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Abstract

In this note, we prove lower bounds on the amount of entropy
of random sources necessary for secure message authentication. We
consider the problem of non-interactive c-time message authentication
using a weak secret key having min-entropy k. We show that exist-
ing constructions using (c + 1)-wise independent hash functions are
optimal.

This result resolves one of the main questions left open by the work
of Dodis and Spencer [2] who considered this problem for one-time
message authentication of one-bit messages.

1 Introduction

1.1 Non-interactive Message Authentication

In this note, we revisit the problem of non-interactive message authentica-
tion: where Alice and Bob share a weak secret key R ∈ {0, 1}n, and Alice
wants to communicate up to c messages authentically to Bob over a channel
controlled by the adversary Eve. This problem is known to have an easy so-
lution with ε-security for ε < 1 using one of various possible universal hash
functions, or more generally c+ 1-wise independent hash functions (see, for
example, [5, 4] that give construction for c = 1). These solutions, however,
require that the min-entropy H∞(R) of the source R is at least cn

c+1 +log(1ε ).
Dodis and Spencer [2] studied this problem with the goal of finding a

lower bound on the min-entropy of R. They showed that for any integer
k ≥ n

2 , and any one-round message authentication protocol for one-bit mes-
sages, there exists a k-flat source R such that the advantage of the adversary
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in forging the tag is at least 2n/2−k, or in other words, H∞(R) ≥ n
2 +log(1ε ).

This showed that the construction using universal hash functions is optimal
for one-bit messages. However, the bound for many time message authen-
tication is still far from optimal and this was left as one of the main open
questions in [2]. Specifically, the authors state that it is interesting to ex-
tend their quantitative results for private-key encryption and especially au-
thentication to larger than one-bit message spaces. While this question has
subsequently been almost resolved for the case of private-key encryption [1],
it has remained open for the case of private-key authentication.

1.2 Our contribution and Comparison with [2]

We answer this open question in the affirmative, i.e., that for any integer
k ≥ cn

c+1 , and any c-round message authentication protocol, there exists a
k-flat source R such that the advantage of the adversary in forging the tag
is at least 2cn/(c+1)−k, or in other words, H∞(R) ≥ cn

c+1 + log(1ε ). Our proof
uses a simple idea based on the chain rule for Shannon entropy.

In comparison, the result of [2] was proved by considering a bipartite
multigraph with the edges corresponding to the keys and the vertices on
each part corresponding to the tags of the bit 0 and 1, respectively. They
then partitioned their proof into two cases (i) where there are few tags cor-
responding to the bit 0, in which case it is easy to guess Tag(0, R), and (ii)
where there are many tags corresponding to the bit 0, but where knowing
Tag(0, R) gives significant information about Tag(1, R). It seems that one
might be able to generalize this idea to prove a lower bound for c-time mes-
sage authentication by considering c+1 cases as opposed to considering two
cases for c = 1. However, the case analysis becomes significantly more in-
volved due to the combinatorial nature of the proof, and perhaps this is a
reason why the question has remained open for so long.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an
integer m ∈ N, we let Um denote the uniform distribution over {0, 1}m, the
bit-strings of length m. For a distribution or random variable X we write
x← X to denote the operation of sampling a random x according to X. For
a set S, we write s← S as shorthand for s← US .
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2.1 Entropy Definitions

The prediction probability of a random variable X is defined as

Pred(X) := max
x

Pr[X = x].

The min-entropy of X is defined as

H∞(X) := − logPred(X).

We say that a random variable X is an (n, k)-source if X ∈ {0, 1}n and
H∞(X) ≥ k. We also define conditional prediction probability of a random
variable X conditioned on another random variable Z as

Pred(X|Z) := Ez←Z

[
max
x

Pr[X = x|Z = z]
]

= Ez←Z

[
2−H∞(X|Z=z)

]
.

The conditional min-entropy of X is defined as

H∞(X|Z) := − logPred(X|Z).

Also, the Shannon entropy H1(X) of a random variable X is defined as

H1(X) := −
∑
x

Pr[X = x] log Pr[X = x] .

The conditional Shannon entropy of a random variable X conditioned on
another random variable Z is defined as

H1(X|Z) := Ez←ZH1(X|Z = z)

= −Ez←Z

∑
x

Pr[X = x|Z = z] log Pr[X = x|Z = z] .

We will need the following standard facts about (conditional) min-entropy,
and (conditional) Shannon entropy.

Fact 1. Let X,Y, Z be arbitrary random variables, and let f be an arbitrary
function. Then the following hold

1. H∞(X|Z) ≥ H∞(f(X)|Z), and H1(X|Z) ≥ H1(f(X)|Z).

2. H1(X,Y |Z) = H1(X|Y,Z) +H1(Y |Z).

3. H1(X|Z) ≥ H∞(X|Z).
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We remark here that the definition of the conditional Shannon entropy
is fairly standard, but there are other alternative definitions in the literature
for conditional min-entropy. However, our proposed definition is by now
fairly standard. We direct the reader to [3] which contains a comprehensive
discussion on conditional entropies, and proves Fact 1 among several other
results.

2.2 Message Authentication Codes

In order to define a message authentication code, we first introduce the
following game Gc(r). For a given function Tag : M× {0, 1}n 7→ T and a
fixed secret key r ∈ {0, 1}n, an adversary Eve is allowed to make at most c
adaptive queries µ1, . . . , µc to Tag(·, r). We say that Eve wins the game if she
outputs a pair (µc+1, σ), such that Tag(µc+1, r) = σ and µc+1 /∈ {µ1, . . . , µc}.
We define the advantage of Eve in this game as

AdvEvec (r) = Pr[Eve wins Gc(r)].

Definition 1. A function Tag :M×{0, 1}n 7→ T is called a c-time (n, k, ε)-
secure message authentication code, if for any distribution R on {0, 1}n with
H∞(R) ≥ k, for any computationally unbounded adversary Eve,

Er←R[Adv
Eve
c (r)] ≤ ε.

2.3 k-wise Independent Hash Functions

Here we define and give a well-known construction of k-wise independent
hash functions.

Definition 2. A function H : X ×R 7→ Y is said to be a k-wise independent
hash function if for all y1, . . . , yk ∈ Y, and all distinct x1, . . . , xk ∈ X ,

Pr
r←R

(H(x1, r) = y1 ∧ · · · ∧ h(xk, r) = yk) =
1

|Y|k
.

Lemma 1 (folklore). Let k be a positive integer, and let X = Y = F, and
R = Fk for some finite field F. Then the function H : X ×R 7→ Y given by

H(x, (r0, . . . , rk−1)) := r0 + r1 · x+ · · ·+ rk−1 · xk−1

is a k-wise independent hash function.
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3 Tight Bound for c-time MACs

In this section, we prove a lower bound on the error-probability ε for c-time
message authentication protocol for deterministic functions Tag.

Theorem 1. Let Tag be a c-time (n, k, ε)-secure message authentication code
where Tag :M×{0, 1}n 7→ T . Then we have the following.

1. If k ≤ cn
c+1 then ε = 1;

2. If k > cn
c+1 then ε ≥ 2

cn
c+1
−k.

Proof. Let U be an n-bit uniformly random string, and let µ1, . . . , µc+1 ∈M
be fixed distinct messages. Note that H1(U) = n. Using Fact 1 multiple
times, we get

n =H1(U) ≥ H1 (Tag(µ1, U), . . . ,Tag(µc+1, U))

=H1 (Tag(µ1, U)) +H1 (Tag(µ2, U), . . . ,Tag(µc+1, U)|Tag(µ1, U))

= . . .

=
c+1∑
i=1

H1 (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U))

≥
c+1∑
i=1

H∞ (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U)) .

Therefore, there exists i ∈ {1, . . . , c+ 1}, such that

H∞ (Tag(µi, U)|Tag(µ1, U), . . . ,Tag(µi−1, U)) ≤ n

c+ 1
.

We fix an i satisfying this ineqaulity. For any t = (t1, . . . , ti−1) ∈ T i−1, let
E(t) be a shorthand for the event that Tag(µj , U) = tj for 1 ≤ j < i. From
the definition of conditional min-entropy, we get the following.

2−
n

c+1 ≤ Et∈T i−1 max
ti∈T

Pr
[
Tag(µi, U) = ti|E(t)

]
=

∑
t∈T i−1

Pr[E(t)] ·max
ti∈T

Pr[Tag(µi, U) = ti|E(t)]

=
∑

t∈T i−1

max
ti∈T

Pr[Tag(µj , U) = tj for 1 ≤ j ≤ i] . (1)

For every fixed t = (t1, . . . , ti−1) ∈ T i−1, let µt be the most probable value
of Tag(µi, U) given Tag(µj , U) = tj for 1 ≤ j < i. Intuitively, we want
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to choose a distribution over the set of keys so that Tag(µj , U) = tj for
1 ≤ j < i implies that Tag(µi, U) = µt. Then, given tags for µ1, . . . , µi−1,
we can always guess the tag for µi. Let Kt be the set of keys corresponding
to µt, i.e.,

Kt =
{
r ∈ {0, 1}n|Tag(µi, r) = µt,Tag(µj , r) = tj for 1 ≤ j < i

}
.

Let also
K =

⋃
t∈T i−1

Kt.

From inequality (1),
|K| ≥ 2n · 2

−n
c+1 = 2

cn
c+1 .

If 2k ≤ |K|, then let R be an arbitrary 2k element subset of K. Otherwise,
let

R = K ∪ K′ ,

where K′ is a set of arbitrary keys from the set {0, 1}n\K, such that |R| = 2k.
We claim that if R is uniformly distributed on R, then there exists

a strategy for Eve such that the advantage in guessing Tag(µi, r) given
Tag(µ1, r), . . . ,Tag(µi−1, r) is at least 2

cn
n+1
−k if k > cn

n+1 , and 1, otherwise.
To see this, notice that for any r ∈ K, there is a unique value of Tag(µi, r)
given Tag(µ1, r), . . . ,Tag(µi−1, r). Let the strategy of Eve be to guess this
unique tag assuming R ∈ K. Then, Eve succeeds with probability 1 if R ∈ K,
and hence the advantage of Eve is

ε ≥ |R ∩ K|
2k

≥
min

(
2k, 2

cn
c+1

)
2k

.

The statement of the theorem now follows.

It is well-known that the bound from Theorem 1 can be achieved by
using a family of c + 1-wise independent hash functions. For the sake of
completeness, we present this construction below.

Lemma 2 (folklore). Let F be a finite field, and let M = T = F, and let
the set of keys be Fc+1 with n = (c + 1) log |F|. Then the function Tag :
M× Fc+1 7→ T defined as:

Tag (µ, (r0, . . . , rc)) := r0 + r1 · µ+ · · ·+ rc · µc

is a c-time (n, k, 2
cn
c+1
−k)-secure message authentication code.
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Proof. Let U be uniform in Fc+1. For any fixed strategy of Eve, and r ∈ Fc+1,
let f(r) denote AdvEvec (r). Let µ1, . . . , µc+1 be arbitrary distinct messages
in M. By Lemma 1, we have that for any σ ∈ T , the probability that
Tag(µc+1, U) = σ given Tag(µ1, U), . . . ,Tag(µc, U) is at most 1

|F| = 2−n/(c+1).
Hence,

Er←U [f(r)] ≤ 2−
n

c+1 .

Now, consider a random key R ∈ Fc+1, such that H∞(R) ≥ k. Then

Er←R[f(r)] =
∑

r∈Fc+1

Pr(R = r) · f(r)

≤ max
r∈Fc+1

Pr(R = r)
∑

r∈Fc+1

f(r)

≤ 2−k · 2n · Er←U [f(r)]

≤ 2n−k · 2−
n

c+1

= 2
cn
c+1
−k ,

as needed.
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