Efficient, Pairing-Free, One Round Attribute-Based Authenticated Key Exchange

Suvradip Chakraborty, Srinivasan Raghuraman, Pandu Rangan C
Theoretical Computer Science Lab, Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India

Abstract

In this paper, we present a single round two-party attribute-based authenticated key exchange protocol. Since pairing is a costly operation and the composite order groups must be very large to ensure security, we focus on pairing free protocols in prime order groups. We propose a new protocol that is pairing free, working in prime order group and having tight reduction to Strong Diffie Hellman (SDH) problem under the Attribute-based CK model which is a natural extension of the CK model for the public key setting. Thus, the first major advantage is that smaller key sizes are sufficient to achieve comparable security. Our scheme has several other advantages. The major one being the capability to handle active adversaries. All the previous Attribute-Based authenticated key exchange protocols can offer security only under passive adversaries. Our protocol recognizes the corruption by an active adversary and aborts the process. Ours is the first scheme achieving this property. We also show how to modify our construction to achieve anonymity of access structure of users. Our attribute-based authenticated key exchange is also the first that enjoys this property. In addition to this property, our scheme satisfies other security properties that are not covered by CK model such as forward secrecy, key compromise impersonation attacks and ephemeral key compromise impersonation attacks.

Keywords: authenticated key exchange; attribute based authenticated key exchange, CK model, ABCK model, Random Oracle Model, Forward Secrecy, Key Compromise Impersonation attacks.

1 Introduction

The goal of an Authenticated Key Exchange (AKE) protocol is for two parties to establish a common shared session key which they can later use to securely communicate with each other. Attribute-based AKE (ABAKE) is a new variant of the AKE that allows users to authenticate each other using their attributes unlike in the PKI settings where the users authenticate each other using their identities. ABAKE can hide the identity information of an individual, which allows users to achieve mutual authentication and establish a secret session key by their attributes and some fine grained access control policy. Attribute based key exchange finds its application in distributed collaborative systems where it is more convenient for users to communicate with other users using their roles or responsibilities which can be described by attributes, interactive chat rooms, online forums where a user can have read/write access to threads only if they have desired attributes etc. Hence an authenticated key exchange protocol that facilitates attribute usage can be employed in this setting. Besides it may also be used to securely transfer some sensitive information such as medical history which is established by some AKE scheme.

ATTRIBUTE-BASED ENCRYPTION. Attribute-based encryption (ABE), as introduced by Sahai and Waters [1], allows for fine-grained access control on encrypted data.In an ABE system ciphertexts and private keys are associated with sets of descriptive attributes.An user should only be able to decrypt a ciphertext if the person holds a key for matching attributes where user keys are always issued by some trusted key generation centre (KGC). ABE comes in two flavours- Key Policy abe (KP-ABE) [2] proposed by Goyal et al. where the ciphertexts are encrypted under a set attributes and the private keys of the users are associated with access structures or policies that specify which ciphertexts the key holder will be allowed
to decrypt.On the other hand in a Ciphertext policy ABE (CP-ABE) [3] proposed by Bethencourt et al. which is the complimentary form of KP-ABE, the ciphertext is associated with an access policy and the private keys of the users are associated with attributes and the users can decrypt the cipherext if and only if their attributes satisfy the access structure associated with the ciphertext. The typical application of KPABE Is in content delivery services and that of CP-ABE is in cloud data storage. ABAKE is closely related to CP-ABE as in most applications it is natural that access policies are decided on key exchange and the parties specify the access policies as part of the ciphertext that they want their peers to satisfy. Goyal, Jain, Pandey and Sahai [4] gave a construction in the standard model but its large parameters and key sizes make it impractical for reasonably expressive policies. Ostrovsky, Sahai and Waters [5] considered non-monotonic access structures without blowing up the size of shares or ciphertexts. Efficient and expressive realizations in the standard model were subsequently put forth by Waters [6] and one of them was recently extended by Lewko et al. [7] and subsequently by Okamoto and Takashima [8], into schemes providing adaptive security whereas all prior works on ABE were limited to deal with selective adversaries [3] [1] [2].

1.1 Related Works

In the recent literature some ABAKE are proposed. Ateniese et al. [9] proposed a fuzzy handshake technique that is closely related to the ABAKE model. However there are some differences between the two as their scheme can only handle simple authentication condition by allowing only a single threshold gates as opposed to several threshold gates in AB-AKE settings. Gorantla et al. [10] proposed the first ABAKE scheme based on key encapsulation mechanism which provides parties with the fine-grained access control based on parties attributes. However it does not provide the flexibility of each user to select their access structures which they want their peers to satisfy. So in that sense their scheme is not an ABAKE scheme. Besides the security of their scheme is based on the BR model [11].

Birkett and Stebila [12] introduced the concept of predicate based key exchange with fine-grained access control with a predicate-based signature and here the parties can specify the condition the peer is expected to satisfy. However their scheme is proven secure in the random oracle model in BR model. The BR model does not allow the adversary to reveal the session specific informations and ephemral keys. Yoneyama [13] proposed a two-pass attribute based key exchange secure in the random oracle model under the Gap Bilinear Diffie Hellman assumption in the attribute based eCK [14] model. But it does not achieve full security as it relies on Waters CP-ABE which is selectively secure.

The previous works on attribute based based key agreement do not consider an active adversary. An active adversary is one which can extract the messages that are exchanged during key agreement and modify them arbitrarily during transit. In the scheme presented in [13], the adversary can extract the ephemeral component $X,\{U\})$ and change it to $X^{\prime},\left\{U^{\prime}\right\}$) and chooses an access structure by itself that is trivially satisfied by the attributes of user B and send it to B. Similarly he can extract the ephemeral component $Y,\{V\})$ and change it to $\left.Y^{\prime},\left\{V^{\prime}\right\}\right)$ and chooses an access structure by itself that is trivially satisfied by the attributes of user A and send it to A. Thus the final shared secret key of A and B will not be in agreement. Our protocol avoids this kind of an attack by a signature on the ephemeral components. In our scheme, we use a Schnorr group and hence the exponentiation operations are cheaper even though it involves more exponentiation operations. This is because in a Schnorr group the exponent is from a group $Z_{p}{ }^{*}$ where size of p is 224 bits according to http://www.keylength.com/en/4/.

1.2 Our Contribution

In this paper, we present an attribute based key agreement protocol which can be proved secure under the Strong-Diffie Hellman (SDH) assumption [15] in the random oracle model. We extend the techniques used in [16] for attribute based settings. Doing this is not trivial since in an attribute based system the keys and the ciphertexts have much more richer sturcture than identity based encryption schemes. We are able to achieve a tight reduction to the Strong Diffie Hellman problem based on the random oracle model. Moreover, our scheme is resistant to a dynamic active adversary which is allowed to modify the components exchanged
during the key agreement unlike all the previous schemes that were proven secure against passive adversaries. The scheme performs a check which will detect any tampering done on the components. In this way, a fully authenticated key agreement protocol is achieved. The protocol also satisfies additional security properties like forward secrecy,key compromise impersonation attacks. All the previous known attribute based key agreement protocols use well known existing attribute based encryption schemes to get a key agreement among the users. Hence the security of the key agreement were implicitly relying on the security guarantees provided by the underlying encryption schemes. Ours is the first scheme that removes this restriction and we get a key agreement protocol that does not rely on any attribute based encryption scheme. Moreover our construction is also efficient as it does not involve any pairing computations. In a practical sense, we can use any string as an attribute in our protocol because the setup algorithm of our protocol does not depend on the number of attribute candidates (i.e., the setup algorithm outputs constant size parameters).

Finally, we prove the security of our ABAKE system in the attribute based CK (ABCK) model which is a natural extension of the CK model for public key settings. In the ABCK model the adversary is allowed to pose queries that allows him to reveal the static secret key, master secret key and the ephemeral secret key. Also the freshness conditions are a little different than the CK model and the parties are identified by a set of attribute \mathbb{S}_{P}. We prove the security of our ABAKE in this model under the SDH assumption. Informally the SDH problem is the problem of solving the Computational Diffie-Hellman (CDHP) problem with the help of an oracle which solves the Decisional Diffie-Hellman (DDHP) problem.

1.3 Organization

In section 2, we present the preliminaries required for our ABAKE protocol. In more details, subsections 2.12.4 provide the necessary details on access structure, linear secret sharing schemes, composite order bilinear groups and the security assumptions. In section 3, we describe ABCK model and define the security of ABAKE schemes in this ABCK model. In section 4 we present our ABAKE scheme and in section 5 we prove the security of our ABAKE scheme. Finally section 6 concludes the paper.

2 Preliminaries

2.1 Notation

Throughout this work, we denote the security parameter by κ.
We denote by $x \in_{R} X$ the fact that the value of the variable x is chosen uniformly at random from the set of values X.

We set up notations for vectors which are used extensively. We denote by \vec{a} a vector, which is the tuple of values $\left(a_{1}, \ldots, a_{n}\right)$, where n is the length of the vector \vec{a}. We define the outcome of various operations on a vector as used in this work.

1. For any function f, we denote by $f(\vec{a})$ the tuple of values $\left(f\left(a_{1}\right), \ldots, f\left(a_{n}\right)\right)$.
2. For any function f and scalar c, we denote by $f(c, \vec{a})$ the tuple of values $\left(f\left(c, a_{1}\right), \ldots, f\left(c, a_{n}\right)\right)$.
3. For any function f, we denote by $f(\vec{a}, \vec{b})$ the tuple of values $\left(f\left(a_{1}, b_{1}\right), \ldots, f\left(a_{n}, b_{n}\right)\right)$, where n is the length of the vectors \vec{a} and \vec{b}.

As illustrations to each of the aforementioned,

1. Suppose H is a hash function with domain $\{0,1\}^{*}$. This could be a keyed-hash function, and for simplicity, we ignore mentioning the key repeatedly. We denote by $H(\vec{a})$ the tuple of values $\left(H\left(a_{1}\right), \ldots, H\left(a_{n}\right)\right)$.
2. Suppose \mathbb{G} is a multiplicative group and $g \in \mathbb{G}$. We denote by $g^{\vec{a}}$ the tuple of values $\left(g^{a_{1}}, \ldots, g^{a_{n}}\right)$.
3. We denote by $\vec{a}+\vec{b}$ and $\vec{a} \cdot \vec{b}$, respectively, the tuple of values $\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)$ and the tuple of values $\left(a_{1} \cdot b_{1}, \ldots, a_{n} \cdot b_{n}\right)$, respectively, where n is the length of the vectors \vec{a} and \vec{b}.

2.2 Access Structure

Definition 1. Access Structure [17] Let $\left\{P_{1}, \cdots P_{n}\right\}$ be a set of parties. A collection $\mathbb{A} \subseteq 2^{\left\{P_{1}, \cdots P_{n}\right\}}$ is monotone if $\forall B, C$: if $B \in \mathbb{A}$ and $B \subseteq C$, then $C \in \mathbb{A}$. An access structure (respectively, monotone access structure) is a collection (respectively, monotone collection) \mathbb{A} of non-empty subsets of $P_{1}, \cdots P_{n}$, i.e $\mathbb{A} \subseteq$ $\left.2^{\left\{P_{1}, \cdots P_{n}\right.}\right\} \backslash\{\emptyset\}$. The sets in \mathbb{A} are called the authorized sets, and the sets not in \mathbb{A} are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will only deal with monotone access structures. We note that it is possible to (inefficiently) realize general access structures with our techniques by having the negation of an attribute be a separate attribute (so the total number of attributes will be doubled).

2.3 Linear Secret Sharing

Our construction will employ linear secret sharing schemes (LSSS). We use the definition adapted from [21].
Definition 2. (Linear Secret Sharing (LSSS)) A secret sharing scheme π over a set of parties \mathcal{P} is called linear (over \mathbb{Z}_{p}) if

1. The shares for each party form a vector over \mathbb{Z}_{p}.
2. There exists a matrix A called the share-generating matrix for Π. The matrix A has l rows and n columns. For all $i=1, \ldots, l$, the $i^{\text {th }}$ row of A is labeled by a party $\rho(i)$ (ρ is a function from $\{i=1, \ldots, l\}$ to $\mathcal{P})$. When we consider the column vector $v=\left(s, r_{2} \cdots r_{n}\right)$, where $s \in \mathbb{Z}_{p}$ is the secret to be shared and $r 2, \cdots r_{n} \in \mathbb{Z}_{p}$ are randomly chosen, then $A v$ is the vector of l shares of the secret s according to Π. The share $(A v)_{i}$ belongs to party $\rho(i)$.

We note the linear reconstruction property: we suppose that Π is an LSSS for access structure \mathbb{A}. We let S denote an authorized set, and define $I \subseteq\{i=1, \cdots, l$,$\} as I=\{i \mid \rho(i) \in S\}$. Then the vector $(1,0, \cdots, 0)$ is in the span of rows of A indexed by I, and there exist constants $\left\{w_{i} \in \mathbb{Z}_{p}\right\}_{i \in I}$ such that for any valid shares $\left\{\lambda_{i}\right\}$ of a secret s according to Π, we have: $\sum_{i \in I} w_{i} \lambda_{i}=s$. These constants $\left\{w_{i}\right\}$ can be found in time polynomial in the size of the share-generating matrix A [21]. We note that for unauthorized sets, no such constants $\left\{w_{i}\right\}$ exist.

Boolean Formulas Access policies might also be described in terms of monotonic boolean formulas. LSSS access structures are more general and can be derived from such representations. More precisely, one can use standard techniques to convert any monotonic boolean formula into a corresponding LSSS matrix. We can represent the boolean formula as an access tree, where the interior nodes are AND and OR gates, and the leaf nodes correspond to attributes. The number of rows in the corresponding LSSS matrix will be same as the number of leaf nodes in the access tree.

2.4 Complexity Assumptions

In this section, we present a brief overview of the hard problem assumptions.
Definition 3. Computation Diffie-Hellman Problem (CDHP): Given $\left(g, g^{a}, g^{b}\right) \in \mathbb{G}^{3}$ for unknown $a, b \in \mathbb{Z}_{q}^{*}$, where \mathbb{G} is a cyclic prime order multiplicative group with g as a generator and q the order of the group, the $C D H$ problem in \mathbb{G} is to compute $g^{a b}$.

The advantage of any probabilistic polynomial time algorithm \mathcal{A} in solving the $C D H$ problem in \mathbb{G} is defined as

$$
A d v_{\mathcal{A}}^{C D H}=\operatorname{Pr}\left[\mathcal{A}\left(g, g^{a}, g^{b}\right)=g^{a b} \mid a, b \in \mathbb{Z}_{q}^{*}\right]
$$

The CDH Assumption is that, for any probabilistic polynomial time algorithm \mathcal{A}, the advantage $A d v_{\mathcal{A}}^{C D H}$ is negligibly small.

Definition 4. Decisional Diffie-Hellman Problem (DDHP): Given $\left(g, g^{a}, g^{b}, h\right) \in \mathbb{G}^{4}$ for unknown $a, b \in \mathbb{Z}_{q}^{*}$, where \mathbb{G} is a cyclic prime order multiplicative group with g as a generator and q the order of the group, the DDH problem in \mathbb{G} is to check whether $h \stackrel{?}{=} g^{a b}$.

The advantage of any probabilistic polynomial time algorithm \mathcal{A} in solving the DDH problem in \mathbb{G} is defined as

$$
A d v_{\mathcal{A}}^{D D H}=\left|\operatorname{Pr}\left[\mathcal{A}\left(g, g^{a}, g^{b}, g^{a b}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(g, g^{a}, g^{b}, h\right)=1\right]\right| a, b \in \mathbb{Z}_{q}^{*}
$$

The $C D H$ Assumption is that, for any probabilistic polynomial time algorithm \mathcal{A}, the advantage $A d v_{\mathcal{A}}^{C D H}$ is negligibly small.

Definition 5. Strong Diffie Hellman Problem (SDHP) [15]): Let κ be the security parameter and \mathbb{G} be a multiplicative group of order q, where $|q|=\kappa$. Given $\left(g, g^{a}, g^{b}\right) \in_{R} \mathbb{G}^{3}$ and access to a Decision Diffie Hellman ($D \mathrm{DH}$) oracle $\mathcal{D D \mathcal { H }}_{g, a}(.,$.$) which on input g^{b}$ and g^{c} outputs True if and only if $g^{a b}=g^{c}$, the strong Diffie Hellman problem is to compute $g^{a b} \in \mathbb{G}$.

The advantage of an adversary \mathcal{A} in solving the strong Diffie Hellman problem is defined as the probability with which \mathcal{A} solves the above strong Diffie Hellman problem.

$$
A d v_{\mathcal{A}}^{S D H P}=\operatorname{Pr}\left[\mathcal{A}\left(g, g^{a}, g^{b}\right)=g^{a b} \mid \mathcal{D D}_{g, a}(., .)\right]
$$

The strong Diffie Hellman assumption holds in \mathbb{G} if for all polynomial time adversaries \mathcal{A}, the advantage $A d v_{\mathcal{A}}^{S D H P}$ is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be efficiently instantiated and hence the strong Diffie Hellman problem is equivalent to the Gap Diffie Hellman problem [19].

3 ABCK security model

In this section we describe the ABCK model which is a natural extension of the CK model for PKI settings. An ABAKE consists of three polynomial time algorithms - Setup, KeyGen and KeyExchange. The Setup, KeyGen algorithms are discussed below. Each party in the AB-AKE protocol executes the KeyExchange algorithm which initially takes as input the master public key PK, an access structure \mathbb{A} and a private key for a set of attributes \mathbb{S}. If \mathbb{S} satisfies \mathbb{A}, KeyExchange proceeds as per specification and may generate outgoing messages and also accept incoming messages from other parties as inputs. The output of KeyExchange is either a session key Z or \perp. We denote a party by P and the set of descriptive attributes possessed by P as \mathbb{S}_{P}. We know describe the syntax of the three algorithms.

Setup: The setup algorithm takes as input the implicit security parameter κ and the attribute universe U and outputs the master public key $M P K$ and master secret key $M S K$.

$$
\operatorname{Setup}\left(1^{\lambda}, U\right) \rightarrow(M P K, M S K)
$$

KeyGen: The key generation algorithm takes in the master secret key $M S K$, the master public key $M P K$, and a set of attributes a set of attributes $\mathbb{S}_{\mathbb{P}}$ given by a party P, and outputs a static secret key $S K_{\mathbb{S}}$ corresponding to $\mathbb{S}_{\mathbb{P}}$.

$$
\operatorname{KeyGen}\left(M S K, M P K, \mathbb{S}_{\mathbb{P}}\right) \rightarrow S K_{\mathbb{S}_{\mathbb{P}}}
$$

KeyExchange: In this phase the parties A and B do some internal computation, communicate with each other, perform postprocessing and finally establishes a session key at the end. A (respectively B) selects an access policy \mathbb{A}_{A} (respectively \mathbb{A}_{B}) as access structure that they want their peer to satisfy and perform the following n-pass protocol (for our purpose $n=2$).

Without loss of generalization let us assume A starts the protocol. A first invokes the function Compute which takes in the master public key $M P K$, master secret key $M S K$, the set of attributes of A i.e. $\mathbb{S}_{\mathbb{A}}$, the static secret key of A namely $S K_{\mathbb{S}_{\mathbb{A}}}$ and A 's access policy \mathbb{A}_{A} and computes the first message m_{1} and sends this to B.

$$
\text { Compute }\left(M S K, M P K, \mathbb{S}_{\mathbb{A}}, S K_{\mathbb{S}_{\mathbb{A}}}, \mathbb{A}_{A}\right) \rightarrow m_{1}
$$

B on receiving the message m_{1} from A computes the message m_{2} by the algorithm Compute using the the master public key $M P K$, master secret key $M S K$, the set of attributes of B i.e. $\mathbb{S}_{\mathbb{B}}$, the static secret key of B namely $S K_{\mathbb{S}_{\mathbb{B}}}$ and B 's access policy \mathbb{A}_{B} and sends this to A.

$$
\text { Compute }\left(M S K, M P K, \mathbb{S}_{\mathbb{B}}, S K_{\mathbb{S}_{\mathbb{B}}}, \mathbb{A}_{B}\right) \rightarrow m_{2}
$$

In general for $i=2, \cdots, n$, when the party $P(P=A / B)$ receives the $i^{\text {th }}$ message from party $\bar{P}(\bar{P}=B / A)$, P computes $(i+1)^{t h}$ message by algorithm Compute and sends the message m_{i} to the party \bar{P}. Upon receiving/sending the final message m_{n}, both the parties compute the session key by the algorithm ComputeKey. This algorithm takes as input master public key $M P K$, the set of attributes of P i.e. $\mathbb{S}_{\mathbb{P}}$, the static secret key of P namely $S K_{\mathbb{S}_{\mathbb{P}}}$ and P 's access policy \mathbb{A}_{P} and the transcripts i.e. messages sent and received by P i.e. $m_{1}, m_{2}, \cdots, m_{n}$ and computes the session key Z.

$$
\text { ComputeKey }\left(M S K, \mathbb{S}_{\mathbb{P}}, S K_{\mathbb{S}_{\mathbb{P}}}, \mathbb{A}_{P}, m_{1}, m_{2}, \cdots m_{n}\right) \rightarrow Z
$$

Both parties compute the same session key κ if and only if $\mathbb{S}_{\mathbb{A}} \in \mathbb{A}_{B}$ and $\mathbb{S}_{\mathbb{B}} \in \mathbb{A}_{A}$
Session. An instance of the protocol as described above when run at a party is called a session. The user/entity that initiates a session is called the owner and the other user is called the peer.A session is activated with an incoming message of the forms $\left(\mathcal{I}, \mathbb{S}_{A}, \mathbb{S}_{B}\right)$ or $\left(\mathcal{R}, \mathbb{S}_{B}, \mathbb{S}_{A}, m_{1}\right)$, where \mathcal{I} and \mathcal{R} with role identifiers, and A and B with user identifiers. If A was activated with $\left(\mathcal{I}, \mathbb{S}_{A}, \mathbb{S}_{B}\right)$, then A is called the session initiator. If B was activated with $\left(\mathcal{R}, \mathbb{S}_{B}, \mathbb{S}_{A}, m_{1}\right)$, then B is called the session responder. The components exchanged between the owner and the peer constitute the session state. The shared secret key obtained after the $n^{t h}$ message is communicated is called the session key. On successful completion of a session, each entity outputs the session key and deletes the session state. Otherwise, the session is said to be in abort state and no session key is generated in this case. Each entity participating in a session assigns a unique identifier to that session. If A is the initiator of the session it sets the session id sid as $\left(\mathcal{I}, \mathbb{S}_{A}, \mathbb{S}_{B}\right.$, out, in $)$ where out and in are respectively the components sent to B and received by A. If B is the responder of a session initiated by A, it sets the sid as $\left(\mathcal{R}, \mathbb{S}_{B}, \mathbb{S}_{A}\right.$, out $\left.{ }^{\prime}, i n^{\prime}\right)$. The matching session of a completed session $\left(\mathcal{I}, \mathbb{S}_{A}, \mathbb{S}_{B}, m_{1}, m_{2} \cdots, m_{n}\right)$ is a completed session with identifier $\left(\mathcal{R}, \mathbb{S}_{B}, \mathbb{S}_{A}, m_{1}, m_{2} \cdots, m_{n}\right)$ and vice versa.

Adversary. The adversary \mathcal{A} is also modelled as a probabilistic polynomial time turing machine which has full control on the communication network over which protocol messages can be altered, injected or eavesdropped at any time. There are three types of adversary:

- Type I: The adversary of this type does not belong to the system and hence has access only to the PKG's parameters. It is not given access to the private keys of users and does not impersonate anyone. This is the weakest adversary.
- Type II : The adversary belongs to the attribute based system and can query for the private keys of polynomial number of users. It is not allowed to impersonate as any user.
- Type III : The adversary of this type belongs to the attribute based system and it is given access to the private keys of polynomial number of users. It can also impersonate as any other user. This is the strongest adversary and we prove our scheme secure against this type of adversary.

Since we prove our scheme secure against the Type III adversary, it is also secure against Type I and Type II because they are weaker adversaries compared to Type III. We allow the adversary to access some of the parties secret information, via the following attacks: party corruption, state-reveal queries and session-key queries. In party corruption phase, the adversary learns the private keys of the users. In a sessionstate-reveal query to a party running a session, the adversary learns the session state for that session. In shared secret key query phase, the adversary learns the shared secret key of a complete session. A session is called exposed if it or its matching session (if existing) is compromised by one of the attacks described above. The security of our protocol Π is defined as an adaptive game between the parties P_{i} and the adversary \mathcal{A}. In the first phase to capture possible leakage of private information as mentioned here, the adversary is provided with the capability of asking the following oracle queries in any order.

SessionStateReveal (sid): The adversary \mathcal{A} is given all the ephemeral secrets or the session state corresponding to the session sid. This could be possible if the session-specific secret information is stored in insecure memory, or if the random number generator of the party be guessed.

SessionKeyReveal (sid): \mathcal{A} is given the session key for sid, provided that the session holds a session key.
Party Corruption $\left(\mathbb{S}_{P}\right)$: The adversary learns the static secret key corresponding to the set of attributes \mathbb{S}_{P}.
Establish $\left(P, \mathbb{S}_{P}\right)$: This query allows the adversary to register a static public key corresponding to the set of attributes \mathbb{S}_{P} on behalf of the party P; the adversary totally controls that party. If a party is established by Establish $\left(P, \mathbb{S}_{P}\right)$ query issued by the adversary, then we call the party P dishonest or corrupt. If not, we call the party honest.

Send(Message): The adversarys ability of controlling the communication network is modelled by the Send query. Here the adversary can send a message of the form $\left(\mathcal{I}, \mathbb{S}_{A}, \mathbb{S}_{B}, m_{1}, m_{2} \cdots, m_{k}\right)$ or of the form $\left(\mathcal{R}, \mathbb{S}_{B}, \mathbb{S}_{A}, m_{1}, m_{2}, \cdots m_{k+1}\right)$. The adversary is then given the response from the party according to the protocol specification.

A session is called exposed if it or its matching session (if existing) is compromised by one of the attacks described above. An unexposed session is called fresh session.
The adversary begins the second phase of the game by choosing a fresh session sid^{*} and issuing a Test $\left(\operatorname{sid}^{*}\right)$ query, where the fresh session and test query are defined as follows:
Test $\left(\operatorname{sid}^{*}\right)$: Here the session $s i d^{*}$ must be a fresh session. On the Test query, a bit $b \in\{0,1\}$ is randomly chosen. The session key is given to the adversary \mathcal{A}, if $b=0$, otherwise a uniformly chosen random value from the distribution of valid session keys is returned to \mathcal{A}. Only one query of this form is allowed for the adversary. Of course, after the Test query has been issued, the adversary can continue querying provided that the test session is fresh. \mathcal{A} outputs his guess b^{\prime} in the test session. An adversary wins the game if the selected test session is fresh and if he guesses the challenge correctly i.e., $b^{\prime}=b$. The advantage of A in the experiment Π with the ABAKE scheme Π is defined as

$$
\operatorname{Adv}_{\Pi}^{\operatorname{ABAKE}}(\mathcal{A})=\operatorname{Pr}[\mathcal{A} \text { wins }]-\frac{1}{2}
$$

We define the security of the ABAKE scheme as follows:
Definiton 7 (ABAKE security). We say that an ABAKE scheme Π is secure in the ABCK model, if the following conditions hold:

1. If two honest parties complete matching sessions and $\mathbb{S}_{A} \in \mathbb{A}_{B}$ and $\mathbb{S}_{B} \in \mathbb{A}_{A}$, then, except with negligible probability, they both compute the same session key.
2. For any probabilistic polynomial-time adversary $\mathcal{A}, \operatorname{Adv}_{\Pi}^{\operatorname{ABAKE}}(\mathcal{A})$ is negligible.

4 Our Construction

We now give the description of the attribute based key agreement protocol and formally prove its security in the next section.

Setup: It chooses a group \mathbb{G} of prime order q. Let g be the generator of group \mathbb{G}. The PKG picks $s_{1}, s_{2} \in_{R}$ $Z_{p}{ }^{*}$, where p divides $q-1$, sets $y_{1}=g^{s_{1}}$ and $y_{2}=g^{s_{2}}$. The master secret key is $\left\langle s_{1}, s_{2}\right\rangle$ and the master public key is $\left\langle y_{1}, y_{2}\right\rangle$. It also defines the following hash functions: $H_{1}:\{0,1\}^{*} \rightarrow \mathbb{G}, H_{2}:\{0,1\}^{*} \times \mathbb{G} \rightarrow Z_{p}{ }^{*}$, $H_{3}:\{0,1\}^{*} \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \rightarrow Z_{p}{ }^{*}, H_{4}:\{0,1\}^{*} \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \times \mathbb{G} \rightarrow Z_{p}{ }^{*}, H_{5}: \mathbb{G} \times \mathbb{G} \rightarrow Z_{p}{ }^{*}$ and $H_{6}: \mathbb{G} \times \mathbb{G} \times \mathbb{G} \rightarrow Z_{p}{ }^{*}$. It then makes params public and keeps msk to itself, where params and msk are defined as follows:

$$
\text { params }=\left\langle\mathbb{G}, g, q, p, y_{1}, y_{2}, H_{1}, H_{2}, H_{3}, H_{4}, H_{5}, H_{6}\right\rangle \text { and } m s k=\left\langle s_{1}, s_{2}\right\rangle
$$

Key Generation: On input an attribute vector $\overrightarrow{\mathbb{S}}_{i}=\left(\mathbb{S}_{i}^{1}, \mathbb{S}_{i}^{1}, \cdots, \mathbb{S}_{i}^{m_{i}}\right)$ corresponding to an user i it does the following to generate the private key of the user i.

- It chooses $\overrightarrow{x_{i}} \in_{R} Z_{p}{ }^{*^{m_{i}}}$.
- It computes $\overrightarrow{u_{i 1}}=g^{\overrightarrow{x_{i}}}$ and sets $\overrightarrow{h_{i}}=H_{1}\left(\overrightarrow{\mathbb{S}_{i}}\right)$.
- It computes $\overrightarrow{v_{i 1}}=\overrightarrow{h_{i}} \overrightarrow{\vec{x}_{i}}$.
- It chooses $\overrightarrow{r_{i}} \in_{R} Z_{p}{ }^{m^{m}}$, computes $\overrightarrow{u_{i 2}}=g^{\overrightarrow{r_{i}}}$ and $\overrightarrow{v_{i 2}}=\overrightarrow{h_{i}} \overrightarrow{\vec{r}_{i}}$.
- It sets $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right), \overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$.
- It computes $\overrightarrow{d_{i 1}}=\overrightarrow{x_{i}}+s_{1} \overrightarrow{c_{i}}$ where s_{1} is the master secret key. It also calculates $\overrightarrow{d_{i 2}}=\overrightarrow{x_{i}}+\overrightarrow{r_{i}} \overrightarrow{b_{i}}+s_{2} \overrightarrow{e_{i}}$.
- Finally it sends $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}, \overrightarrow{d_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{h_{i}} s^{2}\right\rangle$ to the user i.

The user after receiving the private key components from the PKG performs the checks as described (Key Sanity Check) to ensure the correctness of the components.

Secret Key Sanity Check: After receiving the private key from the PKG in the key extract phase, the user performs the following check to ensure the correctness of the components of the private key.
The user first computes

$$
\begin{aligned}
& \overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right) \\
& \overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right) \\
& \overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)
\end{aligned}
$$

 the correctness of $\overrightarrow{d_{i 1}}$ and $\overrightarrow{u_{i 1}}$.

This can be verified as $\frac{g^{\left(\overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}\right)}}{g^{\overrightarrow{r_{i}} \cdot H_{3}\left(I D_{i}, \overrightarrow{u_{i 1} 1}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)} \cdot g^{s_{2} \cdot H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)} \stackrel{?}{=} g^{\overrightarrow{x_{i}}}=\overrightarrow{u_{i 1}}, \text { as } \overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)}$
and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$.

This check ensures the correctness of $\overrightarrow{d_{i 2}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 1}}, \overrightarrow{v_{i 2}}$.

This can be verified as $\frac{\overrightarrow{h_{i}} \overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}}{\left(\overrightarrow{h_{i}}\right)^{r_{i}}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, v_{i 2}\right)} \cdot\left(\overrightarrow{h_{i}} \vec{s}^{s_{2}}\right)^{H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)}=\overrightarrow{h_{i}} \overrightarrow{x_{i}}=\overrightarrow{v_{i 1}}$ where $\overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}\right.$,
$\left.\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$.
Test 3 ensures the correctness of ${\overrightarrow{h_{i}}}^{s_{2}}$. Test 2 and Test 3 ensures that g and $\overrightarrow{h_{i}}$ are raised to the same exponent $\overrightarrow{x_{i}}$ in $\overrightarrow{u_{i 1}}$ and $\overrightarrow{v_{i 1}}$ respectively.
If the received private key satisfies all the tests then it is valid.
Key Agreement: The two users i and j with attribute vectors $\overrightarrow{\mathbb{S}}_{i}$ and $\overrightarrow{\mathbb{S}}_{j}$ get their respective private keys from the PKG. First, i decides an access structure A_{i} and he hopes that the set of attributes $\overrightarrow{\mathbb{S}}_{j}$ of j satisfies A_{i}. Then, i derives the $l_{i} \times n_{i}$ share generating matrix M_{i} and the injective labeling function ρ_{i} in a LSSS for A_{i}. Similarly, j also decides an access structure A_{j} and he hopes that the set of attributes \mathbb{S}_{i} of i satisfies A_{j}. It then derives the $l_{j} \times n_{j}$ share generating matrix M_{j} and the injective labeling function ρ_{j} in a LSSS for $A_{j} . i$ and j then choose ephemeral secret components $\overrightarrow{t_{i}}, \overrightarrow{w_{i}} \in_{R} Z_{p}{ }^{* l_{i}}$ and $\overrightarrow{t_{j}}, \overrightarrow{w_{j}} \in_{R} Z_{p}{ }^{* l_{j}}$ respectively. i (respectively j) also chooses a random vector $\overrightarrow{\sigma_{i}} \in_{R} Z_{p}{ }^{* l_{i}}$ (respectively $\overrightarrow{\sigma_{j}} \in_{R} Z_{p}{ }^{* l_{j}}$) and engage in a session as described in Table 1.

Note that user j (respectively i) does not know the corresponding attributes of $i(j)$, but he can apply the function ρ_{i} (respectively ρ_{j}) to the rows of the share generating matrix M_{i} (respectively M_{j}) sent by i (respectively j) to get back the attributes corresponding to the access structure A_{i} (respectively A_{j}) LSSS matrix to get the corresponding attributes. It can then proceed with the computation of our key agreement protocol with the attributes $\overrightarrow{\mathbb{S}_{i}}$ (respectively $\overrightarrow{\mathbb{S}_{j}}$) corresponding to the rows of M_{i} (respectively M_{j}).

Now we show how to modify our construction to achieve full anonymity of access structure of individuals. In our construction user i (respectively j) chooses an access structure A_{i} (respectively A_{j}) and sends the share generating matrix and the row label function i.e. $\left(M_{i}, \rho_{i}\right)$ (respectively $\left(M_{i}, \rho_{i}\right)$). So the access structure of i and j are publicly available to everyone. Instead of sending $\left(M_{i}, \rho_{i}\right)$, user i can himself apply the function ρ_{i} to the matrix M_{i} and send only those corresponding attribute vector to j. Note that these corresponding attributes are now hashed using the hash function H_{5} instead of hashing (M_{i}, ρ_{i}). So even if an adversary tampers with the attributes the checks will not pass on the receiver side. So the user i can keep his access structure secret and only send only the required attributes that he wants his peer j to satisfy.

Remark 1 : The values in \vec{V}_{i} are freshly generated for every session in the following manner. In a preprocessing or a setup stage, the user i generates a large number of $\left(\beta, g^{\beta}\right)$ pairs and stores them in a table T_{i}. For each session, user i extracts 2 fresh vectors each of length l_{i} from the table T_{i} and uses them to generate components of $\overrightarrow{V_{i}}$. For security reasons, we assume that
(a) immediately after generating the components of $\vec{V}_{i}, \overrightarrow{w_{i}}$ is erased from the system.
(b) $\overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}\right)$ is computed in a secured way so that $\overrightarrow{w_{i}}$ and $\overrightarrow{d_{i 1}}$ are not leaked to the adversary and only $\overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}\right)$ is available to the adversary.
Remark 2: The components in \vec{F}_{i}, \vec{V}_{i} and \vec{F}_{j}, \vec{V}_{j} is required to be sent only for the first time key establishment between users i and j. For subsequent key establishments between i and j, only \vec{V}_{i} and \vec{V}_{j} need to be

User i	User \mathbf{j}			
1. Send $\overrightarrow{F_{i}}=\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}},{\overrightarrow{h_{i}}}^{s_{2}}, M_{i}, \rho_{i}\right\rangle, \overrightarrow{V_{i}}=1$. Send $\overrightarrow{F_{j}}=\left\langle\overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, \overrightarrow{d_{j 2}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \vec{h}_{j}^{s_{2}}, M_{j}, \rho_{j}\right\rangle, \overrightarrow{V_{j}}=$		$\left\langle\overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right), g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}\right\rangle, \quad X_{i}^{(1)}=g^{\sigma_{i}^{(1)}},\left\langle\overrightarrow{w_{j}}+\overrightarrow{d_{j 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}}}, M_{j}, \rho_{j}\right), g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}}}\right\rangle, X_{j}^{(1)}=g^{\sigma_{j}^{(1)}}$,	$U_{i}^{(a b)}=g^{M_{i a b} \sigma_{i}^{a}}$ to j.	$U_{j}^{(a b)}=g^{M_{j a b} \sigma_{j}^{a}}$ to i.
:---	:---			

2. (a) Check for correctness of \vec{F}_{j} :
3. (a) Check for correctness of $\overrightarrow{F_{i}}$:

Compute $\overrightarrow{u_{j 2}}=\left(\frac{g^{\overrightarrow{d_{j 2}}}}{\overrightarrow{u_{j 1}} \cdot y_{2} \overrightarrow{e_{j}}}\right)^{\overrightarrow{b_{j}}}$
Compute $\overrightarrow{v_{j 2}}=\left(\frac{\overrightarrow{h_{j}} \overrightarrow{d_{j 2}}}{\overrightarrow{v_{j 1}} \cdot\left({\overrightarrow{h_{j}}}^{s_{2}}\right)^{\overrightarrow{e_{j}}}}\right)^{{\overrightarrow{b_{j}}}^{-1}}$
Check 1 : Check if
$\overrightarrow{b_{j}} \stackrel{?}{=} H_{3}\left(\dot{\mathbb{S}}_{j}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, \overrightarrow{u_{j 2}}, \overrightarrow{v_{j 2}}\right)$
$\overrightarrow{e_{j}} \stackrel{?}{=} H_{4}\left(\overrightarrow{\mathbb{S}}_{j}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1} 1}, \overrightarrow{u_{j 2}}, \overrightarrow{v_{j 2}}\right)$
If not equal abort, else proceed.
(b) Check for correctness of \vec{V}_{j} :

Check 2 : Check if

$$
\left.\begin{array}{l}
\text { Compute } \overrightarrow{u_{i 2}}=\left(\frac{g^{\overrightarrow{d_{i 2}}}}{\overrightarrow{u_{i 1}} \cdot y_{2} \overrightarrow{e_{i}}}\right)^{\overrightarrow{b_{i}}-1} \\
\text { Compute } \overrightarrow{v_{i 2}}=\left(\frac{\overrightarrow{h_{i}}}{\overrightarrow{d_{2}}}\right. \\
\left.\overrightarrow{v_{i 1}} \cdot\left(\overrightarrow{h_{i}}\right)^{s_{2}}\right)^{\overrightarrow{e_{i}}}
\end{array}\right)^{-1}
$$

Check 1 : Check if

$$
\begin{aligned}
& \overrightarrow{b_{i}} \stackrel{?}{=} H_{3}\left(\overrightarrow{\mathbb{S}}_{i}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right) \\
& \overrightarrow{e_{i}} \stackrel{?}{=} H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)
\end{aligned}
$$

If not equal abort, else proceed.
(b) Check for correctness of V_{i} :
$\left.\left[\frac{\left.g^{\left(\overrightarrow{w_{j}}+\overrightarrow{d_{j 1}} \cdot H_{5}\right.}\left(g^{\overrightarrow{g_{j}}, g^{\overrightarrow{w_{j}}}, M_{j}, \rho_{j}}\right)\right)}{\left(g^{\overrightarrow{x_{j}}}\right)^{H_{5}}\left(g^{\overrightarrow{\overrightarrow{t j}_{j}}}, g^{\overrightarrow{w_{j}}, M_{j}, \rho_{j}}\right)\left(y_{1}\right)^{\overrightarrow{c_{j}} \cdot H_{5}}\left(g^{\overrightarrow{\vec{F}_{j}}}, g^{\overrightarrow{w_{j}}}, M_{j}, \rho_{j}\right.}\right)\right] \stackrel{?}{=} g^{\overrightarrow{w_{j}}}$
where $\overrightarrow{c_{j}}=H_{2}\left(\overrightarrow{\mathbb{S}}_{j}, \overrightarrow{u_{j 1}}\right)$.
If not equal abort, else proceed.
Check 3 : Check if
Check 2 : Check if

$$
\left[\frac{\left.g^{\left(\overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\right.}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)\right)}{\left(g^{\overrightarrow{x_{i}}}\right)^{H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right.}\left(y_{1}\right)^{\overrightarrow{c_{i}} \cdot H_{5}\left(g^{\overrightarrow{\vec{t}_{i}}}, g^{\overrightarrow{w_{i}}}\right)}}\right] \stackrel{?}{=} g^{\overrightarrow{w_{i}}}
$$

where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}}_{i}, \overrightarrow{u_{i 1}}\right)$.
If not equal abort, else proceed.
Check 3 : Check if
$\prod_{a, b: \rho_{i}(a) \in \mathbb{S}_{j}}\left(U_{i}^{(a b)}\right)^{\lambda_{j}^{a}} \stackrel{?}{=} X_{i}^{(1)}$.
If equal proceed to step 3 , else abort.
If equal proceed to step 3 , else abort.
3. Shared secret key generation:

Compute $\overrightarrow{Z_{1}}=\left(\overrightarrow{u_{j 1}} y_{1} \overrightarrow{c_{j}} g^{\overrightarrow{t_{j}}}\right)^{\overrightarrow{d_{i 1}}+\overrightarrow{t_{i}}}$
Compute $\overrightarrow{Z_{1}}=\left(\overrightarrow{u_{i 1}} y_{1} \overrightarrow{c_{i}} g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{d_{j 1}}+\overrightarrow{t_{j}}}$
$\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \overrightarrow{v_{j 1}}$
$\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{j}}}\right)^{\overrightarrow{t_{i}}}$.
$\vec{Z}=H_{6}\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$.
$\overrightarrow{Z_{2}}=\overrightarrow{v_{j 1}} \overrightarrow{v_{i 1}}$
$\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.
$\vec{Z}=H_{6}\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$.
\vec{Z} is the shared secret key that is established between User i and User j.
Table 1. Description of the Key Agreement protocol
exchanged since the values in \vec{F}_{i} are same for all sessions between a pair of users and is independent of the session.

Remark 3 : The intuition behind using the component $\overrightarrow{Z_{3}}$ is to eliminate $g^{\overrightarrow{t_{i}} \cdot \overrightarrow{t_{j}}}$ from $\overrightarrow{Z_{1}}$ in the security proof to obtain the solution to the hard problem.

Check 1 is done to ensure that g and $\overrightarrow{h_{i}}$ are raised to the same exponent $\overrightarrow{x_{i}}$. This is a crucial security requirement.
For valid components this check holds good. We prove it here. For the ease of understanding we will prove it for one component of the corresponding vectors. The same check goes through for all the components of the corresponding vectors.

$$
\begin{aligned}
& \left(\frac{g^{\overrightarrow{d_{i 2}}}}{\overrightarrow{u_{i 1}} \cdot y_{2} \overrightarrow{e_{i}}}\right)^{{\overrightarrow{b_{i}}}^{-1}}=\left(\frac{g^{\overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}}}{g^{\overrightarrow{x_{i}}} \cdot g^{s_{2} \cdot \overrightarrow{e_{i}}}}\right)^{{\overrightarrow{b_{i}}}^{-1}}=\left(g^{\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}}\right)^{{\overrightarrow{b_{i}}}^{-1}}=g^{\overrightarrow{r_{i}}}=\overrightarrow{u_{i 2}} . \\
& \left(\frac{\overrightarrow{h_{i}}}{\overrightarrow{\vec{d}_{i 2}}} \vec{v}_{\overrightarrow{v_{i 1}} \cdot\left({\overrightarrow{h_{i}}}^{s_{2}}\right)^{\overrightarrow{e_{i}}}}\right)^{{\overrightarrow{b_{i}}}^{-1}}=\left(\frac{\overrightarrow{h_{i}} \overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}}{\overrightarrow{h_{i}} \overrightarrow{\vec{x}_{i}} \cdot\left({\overrightarrow{h_{i}}}^{s_{2}}\right)^{\overrightarrow{e_{i}}}}\right)^{{\overrightarrow{b_{i}}}^{-1}}=\left(\overrightarrow{h_{i}} \overrightarrow{\vec{r}_{i}} \cdot \overrightarrow{b_{i}}\right)^{\overrightarrow{b_{i}-1}}=\overrightarrow{h_{i}} \overrightarrow{r_{i}}=\overrightarrow{v_{i 2}}
\end{aligned}
$$

The components that are recomputed are valid and hence the computation of $\overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}}_{i}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ will match the one obtained if not for any tampering during transfer.

Check 2 is done to ensure that a dynamic adversary cannot tamper the components exchanged and affect the shared secret key generation. It verifies the signature $w_{i}+d_{i 1} \cdot H_{5}\left(g^{t_{i}}, g^{w_{i}}, M_{i}, \rho_{i}\right)$ on $g^{t_{i}}$.

$$
\frac{g^{\left(\overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)\right)}}{\left.\left.\left(g^{\overrightarrow{x_{i}}}\right)^{H_{5}\left(g^{\overrightarrow{z_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right.}\right) \cdot\left(y_{1}\right)^{\overrightarrow{c_{i}} \cdot H_{5}\left(g^{\overrightarrow{\vec{i}_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right.}\right)}=\frac{g^{\left(\overrightarrow{w_{i}}+\left(\overrightarrow{x_{i}}+s_{1} \cdot \overrightarrow{c_{i}}\right) \cdot H_{5}\left(g^{\overrightarrow{\vec{i}_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)\right)}}{\left(g^{\left.\overrightarrow{x_{i}}\right)^{H_{5}}\left(g^{\overrightarrow{\vec{z}_{i}}}, g^{\overrightarrow{w_{i}}}\right)} \cdot(g)^{s_{1} \cdot \overrightarrow{c_{i}} \cdot H_{5}\left(g^{\overrightarrow{\vec{c}_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)}\right.}=g^{\overrightarrow{w_{i}}}
$$

Check 3 is done to ensure that a dynamic adversary cannot tamper with the access structure. If the adversary tries to tamper with the acess structure, he will be caught since the share generating matrix and the function ρ_{i} is bound to the hash function H_{5}. If the attributes of user j i.e. \mathbb{S}_{j} satisfies the access structure of i, it can generate the constants λ_{j} 's $\in \mathbb{Z}_{p}$ such that for any valid shares $\left\{\omega_{i}\right\}_{i \in I}$ of a secret $\sigma_{i}^{(1)}$ according to the LSSS scheme Π, we have: $\sum_{i \in I} \omega_{i} \lambda_{i}=\sigma_{i}^{(1)}$ where $I=\left\{i \mid \rho_{i}(a) \in S\right\}$. So:

$$
\prod_{a, b: \rho_{i}(a) \in \mathbb{S}_{j}}\left(U_{i}^{(a b)}\right)^{\lambda_{j}^{a}}=\prod_{a, b: \rho_{i}(a) \in \mathbb{S}_{j}}\left(g^{M_{i a b} \sigma_{i}^{a}}\right)^{\lambda_{j}^{a}}=g^{\sum_{a, b: \rho_{i}(a) \in \mathbb{S}_{j}} M_{i_{a b}} \sigma_{i}^{a} \lambda_{j}^{a}}=g^{\sigma_{i}^{(1)}}=X_{i}^{(1)}
$$

Lemma 1: The shared secret key computed by both the parties are identical.
Proof: User i computes :
$\overrightarrow{Z_{1}}=\left(\overrightarrow{u_{j 1}} \overrightarrow{y_{1}} \overrightarrow{c_{j}} g^{\overrightarrow{t_{j}}}\right)^{\overrightarrow{d_{i 1}}+\overrightarrow{t_{i}}}=\left(g^{\left(\overrightarrow{x_{j}}+s_{1} \overrightarrow{c_{j}}+\overrightarrow{t_{j}}\right)}\right)^{\left(\overrightarrow{d_{i 1}}+\overrightarrow{t_{i}}\right)}=g^{\left(\overrightarrow{d_{j 1}}+\overrightarrow{t_{j}}\right)\left(\overrightarrow{d_{i 1}}+\overrightarrow{t_{i}}\right)}$, since $\overrightarrow{u_{j 1}}=g^{\overrightarrow{x_{j}}}$ and $\overrightarrow{x_{j}}+s_{1} \overrightarrow{c_{j}}=\overrightarrow{d_{j 1}}$.
User j computes:
$\overrightarrow{Z_{1}}=\left(\overrightarrow{u_{i 1}} y_{1} \overrightarrow{c_{i}} g^{t_{i}}\right)^{d_{j 1}+t_{j}}=\left(g^{\left(\overrightarrow{x_{i}}+s_{1} \overrightarrow{c_{i}}+\overrightarrow{t_{i}}\right)}\right)^{\left(\overrightarrow{d_{j 1}}+\overrightarrow{t_{j}}\right)}=g^{\left(\overrightarrow{d_{i 1}}+\overrightarrow{t_{i}}\right)\left(\overrightarrow{d_{j 1}}+\overrightarrow{t_{j}}\right)}$, since $\overrightarrow{u_{i 1}}=g^{\overrightarrow{x_{i}}}$ and $\overrightarrow{x_{i}}+s_{1} \overrightarrow{c_{i}}=\overrightarrow{d_{i 1}}$.
Thus $\overrightarrow{Z_{1}}$ computed by both the parties are identical. $\overrightarrow{Z_{2}}$ and $\overrightarrow{Z_{3}}$ are also consistent. Thus the final shared secret key computed by both the parties are consistent.

5 Security Proof

In this section, we give the security proof of our scheme presented in the previous section. The proof is modeled based on the ABCK-model. The scheme is proved secure in the random oracle model under the Strong Diffie-Hellman (SDH) problem. The security proof is modeled as a game between the challenger and the adversary.

Setup: The challenger is given the SDH problem instance $\left\langle\mathbb{G}, g, q, p, C=g^{a}, D=g^{b}\right\rangle$ and access to the Diffie Hellman Oracle $D H\left(y_{1}, .,.\right)$. The challenger sets the master public key $y_{1}=C$ and hence the master secret key s_{1} is implicitly set as a. The challenger chooses $s_{2} \in_{R} Z_{p}{ }^{*}$ and sets $y_{2}=g^{s_{2}}$. The challenger gives the tuple $\left\langle\mathbb{G}, g, q, p, y_{1}, y_{2}\right\rangle$ to the adversary. The challenger simulates the hash oracles in the following way:
H_{1} Oracle: The challenger is queried by the adversary for the hash value of the attribute vector $\overrightarrow{\mathbb{S}_{i}}$ corresponding to user i. If the H_{1} Oracle was already queried with $\overrightarrow{\mathbb{S}}_{i}$ as input, the challenger returns the value computed before which is stored in the hash list $L_{h 1}$ described below. Otherwise the challenger tosses a $\operatorname{coin} \tau_{i}^{(\gamma)}$ where the $\operatorname{Pr}\left(\tau_{i}^{(\gamma)}=0\right)=\alpha$. The output of this oracle is defined as:

$$
\forall \gamma, \quad h_{i}^{(\gamma)}=\left\{\begin{array}{l}
g^{k_{i}}, \text { if } \tau_{i}^{(\gamma)}=0 \\
\left(g^{b}\right)^{k_{i}}, \text { if } \tau_{i}^{(\gamma)}=1
\end{array}\right.
$$

where $\overrightarrow{k_{i}} \in_{R} \mathbb{Z}_{p}{ }^{*}$. The challenger makes an entry in the hash list $L_{h 1}=\left\langle\overrightarrow{h_{i}}, \overrightarrow{\mathbb{S}_{i}}, \overrightarrow{\tau_{i}}, \overrightarrow{k_{i}}\right\rangle$ for future use and returns $\overrightarrow{h_{i}}$.
H_{2} Oracle : The adversary queries the challenger with inputs $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$. If the H_{2} Oracle was already queried with $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$ as input, the challenger extracts the value $\overrightarrow{c_{i}}$ from the hash list $L_{h 2}$ described below and returns the value. Otherwise, the challenger chooses a random vector $\overrightarrow{c_{i}} \in_{R} \mathbb{Z}_{p}{ }^{*^{m i}}$. It makes an entry in the hash list $L_{h 2}=\left\langle\overrightarrow{c_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{\mathbb{S}_{i}}\right\rangle$ and returns $\overrightarrow{c_{i}}$.
H_{3} Oracle: The adversary queries the challenger with inputs $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right.$). If the H_{3} Oracle was already queried with $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ as input, the challenger extracts the vector $\overrightarrow{b_{i}}$ from the hash list $L_{h 3}$ described below and returns the value. Otherwise, the challenger chooses a random vector $\overrightarrow{b_{i}} \in_{R} \mathbb{Z}_{p} *^{m_{i}}$. It makes an entry in the hash list $L_{h 3}=\left\langle\overrightarrow{b_{i}}, \overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right\rangle$ and returns $\overrightarrow{b_{i}}$.
H_{4} Oracle : The adversary queries the challenger with inputs $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$. If the H_{4} Oracle was already queried with $\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ as input, the challenger extracts the vector $\overrightarrow{e_{i}}$ from the hash list $L_{h 4}$ described below and returns the value. Otherwise, the challenger chooses a random vector $\overrightarrow{e_{i}} \in_{R} \mathbb{Z}_{p}^{*^{m_{i}}}$. It makes an entry in the hash list $L_{h 4}=\left\langle\overrightarrow{e_{i}}, \overrightarrow{S_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right\rangle$ and returns $\overrightarrow{e_{i}}$. H_{5} Oracle : The adversary queries the challenger with inputs $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)$. If the H_{5} Oracle was already queried with $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right)$ as input, the challenger extracts the vector $\overrightarrow{f_{i}}$ from the hash list $L_{h 5}$ described below and returns the value. Otherwise, the challenger chooses a random vector $\overrightarrow{f_{i}} \in_{R} \mathbb{Z}_{p}{ }^{m^{m_{i}}}$. It makes an entry in the hash list $L_{h 5}=\left\langle\overrightarrow{f_{i}}, g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right\rangle$ and returns $\overrightarrow{f_{i}}$.
H_{6} Oracle : The adversary queries the challenger with inputs $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$. If the H_{6} Oracle was already queried with $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$ as input, the challenger extracts the vector $\overrightarrow{l_{i}}$ from the hash list $L_{h 6}$ described below and returns the value. Otherwise, the challenger chooses a random vector $\overrightarrow{l_{i}} \in_{R} \mathbb{Z}_{p}{ }^{*^{m_{i}}}$. It makes an
entry in the hash list $L_{h 6}=\left\langle\overrightarrow{l_{i}}, \overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right\rangle$ and returns $\overrightarrow{l_{i}}$.
Party corruption: The adversary presents the challenger with an attribute vector $\overrightarrow{\mathbb{S}}_{i}$ and the challenger should return the private key of that user i. The challenger proceeds in the following way:
The challenger checks if the H_{1} Oracle was already queried for $\overrightarrow{\mathbb{S}_{i}}$. If yes and $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=1$, it aborts. Otherwise it extracts $\overrightarrow{k_{i}}, \overrightarrow{h_{i}}$ from the list $L_{h 1}$ and proceeds to the next step. If $\overrightarrow{\mathbb{S}_{i}}$ was not queried before, the challenger runs the H_{1} Oracle with $\overrightarrow{\mathbb{S}}_{i}$ as input. If $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=1$, it aborts. Else the challenger chooses $\overrightarrow{k_{i}} \in_{R} \mathbb{Z}_{p}^{*_{i}}$, computes $\overrightarrow{h_{i}}=g^{\overrightarrow{k_{i}}}$, adds the tuple $\left\langle\overrightarrow{h_{i}}, \overrightarrow{\mathbb{S}_{i}}, \overrightarrow{\tau_{i}}, \overrightarrow{k_{i}}\right\rangle$ to the $L_{h 1}$ list.
The challenger does not know the master secret key s_{1} as master public key $y_{1}=g^{a}$ setting $s_{1}=a$. Therefore in order to generate the private key of users, the challenger makes use of the random oracles and generates the private key as described below:

- The challenger chooses $\overrightarrow{c_{i}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{x_{i}^{\prime \prime}}, \overrightarrow{r_{i}^{\prime}} \in_{R} Z_{p}{ }^{m_{i}}$.
- It sets $\overrightarrow{u_{i 1}}=g^{\overrightarrow{x_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}}$.
- It sets $H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)=\overrightarrow{c_{i}}$ and adds the tuple $\left\langle\overrightarrow{c_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{\mathbb{S}_{i}}\right\rangle$ the $L_{h 2}$ list.
- It sets $\overrightarrow{d_{i 1}}=\overrightarrow{x_{i}^{\prime}}, \overrightarrow{d_{i 2}}=\overrightarrow{x_{i}^{\prime}}+\overrightarrow{r_{i}^{\prime}} \overrightarrow{b_{i}}+s_{2} \overrightarrow{e_{i}}$ and $\overrightarrow{u_{i 2}}=g^{\overrightarrow{r_{i}^{\prime}}} \cdot y_{1} \overrightarrow{c_{i}} \cdot \overrightarrow{b_{i}}-1$.
- It computes $\overrightarrow{v_{i 1}}=g^{\overrightarrow{k_{i}} \cdot x_{i}^{\prime}} \cdot y_{1}-\overrightarrow{k_{i}} \cdot \overrightarrow{c_{i}}$ and $\overrightarrow{v_{i 2}}=g^{\overrightarrow{k_{i}} \cdot r_{i}^{\prime}} \cdot y_{1} \overrightarrow{k_{i}} \cdot \overrightarrow{c_{i}} \cdot \overrightarrow{b_{i}}-1$.
- It also sets the hash function values $H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)=\overrightarrow{b_{i}}, H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)=\overrightarrow{e_{i}}$ and adds the tuples $\left\langle\overrightarrow{b_{i}}, \overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right\rangle,\left\langle\overrightarrow{e_{i}}, \overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right\rangle$ to the lists $L_{h 3}$ and $L_{h 4}$ respectively.
- It computes ${\overrightarrow{h_{i}}}^{s_{2}}$.
- It returns the tuple $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}, \overrightarrow{d_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{h_{i}}{ }^{s}\right\rangle$ as the private key of the user with attribute vector $\overrightarrow{\mathbb{S}_{i}}$ and makes an entry in the list $L_{E}=\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}, \overrightarrow{d_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{\mathbb{S}_{i}}\right\rangle$.

Lemma 2: The private key returned by the challenger during the PartyCorruption query are consistent with the system.
Proof: We now prove that the components returned by the challenger are consistent with that of the system. The components returned by the challenger should satisfy the 3 checks given in Secret Key Sanity Check.

- Test 2 : Check if $\frac{g^{\overrightarrow{d_{i 2}}}}{\overrightarrow{u_{i 2}}}{ }^{H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)} . y_{2}{ }^{H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)} \stackrel{?}{=} \overrightarrow{u_{i 1}}$.

This follows as $\left.\frac{g^{\overrightarrow{x_{i}^{\prime}}+r_{i}^{\prime}} \overrightarrow{b_{i}}+s_{2} \overrightarrow{e_{i}}}{\left(g^{{r_{i}^{\prime}}^{\prime}} \cdot y_{1} \overrightarrow{\vec{c}_{i}} \cdot \overrightarrow{b_{i}}\right.}\right)^{-1} \overrightarrow{b_{i}} \cdot g^{s_{2} \cdot \overrightarrow{e_{i}}}=g^{\overrightarrow{x_{i}^{\prime}}-a \cdot \overrightarrow{c_{i}}}=g^{\overrightarrow{x_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}}=\overrightarrow{u_{i 1}}$, as $\overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$
and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$.

This follows as $\frac{\overrightarrow{h_{i}} \overrightarrow{x_{i}^{\prime}}+\overrightarrow{r_{i}^{\prime}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}}{\left(g^{\overrightarrow{k_{i}} \cdot \overrightarrow{r_{i}^{\prime}} \cdot y_{1} \overrightarrow{k_{i}} \cdot \overrightarrow{c_{i}} \cdot \overrightarrow{b_{i}}}{ }^{-1}\right)^{\overrightarrow{b_{i}}} \cdot\left({\overrightarrow{h_{i}}}^{s_{2}}\right)^{\overrightarrow{e_{i}}}}=\overrightarrow{h_{i}} \overrightarrow{x_{i}^{\prime}} \cdot y_{1}-\overrightarrow{k_{i}} \cdot \overrightarrow{c_{i}}=\overrightarrow{v_{i 1}}$ where $\overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$ and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{u_{i 2}}, \overrightarrow{v_{i 2}}\right)$.

Thus the components generated by the challenger are consistent with the system as the tests 1,2 and 3 are satisfied.

Session Simulation: The adversary requires the challenger to simulate shared secret keys. The challenger simulates sessions other than the test session. Here we mention the party which initiates the session as the owner of the session and the other party who responds to the request of the owner as the peer. We have to consider the following cases during the session simulation phase.

Case 1: In this case, the adversary has executed the PartyCorruption query with respect to i. Hence the adversary knows the secret key of i. The adversary treats i as owner and generates the tuple of values given by $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}}{ }^{s_{2}}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}\right), g^{\overrightarrow{w_{i}}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$ and passes it to the challenger and asks the challenger to complete the session with j as the peer.
Case 1a: If $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=0$, the challenger knows the secret key corresponding to all γ and hence executes the actual protocol and delivers the session key to the adversary.
Case 1b: If $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=1$, the challenger does not know the secret key corresponding to some γ and hence simulates the session key as follows:

1. The challenger first performs the checks presented in the Step 2 of the Key Agreement protocol, on $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}} s_{2}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right), g^{\overrightarrow{w_{i}}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$.
2. The challenger generates the parameters for the party j in the form of a similar tuple of values given by $\left\langle\overrightarrow{u_{j 1}}=g^{\overrightarrow{x_{j}}}, \overrightarrow{v_{j 1}}=\overrightarrow{h_{j}} \overrightarrow{x_{j}}, \overrightarrow{d_{j 2}}=\overrightarrow{x_{j}}+\overrightarrow{r_{j}} \cdot \overrightarrow{b_{j}}+s_{2} \cdot \overrightarrow{e_{j}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \overrightarrow{h_{j}} s^{2}, g^{\overrightarrow{f_{j}}}, \overrightarrow{w_{j}^{\prime}}+\overrightarrow{x_{j}} \cdot \overrightarrow{f_{j}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}, X_{j}^{(1)}, \overrightarrow{U_{j}}, M_{j}, \rho_{j}\right\rangle$, where it computes $\overrightarrow{r_{j}}, \overrightarrow{x_{j}} \in_{R} \mathbb{Z}_{p}{ }^{m_{j}}, \overrightarrow{t_{j}}, \overrightarrow{w_{j}^{\prime}}, \overrightarrow{f_{j}}, \overrightarrow{\sigma_{j}} \in_{R} Z_{p}{ }^{* l_{j}}, \overrightarrow{h_{j}}=H_{1}\left(\overrightarrow{\mathbb{S}_{j}}\right), \overrightarrow{b_{j}}=H_{3}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$ and $\overrightarrow{e_{j}}=H_{4}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$.
3. If H_{5} was already queried with inputs $\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$, generate a fresh $\overrightarrow{w_{j}^{\prime}}$ and recompute the last but two components. With very high probability, the new $\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ will not result in a previously queried input set to H_{5}. Set $H_{5}\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ as $\overrightarrow{f_{j}}$.
4. The parameters generated by the challenger will satisfy Check 1 in Step 2 of Key Agreement. This is because the parameters $\left\langle\overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, \overrightarrow{d_{j 2}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \overrightarrow{h_{j}}{ }^{s_{2}}\right\rangle$ are generated in the same way as the original scheme.
5. The parameters generated by the challenger will satisfy Check 2 in the Step 2 of Key Agreement of Section 5, on account of the following.
6. The parameters generated by the challenger will satisfy Check 3 in Step 2 of Key Agreement. This is because the parameters $\left\langle X_{j}^{(1)}, \overrightarrow{U_{j}}\right\rangle$ are generated in the same way as the original scheme.
7. Thus the parameters generated by the challenger are consistent with that of the system.
8. The challenger sends the parameters to the adversary.
9. The challenger computes $\overrightarrow{\bar{Z}}_{1}=\left(g^{\overrightarrow{x_{i}}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{x_{j}}+\overrightarrow{t_{j}}}$ where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$. It also computes $\overrightarrow{P_{1}}=$ $\left(\overrightarrow{u_{i 1}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{i_{i}}}\right)^{\overrightarrow{c_{j}}}$ and $P_{2}=y_{1}$ where $\overrightarrow{c_{j}}=H_{2}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}\right)$.
10. The challenger computes $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.
11. The challenger is given access to the $D H\left(y_{1}, \cdot, \cdot\right)$ oracle, since we assume the hardness of Strong-Diffie Hellman problem. The challenger makes use of the $D H\left(y_{1}, \cdot, \cdot\right)$ Oracle to answer the query as follows:

- The challenger finds a \vec{Z} such that $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right)\left(\right.$ valid since $\left.P_{2}=y_{1}\right)$ and $H_{6}\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)=$ \vec{Z}, where $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g_{\overrightarrow{t_{i}}}^{\overrightarrow{t_{j}}}\right.$.
- If a \vec{Z} exists, the challenger returns \vec{Z} as the shared secret key.
- Otherwise the challenger chooses $\vec{Z} \in_{R} \mathbb{Z}_{p}^{* m_{j}}$ and for any further query of the form $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$ to the H_{6} Oracle, if $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right), \overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$, the challenger returns \vec{Z} as the result to the query.
Finally the challenger returns \vec{Z} as the shared secret key.
Case 2: The adversary does not know the secret key of i, the owner of the session. Here the adversary simply asks the challenger to generate a session with i as owner and j as peer.
Case 2a: The case where $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=0$ and $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=0$. In this case, the challenger can simulate the computations of both the parties since the challenger knows the private key of the owner i and the peer j.
Case 2b: The case where either $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=0$ or $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=0$. Without loss of generality let us consider that $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=0$ and $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=1$. Here the challenger knows the secret key of i but does not know the secret key of j. Hence for i the challenger will generate the session secret key as per the algorithm. For j the challenger has to simulate as follows:

1. The challenger generates the parameters for the party j in the form of a similar tuple of values given by $\left\langle\overrightarrow{u_{j 1}}=g^{\overrightarrow{x_{j}}}, \overrightarrow{v_{j 1}}=\overrightarrow{h_{j}} \overrightarrow{x_{j}}, \overrightarrow{d_{j 2}}=\overrightarrow{x_{j}}+\overrightarrow{r_{j}} \cdot \overrightarrow{b_{j}}+s_{2} \cdot \overrightarrow{e_{j}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \overrightarrow{h_{j}} s_{2}, g^{t_{j_{j}}}, \overrightarrow{w_{j}^{\prime}}+\overrightarrow{x_{j}} \cdot \overrightarrow{f_{j}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}, X_{j}^{(1)}, \overrightarrow{U_{j}^{\prime}}, M_{j}, \rho_{j}\right\rangle$, where it computes $\overrightarrow{r_{j}}, \overrightarrow{x_{j}} \in_{R} Z_{p}^{* m_{j}}, \overrightarrow{t_{j}}, \overrightarrow{w_{j}^{\prime}}, \overrightarrow{f_{j}}, \overrightarrow{\sigma_{j}} \in_{R} Z_{p}^{* l_{j}}, \overrightarrow{h_{j}}=H_{1}\left(\overrightarrow{\mathbb{S}_{j}}\right), \overrightarrow{b_{j}}=H_{3}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$ and $\overrightarrow{e_{j}}=H_{4}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$.
2. The challenger also generates the parameters for the party i in the form of a similar tuple of values given by $\left\langle\overrightarrow{u_{i 1}}=g^{\overrightarrow{x_{i}}}, \overrightarrow{v_{i 1}}=\overrightarrow{h_{i}} \overrightarrow{x_{i}}, \overrightarrow{d_{i 2}}=\overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}} s_{2}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}^{\prime}}+\overrightarrow{x_{i}} \cdot \overrightarrow{f_{i}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$ with i 's private key for user i.
3. If H_{5} was already queried with inputs $\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$, generate a fresh $\overrightarrow{w_{j}^{\prime}}$ and recompute the last but two components. With very high probability, the new $\left(g^{\overrightarrow{f_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ will not result in a previously queried input set to H_{5}. Set $H_{5}\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ as $\overrightarrow{f_{j}}$.
4. Similarly if H_{5} was already queried with inputs $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$, generate a fresh $\overrightarrow{w_{i}^{\prime}}$ and recompute the last but two components. With very high probability, the new $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$ will not result in a previously queried input set to H_{5}. Set $H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$ as $\overrightarrow{f_{i}}$.
5. The challenger computes $\overrightarrow{\bar{Z}_{1}}=\left(g^{\overrightarrow{x_{i}}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{x_{j}}+\overrightarrow{t_{j}}}$ where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$. It also computes $\overrightarrow{P_{1}}=$ $\left(\overrightarrow{u_{i 1}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{c_{j}}}$ and $P_{2}=y_{1}$ where $\overrightarrow{c_{j}}=H_{2}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}\right)$.
6. The challenger computes $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.
7. The challenger is given access to the $D H\left(y_{1}, \cdot, \cdot\right)$ oracle, since we assume the hardness of Strong-Diffie Hellman problem. The challenger makes use of the $D H\left(y_{1}, \cdot, \cdot\right)$ Oracle to answer the query as follows: - The challenger finds a \vec{Z} such that $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right)$ (valid since $\left.P_{2}=y_{1}\right)$ and $H_{6}\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)=$ \vec{Z}, where $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.

- If a \vec{Z} exists, the challenger returns \vec{Z} as the shared secret key.
- Otherwise the challenger chooses $\vec{Z} \in_{R} Z_{p}{ }^{m_{j}}$ and for any further query of the form $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$ to the H_{6} Oracle, if $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right), \overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$, the challenger returns \vec{Z} as the result to the query.
Finally the challenger returns \vec{Z} as the shared secret key.
Case 2c: The case where $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=1$ and $\bigvee_{\gamma} \tau_{j}^{(\gamma)}=1$. In this case the challenger does not know the secret key of both i and j. Hence the challenger has to simulate the session values for both i and j, which is done as follows:

1. The challenger generates the parameters for the party j in the form of a similar tuple of values given by $\left\langle\overrightarrow{u_{j 1}}=g^{\overrightarrow{x_{j}}}, \overrightarrow{v_{j 1}}={\overrightarrow{h_{j}}}^{\overrightarrow{x_{j}}}, \overrightarrow{d_{j 2}}=\overrightarrow{x_{j}}+\overrightarrow{r_{j}} \cdot \overrightarrow{b_{j}}+s_{2} \cdot \overrightarrow{e_{j}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \overrightarrow{h_{j}} s_{2}, g^{\overrightarrow{j_{j}}}, \overrightarrow{w_{j}^{\prime}}+\overrightarrow{x_{j}} \cdot \overrightarrow{f_{j}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}, X_{j}^{(1)}, \overrightarrow{U_{j}}, M_{j}, \rho_{j}\right\rangle$, where it computes $\overrightarrow{r_{j}}, \overrightarrow{x_{j}} \in_{R} \mathbb{Z}_{p}{ }^{m_{j}}, \overrightarrow{t_{j}}, \overrightarrow{w_{j}^{\prime}}, \overrightarrow{f_{j}}, \overrightarrow{\sigma_{j}} \in_{R} Z_{p}{ }^{* l_{j}}, \overrightarrow{h_{j}}=H_{1}\left(\overrightarrow{\mathbb{S}_{j}}\right), \overrightarrow{b_{j}}=H_{3}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$ and $\overrightarrow{e_{j}}=H_{4}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}} \overrightarrow{r_{j}}\right)$.
2. The challenger also generates the parameters for the party i in the form of a similar tuple of values given by $\left\langle\overrightarrow{u_{i 1}}=g^{\overrightarrow{x_{i}}}, \overrightarrow{v_{i 1}}=\overrightarrow{h_{i}} \overrightarrow{x_{i}}, \overrightarrow{d_{i 2}}=\overrightarrow{x_{i}}+\overrightarrow{r_{i}} \cdot \overrightarrow{b_{i}}+s_{2} \cdot \overrightarrow{e_{i}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}} s_{2}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}^{\prime}}+\overrightarrow{x_{i}} \cdot \overrightarrow{f_{i}}, g^{w_{i}^{\prime}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$, where it computes $\overrightarrow{r_{i}}, \overrightarrow{x_{i}} \in_{R} \mathbb{Z}_{p} *^{m_{i}}, \overrightarrow{t_{i}}, \overrightarrow{w_{i}^{\prime}}, \overrightarrow{f_{i}}, \overrightarrow{\sigma_{i}} \in_{R} Z_{p}{ }^{l_{i}}, \overrightarrow{h_{i}}=H_{1}\left(\overrightarrow{\mathbb{S}_{i}}\right), \overrightarrow{b_{i}}=H_{3}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, g^{\overrightarrow{r_{i}}}, \overrightarrow{h_{i}} \overrightarrow{r_{i}}\right)$ and $\overrightarrow{e_{i}}=H_{4}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, g^{\overrightarrow{r_{i}}}, \overrightarrow{h_{i}} \overrightarrow{r_{i}}\right)$.
3. If H_{5} was already queried with inputs $\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$, generate a fresh $\overrightarrow{w_{j}^{\prime}}$ and recompute the last but two components. With very high probability, the new $\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ will not result in a previously queried input set to H_{5}. Set $H_{5}\left(g^{\overrightarrow{t_{j}}}, g^{\overrightarrow{w_{j}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{j}} \cdot \overrightarrow{f_{j}}\right)$ as $\overrightarrow{f_{j}}$.
4. Similarly if H_{5} was already queried with inputs $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$, generate a fresh $\overrightarrow{w_{i}^{\prime}}$ and recompute the last but two components. With very high probability, the new $\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$ will not result in a previously queried input set to H_{5}. Set $H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}^{\prime}}} \cdot y_{1}-\overrightarrow{c_{i}} \cdot \overrightarrow{f_{i}}\right)$ as $\overrightarrow{f_{i}}$.
5. The challenger computes $\overrightarrow{\bar{Z}_{1}}=\left(g^{\overrightarrow{x_{i}}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{x_{j}}+\overrightarrow{t_{j}}}$ where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$. It also computes $\overrightarrow{P_{1}}=$ $\left(\overrightarrow{u_{i 1}} \cdot y_{1} \overrightarrow{c_{i}} \cdot g^{\overrightarrow{i_{i}}}\right)^{\overrightarrow{c_{j}}}$ and $P_{2}=y_{1}$ where $\overrightarrow{c_{j}}=H_{2}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}\right)$.
6. The challenger computes $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.
7. The challenger is given access to the $D H\left(y_{1}, \cdot, \cdot\right)$ oracle, since we assume the hardness of Strong-Diffie Hellman problem. The challenger makes use of the $D H\left(y_{1}, \cdot, \cdot\right)$ Oracle to answer the query as follows:

- The challenger finds a \vec{Z} such that $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right)$ (valid since $\left.P_{2}=y_{1}\right)$ and $H_{6}\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)=$ \vec{Z}, where $\overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$.
- If a \vec{Z} exists, the challenger returns \vec{Z} as the shared secret key.
- Otherwise the challenger chooses $\vec{Z} \in_{R} \mathbb{Z}_{p}{ }^{m_{j}}$ and for any further query of the form $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$ to the H_{6} Oracle, if $D H\left(P_{2}, \overrightarrow{P_{1}}, \overrightarrow{Z_{1}} / \overrightarrow{Z_{1}}\right), \overrightarrow{Z_{2}}=\overrightarrow{v_{i 1}} \cdot \overrightarrow{v_{j 1}}$ and $\overrightarrow{Z_{3}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{t_{j}}}$, the challenger returns \vec{Z} as the result to the query.
Finally the challenger returns \vec{Z} as the shared secret key.
Test Session: The adversary impersonates as user i and sends the parameters as the following tuple of values $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}}{ }^{s_{2}}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right), g^{\overrightarrow{w_{i}}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$ to the challenger for session simulation. The challenger runs the H_{1} Oracle with input $\overrightarrow{\mathbb{S}}_{i}$. The test session is assumed to run between two users i and j, where adversary impersonates as i and challenger has to generate parameters for user j. If $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=0$, it aborts. Else it does the following:
- The challenger now passes on to the adversary, the parameters as being the following tuple of values $\left\langle\overrightarrow{u_{j 1}}=g^{\overrightarrow{x_{j}}}, \overrightarrow{v_{j 1}}=\overrightarrow{h_{j}}, \overrightarrow{x_{j}}, \overrightarrow{d_{j 2}}=\overrightarrow{x_{j}}+\overrightarrow{r_{j}} \cdot \overrightarrow{b_{j}}+s_{2} \cdot \overrightarrow{e_{j}}, \overrightarrow{b_{j}}, \overrightarrow{e_{j}}, \overrightarrow{h_{j}}, D \cdot g^{-\overrightarrow{d_{j 1}}}, \overrightarrow{w_{j}}+\overrightarrow{d_{j 1}} \cdot H_{5}\left(D \cdot g^{-\overrightarrow{d_{j 1}}}, g^{\overrightarrow{w_{j}}}\right), X_{j}^{(1)}, \overrightarrow{U_{j}}, M_{j}, \rho_{j}\right\rangle$ where $\overrightarrow{d_{j 1}}$ is the private key component associated with User j which is known to the challenger, $\overrightarrow{r_{j}}, \overrightarrow{x_{j}} \in_{R}$ $\mathbb{Z}_{p} *^{m_{j}}, \overrightarrow{w_{j}}, \overrightarrow{\sigma_{j}} \in_{R} Z_{p}^{* l_{j}}, \overrightarrow{h_{j}}=H_{1}\left(\overrightarrow{\mathbb{S}_{j}}\right), \overrightarrow{b_{j}}=H_{3}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}}\right)$ and $\overrightarrow{e_{j}}=H_{4}\left(\overrightarrow{\mathbb{S}_{j}}, \overrightarrow{u_{j 1}}, \overrightarrow{v_{j 1}}, g^{\overrightarrow{r_{j}}}, \overrightarrow{h_{j}}\right)$.
The parameters passed satisfy the checks as they are generated in the way similar to the scheme and

$$
g^{\overrightarrow{z_{j}}}=D \cdot g^{-\overrightarrow{d_{j 1}}}=g^{b \cdot \overrightarrow{1}-\overrightarrow{d_{j 1}}}
$$

- The challenger performs the checks specified in Step 2 of the Key Agreement algorithm described in Section 5 on $\left\langle\overrightarrow{u_{i 1}}, \overrightarrow{v_{i 1}}, \overrightarrow{d_{i 2}}, \overrightarrow{b_{i}}, \overrightarrow{e_{i}}, \overrightarrow{h_{i}}{ }^{s_{2}}, g^{\overrightarrow{t_{i}}}, \overrightarrow{w_{i}}+\overrightarrow{d_{i 1}} \cdot H_{5}\left(g^{\overrightarrow{t_{i}}}, g^{\overrightarrow{w_{i}}}, M_{i}, \rho_{i}\right), g^{\overrightarrow{w_{i}}}, X_{i}^{(1)}, \overrightarrow{U_{i}}, M_{i}, \rho_{i}\right\rangle$. If the checks pass, the challenger proceeds to next step. Else, it aborts.
- The challenger returns a $\vec{Z} \in_{R} \mathbb{Z}_{p}{ }^{m_{i}}$ as the shared secret key. This won't be a valid shared secret key. But in order to find that this is invalid the adversary should have queried the H_{6} Oracle with a valid tuple $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$. Thus the challenger computes $\overrightarrow{\bar{Z}_{2}}=\left(\overrightarrow{Z_{2}} / \overrightarrow{v_{j 1}}\right)^{\overrightarrow{k_{i}}-1}$ and $\vec{Z}_{3}=\overrightarrow{Z_{3}} \cdot\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{d_{j 1}}}$. The challenger also computes $\vec{S}=\left(\overrightarrow{Z_{1}} / \vec{Z}_{2} \cdot \overrightarrow{\bar{Z}}_{3}\right)^{{\overrightarrow{c_{i}}}^{-1}}$ where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$.
- Finally the challenger can return the solution for the CDH hard problem as shown in the lemma below. In particular, since $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=1$, there exists a γ such that $\tau_{i}^{(\gamma)}=1$. The challenger returns the value $S^{(\gamma)}$.

Lemma 3: The challenger returns the solution to the CDH instance of the SDH hard problem set in the beginning.
Proof: The challenger computes $\vec{S}=\left(\overrightarrow{Z_{1}} / \overrightarrow{\bar{Z}}_{2} \cdot \overrightarrow{\bar{Z}}_{3}\right)^{\vec{c}_{i}^{-1}}$ where $\overrightarrow{c_{i}}=H_{2}\left(\overrightarrow{\mathbb{S}_{i}}, \overrightarrow{u_{i 1}}\right)$.

- Since $\bigvee_{\gamma} \tau_{i}^{(\gamma)}=1$, there exists a γ such that $\tau_{i}^{(\gamma)}=1$. Now, $\bar{Z}_{2}^{(\gamma)}=\left(Z_{2}^{(\gamma)} / v_{j 1}^{(\gamma)}\right)^{\left(k_{i}^{(\gamma)}\right)^{-1}}=\left(v_{i 1}^{(\gamma)} \cdot v_{j 1}^{(\gamma)} / v_{j 1}^{\gamma}\right)^{\left(k_{i}^{(\gamma)}\right)^{-1}}=$ $\left(h_{i}^{(\gamma)^{x_{i}^{(\gamma)}}}\right)^{\left(k_{i}^{(\gamma)}\right)^{-1}}=\left(g^{b \cdot k_{i}^{(\gamma)}}\right)^{x_{i}^{(\gamma)} \cdot\left(k_{i}^{(\gamma)}\right)^{-1}}=g^{b \cdot x_{i}^{(\gamma)}} \cdot\left(\right.$ Note: The component $h_{i}^{(\gamma)}=\left(g^{b}\right)^{k_{i}^{(\gamma)}}$ as $\tau_{i}^{(\gamma)}=1$.).
$-\vec{Z}_{3}=\overrightarrow{Z_{3}} \cdot\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{d_{j 1}}}=\left(g^{\overrightarrow{t_{i}}}\right)^{\left(b \cdot \overrightarrow{1}-\overrightarrow{d_{j 1}}\right)} \cdot\left(g^{\overrightarrow{t_{i}}}\right)^{\overrightarrow{d_{j 1}}}=g^{b \cdot \overrightarrow{t_{i}}}$.
- Therefore $S^{(\gamma)}=\left(g^{\left(x_{i}^{(\gamma)}+a \cdot c_{i}^{(\gamma)}+t_{i}^{(\gamma)}\right)\left(d_{j 1}^{(\gamma)}+b-d_{j 1}^{(\gamma)}\right)} / g^{b \cdot x_{i}^{(\gamma)}} \cdot g^{b \cdot t_{i}^{(\gamma)}}\right)^{c_{i}^{(\gamma)-1}}=g^{a b}$.

Thus we have proved that the challenger returns the solution to the CDH Problem.

6 Probability Analysis

In this section we present the probability analysis of our scheme presented in Section 4.

Theorem 1: If ϵ is the probability of the adversary in distinguishing between a random shared secret key and a valid shared secret key, the probability of solving the underlying SDH problem, ϵ^{\prime} is given by

$$
\epsilon^{\prime}=\epsilon \cdot\left(1-\frac{1}{q_{E}+2}\right)^{q_{E}+1} \cdot\left(\frac{1}{q_{E}+2}\right)
$$

where $q_{E}=$ Number of key extract or Party Corruption queries.
Proof: A solution to the hard problem can be generated only if the following events hold good.
$-S_{1}$: The challenger is able to answer all the Party Corruption queries. In other words, the challenger should not abort in the Party Corruption phase.
$-S_{2}$: In the test session, the private key of user that the adversary impersonates should not be computable.
$-S_{3}$: In the test session, the challenger should be able to compute the private key of the user it is simulating.
$-S_{4}$: The challenger should choose the valid tuple $\left(\overrightarrow{Z_{1}}, \overrightarrow{Z_{2}}, \overrightarrow{Z_{3}}\right)$ from the list $L_{h 6}$ which has the hard problem injected in it.

Therefore, a solution to SDH problem can be obtained if
(Adversary succeeds in the game in Section 3) $\bigwedge S_{1} \bigwedge S_{2} \bigwedge S_{3} \bigwedge S_{4}$.
$\operatorname{Pr}($ breaking $S D H)=\operatorname{Pr}($ Adversary's success $) \cdot \operatorname{Pr}\left(S_{1}\right) \cdot \operatorname{Pr}\left(S_{2}\right) \cdot \operatorname{Pr}\left(S_{3}\right) \cdot \operatorname{Pr}\left(S_{4}\right)$.

Consider the H_{1} Oracle. Assume $P\left(\tau_{i}^{(\gamma)}=0\right)=\alpha$. Let q_{E} be the total number of key extract or Party Corruption queries. Now q_{E} can be divided into two mutually disjoint subsets \bar{A} and \bar{B}. Let \bar{A} be a set of queries for which $H_{1}\left(\overrightarrow{\mathbb{S}_{i}}\right)$ resulted in $\tau_{i}^{(\gamma)}=0$ and hence the private keys can be computed as described in Party Corruption phase and it will not abort in the Party corruption phase. Let \bar{B} be the set for which $H_{1}\left(\overrightarrow{\mathbb{S}_{i}}\right)$ resulted in $\tau_{i}^{(\gamma)}=1$ and hence an abort in the Party Corruption phase. Therefore private keys cannot be computed for identities in \bar{B}. There are $\alpha^{m_{i}} . q_{E}$ identities in \bar{A} and remaining $\left(1-\alpha^{m_{i}}\right) \cdot q_{E}$ identities in \bar{B}.
$-\operatorname{Pr}(A 1)=\operatorname{Pr}\left(\overrightarrow{\mathbb{S}_{i}} \in \bar{A}\right)$ for all the q_{E} queries. This is equal to $\left(\frac{\alpha^{m_{i}} \cdot q_{E}}{q_{E}}\right)^{q_{E}}=\alpha^{m_{i} \cdot q_{E}}$.
$-\operatorname{Pr}(A 2)=\operatorname{Pr}\left(\overrightarrow{\mathbb{S}_{i}} \in \bar{B}\right)$, where $\overrightarrow{\mathbb{S}}_{i}$ is the attribute vector of the user i that the adversary impersonates in the Test Session. Therefore $\tau_{i}^{(\gamma)}=1$ in this case and hence $h_{i}=\left(g^{b}\right)^{k_{i}^{\gamma}}$. This is needed to solve the SDH problem. The probability is equal to $\frac{\left(1-\alpha^{m_{i}}\right) \cdot q_{E}}{q_{E}}=1-\alpha^{m_{i}}$.
$-\operatorname{Pr}(A 3)=\operatorname{Pr}\left(\overrightarrow{\mathbb{S}_{j}} \in \bar{A}\right), \overrightarrow{\mathbb{S}_{j}}$ is the attribute vector of the user j the challenger emulates in the Test Session. This ensures that the private key of j is computable by the challenger. This is equal to $\alpha^{m_{i}}$.
$-\operatorname{Pr}(A 4)=P\left(\right.$ a valid $\left\langle Z_{1}, Z_{2}, Z_{3}\right\rangle \in L_{h_{6}}$ is chosen by the challenger $)=\frac{1}{h_{6}}$, where h_{6} is the number of queries made to the H_{6} Oracle.

Therefore the probability of solving the SDH problem, $\epsilon^{\prime}=\epsilon \cdot \alpha^{q_{E}} .(1-\alpha) . \alpha$.

$$
\epsilon^{\prime}=\epsilon \cdot \frac{1}{h_{6}} \cdot \alpha^{m_{i} \cdot q_{E}+1} \cdot\left(1-\alpha^{m_{i}}\right) .
$$

By maximizing this probability with respect to α, we get $\alpha=\left(\frac{q_{E}+1}{q_{E}+2}\right)^{\frac{1}{m_{i}}}$.
Therefore $\epsilon^{\prime}=\epsilon \cdot \frac{1}{h_{6}}\left(1-\frac{1}{q_{E}+2}\right)^{q_{E}+1} \cdot\left(\frac{1}{q_{E}+2}\right)$.

7 Additional Security Properties

The proposed protocol offers additional security properties which we discuss informally. Formal details of these properties can be found in the full version of the paper.
Forward Secrecy: A key agreement protocol has forward secrecy, if after a session is completed and its shared secret key is erased, the adversary cannot learn it even if it corrupts the parties involved in that session. In other words, learning the private keys of parties should not affect the security of the shared secret key. Relaxing the definition of forward secrecy, we assume that the past sessions with passive adversary are the ones whose shared secret keys are not compromised. The proposed scheme offers forward secrecy.
Resistance to Key Compromise Impersonation attacks: Whenever a user i's private key is learned by the adversary, it can impersonate as i. A key compromise impersonation (KCI) attack can be carried out when the knowledge of i 's private key allows the adversary to impersonate another party to i. Our scheme is resistant to KCI attacks. This is because in the proof, when the adversary tries to impersonate i to user j, the challenger is able to answer private key queries from the adversary corresponding to user j. Thus the resistance to KCI attacks is inbuilt in the security proof.

Resistance to Ephemeral Key Compromise Impersonation: Generally the users pick the ephemeral keys $\left(\overrightarrow{t_{i}}, g^{\overrightarrow{t_{i}}}\right)$ from a pre-computed list in order to minimize online computation cost. But the problem with this approach is that the ephemeral components may be subjected to leakage. This attack considers the case when the adversary can make state-reveal queries even in the test session. But our scheme is resistant to that type of an attack because when an adversary tries to impersonate a user j without knowing the private key of j, it cannot generate the components $\overrightarrow{d_{j 2}}$ and the signature on $g^{\overrightarrow{t_{j}}}$ (We assume that $\overrightarrow{w_{i}}$ is erased immediately after the signature on $g^{\overrightarrow{t_{i}}}$ is computed and hence is not available to the adversary during state-reveal queries). Thus it is secure and resists ephemeral key compromise impersonation attack.

8 Conclusion

The main advantages of our protocol is that it requires only one round of communiucation among the users and the messages can be scheduled arbitarily. Moreover our scheme also provides protection against active adversaries and also does not rely on any underlying attribute based encryption scheme as a key exchange problem should be fundamentally more simpler than any encryption scheme. Also our scheme enjoys the property of having constant size public parameters. Moreover our proof techniques can be easily modified to achieve security in attribute based eCK model. We leave open the problem of designing ABAKE scheme in more stronger model that allows arbitraly leakages of intermediate values as in seCK [18] model and also designing ABAKE schemes which are proved secure in standard model in a more stronger model than ours.

References

1. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceedings of the 24th Annual International Conference on Theory and Applications of Cryp- tographic Techniques, EUROCRYPT05, pages 457473, Berlin, Heidelberg, 2005. Springer-Verlag.
2. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 06, pages 8998, New York, NY, USA, 2006. ACM
3. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute- based encryption. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP 07, pages 321334, Washington, DC, USA, 2007. IEEE Computer Society.
4. V. Goyal, A. Jain, O. Pandey, A. Sahai. Bounded Ciphertext Policy Attribute Based Encryption. ICALP (2) 2008, LNCS 5126, pp. 579591, 2008.
5. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic access structures. In Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 07, pages 195203, New York, NY, USA, 2007. ACM.
6. Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, ef- ficient, and provably secure realization. In Proceedings of the 14th Interna- tional Conference on Practice and Theory in Public Key Cryptography Confer- ence on Public Key Cryptography, PKC11, pages 5370, Berlin, Heidelberg, 2011. Springer-Verlag.
7. Allison Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully secure functional encryption: Attribute-based encryption and (hi- erarchical) inner product encryption. In Proceedings of the 29th Annual Interna- tional Conference on Theory and Applications of Cryptographic Techniques, EU- ROCRYPT10, pages 6291, Berlin, Heidelberg, 2010. Springer-Verlag.
8. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations from the decisional linear assumption. IACR Cryptology ePrint Archive, 2010:563, 2010.
9. Ateniese, G., Kirsch, J., Blanton, M.: Secret Handshakes with Dynamic and Fuzzy Matching. In: NDSS 2007, pp. 159177 (2007)
10. Gorantla, M.C., Boyd, C., Nieto, J.M.G.: Attribute-based Authenticated Key Ex- change. In: Steinfeld, H. (ed.) ACISP 2010. LNCS, vol. 6168, pp. 300317. Springer, Heidelberg (2010)
11. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Proceedings of the 13th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO 93, pages 232249, New York, NY, USA, 1994. Springer- Verlag New York, Inc.
12. Birkett, J., Stebila, D.: Predicate-Based Key Exchange. In: Steinfeld, H. (ed.) ACISP 2010. LNCS, vol. 6168, pp. 282299. Springer, Heidelberg (2010)
13. Yoneyama, K.: Strongly Secure Two-Pass Attribute-Based Authenticated Key Exchange. In Pairing-Based Cryptography - Pairing 2010. LNCS, vol. 6487, pp. 147-166. Springer, Heidelberg (2010)
14. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange. In Proc. of 1st International Conference on Provable Security (PROVSEC07), Wollongong, Australia, LNCS, volume 4784, pages 116. Springer-Verlag, November 2007.
15. Masayuki Abe, Eike Kiltz, and Tatsuaki Okamoto. Compact cca-secure encryption for messages of arbitrary length. In Public Key Cryptography - PKC 2009, volume 5443 of Lecture Notes in Computer Science, pages 377392. Springer, 2009.
16. Sree Vivek, S. and Sharmila Deva Selvi, S. and Renganathan V., Layamrudhaa and Pandu Rangan, C. Efficient, Pairing-Free, Authenticated Identity Based Key Agreement in a Single Round. In Provable Security- ProvSec 2013, LNCS, vol. 8209, pp,. 38-58. Springer, Heidelberg (2013)
17. Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis.
18. AugustinP. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new security model for authenticated key agreement. In JuanA. Garay and Roberto De Prisco, editors, Security and Cryptography for Networks, volume 6280 of Lecture Notes in Computer Science, pages 219234. Springer Berlin Heidelberg, 2010.
19. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104118. Springer, Heidelberg (2001)
