of S. Each of these values appears exactly the same number of
times, namely 2|U|−|S|. This follows from the fact that, for every F ⊆ S,

#{E ⊆ U : S ∩ E = F} = #{F ∪ E′ : E′ ⊆ U \ S} = #{E′ : E′ ⊆ U \ S} = 2|U|−|S|

Hence, a request from a client only allows the server to learn the two values (f(C), g(C ∩ S)) which do not
leak any information about the client’s set of secrets nor its size. 2

4 SH-PSI: the computationally secure case

In this section we show that in the computational case size-hiding private set intersection is possible. To this
aim we give two constructions. The first one is valid when the size of the ground set is polynomial in the
security parameter; interestingly, it allows to state the equivalence between PSI, oblivious transfer (OT) and
the secure computation of the AND funcion. The second one may be useful in practice if the sizes of the
sets of secrets are reasonably small and an upper bound on them is a-priori known.

4.1 AND-based SH-PSI protocol

An oblivious transfer protocol is a two party protocol involving a sender and a receiver; the sender has two
secrets, s0 and s1, while the receiver is interested in one of them. Its choice is represented by a bit σ. After
running the protocol the receiver gets sσ and nothing else, while the sender does not learn which secret the
receiver has recovered. Introduced by Rabin [41], and later on redefined in different equivalent ways, it is a
key-tool in secure two-party and multy-party computation. We will denote this primitive as OT (s0, s1, σ).
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Note that a private AND protocol can be realized by using an OT (b1, b2, s) protocol. Indeed, the bit bs
that the receiver gets can be expressed as bs = (1⊕s)b0⊕sb1.As a result, invoking the instanceOT (0, a, b),
the receiver will get a · b. Now, the key-idea underlying our construction is that, if the set of secrets of C and
S are represented by means of two characteristic vectors IC and IS of elements of U then, by running an
AND(Ici , Isi) protocol for each bit of the vectors, C and S get the intersection and nothing else. Indeed,
each AND(Ici , Isi) = 1 means that they share the i-th element of the ground set U . Details are given in
Figure 2.

Let n be a security parameter and let U = {u1, . . . , u|U|} be a ground set of size poly(n) (both known
and fixed at the Set-up phase). Assume that C (resp. S) can be encoded in a characteristic vector IC (resp.
IS), such that IC [j] = 1 (resp. IS [j] = 1) iff the j − th element of U is in C (resp. S).

Set up

Client Server

IC = [Ic1 , . . . , Ic|U| ] IS = [Is1 , . . . , Is|U| ]

Interaction

Client Server

Run |U| parallel instances
C ≡ Receiver − S ≡ Sender

AND(Ic1 , Is1), . . . , AND(Ic|U| , Is|U|)
For 1 ≤ j ≤ |U|

If AND(Icj , Isj ) = 1
Output uj

Figure 2: A computationally secure size-hiding set intersection protocol.

It is easy to check that the protocol is correct. Moreover, it is secure as long as the AND protocol is.
Thus, if we use the OT construction proposed in [23], which relies on the existence of enhanced trapdoor
permutations2, we yield the following result:

Theorem 4.1 The protocol given in Figure 2, when instantiated with the OT protocol of Figure 3, realizes
SH-PSI scheme achieving correctness, client privacy and server privacy.

PROOF.

Correctness. It is easy to check that the SH-PSI protocol from Figure 2 is correct as long as the OT
protocol is. To see this, just note that indeed:

ci ⊕ b(ei) = (bi ⊕ b(xi))⊕ b(ei) = (bi ⊕ b(f−1α (fα(ei))))⊕ b(ei) = bi.

2see Definition C.1.1. from [27]
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Protocol steps (simplified description):
Let b0, b1 ∈ {0, 1} be the sender’s secret bits, and let i ∈ {0, 1} be the receiver’s choice.
Moreover, let F = {fα : Dα → Dα}α∈{0,1}poly(n) be a family of enhanced trapdoor permutations

• The sender uniformly selects a trapdoor pair (α, t) and sends α to the receiver.

• The receiver, uniformly and independently,

– selects e0, e1 ∈ Dα;

– sets yi = fα(ei) and y1−i = e1−i;

– sends y0, y1 to the sender.

• Using the trapdoor t and the inverting algorithm, for j = 0, 1, the sender computes

xj = f−1α (yj) and cj = bj ⊕ b(xj),

where b(·) is a hardcore predicate for fα. Then, it sends c0, c1 to the Receiver.

• The Receiver computes bi = ci ⊕ b(ei).

Figure 3: OT protocol based on trapdoor permutations.

Client Privacy. Intuitively client privacy is guaranteed because in the OT protocol the sender, indepen-
dently of the bit i held by the Receiver, gets uniformly distributed values of Dα. Indeed, y1−i = e1−i is
chosen uniformly at random in Dα and yi = fα(ei) is still uniformly distributed in Dα since ei is chosen
uniformly at random and fα is a permutation on Dα.

More precisely, a simulator SimS for the sender in the OT protocol will choose y0, y1 ∈ Dα uniformly
at random. From this one can construct a simulator for the server just running independently SimS for each
instance of the AND computation. Note that the view produced by this simulator is identically distributed
to the view of the sender in a real execution of the protocol and it is independent of the set of secrets held by
the client. Then, it easily follows that the server does not distinguish between two executions in which the
client has two different sets of secrets.

Server Privacy. On the other hand, in the OT protocol the Receiver gains no knowledge on the bit b1−i
because b(·) is a hardcore predicate for fα; as a result, from the triplet (α, e1−i, c1−i = b1−i ⊕ b(x1−i)) it is
infeasible to predict b1−i better than at random.

Based on this, we may construct a simulator SimR which acts as the receiver in the real protocol OT
except that it chooses ci−1 ∈ {0, 1} uniformly at random. This in turn yields a simulator for the client of the
SH-PSI protocol, by running SimR for each execution of the AND protocol. 2

Remark 4.2 Notice that, in this section we have described reductions from PSI to AND and from AND
to OT. On the other hand, a reduction from OT to PSI is constructed in [26]. Therefore it follows that OT,
PSI and AND are equivalent.
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4.2 Threshold-based protocol

Assuming some a-priori information on the sizes of the sets involved is known, more efficient protocols may
be achieved. Here we assume that a known value M upper bounds the sizes of all client and server’s sets.
Indeed, the smaller M is with respect to |U|, the greater the interest of this construction (actually, we need
M of polynomial size but |U| may as well be exponential).

As our scheme is a simple twist of [26], the main tool used is also additively homomorphic encryp-
tion. Informally, a public key encryption scheme is (additively) homomorphic if, for any two encryp-
tions Enc(m1) and Enc(m2) of any two messages m1 and m2, it holds that Enc(m1) · Enc(m2) =
Enc(m1 +m2), where · is the group operation on ciphertexts. By repeated application of the property, for
any integer c, it follows that Enc(m1)

c = Enc(cm1); as a result, given encryptions Enc(a0), . . . , Enc(ak)
of the coefficients a0, . . . , ak of a polynomial P of degree k, and a plaintext value y, it is possible to compute
Enc(P (y)), i.e., an encryption of P (y). Paillier’s cryptosystem [39] exhibits such properties and achieves
semantic security under chosen plaintext attacks under the decisional composite residuosity assumption (see,
for instance, Section 11.3 of [33]).

The proposed scheme is depicted in Figure 4. At this, Enc and Dec denote the Paillier encryption and
decryption algorithms, respectively. As the client is assumed to be honest, it will execute in the set up phase
the key generation algorithm for Paillier encryption, at which, in particular two l- bit primes p, q are fixed.
At this point, it makes explicit an encoding of U into Zn \ {0}. For the sake of readability in Figure 4
elements of U are assumed to belong to Zn \ {0}.

Theorem 4.3 The protocol given in Figure 4, is a SH-PSI protocol achieving correctness, client privacy
and server privacy, under the assumption that the Paillier encryption scheme is IND-CPA.

PROOF.
In the sequel, we set the notation I := |C ∩ S| and L := w − I.

Correctness. It is easy to see that the proposed protocol is correct, as the client’s output is constructed by
comparing its set C with the one consisting of S ∩ C plus the decryption of M − I uniform random values
from Zn2 . Namely, this sequence will consist of random values from Zn which is exponentially larger than
U . As a result, the probability that they actually encode an element in U (disrupting thus the computation of
the intersection) is negligible. 3

Client Privacy. Due to the semantic security of Enc the distribution of {Enc(a0), . . . ,Enc(aM )} is in-
distinguishable of that induced by selecting M + 1 elements independently and uniformly at random from
Zn2 .

Server Privacy. In order to argue the existence of a pptm algorithm C∗ which is able to simulate the
clients view on input C and C ∩ S, we modify C’s view replacing the true input values from the server,
constructed as encryptions involving values s ∈ S \ C with encryptions of elements chosen uniformly and
independently at random from Zn \ {0}.

3We leverage the fact that Paillier encryption actually defines a trapdoor permutation from Zn × Z∗n into Zn2 . There is actually
a negligible “loss” here, as we exclude 0 as a legitimate ciphertext.
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Set up

Client Server

C = {c1, . . . , cv} S = {s1, . . . , sv}
KeyGen(1l) = (pk, sk)

pk
-

Interaction

Client Server

Compute P (x) = xM−v
∑v
j=1(x− cj)

P (x) =
∑M
j=0 ajx

j

{Enc(a0), . . . ,Enc(aM )}
-

For 1 ≤ i ≤ w
ri ←$ Zn2

ei = Enc(ri · P (si) + si)
For w + 1 ≤ i ≤M
ei ←$ Zn2

�
(e1, . . . , eM )

For 1 ≤ j ≤ v
If (∃ j : Dec(ei) = cj ∧ cj ∈ C)

Output cj

Figure 4: Polynomial-based construction for |C|, |S| ≤M .

Consider thus the true distribution

D0 := {ρ0, . . . , ρM ,Enc(rs1P (s1) + s1), . . . ,Enc(rswP (sw) + sw), ξ1, . . . , ξM−w}

where for i = 0 . . .M each ρi denotes the random value involved in the Paillier encryption yielding Enc(ai),
namely, they are values chosen uniformly and independently at random from Z∗n, and

Enc(rs1P (s1) + s1), . . . ,Enc(rswP (sw) + sw), ξ1, . . . , ξM−w}

are constructed as in Figure 4 (w.l.o.g., we assume that S ∩ C = {s1, . . . , sI}).
Further, consider the distribution

DL = {ρ0, . . . , ρM ,Enc(rs1P (s1) + s1), . . . ,Enc(rsIP (sI) + sI), ν1, . . . , νL, ξ1, . . . , ξM−w}

where ν1, . . . , νL are elements chosen independently and uniformly at random from Zn2 .
Again from the semantic security of Enc it follows that this two distributions are computationally indis-

tinguishable.
2
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Remark 4.4 Having Paillier encryption in mind, we have designed the polynomial P in Step 2. of Round 1
(see 4), maximizing the number of its coefficients which are equal to zero (as encryptions of 0 with Paillier
are cheap). That is the reason for excluding 0 from the domain when defining the encoding of U into Zn.
Different refinements of this step may suit better if another encryption scheme is used, always ensuring that
the resulting polynomial has no roots that may correspond to an encoding of an element outside C and yet
in U . In [26], abstracting from the concrete homomorphic encryption scheme used, several modifications
of their basic protocol are proposed in order to boost efficiency all of them geared towards reducing the
number of products and exponentiations made by the server. These ideas would also yield a significant
speed up versus a naı̈ve implementation of the above protocol.

5 Unbalanced Size-Hiding: a construction without random oracles

In this section, we follow the spirit of [2] and try to provide unbalanced private set intersection protocols,
i.e., protocols in which the client actually learns |S| from the interaction, while keeping |C| secret. We will
thus, in the sequel, follow the definitions of correctness, client privacy and server privacy from [2].4

The main tool behind our construction are smooth projective hash functions from non-malleable com-
mitments, as proposed by Gennaro and Lindell in [28]. We summarize here informally the main definitions
and results, and refer the reader to [28, 1] for precise definitions and concrete constructions.

Let Com be a non-interactive, non-malleable commitment scheme which is computationally hiding and
perfectly binding in the common reference string model5. By Comρ(u, r) we denote a commitment to an
element u using the common reference string ρ and the random coins r; further, denote by Comρ the space
of all strings that may be output by Com when the common reference string is ρ. Now, define the sets:

• Uρ = U × Comρ

• Lρ = {(u, com)‖ ∃r s.t. com = Comρ(u, r)}

In such a situation, consider at hand a smooth projective hash family F for the induced hard partitioned
subset membership problem. This essentially means we have a hash family F indexed by a key space K,
that is F = {fk}k∈K , so that for every k ∈ K, we have

fk : Uρ 7−→ G

for a set G which is of superpolynomial size in the security parameter. For our purposes later, G can be
seen as {1, . . . , N2}. Let P be a fixed set and α an (efficiently computable) projection function defined over
K × Comρ with range in P. Now given all these ingredients we get the following:

1. Efficient hashing from k: there exists an efficient algorithm KeyHash which on input a pair (u, com)
from Uρ, and a key k ∈ K outputs fk(u, com).

2. Efficient hashing from projection and witness: there exists an efficient algorithm ProjHash which on
input a pair (u, com) ∈ Uρ, a random value r so that com = Comρ(u, r) and a projection α(k, com)

4Correctness is defined including |S| as part of the client’s output, the definition of client privacy coincides with the one we have
given here for SH-PSI protocols, while server’s privacy ensures the client’s view is polynomial-time simulatable on input C,S ∩ C
and |S| (the latter definition does not coincide with the one from [2], but |S| is needed in the simulation included in their proof).

5(it may actually be derived, as argued in [28], from any IND-CCA encryption scheme)
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outputs fk(u, com). We may actually assume the input of ProjHash to be the projection α(k, com)
and u, r, provided that Com and ρ are well defined and publicly available.

3. Smoothness: for every u ∈ U , for k ∈ K chosen u.a.r. and uniformly chosen coins r, it holds that

{com = Comρ(u, r), u, α(k, com), fk(u, com)}

and
{com = Comρ(u, r), u, α(k, com), g}

are computationally indistinguishable, where g is drawn u.a.r. from G.

Let us now introduce our protocol, building on a non-interactive non-malleable commitment scheme
Com and a smooth projective hash family F = {fk}k∈K as described above. These can actually be de-
rived from IND-CCA encryption schemes, like Cramer-Shoup (see, again [28]).We may, for instance take
the Cramer-Shoup scheme based on quadratic residuosity as a base (see [11]), which fits our construction
nicely. Further, we need to make another computational assumption, namely the Strong RSA assumption
as introduced in [4], which states that given a randomly chosen RSA modulus N , and a random element
y ∈ Z∗N , it is computationally hard to find a pair (e, r), with e > 1, so that re = y (mod N).

Further, during the set up phase, a pseudorandom function h : U 7→ {1, . . . , N2} is selected, which can
be efficiently evaluated by both users. Moreover, assuming the sizes of the underlying sets are large enough,
we can assume h to be division intractable (see Theorem 2 of [9]). Thus in the sequel we assume that it
is computationally hard to find distinct inputs x1, . . . , xn, y ∈ U such that h(y) divides the product of the
h(xi)’s (see Definition 2 in [44]). The key ideas in our design are similar to those in [2], in a nutshell:

• During set up, server generates two safe primes p and q and publishes the product N , further, the two
agree upon a randomly chosen generator from the group of quadratic residues moduloN and a suitable
pseudorandom function h. Also the projective hash family and the corresponding commitment scheme
are agreed upon and made explicit.

• In the first round, the client sends to the server a witness for its set X = gRc
∏v
i=1 h(ci) (mod N), by

means of an RSA accumulator. where Rc is selected uniformly at random in {1, . . . , N2}.

• The server, being able to compute h−roots modulo N , constructs for each s ∈ S, a value y = X
1

h(s)

which, if s is in the intersection, constitutes a witness for the set C\{s}—and provides no information
otherwise. Further, it commits to these values and sends in the second round, for each of them, a triplet
consisting of: a hash value fk(h(s, y), com) (for a randomly selected fk from F ), the random nonce
involved in the commitment and the projection α(k, com). Note that from the random nonce and the
given projection the client just has enough to evaluate fk on exactly the right input derived from s –
for other inputs, we may assume the algorithm ProjHash gives a random output.

• Finally, the client can identify matching sets C \ {s} for each s ∈ C ∩ S, and, as a result, retrieve
the intersection. Note that this is all it learns, as it has no information on the evaluations of fk in any
element outside the intersection.

A detailed description can be seen in Figure 5; note that evaluations of fk computed by the server are
actually executions of KeyHash, while evaluations by the client are executions of ProjHash.
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Set up

Client SA Server

C = {c1, . . . , cv} S = {s1, . . . , sw}
(N, p, q)← StronRSAKeyGen

F = {fk}
g ←$ QRN

�
N, g, h, F

h
p, q, g, h, F

-

Interaction

Client Server

Rc ←$ {1, . . . , N2} k ←$ K
PCH :=

∏v
i=1 h(ci)

X = gRcPCH (mod N)
-

for j = 1, . . . w :
set hj := h(sj),

yj := X
1
hj (mod N)

choose random rj
set comj := Cρ((hj , yj), rj),
set φj := fk((hj , yj), comj)

�
{(φj , rj , α(k, comj))}j=1,...,w

for i = 1, . . . v :

set PCHi =
∏
l 6=i h(cl)

ŷi = gPCHiRc (mod N)
for j = 1 . . . , w :

set comij = Comρ((h(ci), ŷi), rj)
if fk((h(ci), ŷi), comij) = φj

ci ∈ C ∩ S

Figure 5: An USH-PSI protocol in the CRS model.

Theorem 5.1 The protocol given in Figure 5, is a USH-PSI protocol in the common reference string model
achieving correctness, client privacy and server privacy, under the strong RSA assumption, provided that
Com is a non-interactive and non-malleable perfectly binding and computationally hiding commitment
scheme and F is a family of smooth projective hash functions.

Correctness. To see that the protocol is correct, let us first argue that whenever there are i ∈ {1, . . . , v}
and j ∈ {1, . . . , w} such that ci = sj the client will set ci ∈ C∩S. Indeed, if that is the case PCHi = PCH

hj
,
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and as a result ŷi = yj , so client gets fj = fk((h(ci), ŷi), comj) from ProjHash(α(k, comj), (h(ci), ŷi), rj).
Furthermore, if ci is not in S, for each j = 1, . . . , w, due to the division intractability of H we have that

with overwhelming probability PCHi 6= PCH
hj

; and as a result there is only negligible probability that the
client includes ci in the intersection.
Indeed, with overwhelming probability, ProjHash(α(k, comj), (h(ci), ŷi), rj) will give a random output
that will not coincide with φj .

Client Privacy. As PCH is, with overwhelming probability, coprime with p′q′ and Rc is selected uni-
formly at random, X is (except with negligible probability) uniformly distributed over QRN (our argument
is exactly the same as in [2]).

Server Privacy. Let us argue how C∗ may simulate the client’s view. Without loss of generality, let us
“reorder” the client’s set and assume the input of C∗ is C = {c1, . . . , cv} and C ∩ S = {c1, . . . , ct}. C∗
selects u.a.r. a key k for the projective hash family F, and RC in {1, . . . , N2}.

Then it:

• selects random values rj j = 1, . . . , w,

• for i = 1, . . . v, compute h(ci),

• set PCH :=
∏v
l=1 h(cl), X := gRcPCH (mod N)

• for i = 1, . . . , t set PCHi :=
∏
l 6=i h(cl), yi := gRcPCHi , comi = Cρ((h(ci), yi), ri) and fi =

fk((h(ci), yi), comi)

• for j = t + 1, . . . , w choose u.a.r values y∗j ∈ QRN , h
∗
j in the range of h and set com∗j :=

Cρ((h
∗
j , y
∗
j ), rj). Further, select f∗j u.a.r. from the range of fk.

Now, let us see that the distribution:

simview := {Rc, {fi, ri, α(k, comi)}i=1,...,t, {(f∗j , rj , α(k, com∗j ))}j=t+1,...,w}

is computationally indistinguishable from the real clients view:

D0 := {Rc, {fk((hj , yj), comj), rj , α(k, comj)}j=1,...,w}

where yj = X
1
hj and comj = Cρ((hj , yj), rj).

Our argument mimics the reasoning from Theorem 1 in [2]: if we consider a series of intermediate
distributions Dν for ν = 1, . . . , w − (t + 1) where for each 1 ≤ ν ≤ w − (t + 1) we have that the first
ν values corresponding to elements in S but not in the intersection are simulated by selecting uniformly
at random a nonce r, an element y∗ ∈ QRN , h∗ in the range of H and f∗ in the range of fk and further
computing com := Cρ((h

∗, y∗), r). Namely, simview = Dw−t. Indeed, using a hybrid argument, we claim
that the probability of distinguishing Dν from Dν+1 is negligible in the security parameter `.

Indeed, due to the smoothness of F we have that if a distinguisher D is able to tell apart these two
distributions, it must have, on input Dν , constructed the elements h(sν) and yν = X

1
h(sν ) . Nothing else
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being sent helps in this distinction, as the nonces are truly random and nothing is leaked from the projections
(due to the hiding property of the commitment scheme).

This is because the division intractability of H guarantees that RCPCH
h(sν)

is not an integer with over-
whelming probability, and thus it must have extracted an h(sν)-root of X (mod N) without knowing the
factorization of N . Now, as a result, such a distinguisher can be used (as in [44]) to violate the RSA as-
sumption. Indeed, we can build an algorithm A which on input a Strong RSA challenge of the form (N, y)
will (making use of D) output values (r, e) so that re = y (mod N).

For that purpose, A may simply set g = y and select x1, . . . , xv ∈ U , and select a random u ∈
U \ C which will play the role of the distinguishing element. Further, select Rc uniformly at random in
{1, . . . , N2} and set PCH =

∏
i=1,...,v h(xi). Now present D with the derived distributions Dν and Dν+1.

Note that they only differ in the last triplet, which in Dν is (fk((h, y), com), r, α(k, com)) for values se-
lected as the server would do following the protocol specification, while in Dν+1 it is (f∗, r, α(k, com∗)),
where the value r is selected properly but f∗ and com∗ are incorrelated, as explained above.

Now D outputs h∗ = h(u) and X
1
h∗ (mod N). Note that, due to the division intractability of H we

have that h∗ does not divide RcPCH with overwhelming probability.
As a result, let d = g.c.d.(RcPCH, h

∗). Then there must be b, e with gcd(b, e) = 1 and so that h∗ = ed
andRcPCH = bd.Now, using the extended Euclidean algorithmAmay compute α, β so that αe+βb = 1.

Note that the elementX
1
h∗ (mod N) output by the distinguisher is actually g

b
e , from which (using Shamir’s

trick) A derives g
1
e as (g

b
e )αgβ.

Remark 5.2 Note also that a very simple solution in the unbalanced scenario comes at hand when we are
willing to involve a set up authority SA who will simply select function f from a pseudorandom function
family and provide each participant with f -evaluations of the elements in its private input set. Further, users
may exchange these evaluations in order to identify common elements . Indeed, such a trivial solution may
come handy in many scenarios, however if the SA is not fully trusted the evaluation of the pseudorandom
function must be done in an oblivious way. Following the ideas of [31], two protocols along these lines can
be found in our prior work [16].

6 Conclusion

We have explored the private set intersection problem when hiding the sizes of the input sets is relevant; for
SH-PSI, we provide a (conceptual) protocol in the unconditional setting (with the help of a trusted party in
a set up phase). Furthermore, we proved that PSI is impossible in the unconditional setting, making explicit
its relation to AND. In addition, in the computational scenario, we have both given a theoretical construction
(only applicable for polynomial universes) and a practical one which is a simple twist of the well known
polynomial scheme of Freedman et al. [26].

For USH-PSI we have given a generic construction that may be implemented using different suitable
projective hash functions from convenient commitment schemes. Depending on the underlying primitives
actually selected, the resulting scheme will turn out to be more or less efficient and its security guarantees
stronger or weaker depending on the underlying computational assumptions required (as explicited above,
we need at least to assume that the Strong RSA assumption holds).
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